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1. Introduection

In this paper we are concerned with algebraic numbers all of whose
conjugates lie on a circle whose centre y is a cubic or quartic non-totally
real irrational.

We show that there is at most one circle of centre » which contains
a set of conjugate algebraic numbers f = f,, ..., fy with ¥ =3. Furt-
her, when such a circle does exist, we obtain a one-to-one correspondence
between sets of conjugate algebraic numbers on the circle, and totally real
algebraic numbers whose conjugates lie in a certain interval (Theorem 1).
We also obtain necessary and sufficient conditions for infinitely many of
these numbers on the circle to be algebraic integers (Theorem 2).

Our paper extends work of Robinson [3] and the first author [1]. Ro-
binson proved a theorem corresponding to our Theorem 2 for circles of
rational centre. At the end of the paper we give an explicit result (implicit
in Robinson’s work) corresponding to our Theorem 1 for this case (Theorem
3). We also give an alternative proof of Robinson’s theorem (Theorem 4);
our proof gives an idea of the methods used in the proof of Theorem 2.
In [1, Theorems 1 and 3], the first author has given the corresponding
results for the case of circles whose centre is irrational and totally real.

Our main results are stated in Section 2. Section 3 is devoted to lemmas
concerning the general problem, when y is of degree n (not necessarily
3 or 4), and non-totally real. We then specialize to n = 3 or 4, and prove
some more lemmas which we require (Section 4). In Section 5 we construct
conjugate sets of algebraic numbers on a circle of centre 7; the proof of
Theorem 1 is completed in Section 6. The proof of Theorem 2 occupies
the next three sections. In Section 10 we have the discussion for circles
of rational centre. We also make a few comments on [1]. Finally we give
some examples in Section 11.

We denote by A the ring of all algebraic integers. As usual, Z, Q, C
denote the integers, the rationals, and complex numbers, respectively.
For z €C, we fix 4/z so that 0 < arg 4/z <z If p is prime, then
p7|C indicates that p*|C,p**'+C. If O =0, we put » = 0.
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2. Statement of main results

Except in Section 10, y will denote a real, but not totally real algebraic

number of degree =, with conjugates y =y:,...,y, and minimal
polynomial

(1) g(z) = 2" — 812" sz — L (—1)s,

over Q. We always take y, to be non-real, and y, = 7,. Thus for n = 4,
v, is real.

For n = 3,4 we define
s]—3s, if n=3,

(2) d = .
s1— 58, if n=4;

and, for d £ 0,

(53— 3ssy)/d if n=3,
) b= {(é s; — sysy)/dif no= 4
) . {(9 83— 88,)/d if n =3,
(45, — 2 88,)/d if n=4.

The geometric significance of b and ¢ will be seen from Lemma 4.
The meaning of d is fixed throughout the paper, whereas the explicit
values for b and ¢ will not be used in Sections 3 and 4, in which b, ¢
will denote arbitrary rationals.

With the fixed values (3), (4) for b and ¢, we define, for 4 = 0,

Q*:I)%C‘/%‘/Q,

and, for d > 0, the closed interval I by
A= [2(s; — V), 25, + V)] .

Next, we define polynomials U(z), V(z) as follows:

®) V) — {g(z) (zj + ¢z + 1 (* — b)) 1if n=3,
g) (F +ez+ L3 —b)(z~Le) if n=4:
(6) U)=(F +cz b —ncT(z) (n=23,4).

Theorem 1. Let y be real, but not totally real, of degree n =3 or 4
over Q.

Suppose that there exists a positive real number Q such that the circle
[z — y[2= Q contains a set of conjugate algebraic numbers with at least
three members. Then
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(7) Q=0% d>0,

and, in the case n = 4

(8) 27ds, = 98,8,8, — 283 — 273,
9) Y= a2l > lya — val -

Conversely, suppose that d > 0, and that (8), (9) hold if n = 4. Let «
be a totally real algebraic number, all of whose conjugates x; lie in A. Take

2 if x is an endpoint of A,
l = .
1 otherwise .

Then the condition
(10) P(z)! = ]—I (U(z) — «iV(2))

defines a monic polynomial P(z) € Q[z], which is irreducible over Q, and
has all its zeros on |z — y|2 = Q*. Furthermore, the minimal polynomial
of any algebraic nwmber, all of whose conjugates lie on |z — y > = Q%*, must
be of the form P(z), defined by (10), for some totally real ~ having all its
conjugates in .

Condition (8) in the theorem expresses the fact that for n = 4, y and
its conjugates lie on a circle (trivially true, of course, for n = 3). The
condition d > 0 for n = 3, and condition (9) for n = 4, state that y
and the centre of gravity of the y; lie on opposite sides of the centre of
this circle. The condition d > 0 for n = 4 is, in fact, a consequence of (8),
as is easily seen from (44).

The restriction to sets of conjugates with at least three members is not
a serious one, as a simple argument shows that any circle containing more
than one set of conjugate quadratic irrationals must have rational centre.

Lemma 11 gives some more information concerning the quartic case.
At the end of Section 6 there are also some further remarks regarding
the case when ~ is an endpoint of A.

For the statement of Theorem 2, we need the following additional
notation:

Tlq if n=23,
=81, 82_{3T,’q if n=4,

where ¢, 7, S, T,C,€Z; q,r>0; and (8,7 ,q)=(C,r)=1. Note
that ¢2d is an integer. We define, for n = 3, B = 3 ¢C? + »SC -+ r*T
and

c=Clr.

2 if 3tqr, 3YE, 348, 2 if 3lq,3qtE,
% =11 if 3+qr,3YE, 38, =231 if 3lq,3qE,9q1E,
0 otherwise ; 0 otherwise .
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For n =4 put

it 28 240, .1 if 418, 240,
*= o otherwise ; 10 otherwise .

Theorem 2. Let y be a real, but not totally real, algebraic mumber of
degree n = 3 or 4, which satisfies d > 0, and, if n =4, (8) and (9).

Suppose that there is at least one set of conjugate algebraic integers on the
circle |z — yi2 = Q* Then

(1) (q.,r)=1,
(12.3) (3,9)rb €Z and (3.r)>r¥¢*d for n = 3.
(12.4) rb€Z and 2%y ¢*d for n = 4.

Conversely, if (11) and (12 . n) are satisfied. then there are infinitely many
sets of comjugate algebraic integers on |z — y 2 = Q% if and only if

(13) . {32”*‘“ (3,72 g%* for m =3,
( p—

Q0% 4 426 for n=4.

For n = 4 equality cannot, in fact, hold in (13), because, as we shall
see in Lemma 11, d cannot be a square in Q. For »n = 3 we shall give
an example in Section 11 to show that equality can occur in this case.

We shall prove Theorem 2 by showing that there is a one-to-one corres-
pondence between sets of conjugate algebraic integers on : — 2= 0%
and those in a certain real interval obtained from _I by translation and
contraction. If equality holds in (13), then this interval has critical length 4.
In our case, however, the interval will then have integral endpoints. There-
fore we also obtain infinitely many sets of conjugate algebraic integers
on the circle in the case of equality, and we can even write them down
explicitly. (Cf. [2].)

The proof of Theorem 2 is unfortunately rather complicated. This is
caused in part by the ancmalous behavicur of the primes 3, 2 for n = 3. 4
respectively.

It might be of interest to have a simpler, but slightly weaker form of
Theorem 2 (using also the results of Theorem 1), which we state as follows:

Corollary. Let y be real, not totally real, of degree n = 3 or 4. Then
there is a circle with centre y containing infinitely many sets of comjugate
algebraic integers if and only if (11), (12 .n), (13) hold, and also, if n = 4,
(8) and (9) hold.



~1

Vemkko Exxora and C. J. SMYTH

3. General lemmas

For any non-zero complex numbers 0, =0,9,,...,0, we define
linear transformations Ij:CU{o}—CU{o} by

(14) Tz—9)z—py) =2 (j=1,....n)

or, equivalently,
L2
Vi + .Qj —%;

15 Iz =

(15) , —

Put I'= I'.. Note that I7=1 (j=1,...,n). The fixed points of
I'; are y; + Q. Let $ denote the group generated by I...., I,

If Q is real and positive, we let 5 denote the circle |z — p[* = Q.
We have [z = Z if and only if z € 5. In particular, I'S = S.

