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1. Introduction

In this paper .we are concerned with algebraic uumbers all of rvhose

conjugates lie on a circle v'hose centre 7 is a cubic or quartic non-totally
real irrational.

we shory that there is at most one circle of centre 7 which contains

a set of conjugate algebraicnumbers §: §r,...,§x with -l[ ] 3. Furt-
her, when such a circle does exist, we obtain a one-to-one correspondence

between sets of conjugate algebraic numbers on the circle, and totally real

algebraic numbers whose conjugates lie in a certain interval (Theorem l).
We also obtain necessary and sufficient conditions for infinitely many of
these numbers on the circle to be algebraic integers (Tlieorem 2).

Our paper extencls u'ork of Robinson [3] and the first aut'hor [1]. Ro-

binson prorecl a theorem colresponding to our Theorem 2 for circles of
rational centre. At the end of the papers'e give an explicit result (implicit
in Robinson's v-ork) corresponding to our Theorem t for this case (Theorem

3). We also give an alternative proof of Robinson's theorem (Theorem 4);

our proof gives an idea of the methods used in the proof of Theorem 2.

In [1, Theorems I and 3], the first author has given the corresponding

results for the case of circles whose centle is irrational and totally real'

Our main lesults are stated in Section 2. Section 3 is devoted to lemmas

concerning the general problem, rvhen 7 is of degree z (not necessarily

3 or 4), and non-totalll'reaI. \1-e then specialize to n :3 or '1, and prove

some more lemmas rvhich rve require (Section 4). In Section 5 rre construct

oonjugate sets of algebraic numbers or] a circle of centre y; lhe proof of
Theorem I is completed in section 6. The proof of Theorem 2 occupies

the next three sections. In Section l0 rrye have the discussion for circles

of rational centre. \4Ie also make a few comments on lf]. X'inally we give

some examples in Section Il'
We denote by A the ring of all algebraic integers' As usual, Z, Q, C

denote the integers, the rationals, and complex numbers, respectively-

X'or z € C, we fix 1/i so that 0 ( arg '\/i < n. Tf p is prime, then
p"ll0 indicates that p'lC,p'+rlC. If C :0, we put x: @.
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2. Statement of main results

Except in Section I0, 7 will denote a real, but not totally real algebraic
number of degree n, with conjugates y:yt,...,Tn, and minimal
polynomial

(1) g(z) : stu - srsn-t * szz"-2 t (-l)"s,
over Q. We ahvays take y, to be non-real, ancl Ts: yz. Thus for n : 4,

7o is real.
Eor n: 3,4 rve define

and, for d +0,
t'(sl - 3s,.s,)'d if iz : 3.(3) b:1'.- "[t*r; -.s,s,),rZ if rr : -t:

(4) ,:{('s'-s'st)'irl if n:3'
[(asr-$s,sr)7d il n:t.

The geometric significance of ö and c will be seen from Lemma 4.
Tlre meaning of d, is fixed throughout the paper, whereas the explicit
values for b and c will not be used in Sections 3 ancl 4, in rvhich ö , c
will denote arbitrarv rationals.

With the fixecl values (3), (a) for ö ancl c, \1-e clefine. for r1 : t).

9*":b=c7=72,
and, for d > 0, the closecl interval J b5-

X : l2(s, - {il, 2(s1 i- {all.
Next, we define polynomials U("), V(z) as follov-s:

[g(")("' * cz -lä("' -O)) if t - Z,(b) vlzl:1
ls@) @' l cz * ir' -b) (z L lc) if ii : 1..

(6) U(") : (22 {cz +b)" - nc\'(z) (iz : 3.1;.

Theorem 1. Let y be real, but not totully real, of degree n:3 or 4
ouer q.

Supltose that there euists a posi,tiue real number Q suclt that the circle
lz - yl' : !) conta'ins a set of conjugate algebraic ntLntbers uith qi least
three members. Then
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(7)

anil, 'in the case n : 4

(8) 27 d,so : 9 srsrs, - 2 sl - 27 s2, ,

(9) )v - vrl 7 lvq, - vzl .

Conaersely, sltppose that d,2 0, anil, that (8), (9) hold, if n:4. Let ,x

be a totally real, al,gebra'i,c number, all of whose corujugates ai lde'in /. Take

, [z ,f N is a?L endpo'int ,f Å ,' [1 otlt erta'ise

Then the cond'itdort

( 10) P(z)t - T]
i

(U (z) - cYrV (r))

ilefi,nes a mon'ic polynomi,al P@) e Qlz), whi,ch i,s 'i,rreduci,ble oaer q, anrl
has all, its zeros on lz - yl' : Q*. Xurthermore, the mi,n'i,mal pol'ynomi,al,

of any algebrai,c number, all, of whose conjugates lie on lz - y)' : Q*, must
be of the form P(z), definecl by (10), for some totally real t hauing all its
conjugates i,n il .

Condition (8) in the theorem expresses the fact that for n:4, 7 and
its conjugates lie on a circle (trivially true, of course, for n:3). The
condition r/ > 0 for n : 3, and condition (9) for n: 4, state that 7
and the centre of gravity of the 7; lie on opposite sides of the centre of
this circle. The condition d, > 0 for n: 4 is, in fact, a consequence of (a),

as is easily seen from (44).
The restriction to sets of conjugates with at least three members is not

a serious one, as a simple argument shorvs that any circle containing more
than one set of conjugate quadratic irrationals must have rational centre.

Lemma 11 gives some more information concerning the quartic case.

At the end of Section 6 there are also some further remarks regarding
the case when e is an endpoirfi of /.

For the statement of Theorem 2, we need the following additional
notation:

[r lq if
Izrlq ir

\Yhere Q,

that (fd
and

define,

3/,S ,

3 i,.g ,

ancl
for n

T,s,T,c,ezi Q,
is an integer. \\-e

[z if Bfqr, Bri ,E ,

{ 
r if 3*qr, 3'i iE ,

[0 otherwise:

,:

fi
Io

if \lq,3qfU,
if \lq ,SqiE . I qt'E ,

otheru.ise .
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For n: 4 put

[t if 211,s. ,2t'c , ).. [t if 4r,s ,2+c ,

' : tu otherwrse ; 
: 

to other*-ise .

Theorem 2. Let y be a real, but not total,ly real, algebraic nuntber of
d,egree n:3 or4,whi,chsatisfies d>0, and,if n:4, (8)and,(9).

Suppose that there i,s at least one set of conjugate algebraic 'integers on the

circle 1z - yl| : Q*. Then

(11) (q,r): L,

{12.3) (3 , q) rb €Z uncl (3 , r)2 ra q2d for n - ;) .

{L2.4) r b €Z qncl 2ai 16 q2tl for n : L

Conuersely, i,f
sets ,f conjugate

( 13)

(11) and (12 . n) ure sati.sfietl ,

algebraic i,ntegers an lz y '

[g'"+41 (g , r)' q'rn fo,
lze,+u" q-2r6 fw

tlten there rtrc inJinitely rn,(L'tty

-- Q* i.f eTtd only i.f

n,-=:3,
'lt,-4.

For z : 4 equality cannot, in fact, hold in (I3), because, as we shall
see in Lemma 11, d cannot be a square in Q. For n:3 we shall give
an example in Section ll to shou'that equality cau occur itr this case.

We shall prove Theorem 2 b1' shos-ing that there is a one-to-otle corres-

pondence betu'een sets of conjugate algebraic integers on : - y 2 : 9*
and those in a certain real interval obtainecl from J bv translation and
contraction. Ifequality holds in (I3), then this interr-al has critical length 4.

In our case, however,the interval rvill then have integral endpoints. There-
fore we also obtain infinitely man5r sets of conjugate algebraic integers
on the circle in the case of equality, ancl s'e carl even x'rite them clorvn

explicitly. (Cf. t2l.)
The proof of Theorem 2 is unfortunateh- rather coniplicated. This is

caused in part b.v the ancmalous behaviour of the primes 3, 2 for n. : 3, +

respectively.
It might be of interest to have a simpler, but slightl5, rveakel form of

Theorem 2 (using also the results of Theorem l), which we state as follows:
Corollary. Let y be rectl, not totally real, of d,egree n : 3 or 4. Then

there is a ci,rcle with centre y containi,ng infini,tel,y many sets of coniugate

algebrai,c'integers if and, only if (Il), (12. zr,), (13) hold, ancl «lso, i,f n:1,
{8) and, (e) hold.
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3. General lemmas

For any non-zero complex numbers 9r:9,Qr,...,On we d'efine

linear transformations .[ : C U {-}-* C U {oo} by

(11) (fiz - y)(z - d: Ai $: L,-..,%)

or, equivalentl;',

( 15)
^, 7 i- O. n,?

T1 - 
fi- i --J iJ

rjp z Tj

put l- : /.:r. Note that Il: | $:1 ,...,,ru). The fixed points of
fi are h!9]t2. Let S denotethegroupgeneratedby 1r,..-,fn.

If A is real ancl positir,'e, u'e let .S <leuote the circle lz - yl' : Q.

\Ye lrave f z : ä if and onlv if a €.!. [n particular, f.5' : 5.

three condi,ti,ons are equi,a&lent :

(i) 9j: (y yi)' - a0 - Dl(y yi,

, '/1, the folloutån,{l

(ii) TiY : I'it,
(iii) 41': lli.
If.inaddition, o isTtositiae.thentheseconditiortsore.furthereq'ui,txlentto
(ir) {.t:.s.
Proof . (i) + (ii). Straightforward_computation.

(ii) + (iii). \Ye have fif a: J-4cc. Also f\fy: Ifiq: ffi:
Fiy, so flfy : fF1y. Similarly fjfyj: fFiyi Since two linear
transformations are identical if they are equal for more than two t'alues

of z. the result follows.
(iii) + (ii). Trivial by looking at the images of oo.

(iii) -=(iv) for B>0. If zeS, u'e have /iiz€S+ l1z:f(\z)<'-
Fif": f 4r, ancl the result follows b5, the above remark.

Supposing that -Q > 0, we let p be an algebraic number of degree

^- 
> 3, and assume for the moment, that all the conjugates B; of B lie

on 5. Proceeding in a similar manner to [], we then note that b1- au

easy geometric argument rve cen express y and () in terms of the B;.

Hence, defining § to be the field obtained by adjoining the conjugates

ol y and I to q, ancl ft:q(8,,...,frn), wehave SE !t.Let
GI:Gal(n/q) and 6p:Gal(!t1q). For j:2,...,r1, lve pick an

element o, €@p such that, oil: Vi, ancl put or: l We then fix gr:
oiQ (i:L,...,h).

From the fact that
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(r 6)

(17)

lpr,-pr (k-1 ,ft/)

\Ye obtain, by applyirg 6j,

for some ru depending on d and j. Henoe .f. permutes the conjugates
of B. But 4'5 is either a circle or a straight line, and has at reast three
points in common with 5, namely the Bt. So {5 : 5. More generally,
,4 permutes the conjugates of f3, and AS:5, for each Ae $.

From Lemma I (i), we see that Q is independent of the choice of
the automorphism o; satisfying 6jy : yj. Horvever, a simple argument
(given in the case of y irrational and totally real in [r, section 2]) shorrs
that this is not the case if A e e(7). Hence O e e(Z).

Lemma2.Let f;€5 O:L,...,X), where P isasaboue.Define
,1@u by zr->2. Then there is a monomorphi,sm V: $-@p sati,sfuing
V(fj) : o,xo;|. In particular, $ i,s a fini,te grougt.

Proof. Let, G,",, be the svmmetric group on F, , . ,d.r, ancl let gti
6p * 6^* denote the obvious rnonomorphism. Since J: > B, the natural
mapping Vz: b -* 9s is also a monomorphism. By (t6) and (17). rr-e
have \§r: o,xo1 L§i. It follows that Im(pr) § Im(rp,), ancl n-e can
define V by V{! : gz.

Using the canonical projection @,s-+6 we can also define a homo-
morphism from $ to @. Ifo.wever, this map is not, in general, either
injective or surjective.

We now drop the assumption that .t contains B ancl its conjugates.
From now on, except in Section I0, we shall ahvavs take fJ e e(Z).
Note that we do not necessarily suppose that o 2 0, unless we expressly
say so. As before, we put S: Q (yr,...,y^) and @: Gal (S/q).
We define Qi: olO, rvhere o, e6 maps / to Ti. Now if J2 > 0 ancl

B and its conjugates do lie on .S. this definition of Q is the same as the
previous one, and furtherrnore t'e har-e shorvn that then

(r8) J?e Q(z) and Q:(y-y)2- A(y-Dl|-il tj:2.....tt).
of course the oondition or1 Qt in (r8) could be replacecl br- either one
of the conditions (ii), (iii) of Lemma t.

We shall eventually shox- that, for n : 3 ,4, the truth of (18) for
Q > 0 is also sufficient for the existence of a set of conjugate algebraic
numbers on 5.

LemmaS. If O isof theform Q:b*cyly2 forsome å,c€Q
(cf. Lemma 4), then

Ann. Acad. Sci. Fennicm
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(l s)
' - J rt

attcl condit'ion (i) ,f Lenr,mct I tctkes tlte form,

Proof . Direct calculation in both cases.

tennma 4. Suppose that Q > 0 sctt'isfies (18), ctnd,

f if(j =- I ) . , ??,) generate ct, fd,n'ite cycl'ic su,bgroup

th,e foll,owing results hold:
(i) Tlzere enist rational ttutnbers b , c such tVtat

(ii) Tlte ?'oots gr , Qz o,f tlte equ,at'icn aP -F cx -f b

tiileqttul . and ere i,naerse u:i.th resp€ct to the c'ircle .§ .

(i;i)ForQnylL€.tr,u')ell,ctt,e,7€5ioifundo,nly

thut tlze products

$n "f ,b Thett

- 0 ar€ real antl.

if ,7?j- Qj (j -I . 2).

(21) z (?,'-b)lQt,-.i-c)i-9 ,2y+ci
u,lti c/t, lies dns'id,e 5.

Proo7. Nox- fjfh: {J-(.I;I)-1 € ,So, for each j and k, so Do
lrirs irrclex 2 in J). Since $ is finite, every element A * f of $ is elliptic,
so that the two fixed points of A are distinct. (See e.g. [4, Chapter 9]

f<lr elementary results concerning linear transformations.) Since li.o is
cvclic. all the elements + I in §po have the same tlvo fixed points. 9r
ilrxl ?:, sav.Soforany j,k:1....,n. ancl )n,:I.2. rr-ehave lil*Q^

- gnt. ('learlv gr and g2 are algebraic numbeLs. 1\-e nox- appl1' all the
automorphisms of a suitable normal extension of §t, containing g. ancl

Qz, to this equation. Then rve see that such automorphisms permute g,

arrcl gr. Hence, putting c:- Qr-Qz, b:QrQr, we obtain c,Ö€Q.
l'rom the elementarv theolr., rl-e knor,v that the fixed points of an elliptic

linear transformation, *-hich keeps a circle invariant, must either be invelse
'with respect to the circle, or actualll; lie on the circle. fn the lattel case

the transformation is necessaril-,' an inr.olution. But .bo contains the
elernent J-rI', which is not an inroiution. bv Lemma I (iii). Thus (ii) follorvs.
Since g, and Q2 are inverse lr-ith lespec,t to .t, rve have Q : (5, - ^i)

(g, - ),), and (i) follows.
The line Re e : - ] c is the riglit l:isector of the line joining g, ancl

92, so that it belongs, together rvith .§. to the elliptic pencil of circles
with limiting points g, and gr. Thus this line lies outside 5, ancl is carriecl
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into itself by every element of $0. (See [4;9.a.3].) Therefore the image
of this line under any transformation ,Q is the same. Since f q: T,
this image must be a circle 5', say, lyinginside 5. Now /"l1cn:yie S',
whence (20) shows that 5' has the equation

b(zy - z - Z) * c(y' - zz) + yz(z * ä) - Zyz| : 0,

which gives (21). This proves (iv).
We also find that each Ii interchanges the two regions whose boundarr-

is 5. Hence (iii) and (v) are true.
Lemma 5. Supltose that (18) holds, ancl that yi is non-real. Let o €@ be

suchthat dy : yi. Put y* : o(o-)), anr| r11 : (y - y)-t (j - 2, . . .,?L).
Then y* * y, and,

(22) Q-l : q,,1* * l1,rp - q,11, ,

(2s) tt; * it: rrn * 4u.