Lemma 1. If Q is real, then for ecach j=2,...,n, the following
three conditions are equivalent:

(i) Q=@ == L0 —nll—r)

(i) Ijy = I'y;

(i) I;0'= I'l;.

If. in addition. Q is positive, then these conditions are further equivalent to

(iv) I35 = .

Proof. (i) = (ii). Straightforward computation.

(ii) = (iii). We have IjI'ooc = I'jc. Also I'l[ly = I'ljoo = I'y; =
Ty, so Iy = I'Tiy. Similarly I3I% = I'T}y. Since two linear
transformations are identical if they are equal for more than two values
of z, theresult follows.

(iii) = (ii). Trivial by looking at the images of oco.

(iii) = (iv) for 2 > 0. If z €S, we have [jz €S < Ijz = I'(I}z) <
]:j]"’z = [T}z, and the result follows by the above remark.

Supposing that 2 > 0, we let  be an algebraic number of degree
N =3, and assume for the moment that all the conjugates f; of  lie
on &. Proceeding in a similar manner to [1], we then note that by an
easy geometric argument we can express y and £ in terms of the p..
Hence, defining & to be the field obtained by adjoining the conjugates
of » and Q to Q, and N = Q(f,....,fy), we have {C N. Let
® = Gal (%/Q) and ;= Gal(N/Q). For j=2,...,n, we pick an
element o, €®; such that ¢y =y, and put o, = 1. We then fix O, =
o (j=1,...,n).

From the fact that
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(16) Ipe=Fpc (k=1,...,N)
we obtain, by applying o,
(17) Iii=fm (i=1....,N;j=1,...,n)

for some m depending on ¢ and j. Hence I permutes the conjugates
of B. But IS is either a circle or a straight line, and has at least three
points in common with &, namely the . So I}S = S. More generally,
A permutes the conjugates of f, and AS =S, for each A€ §.

From Lemma 1 (i), we see that £; is independent of the choice of
the automorphism ¢; satisfying ojy = y;. However, a simple argument
(given in the case of y irrational and totally real in [1, Section 2]) shows
that this is not the case if Q ¢ Q(y). Hence 2 € Q(y).

Lemma 2. Let ;€S (i=1,...,N), where B is as above. Define
% €8; by z—2. Then there is a monomorphism v : § —®; satisfying
w(I) = oo . In particular, $ is a finite group.

Proof Let Sy be the symmetric group on f,,...,3y. and let vy
®; — S, denote the obvious monomorphism. Since N = 3. the natural
mapping y,: § — &y is also a monomorphism. By (16) and (17), we
have I, = oxo;'f;. It follows that Im(yp,) € Im(y,). and we can
define o by wp = v,

Using the canonical projection 6, —~@® we can also define a homo-
morphism from § to &. However, this map is not, in general, either
injective or surjective.

We now drop the assumption that & contains f and its conjugates.
From now on, except in Section 10, we shall always take Q € Q(»).
Note that we do not necessarily suppose that 2 > 0, unless we expressly
say so. As before, we put R =Q (y1,...,7,) and & = Gal (§/Q).
We define Q; = 0,2, where o, €% maps y to y;- Now if Q > 0 and
# and its conjugates do lie on . this definition of £; is the same as the
previous one, and furthermore we have shown that then

(18) Q€Qy) and Qi = (y — 2 — Q0 — )y — ) (j=2.....0).

Of course the condition on 2, in (18) could be replaced by either one
of the conditions (ii), (iii) of Lemma 1.

We shall eventually show that, for n = 3,4, the truth of (18) for
2 > 0 is also sufficient for the existence of a set of conjugate algebraic
numbers on .

Lemma 3. If Q s of the form 2 =10 + ¢y + »* for some b,c €@
(¢f. Lemma 4), then
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2 — Lyy:

(19) Ilz = (j=1,....,n;5 1 #j),

and condition (1) of Lemma 1 takes the form
(200 b2y —yi =) T — ) P+ ) — 2ypy = 0.

Proof. Direct calculation in both cases.

Lemma 4. Suppose that Q > 0 satisfies (18), and that the products
5iI(j=1,...,n) generate « finite cyclic subgroup H, of 9. Then
the following results hold:

(i) There exist rational numbers b ,c such that Q =0b 4+ cy + %

(ii) The roots oy, 05 of the equation 2%+ cx b =0 are real and
wnequal. and are inverse with respect to the circle S .

(iil) For any A€ D, we have A€ Ho tf and only if A oj=0; (j =
1. 2).

(iv) For each j=1,....n. y; lies on the circle

(21) = (P =0)2y ) =22y +c]

which lies inside S.
(v) The fized points of [ licon & (j=1,...,n).

Proof. Now [, = (D)™ € Do, for each j and k£, so Do
has index 2in $. Since O is finite, every element A == 1 of 9 iselliptic,
so that the two fixed points of A are distinct. (See e.g. [4, Chapter 9]
for elementary results concerning linear transformations.) Since £ is
cvclie, all the elements 1 in o have the same two fixed points, o,
and 0., say.Soforany j,k=1....,n and m = 1.2, wehave [/},
= 0,. Clearly o1 and 9. are algebraic numbers. We now apply all the
autemorphisms of a suitable normal extension of §&, containing o, and
0y, to this equation. Then we see that such automorphisms permute o,
and g,. Hence, putting ¢ = — 9, — 0,, b = 9,0,, We obtain ¢, 0 € Q.

From the elementary theory, we know that the fixed points of an elliptic
linear transformation, which keeps a circle invariant, must either be inverse
with respect to the circle, or actually lie on the circle. In the latter case
the transformation is mnecessarilv an involution. But $o contains the
element /31", which is not an involution. by Lemma 1 (iii). Thus (ii) follows.
Since o, and g, are inverse with respect to &, we have 2 = (g, — )
(0, — »), and (i) follows.

The line Re z = — L ¢ is the right bisector of the line joining o, and
0,, so that it belongs, together with &, to the elliptic pencil of circles
with limiting points o, and g,. Thus this line lies outside &, and is carried
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into itself by every element of $o. (See [4;9.4.3].) Therefore the image
of this line under any transformation I} is the same. Since ['co = y,
this image must be a circle &', say, lying inside S. Now [joo = y; €5/,
whence (20) shows that &’ has the equation

b2y —2—2) +c(y?—22) + Yz + 2) — 2922 =0,

which gives (21). This proves (iv).

We also find that each I} interchanges the two regions whose boundary
is S. Hence (iil) and (v) are true.

Lemma 5. Suppose that (18) holds, and that v: is non-real. Let ¢ €G be

such that oy = vi. Put v = o(o7Y), and nj=(y —y)) (j=2.,...,n).
Then yi = v, and

(22) Q1 = qap + e — nag
(23) Ni 0=
Proof. Let ym = o7ly. Then applying ¢ to (18) with j = m, and
substituting for £; (again using (18)), we obtain y, # y and
(24) Q7 =9 — g+ -

Now Q7 '= 07! gives (23), as 7, # 7,. Hence replacing 5; by (7, +
N — 1) In (24), we get (22).

4. Cubic and quartic lemmas

We now assume that y has degree n = 3 or 4. We recall that y; = y,,
and that v, is real in the case n = 4.

Lemma 6. Suppose that (18) holds. Then for n = 3,4, both & and
9 are isomorphic to the dihedral group Din of order 2n.

Proof. We regard & as a permutation group on the symbols 1..... n.
From Lemma 1 (iii) we have

(25) Lr=1rr,, I, =1II,

and for n =4

(26) r=1IrI,.

Put A,= I,I. From (25) we obtain

(27) At =TI, Ay=T,0y, I'dy= A;'T.