Proof . Let y*: o-ty. Then applying o to (18) vith j : rv1, and
substituting for Qi (again using (18)), v'e obtain T* # y and

(24) Q-l : n? - q,rt* I i,n,, .

I{ow f)-r : rt-' gives (23), as T, = ri,. Hence replacing q? by q,(ttn]_

iu - ,t,) in (24), lve get (22).

4. Cubic anal quartic lemmas

We now &ssume trhat y has degree n : 3 or 4. We recall that Vs : yz,

ancl that yo is real in the case rL : 4.

Lemma 6. Sugtpose that (18) hold,s. Then for n : 3 ,4, both @ and

$ are isomorpthic to the d,ihed,ral grougt fi2" of ord,er 2n.

Proof . We regarcl 0 as a permutation group on the symbols I . . tt.
n'rom Lemma I (iii) r-e have

(25) frl:lfs. fsf :ffz
and. for n: 4

(26) f4f : rr4.
Put Ao: Izf . From (2ö) rre obtain

(27) A;' : lrl , Alo: Irlr, IAo: Ai',f .

To prove that S - Dr., it is therefore enough to shorr that z1o is of
order n, and that $ is generated by Ao and l,
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(a) n :3. The result for 6 is trivial. Applying the permutation (123)
bo (25), we obtain As: f312, so that Ai: I by (27). The rest is clear.

(b) n:4. Let o €6 map I onto 4. Applying o to (25), we see,

by (26), that o cannot map 2 or 3 onto I. Hence o : (14) or (fa)(23),
and I'n does not commute with l, or 7ls.

Next let oL:2. Applying o to (26), we find that o4:3, because

J-, does not commute with I or /ln. 'W'e also find that ,l', and l-, d-,
commute, rvhence ,40 is of order 4 by (21). Clearly o : (L2)$a) or (12a3)"

Applying o to (25), we obtain Ao: /-alz in both cases. It is now easily
seen that $ is generated by zlo and J-, whence the result for $ follows-

If o I : 3, a similar argument shows that o : (I3)(2a) or (13a2).
Finally, if ol : 1, then o must be (l) or (23), by (25) and (26).

Now @ has more than four elements, as y is not totally real, so it
must consist precisely of the eight permutations mentioned in the proof:

(28) g : {(1) , (14), (23), (12)(34), (13)(24), (14)(23) , (t243), (1342))

This completes the proof of Lemma 6.

If there is a positive O satisffing (18), then from the structure of $
we see that the -(.1- belong to the cyclic subgroup generabed by Ai, and
so the results of Lemma 4 hold.

Lemma 7. Suppose that 12 > 0 satisfi,es (18). Let V: lzT. Then
q, g ctre the roots of the equatdon

(2e.3)

(2e.1)

where b,c are os

(30 )

Proof .

for j + l;.

also

(3r)

}-rotntIleproofofLetlrtlra-I,\\.eiitrorr-tlratRe|ivo
Thus q -.1- A: e. Br- Letnt,a I (ii), \r'e no\\'have (30) and

Before proceeding further, we call attention to the following general
principle. Consicler anv valid relation i, S, say of the form f;fp: 7t7,.
Looking at the images of r, rve fincl liyy: flyr

Using this principle ancl the structure of $ determined above, one
can easily verify that the set {\ynlj - l, . . .,n; j + k} : {q, q} for
n : 3, : {g,q, - L") for n : 4.

Now for n: g, we use the relation (lrl)' : fsT, lvhich by (31)

gives,I-rJ- q : V. X'rom Lemma 3 and. (31) we have g : (V' - b)l@ - d,
and thus ZpV:(E*d'-b:c2-b. Ifence (29.3) holds.
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(33) O:(y-yr)'(y-yr)'ld for n:3.

(34) I - (y - yz)Q - y)(y - Dl| * ),n- rz- ?,.3) fo, n : 1,

(35) (),+y4)02+^/):2(yyr*yty):?sz for n:4.

Proof. Take i :2 in Lemma 5. For n.:3, let o .be 
the transpositi-

on (12). Then Å' : 3, and (33) follows froni (22). For l : tr. talie o :
(12)(34). Then Ä : 4, so that (3a) and the first part of (3;) follot'from
(22) and (23). A short calculation nov, shou's that the seconcl part of (35)
is true.

Lernma 9. For 1t:3 there is citt I > t) .satisfying (18) # cLncl only
if d > 0. Fu'tltermore, tltett I : 9*.

Proof . Br- Lemma 4, srch an J2 is nece-qstrrilv of the form Q : b +
cy i yz for sorr- e ö, c € Q. Bv Lemma 3. l-e hare to look for å, c € Q
suchthat b-c,y-y2> 0 ancl(20) holdsforT.:2. Substitute yyrye-
§a, Tz * yl: 8r - V, lzTz: 32 - .\r7 - '>t2- follorretl l )- l'ts : §rl': -
szy * sa in this equation. This gir.es

- (srb -l szc * 3rr) + y(3b lsrc -i sz) : 0 ,

v,hich is equivalent to

L2

For n : 4, rve found in the proof of Lemma 6 that l2l : I,A/II.
Hence (frf)' : l+1. This relation gives frf E : - |c b5r (30), so

using Lemnra 3 and (31) again, - $c - (V, - b)l@ - i). It follori-s
that q satisfies (29.4). This completes the proof.

As an irnmediate corlsequence of (29. z) rve ha.rle the follol-ing fact:

(32) -(<p-q)':{+@'z-4b) 
for n:3',\r r, I cz_4b for tt_. 1.

Lemma 8. Srytpose that (18) hold,s. Then

(36) [t]: - §"c -- 3sB : o '

1;,,-.\rc -.c, -r).
If now B > 0 sati-sfies (18). then ri >. r,t l-n- 133). The e.ciuations (3ti)

have the unique soh.rtion ö. c si\-en br- (3). (1) (for ii : 3).'Ihus J? : Q*.
Conversel;-, it d > 0, then r\-e can soir e tlie ecluations (36) for ö. c. Hence
we obtain an J? satisfving (18). ancl this -o is positive bv (33).

Lemma '1.0. For n -- I tltere i.< etn I > 0 satisfying (lS) ,./ tncl only
i,f (8), (9) hokl, and cl > 0. Furthernto)'e, then Q: Q*.

Proof. Assumethat g) 0 satisfies (18). As before. 9:b -rcy *y2
for b, c e Q. From (20) for j : 4, we have

(37) b -t tc(y * yn) * TT+ -: 0 .
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By (28) \\:e can *pply the permutation (1243) to (37), and get

(38) b * tc(y, -l za) * TzTs:0 .

From (34), V * yE * yz i yr, so that, by (35), y I yn and Tz -l Ts
are the two roots of the equation frz - srr * fs, : g. Therefore

(3e) y * TE:å-(r," + et/h, Tz* yr: t@r- ufa1,

rrhere e: -f l. As y, y4 arereal, iL 2 0. Alsou'e cannothave 7 t /n € Q,
for otherrvise TT+e Q by (37), and 7 would not be of clegree -1. Therefore
d is not a square in Q. From (37), (38), (35) we haye first

(40) 2b { !cs, * }s2: o,

and then

(41) TTs,: [t, - f,rc fi , TzTs : [s, -,- f,uc t/i .

\Yriting 8a : (T * y) yzys * Oz -t y) yy+, we find

(42) sr: fisrs, + Itd.
This gives the expression (r1) for c, and hence, using (40) and (2), the
expressiotr (3) for ä. Thus Q : Q*. Since sE: TTsyzTs, we obtain (8)
from (41). (2), (4).

\\'e have the identity

(43) ,T - Tzz - iyE- Tt,: (y - y+)0 I v+- Tz- Ta).

Since Q > 0, (9) follorvs from (34) and (a3).

Conversely, assume that d 2 0, and that (8), (9) are satisfied. Define
ö, c b1- (3), (4). Then (40) holcls. The minimal polynomial g(z) of y facto-
rizes as

13

( 44)

X'rom (44), (a0) we have (39). ({1), (37), (38), (35). By (37), (20) holds for
j : 4. Consider now the conclition (20) for j : 2 (o, j : 3). Substituting
for b from (37), and using (35). rve find that this condition is satisfied.
Therefore Q* : b * cy -r V' satisfies (18), by Lemma 3. tr'inall5. (9).
(43), (34) imply .0* > 0.

The purpose of the next lemma is t'o enable us to construct quartic
polynomials one of whose zeros may be taken to be y. We therefore tem-
porarily drop our previous assumptions concerning 7.
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Lemma 71. Let g(z), gi,uen by (l), haue d,egree 4, anil, satisfy d > 0

anil (8). Define b , c by (3), (4). Then g(z) has two unequal real zeros anil,

two non-real zeros i,f and, only if
{45) d((sr*2c)'.

Suppose that $5) holil,s. Then g(z) is irred'ucibl,e oaer Q if and only
if d, is not a, squate in Q. Iurther, b + cy + y' it gtositiue for preci,sely

one of the tuo possi,ble choices of y as a real, zero of g(z), namely the one

uhich i,s further from the non-real, zeros.

Proof. Since (8) is satisfied, g(z) fact'orizes as in (aa). The discriminants
of the factors are td + (*u, + c$d. Now s@) has two unequal real
zeros and two non-real zeros if and on11.- if the product of these numbers
is negative. Hence the first, assertion is true.

Suppose now that (a5) is satisfied. The result concerning the irreduci-
bility of g(z) is obvious. Using the same notation for the zeros of g(z)

as before, v'e obtain (39), (41) from (44), and (a0) from (3), (4). Hence
(37) holds. Irrom the expression for the trvo discriminants rre find e :
sgn(]srf c). t'r'sing (37), v'e obtain blcy+y':(y-y)Q åc),
b I cyn * y'r: (y, - y)(yn -t äc). X'rom (39), (41), (+5), 1\-e have
16(Z * *c)(yn* l-r) : (r, * 2c)'-d>0. This shorvs the uniqueness of
the choice of 7. Finally sgn (y -t tc) : sgrl (y I yq + c) : sgn(12§r * c *
u {d,1 : ,, so that the last assertion follows from (43).

5. Construction of algebraic numbers on circles

We assume in this section that y has degree n : 3 or 4, and is such
that there is an Q > 0 satisfying (18). Then we knos' from Lemmas 9
and l0 that 9: 9x. Let .9 denotethe circle lz - yll: J2*. Aswe saw

in the preceding section, the results of Lemma 4 hold.
We now define I1(z) bv

H(z) :2 A" .

,1 €f

Then H(") is an automorphic function t-ith lespect to the group 'b.
Fot n : 3 ,4 u.e have, explicitlr-.

H(z):zl TrTzt frfzllfnfzli fzl fzz* fsz-lf&f ,

the terms in brackets occuring only for n : 4. From (15), (19), (31),

(29. n), (30), we see that H(z) can be written as a rational function H(z) :
U(z)lV(z), u,here V(z) is given by (5), and t/(z) is a monic polynomial
of degree 2n. We shall work out U(z) explicitly follorving the next lemma.



Vrcrxr<o Exxor,l and C. J. Srvrvtrr

Lemma 12. If zo 'i,s one root of H(z) : a, then al,l the roots (counted,

wi,tlt, multi,gtlici,ti,es) are gi,aen by Azo, as .l aaries oaer b. If zo is not
a fired, point of arry A e b, I a L, then these roots q,re all d,ifferent-

Proof. As H(Az) : H(zo): c(, we see that Azo is a root of H(z) : 4,

for each A in $. If zo is not a fixed point of any A e b, A t' l, ihen
all the /ao must be distinct, and. so they exhaust the 2n roots of the
equation U(z) - aV(z) :0. Thus the lemma is proved in this case. Since

the roots of U(") - aV(z) :0 are continuous functions of a, we see

that the result is also true when ao is a fixed point of some .,1 e S\{t}.
fn particular, we see from Lemmas 12 and I that if one of the roots

of II(z) : e lies on J, then they all clo.

We norr calculate U(z). To do this we evaluate H(Sr), where Qr is
a fixed point of So, as in Lemma 4. We have 21.g, - q, for each z1 € $6,
and AQr:Q, for each Aefb* Hence ä(gr) :n(p*fQ):-nc.
This means that the 2n roots of the equation tl(z) * ncV(z) : 0 are
p, and Qz, each repeated z times. So U(z) + ncY(z) : @2 + cz 1b)".
which gives (6).

We next remark that ä(z) is real, and varies continuously with z,

for zeS. For II(4:H(z):H(fz):H(z) when zeS. Also the
poles of H(z) are yi,,fyi (i:1,...,fl), andfromLemma4weknow
that none of these numbers lies on 5.

Lemma 73. Only a fired, point of some A e b, A * I, can be an extreme
point of H(z), as z aaries on S.

Proof . Let zo be a (relative) extreme point on 5. Choose z* e S

snch that zx * zo for each lc, and li^ ru : "0. We maSr suppose that

all the ar, lie in a sufficiently small neighbourhood of ao. Since zo is an
extreme point, it, follows that for each k there exists z'* * zr, such that
H(rL): H(zr) and limzi:zo. By Lemma 12,there is an element of $

k+q
rvhich maps zo onto z'o. Since S is finite, we may suppose that this
element is the same for each lc, i.e. z'1,: Az* for some /l e b, A + l.
'Iaking limits, we have zo: lzo.

Lemma 14. For n : 3 ,4, the roots of H(z) : a li,e on 5 if and
only if *€Å.

Proof. fn order to find the extreme values of H(z) for z e 5, it is
sufficient, by the previous lemma, to evaluate H(z) at those z € 5 rryhich

are fixed points of some / € b\{1}. Ilowever, we know from Lemma
4lhatthe f1$ - I , . . ,n) are the only elements of $\{t} which have
their fixed points on 5. Therefore let, zo be a fixed point of some l;,
and let c')lt: 

$21, the orbit of zo under $. Then in fact 'l1l: {\zoli :

15
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1,...,2), because llzs*l-uzo for j*k, byLemma 4 (iii). Further,
for any A e b, Azs is a fixed point of AliA-7, i.e. the points in ')lL
are fixed points of elements of $ belonging to the same conjugacy class
a§ f;.

Considerfirstthecase n:1. Thenin S the fi U:I,...,4)
split into two conjugacy classes {l , ln} and {J-, , 1-r}. Corresponclingly,
there are two orbits c}ll, and '?/1r. lvhere e.g. c)ll, corrtains the two fixecl
points of both l- and 14.