To prove that § o~ D, it is therefore enough to show that A, is of
order 7, and that § is generated by A, and I
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a) n = 3. The result for & is trivial. Applying the permutation (123)
to (25), we obtain A, = I,I,, so that A= 1 by (27). The rest is clear.

(b) n=4. Let ¢ €® map 1 onto 4. Applying o to (25), we see,
by (26), that ¢ cannot map 2 or 3 onto 1. Hence o = (14) or (14)(23),
and I, does not commute with I, or I

Next let ¢l = 2. Applying ¢ to (26), we find that ¢4 = 3, because
T, does not commute with I" or I,. We also find that I, and Iy do
commute, whence A, is of order 4 by (27). Clearly ¢ = (12)(34) or (1243).
Applying o to (25), we obtain A, = I,], in both cases. It is now easily
seen that § is generated by A, and I', whence the result for $ follows.

If 61 =3, a similar argument shows that o = (13)(24) or (1342).
Finally, if o1 = 1, then ¢ must be (1) or (23), by (25) and (26).

Now & has more than four elements, as y is not totally real, so it
must consist precisely of the eight permutations mentioned in the proof:

(28) G ={(1), (14), (23), (12)(34), (13)(24) , (14)(23) , (1243) , (1342)}

This completes the proof of Lemma 6.

If there is a positive Q satisfving (18), then from the structure of 9
we see that the 717 belong to the cyclic subgroup generated by o, and
so the results of Lemma 4 hold.

Lemma 7. Suppose that Q > 0 satisfies (18). Let ¢ = I,y. Then
¢, ¢ are the roots of the equation

(29.3) 2tz 20 =0 if n=23,
(29.4) 2Lzt —b=0 if n=4,
where b, c are as in Lemma 4. Furthermore, for n = 4
(30) | Ly =TIy = —jc.

Proof. From the proof of Lemma 4, we know that Re [y, = — I¢
for j # k. Thus ¢ + ¢ = — c¢. By Lemma 1 (ii), we now have (30) and
also
(31) ¢ =Ty =1y, 9= Iy = Ipy.

Before proceeding further, we call attention to the following general
principle. Consider any valid relation in $, say of the form Il = II3.
Looking at the images of s, we find Iy = Ijp.

Using this principle and the structure of § determined above, one
can easily verify that the set {Ijy|j=1,...,n; j#k}=1{p,q¢} for
n=3,={p,p, — 3 for n=4.

Now for n» =3, we use the relation ([,I")? = I'yI, which by (31)
gives I,I"¢p = @. From Lemma 3 and (31) we have ¢ = (¢ — b)/(¢ — @),
and thus 3¢p = (¢ + ¢)? — b =c¢>—0b. Hence (29.3) holds.
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For n =4, we found in the proof of Lemma 6 that I,I"= I,[}.
Hence (1,1 = I'yI". This relation gives I,I'¢p = — 1¢ by (30), so
using Lemma 3 and (31) again, — %e = (¢2 —b)/(¢p — 7). It follows
that ¢ satisfies (29.4). This completes the proof.

As an immediate consequence of (29. n) we have the following fact:

(2 — 4b) for n = 3,

D) —_— ~_—,2:
(32) (p — @) { @ —4b for n — 4.

Lemma 8. Suppose that (18) holds. Then
(33) Q= (y — 74y — vs)?/d Jor n =3,
B) Q=== === Jor n=4,
(35) (7 + v)e = 72) = 2071 + vavs) = 3% Jor n=4.

Proof. Take ¢ = 2 in Lemma 5. For n = 3, let ¢ be the transpositi-
on (12). Then £ = 3, and (33) follows from (22). For n = 4. take ¢ =
(12)(34). Then L = 4, so that (34) and the first part of (35) follow from
(22) and (23). A short calculation now shows that the second part of (35)
is true.

Lemma 9. For n = 3 there is an 2 > 0 salisfying (18) if and only
if d> 0. Furtherimore, then 0 = Q%

Proof. By Lemma 4, such an 2 is necessarily of the form 0 = 5§ +
¢y + »* for some b,c € Q. By Lemma 3, we La\e to look for b,c € Q
such that b — ¢y — 52 > 0 and (20) holds for j = 2. Substitute yyyy, =
Sg, Vo - V3 =8 — V. Voys = 85, — &y — 2 followed by 3 = g7 —
Syy - 85 in this equation. This gives

— (836 + 8¢ + 385) + p(3b sc +osy) =0,
which is equivalent to

(36) e I
D = MO Sy = 0.

If now 2 > 0 satisfies (18). then 4 > 0 by (33). The cquations (36)
have the unique solution b. ¢ given by (3). (4) (for n = 3). Thus Q = 0%,
Conversely, if d > 0, then we can scive the equations (36) for 5. ¢. Hence
we obtain an £ satisfving (18). and ti\ii 0 is positive by (33).

Lemma, 10. For n =4 there is an 2 > 0 satisfying (18) f and only
if (8 ) hold, and d > 0. Furthermore, z‘ben 0 = 0%

Proof. Assume that 02 > 0 satisfies (18). As before, 2 =1 — ¢y + 32
for b,c € Q. From (20) for j =4, we have

)
(37) b+ ey + ) + vy =
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By (28) we can apply the permutation (1243) to (37), and get

(38) b+ elyy + ya) +vays=0.

From (34), y + y4 & v, + y3, so that, by (35), y +y, and y, + y,
are the two roots of the equation a? — s,z + s, = 0. Therefore

(39) 7t =He e V), vty = s — e V),

where ¢ = - 1. As v»,y, arereal, d > 0. Also we cannot have y + 9, € Q,
for otherwise yy, € @ by (37), and y would not be of degree 4. Therefore
d is not a square in Q. From (37), (38), (35) we have first

(40) 20 + Les; + 15, =0,

and then

(41) VVa = €S — gec Vi, VoVs = €52 < yec V.

Writing s3 = (y -+ y4) Y2¥3 + (Y2 + ¥3) vve,  We find

(42) Sy = &8,8, + 1ed .

This gives the expression (4) for ¢, and hence, using (40) and (2), the
expression (3) for b. Thus £Q = Q% Since s; = yy,75y3, We obtain (8)
from (41), (2), (4).

We have the identity

(43) e e T e O N L e A 729 I

Since £ > 0, (9) follows from (34) and (43).

Conversely, assume that ¢ > 0, and that (8), (9) are satisfied. Define
b, c by (3). (4). Then (40) holds. The minimal polynomial ¢(z) of » facto-
rizes as

Mt

giz) = (22— L5 + V) 2 + Ls, — e V)

(44) _ .
(22— 35y — Vi) z + &s, + Te V) .

Ol

From (44), (40) we have (39). (41), (37), (38), (35). By (37), (20) holds for
j = 4. Consider now the condition (20) for j = 2 (or j = 3). Substituting
for b from (37), and using (35), we find that this condition is satisfied.
Therefore Q% =0b - ¢y - »* satisfies (18), by Lemma 3. Finally (9),
(43), (34) imply 0Q* > 0.

The purpose of the next lemma is to enable us to construct quartic
polynomials one of whose zeros may be taken to be y. We therefore tem-
porarily drop our previous assumptions concerning y.
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Lemma 11. Let ¢(z), given by (1), have degree 4, and satisfy d > 0
and (8). Define b,c by (3), (4). Then g(z) has two unequal real zeros and
two non-real zeros if and only if

(45) d < (s; + 20)2.

Suppose that (45) holds. Then ¢(z) s irreducible over Q if and only
if d is not a square in Q. Further, b 4 ¢y 4 y% is positive for precisely
one of the two possible choices of y as a real zero of g(z), namely the one
which is further from the non-real zeros.

Proof. Since (8) is satisfied, g(z) factorizes as in (44). The discriminants
of the factors are 1d 4 (is; + ¢)y/d. Now g(z) has two unequal real
zeros and two non-real zeros if and only if the product of these numbers
is negative. Hence the first assertion is true.