Since the sum of the fixed points of \ is 2y1, l'e har.e, using (39),
for <)lt :'-)lll,

H(zo):2 Z ": a0 * yu):2(r, -| e t/i1 ,
,e)V,

rr,lrere u : * l. Similarlr,, for 1tt : ilt2, H("o) : 2(sr -, fh.
Considernowthe case ?z : 3. Thenalltheinyolutions fi U : 1, 2, 3)

belong to the same conjugacl' class in the group ! Therefore the tu,o
fixed points of each { must belong to clifferent orbits. \\-e thus again
get two orbits, and hence the extreme values of H(z) on .§ are H(y - R)
ancl H(y + fi), where "E is an abbreviation for Q*ri2.

It is possible to calculate H(y _f A) directly. Horrever. \r-e shall u-.e a

different method. Consider the set c)llo: 
{y; + gfo j : t ,2 , Z), which

is the union of the trro orbits. Since it clearlv contains a set of conjugate
algebraic numbers on .§ s-ith at ]east three members, 1ve can choose an
element of lllo to be the p of Section 3, and appl), the results of that
section. Let 8 be the srnallest normal extension of Q containing ')/1,,.
Then, as lye har.e seen, !) coutains §. Since from (33),

,laf -: 0i rr)'01 T)'( 16)

for any permutation tj , k ,lj of {1 , 2 , 3}, \4/e clearly have I :
Q0,yr,yr,{d). Choose o, € Gal (SiQ) so that it interchanges ;, antl

Zz, arld leaves 7, fixecl. Using the notatiou of Lemma 2,'ive see tltat o"xort
interchanges 7 ancl 2,3, rrncl leares :," ancl t d fixecl. B.r- the proof of
Lemma 2, rr-e obtain from (16)

\y i-

u'Jtere r -
have

-l- 1. Sirlce /-B : ir, arld ?,+ eR is a fixecl point of I-, \i.e

Ann. Acad. Sci. Fennicre
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This completes the proof of Lemma 14. From these considerations it also

follows immediately, by Lemma L2, that t'he following is true:
Lemma 75. Ior n:3,4, the polynomi,al l(z;a):Lr(z)-aV(z)

has all its zeros on S if and only i,f xe/. Furthermore, the 2n zeros of
?(z;a) areclistincti,J a i,snotanend,gto'i,ntof 21. If a isanendpointof A,
then each zero of I(z ; a) occurs exactly twi'ce.

6. Proof of Theorem 1

We can now proye Theorem 1. First suppose that there is an J2 > 0

such that the circle 1z - y)2 : Q contains a set of conjugate algebraic
numbers rrith at least three rnembers. Then as we sa\Y in Section 3, (18)

is true. Lemmas 9 and 10 norv shorv that (7) holds, ancl that (8), (9) hold
rvhen rz : 4. This proves the first part of the theorem.

Conversely, suppose that tl2 0, ancl that (8), (9) hold if n : 4. Then
rve knorv from Lemmas 9 ancl l0 that gx is pcsitive ancl satisfies (I8).
We can therefore apply the results of the previous section.

Let, u be an algebraic numbet, all of whose conjugates r.; lie in /.
Then it follows from Lemma 15 that condition (10) determines a monic
polynonritrl P(z). Furthermore, all the zeros of P(z) lie on z - Tl2: Q*.
Clearll- PQ) e Q[z]. We now sholt, that P(z) is irreducible over Q. Let
p be a zero of P(z) such that Lr(P)lV(P): a, and let P' be any other
zero of P(z). Then tl(P')lv(§'): -xi for some index f. Choosing an auto-
morphism of a suitable normal extension of e rvhich maps "r to öii,

\ye see that fi is mapped to sotle coujugate B", ancl L-(0") l'(§"): *,.
But norv by Lemma 12, §" : ,40' fol some .,1 € D, atrtl so. as \rtre saw
in Section 3, B' and P" are conjugate. Hence B' antl 13 trre conjugate,
which pro\res the irreducibility of P(z).

On the other hand, let B be any algebraic number, all of whose conju-
gates pi lie on )z - yiz: 9x. Let P(z) denote the minimal poly'nomial
of B over Q. The numbers H(§i) formacompletesetof conjugatealgeb-
raic numbers contained in Å. Denote these numbers b\. ,r;, each one

being counted onlv once. Since each A € $ permutes the conjugates p;,

rye can divicle the B; into orbits under .b From Lemmas 12 and 15 it
nou. readily follol-s that (10) holds. This completes the proof of Theorem 1.

Iurther remarks. If r is an interior point of Å, thelLr we see from (10)

rhat P(z) alv,ays has degree divisible by 2n (n : 3, 4).If :v is an endpoint
of t1, then 'rve have two cases:

@) faeq. Then from Lemma ll, we must have n:3. Furt'her

L7
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* is rational, and we have two poly'nomials P"(z)(e : _[ l) of degree B,

defined by

(48) P,(z)z : U(") - 2(r, * "t/a1Vp1 .

By $7), P"(z) is the minimal pol;momial of y I eQ*ttz. The zeros of
Pr(z)P_r(z) comprise all the fixed points of the f1

(b) {i e q. Here a has degree 2, so

(4e) P1z1z - (U(z) - 2(s, * t/i) V("»(t'(:) - 2(s, - fi1v1"11 .

In this case P(z) has degree 2n (n: 3 , 4), ancl it is the common minimal
polynomial of the fixed points of all the fi

7. First part of Theorem 2. Cubic case

In this section and the next we prove the first part of Theorem 2. The
converse part is proved in Section g.

Let y be as in the statement of Theorem 2. Suppose that there exists
at least one set of conjugate algebraic integers on the circle lz - T 2 : Qx.
Then it follou,s from Theorem I that there is a number :r € J such that
U(z) - aV@) e A[e]. Since the coefficient of z2n-1 is - a, we have a € A.
The coefficients of '2n-2, ,2n-3,...,20 give us 2n-I other conditions.

lYe no*- separate the cubic and quartic cases, the latter being dealt
rvith in the next section. For the cubic case, rve introduce the following
notation, adclitional to that used in the statement of Theorem 2. Put

B:-SC-rT, D:52-\qT,
and

ö:ra+3C,0:gx-2§.
Then from (36) and (2),

Further

(50)

The conditions ( 12.3)

(51)

b - BlSqr , d == Dlrf .

in Theorem 2 can be \\-ritten as

3(3, q)-'q B, (3, r)27'e D .

tr'rom (36) rve obtain sz : -§rc - 3ö, 3s, : -srö - s2c : -srö -l- srcz ! 1bc.
Therefore, expressing ?(z ; a) : U(") - aV(z) in the form (zz I cz fb)s -
Qlr)V(z), it is easy to verify that the 2n - l: 5 conditions mentioned
above can be written in the form:
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(52.4) (-qC * r§)d * \qC'+ rB:0 mod qrz,

(52.3) (-\qC' f l8r§C f I0rB)ö * gqCu { rBrBC :0 mod 9qF ,

(52.2) (tlqS?z t I2qBC - 2rSB)ö { 9qBC2 { 3rB2:0 mod 9q'f ,

(52.1) (-6qTCz - 2SBC - Bz)ö + SBLC :0 mod 9q'r' ,

(52.0) (-}qC' ! rB)(\qTC + SB)ö f 3rB3 : 0 mod slqBra '

Here (52 . j) expresses the fact that the coefficient of ai in F(z ; a)

belongs to A.
Replacing - qCö by - qrCu - SqCz in (52.1), rve obtain

(53) §ä:-B modq.

\['e shall also neecl the three congruence§ obtained by forming 3cL4-
L,,\BL4- Lr,zTLs- Lr, rvhere L stancls for the left-hand side of
(52 . j). These give

(54) (B | lrT)a + VTC - 0 mod 3q(5 , q)-' ,

(55) (3qTC + SB)ö : 0 mod \qr(B ,3qr)(5 , Qr)-r ,

(56) (-Bz + 36rSTC { rsrZB)ö | rsqTCs - 3B2C * 36rTBC :0
mod \qr' .

Lemma 16. The congruences (52) i,mply that (q,r): (q, §) : I'

ProoJ. trVe need the following results, rrhich rve also use later:

(57) (3 , r)qlB , q l§ö .

Bv (53) it is enough to prove the first result. Let p be any prime,

and let p"',q,p'llr ,p'llB. Suppose first that p * 3,5, and' that v < 6.

Then (55) shorvs that the term containing ö in (52.0) is divisible hy p"*'''z',
while the other term is divisible exactlv by p'*". This is impossible, so

t}rat t' ) o. For p : 3, a sinilar argurnent shorvs thal v ) o, and that
t'>-o*l for z)0.Considerfinallythecase P:5. If z)0, the

same argument again gives r, ) o. Suppose therefore that 5 / r, and that
rt1o. Then 5*,S, b1-(53) andthedefinitionof B. Using (53)again ive

obtain from (52.0), 2rBz :0 mod. 5"+z', which is impossible. This proves

(57).
Write u: (q, r). Then (u, S ,T): (u,C): l. From (57) and the

definition of B, r,,e obtain (3,u)ulB,ul9. Ifence (u,T): l. From

(54), (3 ,u)u145, so that r,c 15. Furthermore, 5lz is possible only if 51llq'

In this case, however, (55) leads to a contradiction, because 5-t ö, by the
definition of d. Thus nl3. If u:3, then (57) implies 3*'lB, 3"lSö.
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But this contradicts (56), because 3"+3 divides every terrn except lBqTCZ.
We have thus proved that u : l. The second assertion of the lernma
follows immediately from (53) and the definition of B.

Lemma 17. Supgtose that qlB,(q,r): (q, S) : l, ),:2. Then there
erists a rati,onal 'integer ön such that

(58) 3q läo , 33"+4lro(öo) ,

rohere Lo(ö) d,enotes the left-hanil sitle of (52.0). anrl B q.
Proof. Using the identity

(59) r(3qTC -r SB) : - sqBC' - SE ,

\r,e can rvrite (52.0) in the follos,ing equivalent form:

(60) E(3qBC + SZ)d { SrzBt: Q mod 8tqtrl .

Since 3"lB ,3lE by (50). As ).:2, o ) I and 3"llZ. Considernow (60)
mod 33"+4. We can solve this congruence for ä. If åo is a solution, then
3"+1iå0, and the result follov's.

For the proof of the next lemma, it is convenient to have the cougluerlces
(52) expressed in terms of 0 ancl D:

(61.4) (- qC * rS)0 * öryT 1 2rD :0 mod qzr ,

(61.3) (- SqC'f Sr§C - I0r2T)0 - 20rzST I r6rCD:0
mod 9qrr, ,

(61.2) (\qSCz - t%qrTC - 2rSB)0 ! I5qr2T2 .)^ (L\qCz - trB)D :0
rncd 9qrr, ,

(61.1) - rT(SqCz -+ r2T)0 - 2r3ST2 - (6qC i 2rS I r0)C'2D:0

mod 9q'r' ,

(61.0) r(3qCz I rSC I rzT)(CD + rST)0 | SqraTs I (9qrCn I 6qr§C3

| 9qrzTCz | 2rzCzD I IrBSTC | 2raTz)D - 0 mocl Slqara .

Here (61 .j) is a reformulation of (ö2. j).

Lemrna 18. Tlte co?tgruence.s 1ö2) implu thut (öl) ltolds. ctnd th«t

(62) U'_z;q ö - do, 13,r)r2 10,

where åo is defi,ned, as i,n Lernntq 17 if 
^ 

: 2, anil, do : u if ), + 2.

Proof. I{ote that, for )":2, the supposition of Lemrna 17 is satisfied
by Lemma 16 and (51). \\re divide the argument into five cases, v-hich
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show that (5f ) and (62) are true locally, for each prime 1o dividing 3qr.

The congruences (52) are more suitable for dealing with the prime divisors
of q, while the congruences (61) are rlrore suitable for prime divisors of r.

CcLseI: p+3,p'1Jq,o2L. Wehave pt'r9 by Lemma16. The
required results follorv immediately from (57).

Case II: p = 3, p'llr, z 2 I. We have p * qC. From (61.4), g'10,

and so nsing (61.1), p"lzD. Next, from (61.3), p2'10, and then (6I.0)
gives pr'D.

C'«se III: p : 3,\'llq,o 2 1. We have 3frS,x : 0. From (57),
3'B,3iö. Hence (5I) is true at, the prime 3. To prove that (62) also
lrolds at theprime 3,'w,e have to shou, that 3+2Ålä - ö0. If ).:2, then
ä and ön both satisfy (60), and the result follows, because 3'l)8. Let
i + 2. Theu do : 0. For )" : 0, g-e aheacl\- have the res,lt. Suppose
tlrere{bre that i.: l. Then 3"-1 .O. rvhence 3'-1',8 b1- (50). Frorn (60)
\re no\r clecluce 3'*' lä.

Cnse I\-: 7t : 3,3-llr,t2I. \\-e have 3lqC,x : ),:(). Frorn
(57), ?' B, whence 3l/S,3lD. From (61.4), 3'10, and so using (61.1),
3" D. In particular, 317. From (61.3), 3?'0, and then 34'D by (61.0).

LTsing (61.3) ancl (61.0) again, 'vr,e finallv have 32t+r 0 ,34'+21D.
Case Y: 7t - 3,\tqr. Then i:0, ö6:= 11, and u-e have to prove

tlrat ?''8.3'å. Suppose that 3+ B. Tlien (ö2.3) implies I ä, u'hich
contraclicts (;:.9). To prcr.e the second assertion. u'e obtain frorn (52.3)
ruicl (60)

(63 ) trö - 0 mod 9, S1l2ö ==0 mod 81

and the result follor.vs easily bJ, the definition of z.
This completes the proof of Lemma 18, and hence the first part of

Theorenr 2 in the case ?L : 3.

8. First part of Theorem 2. Quartic case

\1-e lor. prove trvo lemmas for n : 4, rvhich correspond to Letnnra,s
16 and 18. The methocl of proof is similar to that in the last section. though
the results hele are somerrhat simpler. fn particular, there is no analogue
to Lemma 17.

Let n -- 4. Put

B :- ^SC' 2rT, I)-- §2- BqT,

and
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Then from (a0) and (2),

b : Blaqr , d, : Dlqz .

The conditions (I2.4) can be written in the form

(64) 4qlB, 241r61D.

From (2), (40), (42), (44), we have sz : - a»tr" - 6ä , s, : - srÖ *
§rcz* 4bc,sn:lsrbc -årrrt +b'- öc2. Therefore the 2n-T:7 con-
ditions mentioned in Section 7 can be rvritten as

(65.6) (- \SC f 2r§)d I t2qCz | 2rB :0 mod 2qr' ,

(65.5) (- 4qC' { r2rSC | 7rB)ö { r6qCs I L2rBC :0 mod 4qf ,

(65.4) (- Zqzgs - TqrBC - ,SqrzTC - ar2§B)ö f
8q'Ct + 24qrBCz | 3r2Bz :0 mod 8q'rn ,

(65.3) (- aqBOz - tl2qrTOz - l6rSBC - TrBz)ö 1
lilqB1s { l2rBzC :0 mod l6qzra ,

(65.2) (- tt2qzTCZ - 2sclSBCz - I7qBZC ! 2rSB2)ö |
l2qBzQz -y 2rBs :0 rnod T%qgra ,

(65.1) (- e+qz7g+ - 2lc1SBCB - t\qBzQz ! 4rSBZC * rBB)ä *
4rBBC :0 mod 64q,r5 ,

(65.0) 2qC(2qC2 - rB)(- aTQqCz - rB) + B')å + rzB4: 0

mocl 2ö6q+r't .