Suppose now that (45) is satisfied. The result concerning the irreduci-
bility of g(z) is obvious. Using the same notation for the zeros of g¢(z)
as before, we obtain (39), (41) from (44), and (40) from (3), (4). Hence
(37) holds. From the expression for the two discriminants we find ¢ =
sgn (Is; +¢). Using (37), we obtain b -+ cy + 92 = (y — y)(y — %),
b+ oy + 7= (1 — P+ o). From (39), (41), (45). we have
16(y + Le)(yy + L¢) = (s; + 2¢)2 — d > 0. This shows the uniqueness of
the choice of y. Finally sgn (y + Lc) = sgn (y + y, + ¢) = sgn(3s; + ¢ +
£ \/&) = ¢, so that the last assertion follows from (43).

5. Construction of algebraic numbers on circles

We assume in this section that y has degree n = 3 or 4, and is such
that there is an Q > 0 satisfying (18). Then we know from Lemmas 9
and 10 that 2 = Q* Let S denote the circle |z — y2 = Q% As we saw
in the preceding section, the results of Lemma 4 hold.

We now define H(z) by

Hz) = > Az.
1ED
Then H(z) is an automorphic function with respect to the group .
For n = 3,4 we have, explicitly,

HR)=z+ Iz -+ I'ylz -+ [IIz] + 12+ Iz + I'yz — [12],

the terms in brackets occuring only for »n = 4. From (15), (19), (31),
(29. n), (30), we see that H(z) can be written as a rational function H(z) =
U(z)/V(z), where V(z) is given by (5), and U(z) is a monic polynomial
of degree 2n. We shall work out U(z) explicitly following the next lemma.
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Lemma 12. If z, is one root of H(z) = w, then all the roots (counted
with multiplicities) are given by Az, as A wvaries over $. If z; is not
a fixed point of any A € $, A # 1, then these roots are all different.

Proof. As H(Az)) = H(z,) = «, we see that Az, isaroot of H(z) = «,
for each A in 9. If z, is not a fixed point of any A € H, A # 1, then
all the Az, must be distinct, and so they exhaust the 2n roots of the
equation U(z) — aV(z) = 0. Thus the lemma is proved in this case. Since
the roots of U(z) —«V(z) = 0 are continuous functions of «, we see
that the result is also true when z, is a fixed point of some A € H\{1}.

In particular, we see from Lemmas 12 and 1 that if one of the roots
of H(z) = x lies on &, then they all do.

We now calculate U(z). To do this we evaluate H(p;), where p; is
a fixed point of §,, asin Lemma 4. We have g, = p; for each A € §,,
and Ao, = 0, for each A€ I'H, Hence H(o;) = n(o, + 0,) = — nc.
This means that the 2n roots of the equation U(z) + ncV(z) = 0 are
o, and g, each repeated n times. So U(z) + ncV(z) = (2* + cz + b)",
which gives (6).

We next remark that H(z) is real, and varies continuously with z,
for z€S. For H(z) = H(E) = H(Iz) = H(z) when z€S. Also the
poles of H(z) are »;,,I'y; (¢t =1,...,n), and from Lemma 4 we know
that none of these numbers lies on .

Lemma 13. Only a fixzed point of some A € O, A # 1, can be an extreme
point of H(z), as z wvaries on S.

Proof. Let z, be a (relative) extreme point on &. Choose z, €S
such that z; # 2y for each k, and limz, = z. We may suppose that

k—>o0

all the z, lie in a sufficiently small neighbourhood of z,. Since z, is an
extreme point, it follows that for each k there exists z; # 2z, such that
H(z) = H(z,) and lim z, = z,. By Lemma 12, there is an element of $

L)

which maps z, onto z,. Since § is finite, we may suppose that this
element is the same for each k, i.e. z, = Az, for some A€ 9, A +# 1.
Taking limits, we have z, = Az,.

Lemma 14. For n = 3,4, the roots of H(z) =« lie on S if and
only if x€4.

Proof. In order to find the extreme values of H(z) for z €S, it is
sufficient, by the previous lemma, to evaluate H(z) at those z €S which
are fixed points of some A € H\{1}. However, we know from Lemma
4 that the I(j = 1,...,n) are the only elements of $\{1} which have
their fixed points on &. Therefore let z, be a fixed point of some I3,
and let VMl = $Hz,, the orbit of zy under 9. Then in fact N = {Ijz|j =
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1,...,n}, because I[jzo == [izy for j =4k, by Lemma 4 (iii). Further,
for any A € 9, Az is a fixed point of AIA-1, ie. the points in )/
are fixed points of elements of $ belonging to the same conjugacy class
as [3.

Consider first the case n =4. Then in O the I} (j=1,...,4)
split into two conjugacy classes {I', I',} and {[,, I';}. Correspondingly,
there are two orbits “V/{; and “V{,, where e.g. “)/{, contains the two fixed
points of both I and I7.

Since the sum of the fixed points of I} is 2y, we have, using (39),
for Nl = M,

H(zg) =2 2 z=4(y + 7)) = 2(sy + & Vd) ,
€M
where &= 4- 1. Similarly, for N = Vi, , H(z) = 2(s, — ¢ V).

Consider now the case 7 = 3. Then all the involutions I (j =1, 2, 3)
belong to the same conjugacy class in the group $. Therefore the two
fixed points of each I must belong to different orbits. We thus again
get two orbits, and hence the extreme values of H(z) on & are H(y — R)
and H(y + R), where R is an abbreviation for Q*'?

It is possible to calculate H(y + R) directly. However. we shall use a
different method. Consider the set “//{, = {y; = Q7'* j = 1,2, 3}, which
is the union of the two orbits. Since it clearly contains a set of conjugate
algebraic numbers on & with at least three members, we can choose an
element of “//(, to be the g of Section 3, and apply the results of that
section. Let ¢ be the smallest normal extension of @ containing /(.
Then, as we have seen, ¢ contains &. Since from (33),

(46) d-Qj* = (Vj - Vk)g(yj - '/1).2

for any permutation {j,k,I} of {1,2,3}, we clearly have ¢ =
Qly. v, Vs, \/d). Choose o, € Gal (£/Q) so that it interchanges 5 and
5. and leaves y, fixed. Using the notation of Lemma 2, we see that g.x0, '

interchanges 3 and 3, and leaves =, and \ d fixed. By the proof of
Lemma 2, we obtain from (46)
Doy - eR) = oyz0; 'y — eR) = ;1 — eoy0;, (d 13y — ya)(y — 73))
=5 — ed (s — )5 — 9),
where ¢ = - 1. Since [; = ]:.2, and » + eR is a fixed point of I'. we
have
H(y + eR) = 25 + 2ed™ " ((y — )7 — 73) + (73 — 72) (s — ¥)

(47) , .
+ (2 — va)(y2 — ) = 2(s; + e V) .
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This completes the proof of Lemma 14. From these considerations it also
follows immediately, by Lemma 12, that the following is true:

Lemma 15. For n = 3,4, the polynomial F(z;x)= U(z) —aV(z2)
has all its zeros on S if and only if x € A. Furthermore, the 2n zeros of
F(z;x) are distinct if x is not an endpoint of A. If x is an endpoint of A,
then each zero of F(z ; x) occurs exactly twice.

6. Proof of Theorem 1

We can now prove Theorem 1. First suppose that there is an Q > 0
such that the circle |z — y|2 = 2 contains a set of conjugate algebraic
numbers with at least three members. Then as we saw in Section 3, (18)
is true. Lemmas 9 and 10 now show that (7) holds, and that (8), (9) hold
when 7 = 4. This proves the first part of the theorem.

Conversely, suppose that ¢ > 0, and that (8), (9) hold if » = 4. Then
we know from Lemmas 9 and 10 that Q% is pcsitive and satisfies (18).
We can therefore apply the results of the previous section.