Again we need these congruences expressed in terms of 0 and D:

(66.6) (- \qC i 2rS)0 | 28qrT * 4rD:0 mod 2q'r ,

(66.5) (- 4qC, i örSC - llr27)0 - 28rzST I IUrCD :0
mocl \q'r' ,

(66.4) (- Zqzgt { 7qrSC2 - ölrqr2TC' - ar2,SB)9 -y l10c1rsT2 -
(3\qrCz - SrzB)D :0 mod 8,t'r' ,

(66.3) (aqBOz - l\lqrTCz -)- grB2 - 32r2TB)0 - 56rBST2

| (ö6qCB i 18r§C2 - \r2TC)D :0 mocl Lfiqsrs ,

(66.2) (- ll2qzrTCg f llqrSzQs - l)qyzsfOz - 68qrsT2C , 2rzSBz)0

I ll2qraTs t @6r12Ca * 2SqrSCB { 28qr2TC'2 | 4rzBz)D :0
mod 32qara ,
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(66.1) (- l\qrzSTCB - 64qrsTzCz + SrzS3C3 + tOrs§zTcz + 4raSTzC

- grsTe)0 - 1615§73 t (\2qzCi | 24qrSCt { S2qrzTCB

| 6r2§zQt f 2UrBSTCz 4 AfTzC | 8qrOal)D :0
mod 64qar5 ,

(66.0) (- 4\qrBTzC7 { 4rB§zlQe - Sr4STzCz - l6rsTBC)0 | tqrcT*

{ (l6q216 | lfiqrS0i { 64qrzTCa { \rzQatr I LfiTBSTCS

+ SfTzCz | 4qrCä0 | 2rzSC10)D :0 mod 256qar6

As before (66 . j) is equivalent to (65 . j).
Replacing - \qCö by - SqrCa - l2qCz in (65.6), we obtain

§ö: -B mod q(2,0)(2,q1)-l .

We need the two congruences obtained by forming 4CLe - 3L; and

- BL; * Ls, where Lj denotes the left-hand side of (6;.f). These
give

(68) (B | 8r?)a + 32TC - 0 mod 4q(2 , r)(7 ,e)-\ ,

(69) (- +f lzqgz - rB) + 82)ö : 0 mod 2qr2(B ,4qr)(7 , qr)-L .

Lemma 79. The congruences (65) imply that (q , r) : I , (q, §)i2.

Proof. \1-e ueecl the follov.ing results, rvhich are again also used later:

(i0) 4q'1Q , r)B . (2 , C)q,(2. qC)Sd , 2l§C .

By (67) and the clefinition of B, it is enough to prove the first result.
Let p be prime, and let p"l)q , p'ltr , p')iB. Consider first the case p I 2-

If r, ( a, then (69) shows that the term containing d in (65.0) is divisible
by ,p2o=2t-zt-r (- r in the exponent is only needed for p: 7), while the
other term is clivisible exactly by p"*n'. This is impossible, so that y 2 o.
For p : 2, lve similarly obtain a >.- o I l. Furthermore, if r is odd-
and r, : o * l, then 2+2lC(2qC2 - rB), which again leads to a contra-
dJction. Thus z ) o * 2 in this case. This proves (70).

Suppose now that p divicles both q and r, so that o and r are
positive. Then p*C. Frorn (70) and the definition of B,p'iB,p)5, so
that pt'T.If p +2, then (68) shou,s that p:7 ,71llq. Ifou'ever, in this
case (69) leads to a contrailictiol, because 7 + ö. Therefore necessarilv

? : 2, so that (q , r) is a pou'er of 2.

If o 2 2, it is easy to see (using (70)) that the factor of d in (69)
is divisible exactly by 2o+', ryhence 2'+'lö. But this contradicts (65.4),
because 220+4 divides every term except 8g'C^. Thus o: I. If 8].B,
then similarly 8ld, and the same contradiction arises. Hence 2rllB, so
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ihat 4l§, 16iD, by the definition of B and D. From (66.6), 2'-2)0.
Using (66.0) we obtain

(71) 2t'-i§0 1 L1rbTa -y (r6q'zC6 | SrzCaD I lz8riD :0 rnocl 26tt12 ,

for some t ,q e A. If t: L, consider (71) modulo 211. Then the terms
eontaining § and 4 disappear, and it is easy to deduce a contracliction.
Thus t 22. and it follos-s from (71) that zn'+')D. Br. the definition
of D,2'zll§. Applying (66.4), rvefind tlnat 23'10, sothat (71) gives 20t-2)D.
Write e:2(r_.r:2'rt,0:2:''01. Then (66.a) moclulo 2r'-5 and (66.2)
modulo q4'z-i r-ield

C0, i er\: 2q + C0! ! rrT := Q mocl 4 .

Hence 2'0, and qr? - - | rnocl 4. Hou-erer.

qtT: (^9i4)'- Dll6- i rnocl +.

a contradiction.
\Me have proyed that (q,r): l. The second assertion of the lemma

follows from (70) and tire definition of B.
Lemma 20. Tlte congruences (65) imply that ga) holds. ctnd thqt

(72) !3'r1 ö.2'it30.
Proof. Tire proof is similar in structule to that of Lenuna 18. \Ye prove

the results locallr- at each prime p clivicling 2qr.
Case I: p ; 2, p"11,q,o ) 1. \Ve have p I rS. The required results

follor,r. from (70).

Ilence frortr (66.0), pn'iD. 'l'hen
again 1i'e f intl i)n' I) .

Cctse ILl p :2 ,2n rl , o ) l. \1-e liare 2; r. If ^S is odd, then
x: ),:0, aurl (7{)) shorvs that (' is er-en, x-heuce the results follol-
from (70). Suppose therefore that S is even. Then ? is odd, so that
necessarilr- I * C'.l1 ,S. because LiB. Thus x: L, ),.- 0. Ior- (70)
gives 2'-2 B. so that -"-3 ä b1' (6;.0).

Case I\-: 1t:2,2't, z ) l. \\re have 2f qC. 81 (titl.6), 2'+2)A.

From (66.5) u-e get I,D, so that 4i§. Thus x:0. ).: l. It follol--q
from (66.0) that ort-'2 p. Hence 7 is even. From (66.J) *-e have )i'-) 0,

and then, from (66.0), 2o'-t ,D. Plaini;, 4iB.
caseY: P:2,27qr. Br'(70). aiB. If C iseven.tlien z:),:0,

and there is nothing more to llro\re. Suppose therefore thrrt C is odd,
so that § is even. From (65.4), .1 ö.

U 2lliLC, then z:1,).:0. B)-thedefinitionof 8.7 isodd.Nou-
(65.0) gives 8lå.

\1,-e'havr: pic1C. I.'rorn(66.5). ])'Q.
(66.4) ir»plies ptt' {J. ar1r1 using (66.U)
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L6lD. B), the defilition of ö ,

This completes the proof of
of Theorem 2.

4',x, so that also 110"

Lemma 20, and thus pro\-es the first part

9. Converse part of Theorern 2

trVe need the following lemma, u,hich is a trivial generalization of well-
kno'w'n results concerning sets of conjugate algebraic integers in a real
interval.

Lemma 21. Let &o € Q ,u, e Z (zr'> 0) be fired, and let / be any
closed, interaal, of length lAi u,ith midptoint a.

If )/ , < 4w, then / contains only finitely rnanA sets of conjugate
algebraic nunr,bers of the form, 'r"s f w€, for § € A.

If il j > 4w, or if ili : lw and, (a - a)lw e Z, then A contains
infinitely many such sets.

Proof. We have eo -l wE e / if and only if (a - «o)lw - lAil2w
E a @ - ao)lw { lÅllzw, anrl the lemma follows easilv from results
Schur, P6lya, and Robinson. (See [2].)