Let x be an algebraic number, all of whose conjugates ~; lie in A.
Then it follows from Lemma 15 that condition (10) determines a monic
polynomial P(z). Furthermore, all the zeros of P(z) lieon z — y? = Q%
(learly P(z) € Q[z]. We now show that P(z) is irreducible over Q. Let
3 be a zero of P(z) such that U(8)/V(p) = », and let 3’ be any other
zero of P(z). Then U(p")/V(B') = ~; for some index 7. Choosing an auto-
morphism of a suitable normal extension of @ which maps ~» to «;,
we see that p is mapped to some conjugate g”. and U(3") V(") = i
But now by Lemma 12, p” = .1p" for some .1 € %. and so. as we saw
in Section 3, p’ and " are conjugate. Hence g’ and pj are conjugate,
which proves the irreducibility of P(z).

On the other hand, let § be any algebraic number, all of whose conju-
cates B; lie on z — y 2= Q% Let P(z) denote the minimal polynomial
of B over Q. The numbers H(p;) form a complete set of conjugate algeb-
raic numbers contained in 4. Denote these numbers by ~;, each one
being counted only once. Since each /1 € § permutes the conjugates f;,
we can divide the fg; into orbits under $. From Lemmas 12 and 15 it
now readily follows that (10) holds. This completes the proof of Theorem 1.

Further remarks. If ~ is an interior point of A, then we see from (10)
that P(z) always has degree divisible by 2n (n = 3, 4). If x is an endpoint
of A, then we have two cases:

(a) Vi € Q. Then from Lemma 11, we must have »n = 3. Further
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« 1s rational, and we have two polynomials P (z)(e = 4- 1) of degree 3,
defined by

(48) P(2)* = Uz) — 2(s, + ¢ Vd) V(z).

By (47), P (z) is the minimal polynomial of y 4+ ¢Q*"2. The zeros of
Pi(2)P_,(z) comprise all the fixed points of the I7.

(b) Vd¢Q. Here « has degree 2, so
(49) PP = (U(z) — 2(s; + V) V)TU(z) — 25, — V) V(z)) .

In this case P(z) has degree 2n (n = 3, 4), and it is the common minimal
polynomial of the fixed points of all the I7.

7. First part of Theorem 2. Cubic case

In this section and the next we prove the first part of Theorem 2. The
converse part is proved in Section 9.

Let » be as in the statement of Theorem 2. Suppose that there exists
at least one set of conjugate algebraic integers on the circle |z — 5 2 = Q%
Then it follows from Theorem 1 that there is a number » € .1 such that
U(z) — «V(z) € A[z]. Since the coefficient of 2*"~' is — x, we have « € A.
The coefficients of 2*7% 2% .. . 2" give us 2n—1 other conditions.

We now separate the cubic and quartic cases, the latter being dealt
with in the next section. For the cubic case, we introduce the following

notation, additional to that used in the statement of Theorem 2. Put

B=—-8C—rT, D=58— 3¢T,
and
0=rx-+3C, 0=qgx — 28.

Then from (36) and (2),
b= DB[3qr, d = D|g*.

Further

(50) E = 3¢C? —rB.

The conditions (12.3) in Theorem 2 can be written as

(51) 33,9)¢ B, (3,rD.

From (36) we obtain s, = —s;¢ — 3b, 353 = —s8,b — s,¢ = —s;b + 8,62 + 3be.

Therefore, expressing F(z;x) = U(z) — «V(z) in the form (22 4 ¢z +b)3 —
(6/r)V(2), it is easy to verify that the 2n — 1 = 5 conditions mentioned
above can be written in the form:



Vemkko Ex~ora and C. J. SMYTH 19

(52.4) (—qC + r8)0 + 3¢C* +rB =0 mod ¢r?,
(52.3) (—3qC% + 18rSC + 10rB)o + 99C* + 18rBC = 0 mod 9gr3,
(52.2)  (15¢8C% 4 12qBC — 2rSB)0 + 9¢BC? + 3rB* =0 mod 9¢%3,
(52.1) (—69TC? — 28BC' — B*)6 + 3B*C =0 mod 9¢%3,
(562.0) (—3gC?% + rB)(3¢TC 4 SB)o + 3rB* =0 mod 81g%*.

Here (52.j) expresses the fact that the coefficient of z/ in F(z;«)
belongs to A.

Replacing — qCd by — qr0x — 3qC? in (52.4), we obtain
(53) S60=-—B modgq.

We shall also need the three congruences obtained by forming 3CL, —
Ly,3BL, — L,,2TL; — L, , where I, stands for the left-hand side of
(52 .j). These give

(54) (B + 3T)x + 97C =0 mod 3¢(5,q)7!
(55) (3¢TC + SB)6 = 0 mod 3qr(B, 3¢r)(5,qr)",
(56) (—B2 + 36rSTC + 18TB)d + 18¢TC* — 3B2C + 36rTBC = 0

mod 9gr3 .
Lemma 168. The congruences (52) imply that (q,r) = (¢,8) = 1.

Proof. We need the following results, which we also use later:
(57) (3,7)qIB, qlSd.

By (53) it is enough to prove the first result. Let p be any prime,
and let p°lg.p’lr, p’||B. Suppose first that p # 3,5, and that » <o.
Then (55) shows that the term containing 6 in (52.0) is divisible by p”""~ »
while the other term is divisible exactly by p'**. This is impossible, so
that » = 0. For p = 3, a similar argument shows that » = o, and that
» =g+ 1 for v> 0. Consider finally the case p =5. If 7> 0, the
same argument again gives » = ¢. Suppose therefore that 57 r, and that
v < ¢. Then 5+, by (53) and the definition of B. Using (53) again we
obtain from (52.0), 2rB* = 0 mod 5°"*, which is impossible. This proves
(57).

Write w = (¢.r). Then (u,S,7T)= (u,C)=1. From (57) and the
definition of B, we obtain (3, u)u|B,u!|S. Hence (u,7T)=1. From
(54), (3, )u|45, so that w 15. Furthermore, 5/u is possible only if 5'q.
In this case, however, (55) leads to a contradiction, because 5+ 0, by the
definition of . Thus %|3. If u = 3, then (57) implies 3°7'|B, 37!S0.
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But this contradicts (56), because 3°7* divides every term except 18¢7'C3.
We have thus proved that u = 1. The second assertion of the lemma
follows immediately from (53) and the definition of B.

Lemma 17. Suppose that q|B,(q,r) = (¢,8) = 1, A = 2. Then there
exists a rational integer O, such that

(58) 3919y 33ﬂ+4!L0(‘50) s

where  Ly(0) denotes the left-hand side of (52.0), and 37 q.
Proof. Using the identity

(59) r(3¢7TC + SB) = — 3¢BC — SE ,
we can write (52.0) in the following equivalent form:
(60) E(3¢BC 4 SE)d + 3r2B3 =0 mod 81¢%53.

Since 37|B, 3°|E by (50). As 2 =2, 6 =1 and 3'E. Consider now (60)
mod 3*"* We can solve this congruence for . If 9, is a solution, then
377118,, and the result follows.

For the proof of the next lemma. it is convenient to have the congruences
(52) expressed in terms of A and D:

(61.4) (—qC +1rS)0 + dqrT — 2rD = 0 mod ¢%,
(61.3)  (— 3¢C2 + 8rSC — 10,2T)0 — 20:2ST — 16:CD =
mod 9¢%? ,
(61.2)  (3¢gSC2 — 122TC — 2rSB)6 + 15¢r2T2 - (15¢C% — 4, B)D = 0
mcd  9¢32
(6L.1)  — rT'(3¢C* + r2T)0 — 23ST? — (6¢C' - 2rS - r0)(2D =
mod  9¢33 ,
(61.0)  r(3qC% 4 »SC + r*T)CD — rST)0 + 3¢rT3 4+ (9¢2C* + 6¢rSC3
+ 9gr2TC% 4= 2r2C2D 4 438TC + 2r4T2)D = 0 mod Slg¥4 .

Here (61.j) is a reformulation of (52 .)).

Lemma 18. The congruences (32) imply that (51) holds, and that
(62) 3Fg o — 0. (3,1)70,
where O 1is defined as in Lemma 17 if 1 =2, and 6, =0 if = 2.

Proof. Note that, for 1 = 2, the supposition of Lemma 17 is satisfied
by Lemma 16 and (51). We divide the argument into five cases, which
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show that (51) and (62) are true locally, for each prime p dividing 3gr.
The congruences (52) are more suitable for dealing with the prime divisors
of ¢, while the congruences (61) are more suitable for prime divisors of 7.

Case I: p =3,p"lg,0 =1. We have p+rS by Lemma 16. The
required results follow immediately from (57).

Case 11: p =3 ,pllr,r=1. We have p+qC. From (61.4), p’if.
and so using (61.1), p*{2D. Next, from (61.3), p*!0, and then (61.0)
gives p' D.

Case 11I: p=3,3¢q,0 =1. We have 3+7rS,» = 0. From (57),
3" B, 370. Hence (51) is true at the prime 3. To prove that (62) also
holds at the prime 3, we have to show that 3°7*|6 — ¢,. If 7 = 2, then
o0 and o, both satisfy (60), and the result follows, because 3°|E. Let
2 =2 Then o,=0. For . =0, we already have the result. Suppose
therefore that 7 = 1. Then 37! E. whence 3°7' B by (50). From (60)
we now deduce 37729,

Case IN: p=3,8|r,tr=1. We have 3+¢qC,%x=72=0. From
(57). 3 B, whence 3/§,3|D. From (61.4), 3|6, and so using (61.1),
3 D. In particular, 3|7. From (61.3), 376, and then 3* D by (61.0).
Using (61.3) and (61.0) again, we finally have 3*7'6, 3" %D,

Case V: p=3,3+qgr. Then 2 =10,09,=0, and we have to prove
that 3'B.3%0. Suppose that 3+ 5. Then (52.3) implies 9 0, which
contradicts (32.2). To prove the second assertion. we obtain from (52.3)
and (60)

(63) Eo=0 mod 9, SE20=0 mod 81,

and the result follows easily by the definition of .
This completes the proof of Lemma 18, and hence the first part of
Theorem 2 in the case 7 = 3.

8. First part of Theorem 2. Quartic case

We now prove two lemmas for n = 4, which correspond to Lemmas
16 and 18. The method of proof is similar to that in the last section. though
the results here are somewhat simpler. In particular, there is no analogue
to Lemma 17.

Let n=4. Put

B=—SC—-—2T, D=8— 8T,
and

0=1rx+4C, 0 =q¢gx — 25.
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Then from (40) and (2),
b= Bl4gqr, d = D|¢*.
The conditions (12.4) can be written in the form

(64) 4q|B, 2*95D.

From (2), (40), (42), (44), we have s, = — Ss;¢c — 6b,8, = — 8,0 +
8¢ + 4be , s, = 1s;bc — %s,¢3 + b — be2. Therefore the 2n — 1 = 7 con-

ditions mentioned in Section 7 can be written as

(65.6) (— 3qC + 2rS)d + 12¢C? - 2rB =0 mod
(65.5) (— 4¢qC2 4+ 12rSC + 7rB)6 + 16¢9C3 + 12rBC =0 mod
(65.4) (— 2¢°C% — TgrBC — 68¢r2TC — 412SB)6 +

8¢2C* + 24qrBC? + 3r2B?2 =0 mod
(65.3) (— 4¢BC? — 112¢rTC* — 16rSBC — TrB?)06 -

16¢BC3 4 12rB*C' = 0 mod
(65.2) (— 112¢°TC3 — 28¢SBC?* — 17¢B*C + 2rSB?)6 -

12¢B2C? 4 2rB3 =0 mod
(65.1) (— 64¢2TC* — 24¢gSBC? — 16¢B2C? -~ 4rSB2C' + rB3)6 +

4rB3C = mod
(65.0) 2¢qC(2qC? — rB)(— 4T(2qC? — rB) + B0 - 2B+ =0

mod

Again we need these congruences expressed in terms of 6

(66.6) (— 3qC —+ 2rS)0 4+ 28¢rT + 4rD =0 mod
(66.5) (— 4¢C? + 5rSC — 14276 — 287287 -+ 10rCD =0
mod
(66.4) (— 2¢2C3 L+ TqrSC? — 534q°TC — £25B)) + 140¢3T? —
(33¢grC? — 812B)D = 0 mod
(66.3) (4¢SC3 — 104gr7C* — 9rB?> — 32r*T'B)0 — 5613871
+ (56¢C3 - 18rSC? — 82TC)D =0 mod

2qr?
4qr3 |

8q27”4 ,

16924,

32¢°3r4

644¢°%r3 |

256¢49 .

and D:

2¢%r

_1q27‘2 s

8¢%r3

1633 ,

66.2 — 112¢%TC3 4 11grS2C3 — 12¢r2STC? — 68¢r3T?C' — 2r2SB2%)0
( q q q q
+ 112¢rT3 - (56¢2C* + 28¢qrSC3 + 28¢r?T(?* - 4r?B*) D = 0

mod

32944,
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(66.1) (— 16gr2STC3 — 64qr3T2C2 4 3r2S3C3 +- 10r382TC? -+ 4r48T2C
— $5T3)0 — 16r58T3 + (32¢2C5 + 24grSC* L 32¢12TC3
+ 628203 £ 2013STC? + $9T°C -+ $qrCi6)D = 0
mod 64¢*®,
(66.0) (— 48¢r3T2C3 + 4y382TC% — $y48T2C2 — 16/5T3C)0 - 16797
-+ (16¢%C% + 16qrSC5 + 64qr2T'C* - 5r2C*D + 163STC3
+ 8r4712(C? + 4qrC°0 + 2r28CH*)D = 0 mod  256¢% .

As before (66.75) is equivalent to (65 . 7).
Replacing — 3¢Cé by — 3¢gr0x — 12¢C? in (65.6), we obtain

(67) Sé6=— B mod ¢(2,0C)(2,q0)".

We need the two congruences obtained by forming 4CL¢ — 3L; and
— BL; -+ L;, where L; denotes the left-hand side of (65.j). These
give

(68) (B 4+ 8T)x + 327C =0 mod 4q(2,7)(7,q9) 1,
(69) (— 47(29qC? — rB) + B*0 =0 mod 2qr¥(B, 4qr)(7, qr)™1.
Lemma 19. The congruences (65) imply that (¢,r)=1,(q,S) 2.

Proof. We need the following results, which are again also used later:
(70) 192, 1B, (2,0)q(2.40)Ss, 25C.

By (67) and the definition of B, it is enough to prove the first result.
Let p be prime, and let p°|lg, p'lr, p' B. Consider first the case p # 2.
If v < o, then (69) shows that the term containing ¢ in (65.0) is divisible
by p* ¥ ¥~ ! (— 1 in the exponent is only needed for p = 7), while the
other term is divisible exactly by p*™*. This is impossible, so that » = o.
For p =2, we similarly obtain » = ¢ + 1. Furthermore, if r is odd
and » = ¢ -+ 1, then 2°7%/((2¢C* — rB), which again leads to a contra-
diction. Thus » = ¢ - 2 in this case. This proves (70).

Suppose now that p divides both ¢ and 7, so that o and 7 are
positive. Then p+ C. From (70) and the definition of B, p!B,p!S, so
that p # 7. If p 5~ 2, then (68) shows that p = 7, 7lg. However, in this
case (69) leads to a contradiction, because 77 9. Therefore necessarily
p =2, so that (¢,r) is a power of 2.

If 0 =2, it is easy to see (using (70)) that the factor of ¢ in (69)
is divisible exactly by 2°7% whence 2°7!|5. But this contradicts (65.4),
because 2°7* divides every term except 8¢°C*. Thus ¢ =1. If 8B,
then similarly 8|4, and the same contradiction arises. Hence 2%|B, so
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that 418,16 D, by the definition of B and D. From (66.6), 2%,
Using (66.0) we obtain

(71) 2577580 — 16r°T* + (16¢°C° + 5r*°C*'D + 1289)D = 0 mod 2°711%

for some £,5 € A. If 7 =1, consider (71) modulo 21, Then the terms
containing & and # disappear, and it is easy to deduce a contradiction.
Thus 7 =2, and it follows from (71) that 2* "' D. By the definition
of D, 2%S. Applying (66.4), we find that 2% (0, so that (71) gives 2% D,
Write ¢ = 2¢, .7 = 21,0 = 2°0,. Then (66.4) mcdulo 2 ° and (66.2)
modulo 27 vield

CO, + gy =20, - CO, - /T =0 mod 4.
Hence 2-6, and ¢7 = — 1 mod 4. However.
¢, T = (S/4)*> — D/16 =1 mod 4.

a contradiction.

We have proved that (¢,7) = 1. The second assertion of the lemma
follows from (70) and the definition of B.

Lemma 20. The congruences (65) imply that (64) holds, and that

(72) g0 2900

Proof. The proof is similar in structure to that of Lemma 18. We prove
the results locally at each prime p dividing 2¢r.

Case I p =2 ,p"lg,0 =1. We have p+rS. The required results
follow from (70).

Case 1I: p =2 ,pr, 7 =1. We have p/qC. From (66.3). p #.
Hence from (66.0), p*|D. Then (66.4) implies p* 6. and using (66.0)
again we find p" D.

Case 11I: p =2.27¢.c =1. We have 2-r. If S is odd, then
x = 4 =0. and (70) shows that (" is even, whence the results follow
from (70). Suppose therefore that S is even. Then 7' is odd. so that
necessarily 2~ .21 N, because 4 B. Thus x=1,72=0 Now (70)
gives 27 B. so that 27779 by (65.0).

Case IN: p=2.2r, 7 =1 We have 2+¢gC. By (66.6),
From (66.5) we get 8 D, so that 45. Thus % = 0./ = 1. It follows
from (66.0) that 2% D. Hence 7T iseven. From (66.4) we have 2% 76,
and then, from (66.0), 2°7* D. Plainly 4|B.

Case V: p =2 2+qr. By (70), 4 B. If C iseven, then x = 1 =0,
and there is nothing more to prove. Suppose therefore that (' is odd,
so that S is even. From (65.4), 4 0.

If 248, then x = 1,2 = 0. By the definition of B .7 is odd. Now
(65.0) gives 8)0.

22y,
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For 4|S, we have % =0,/ = 1. In this case T 1is even, whence
16|D. By the definition of o, 4 ~, so that also 4/6.

This completes the proof of Lemma 20, and thus proves the first part
of Theorem 2.

9. Converse part of Theorem 2

We need the following lemma, which is a trivial generalization of well-
known results concerning sets of conjugate algebraic integers in a real
interval.

Lemma 21. Let x,€Q,w €Z (w > 0) be fived, and let A be any
closed interval of length |A| with midpoint «.

If A4, < 4w, then A contains only finitely many sets of conjugate
algebraic numbers of the form x, + w&, for &€ A.

If 4] > 4w, orif (A = 4w and (@ — xy)/w €Z, then A contains
infinitely many such sets.

Proof. We have «,+ wé €4 if and only if (¢ — xp)/w — |4]/2w =
&< (a — xp)/w + |4]/2w, and the lemma follows easily from results of
Schur, Pdlya, and Robinson. (See [2].)

Now let » be as in the statement of Theorem 2, and suppose that
(I1) and (12.#%) hold. In the cubic case note that (¢.5) =1, by (51),
(11), and the definition of B. Hence the supposition of Lemma 17 is satisfied
for 2 =2

From Theorem 1 we know that to each set of conjugate algebraic
integers on [z — y |2 = Q%, there corresponds a set of conjugate algebraic
numbers contained in 4. If x is a member of the latter set, then we saw
in Sections 7 and 8 that ~ is an algebraic integer, and satisfies the conditions
(62) for n = 3, (72) for n = 4 (given in terms of 6 and 6). Conversely,
it is easy to verify that when ~ does satisfy these conditions, then the
congruences (52) for n = 3, (65) for n = 4, are satisfied. The verification
is done locally, for each prime p dividing ngr. For primes dividing »
we verify the equivalent congruences (61) for n = 3, (66) for n = 4,
instead of (52) or (65) directly. There are, however, a few points to note
when carrying out this verification. All the cases with p # n are very easy,
whence we only consider more closely the primes p = 3, 2, respectively.
We use the same numbering of cases as in Lemmas 18 and 20.

(a) n = 3. First consider case III. For 1 £ 2, we have 3°7!' B, and
the result follows readily, using (59). For 1 = 2, we have 3”/E , 3”/B, 3" %
Now (52.0) modulo 3*7* follows trivially from (62). Further, from (52.0),
Sé = 6B mod 3”72, Using this, one can then verify that the other congruen-
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ces (52) hold. In case IV use the fact that 3!S and 3|7, as 9|D. In case
V we have 3!B, 37|60, and that (63) holds. Then the required results follow
from (59).

(b) n = 4. In case Il we have 47 S, as 4|B. Therefore 2/C when
% = 0. In case IV we have 4|S,2|T, as 16/D. Hence A= 1. Finally,
in case V it is readily seen that the congruences (65) hold when C is even.
If C' is odd, note that either 21S, % =1 or 4|S, 1= 1. In the former
case 8|0 by (72). In the latter case, from (64) and (72), 16|D and 416,
whence 2|7 and 4|x,4!d.

Now since (3°7%q,r) =1 for n = 3, and (2%¢,27) =1 for n = 4,
we see that 1 is determined mod w by (62) or (72), where

- {3*‘22§3 ,r)gr? if m=3,
' 23 gy if n=4.
Hence the x which satisfy (62) or (72) are the numbers of the form
x = ng + w&, where «, is a fixed rational integer, and & is any algebraic
integer. We therefore have a one-to-one correspondence between sets
of conjugate algebraic integers on the circle z — 1y 2= 0% and sets
of conjugate algebraic integers of the form ~;+ wé in A
Now A has length .| = 4V/d, and the condition (13) is equivalent
to d = w?® So the converse part of Theorem 2 follows from Lemma 21
if d # w? Let us therefore consider the special case when d = w? As we
already remarked in Section 2, this is only possible when y is cubic. We have

6!2 . 3qT — 322-,’— 42(3 , T)qulrwt ,

so that (¢,S) =1 implies ¢ = 1,2 = 0. Thus
(73) ST — 37 = 3%(3, r)"rt.

Let us calculate a value for ~, in this case. It is determined by

"y = — 3C mod 3%, y;=2S mod (3,rp’.

For » =0 or 1. we can take x, = 28, because 3|S for » =1, by (73).
But (73) also shows that the case » = 2 cannot occur.

The midpoint « of the interval A is 2s; = 28 = »,. Hence, trivially,
(@ — x,)/w € Z. It now follows from Lemma 21 that we also have infinitely

many sets of conjugate algebraic integers on 'z — y 2 = Q% in the case
d = w? This completes the proof of Theorem 2.

&)

10. Circles with rational or totally real centre

We shall reproduce the earlier work by Robinson concerning algebraic
integers on a circle with rational centre y, using arguments similar to
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those we have used when 7 is not totally real. The argument for y € Q
is slightly different, however, one reason being that we do not have the
result Q € Q(y), as we have when y is irrational.

Let B be an algebraic number, all of whose conjugates lie on |z — y|2
= 0, where y €Q and Q is a positive real number. Looking at the
constant term of the minimal polynomial of § — 5 asin [3, §2], we find
that Q% € Q for some positive integer K. Choose K as small as possible.
Instead of B it is more convenient for the moment to consider (8 — y)*,
all of whose conjugates lie on |[z]* = Q.

We now proceed as in the case of y not totally real (though now every-
thing is much simpler). We define the group of linear transformations

D o= {1,z 0%z}

of order 2. The corresponding automorphic function is now H(z) = > Az =
A€ED

(z* + Q%)/z. It is clear that FH(z) = x has its zeros on |[z2 = QF if

and only if ~ €4, where A = [— 20%%, 20%*]. We then obtain, in

a similar way to Theorem 1:

Theorem 3. Let y € Q and suppose that there exists a positive real
number 0 such that the circle |z — y|2 = 2 contains a set of conjugate
algebraic numbers. Then there is a positive integer K such that Q% € Q.

Conversely, suppose that y € Q, 2 >0 and that QF € Q for some
positive integer K. Choose K to be the smallest positive integer with this
property. Let x be a totally real algebraic number, all of whose conjugates
a; liein A. Define 1 as in Theorem 1. Then the condition
(74) P =TT (=9 + 2% —x@z — )5
defines a monic polynomial P(z) € Q[z], which is irreducible over Q. and
has all its zeros on 'z — 2= Q. Furthermore, the minimal polynomial
of any algebraic number, all of whose conjugates lie on =z — v 2 = 0, must
be of the form P(z), defined by (74). for some totally real ~x having all its
conjugates in .

Proof. 1t is sufficient to take » = 0. We have already proved the
first assertion. To prove the second one, let ©Q and K be as stated in the
theorem. Write @ = Q%. For [ = 2,x; = + 24/a, and we have P(z) =
X T y/a or 2 — a, according as 4/a € Q or /a € Q. The irreducibility
of P(z) over Q is a consequence of the minimality of K.

Suppose now that [ = 1. The zeros of P(z) lie on [z]2 = 2, and
none of them is real. To prove that P(z) is irreducible over Q, let G(z)
be a monic polynomial (== 1) dividing P(z) in Q[z]. Following Robinson
[3, §2], we can conclude that G(z) = Gy(z*). say. Hence Gy(x) divides
TT (2% — i + a), which is obviously possible only for G(z) = P(z).

i
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Finally, let {#;} be a set of conjugate algebraic numbers on the circle
22 = 2. We want to show that their minimal polynomial is of the form
P(z). Now the numbers (£ + )/} form a complete set of conjugate
algebraic numbers in 4. Denote them by «;, each one being counted
only once. Clearly the polynomial P(z) corresponding to these «~; is the
required minimal polynomial.

Using Theorem 3 we give another proof of

Theorem 4 (Robinson [3]). Let y = SJg, where S,q€Z,q> 0,
(S,q) = 1. Assume that the circle 'z — y|2= Q contains at least one
set of conjugate algebraic integers. Then one of the following conditions holds:

(i) g=1 and QF €Z for some integer K =1,

(i) ¢g=2 and q(Q —»*)€Z,

(iii) ¢=2,0¢Q, and 4(Q22— 1/16)€Z.

Conversely, assume that one of these conditions is satisfied for 0 > 0.
Then there are infinitely many sets of conjugate algebraic integers lying on
2 — 2= Q if and only if either (i) holds, or Q > ¢*> and (i) or (iii) holds.

Proof. Let |z — y 2 = Q contain at least one set of conjugate algebraic
integers. We know from Theorem 3 that Q% € Q for some (minimal) K =1,
and that for some « € 4

(75) (z— )™ + QF — x(z — y)* € A2].

Assume first that 2 € Q, so K = 1. Then the left-hand side of (75)
becomes 2% — (x + 2y)z - 2 — 92 — y(x -+ 2y). Hence ¢(2 —?)€Z
and « is determined mod ¢ by

(76) x+29€A, S(x+2y) +¢(2 —3»?)=0 mod gq.

Thus (i) or (ii) holds in this situation.

Now assume that 2¢Q, so K =2. If ¢ =1, ie. y €Z, then (75)
implies first x € A and then Q" € A. Hence (i) holds. Suppose therefore
that ¢ = 2. We look at the coefficients of z and 22 in (75). and obtain

(T7) (= FEgSSF 'y — 2K — g mod ¢,

(78) (— D*K(K — 1)¢"S**v — 2K(2K — 1)S*™ =0 mod 24°2.
Eliminating « we get ¢ 2K*. This is impossible for K =>4 as
22572 > 2K2 Also, for K = 3, we cannot have ¢*/18. So K = 2, and
¢*|8, whence ¢ = 2. Looking at the constant term in (75), we have

— 482 + St + 1622 =0 mcd 16. From (78), a — F €A As S2=1
mod 8, S*=1 mod 16, we obtain
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(79) X — 1 =4(022—1/16) mod 4.

Hence (iii) holds.

Conversely, assume that one of the conditions (i), (ii), (iii) is true. Then
choosing « such that « € A in case (i), x satisfies (76) in case (ii), and
x satisfies (79) in case (iii), we can easily verify that (75) holds. Now all
« of this kind are of the form ~ = Xo + w§, where & €A, «, is a fixed
rational, and w =1,¢,4 in cases (i), (ii), (iii), respectively. We thus
have a one-to-one correspondence between algebraic integers on |z — y 2
= £ and algebraic numbers of the form s, - £, all of whose conjugates
lie in 4. The length of A is [4] = 40Q%" In cases (i), (iii) we cannot
have |4]| = 4w, and the result follows from Lemma 21. In case (i) equality
can occur, but taking «; = 0, we see that the additional condition in
Lemma 21 is satisfied. In this case we always have |4| = 4. This completes
the proof of Theorem 4.

The case when y is irrational and totally real, which was treated in
[1], can also be dealt with using similar methods. Lemma 1 applies also
to this case, and using it we can show that the corresponding group

of linear transformations is a four-group. We can again define H(z) = > Az,
AEN
and this turns out to be the rational function f(z)/g(z) in equation (5) of

[1]. Thus the construction of conjugate algebraic numbers on |z — yE=0
is made by essentially the same technique as in the cases we have considered.
The methed of dealing with the integrity conditions in [1] is basically the
same we have used here.

11. Examples

L. Our first example shows that. for # = 3, the critical case of equality
can indeed occur in (13). in addition to (11) and (12.3) holding. For such
an example we are able to write down the minimal polynomials of all sets
of conjugate algebraic integers on |z — » 2 = 0%,

Take g(z) = 2* — (3h + 1)22 + (3h2 - 2h)z — k, where % and &
are suitably chosen integers such that g(z) is irreducible over Q and
has only one real zero. (E.g. take & to be a large prime.) Then d — q =
r=1,4=1[6h,6h 4 4], 7= 0. Further 9/E, so that x — 0. Hence
we do have equality in (13), while the other conditions are clearly satisfied.
By a well-known theorem of Kronecker, exactly all totally real algebraic
integers &, all of whose conjugates lie in [— 2, 2], are given by & =
2costw, for t € Q. Since w =1, any set of conjugate algebraic integers
on z—y?= 0% has minimal polynomial of the form
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[3m]
PE) = |T(URz) — (6h + 2 + 2 cos (2zj/m))V(2))
j=0
(om) =1

for some positive integer m.

It is also easy to construct similar examples for d > 1. One such is
given by g(z) = 2> — 622 + 9z — 5.

2. Take y = +/m + (2m -+ c\/iﬁ)%, where m,c€Q,m>0,m is
not a square in @, and ¢ > 24/m. Then y is a root of g(z) = z* — 6mz?
— dmez + m2 — mc2 = 0. Further d = 16m > 0, ¢ has the meaning
(4), and (8) holds. From Lemma 11 and (43), we find that the requirements
in Theorem 1, ensuring the existence of infinitely many sets of conjugate
algebraic numbers on |z — y 2 = Q%, are satisfied for this y with n = 4.
As s, = 0, the integrity conditions take a much simplified form, and
it is not hard to see that the following is true: There is no set of conjugate
algebraic integers on [z — p 2 = Q* unless m €Z , r%/m. If these conditions
are satisfied, then there are, in fact, infinitely many such sets.

3. In spite of the previous examples, it is not necessary that y be an
algebraic integer in order for the circle |z — y[* = Q% to contain infinitely
many sets of conjugate algebraic integers. For instance, we can take y
to be the relevant root of

B—t:2+z—3)=0 for n=3
or

zfl_f(z2_ 2

~

[N

)z 3)=0 for n =4,

where ¢ is a positive rational number such that the ratio of ¢ and its
denominator is at least n%
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