Norv let 7 be as in the staternent of Theorern 2. ancl suppose that
(11) and (12 . n) holcl. In the cubic case note that (q, §) : t , by (5t).
(ll), ancl the clefinition of B. Hence the supposition of Lemma l7 is satisfiecl
for )t : 2.

X'rom Theorem I we know that to each set of conjugate algebraic
integers on lz - ylz: Q*, there corresponds a set of conjugate algebraic
numbers contained in A. If cv is a member of the latter set, then we saw
in Sections 7 and 8 thal u is an algebraic integer, and satisfies the conditions
(62) for n : 3, (72) for n : 4 (given in terms of ö and 0). Conversely,
it is easy to 'rerif;, that when -.v does satisfy these conditions, then the
congruences (52) folh : 3, (65) for n,: 4, are satisfied. The verification
is clone locally, for each prime p dividing nqr. For primes dividing r
u'e verifv the equivalent congruences (6I) for n:3, (66) for n:1,
instead of (52) or (65) clirectly. There are, however, a fert- points to note
when carrying out this r-erification. All the cases with 1o i n arc very eas\-,
r.hence we on]}- consicler more closely the primes p : 3 , 2, respectivell'.
We use t'he same numbering of cases as in Lemmas 18 and 20.

(a) n:3. First consicler case III. n'or ,tr a 2, we have 3o+1'8, ancl
the result follows readilv, using (59). For ,2, : 2, we have 3"li.E , l'i)B,3"-' ö

Now (52.0) modulo 33"-a follov.s trivially from (62). Further, from (52.0),
,Så : 6.8 mod 3"+2. Using this, one can then verify that the other congruen-

of
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ces (52) hold. In case IV use the fact that 3lS and 317, as 9lD. In case

Y we have 3i8,3'lö, and that (63) holds. Then the required results follorv
from (59).

$) n:a. Incaselllu.'ehave 4/§, as 4iB. Therefore 2lC when
x:0. fn case IV we have 1lS,2lT, as I6lD. Hence ).:1. Finally,
in case V it is readily seen that the congruences (65) hold when C is even.

If C is odd, note that either 2lllS , x: I or 4lS , ),: l. In the former
case 8lä by (ZZ). fn the latter case, from (64) and (72), L6lD and 410,

whence 2lT and 4la ,4iö.
Nowsince (L-'^q,r):I for n:3, and (2q,2^r):l for n:4,

we see that r is cleterminecl mod ur by (62) or (72), where

^.. _ [l',»(B,r)qr2 if n : 3,w-\2t"-zlqrt if n-4.
Hence the ,',i lvhich satisfy (62) or (72) are the numbers of the form
or: No-l w€, where ao is a fixed rational integer, ancl 6 is any algebraic
int'eger. trYe therefore have a one-to-one correspontlence between sets

of conjugatc aigebraic integers on the cilcle 'z 
- y,2: 9*, and sets

of conjugate algebraic integers of the form -r.o f Tcf in r'.
Now ,1 has length 11, : +{6, ancl the conclition (I3) is equivalent

to cl 2 u2. So the converse part of Theorern 2 follol-s from Lemma 21

lf rI + w2. Let us therefore consider the special case when d, : w2. As we

already remarked in Section 2, this is only possible when y is cubic. We have

S2 - SqT : 32"+4113 , r)'qnrn ,

sothat (q.S) :i implies Q:1,1:0. Thus

(73) S: - 37 : 3:'(3 , r)'/t .

Let us calculate a value for ro in this case. It is deterrnined by

rro : - 3C urocl 3' , ,ro - 25 rnod (3 , r)r2 .

Tor x:0 or 1. rre can take ;.^,o :25, because 3l§ for x: L, br'(73).
But (73) al-.o shou-s that the case : 2 canuot occur.

The midpciut « of the interval Å is 2sr: 2g : do. Hence, trivially,
\a - ao)lw e Z. It norv follorvs from Lemma 2l t'haf tre also har-e infinitel)'
ma'ny sets of conjugate algebraic integers on tz - | z : Ox in the case

d. : w2. This cornpletes the proof of Theorern 2.

10. Circles with rational or totally reai centre

We shall reproduce the earlier work by Robinsou concerning algebraic

integers on a circle with rational centre T, using arguments similar to
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those we have used" when 7 is not totally real. The argument for 7 € Q
is slightly different, however, one reason being that we do not have the
result, O € Q(Z), as we have when 7 is irrational.

Let p be an algebraic number, all of rvhose conjugates lie on lz - yl'
- !), where / € q and f) is a positive real number. Looking at the
constant term of the minimal polynomial of B - y as in [3 , §2], we find
that flK € Q for some positive integer r(. Choose 1( as small as possible.
Instead of § it is more convenient for the moment to consider (0 - y)",
all of rrhose conjugates lie on lzl' : O*.

We now proceed as in the case of y not totally real (though now eyery-
thing is much simpler). We define the group of linear transformations

b : {t , zr> eKf 21,

of order 2. The corresponcling automorphic function is norv H(z) : )nAz :
p2 a 2Kl, jz. It is clear that H(z) : a has its zeros on lzl2 : 9K if
and onlv if a € A, where Å : l- 29*!' ,29*'7. \f,e then obtain, in
a similar way to Theorem 1:

Theorem 3. Let / € q and, suytltose that there erists a pos'iti,ae rectl,

number A suclt that the circle l" - yl' : I contai,ns a set of conjugate
a,lgebrai.c numbers. Then there i,s a positi,ae integer K such that 12" € q.

Cottuersely, suptpose that Z€q,O>0 and, that l2o€q for some

gtositi,ae integer K. Choose K to be the smallest posi,tiue integer wi,th thi,s

property. Let .x be a totally real algebraic number, all of whose conjugates

a; lie in /. Define I as i,n Theorem l. Thenthe cond,ition

P(z)t - l-T
i

(7 4)

defines u monic polynomial P@) e Qlzl, u:hich is irreducible o',*er Q, and
has all its zeros ott t.z - yz: 9. Furthermore. the mininrctl Ttolynomial
of any algebr«ic ttumber. ull of rho.se conjugates lie on ,z - y2: 9, ntust
be of the form P(z), defined by (i+). for .some tot«lly reul t. hauing ctll its
conju,gates i,n /.

Proof . ft is sufficient to take T : 0. \Ye have already provecl the
first assertion. To prove the second one, let J2 and K be as stated in the
theorem. \Yrite a: l)'{. For l:2,qi: *2\/o, andwe have P(z) :
," + l/d or z'" - a, acccrdingas {oeq or 1/a € Q. Theirreducibilit5'
of P(z) over Q is a consequence of the minimality of K.

Suppose norv that 1 : I. The zeros of P(z) lie on lzl2: 9, aucl

none of them is real. To prove that P(z) is irreducible over Q, let G(z)

be a monic pol5momial (l I) dividing P(z) in Q[z]. X'ollowing Robinson

[3, §2], we can conclude that t](z) : Go@*), say. IIence Go@) divicles

fr @, - uix -l q), v'hich is obviously possible only for G(z) : P(z).
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X'inally, let {B;} be a set of conjugate algebraic numbers on the circle
lzl2 : Q. We want to show that their minimal pol;momial is of the form
P(z). Now the numbers (§1" + a)lBf form a complete set of conjugate
algebraic numbers in /. Denote them by x;, each one being counted
only once. Clearly the polS,,nomial P(z) corresponding to these n; is the
required minimal polynomial.

Using Theorem 3 we give another proof of

Theorem4 (Robinson l3l). Let y:Slq, uhere §,q€2,{l}0,
(§, q) : 1. Assume thut the ci,rcle l, - yl': Q contains at least one
set of conjugate al,gebrai,c integers. Then one of the fol,lowing conditiotts hold,s:

(i) l: l and, QK ez for some integer K > r ,

(ii) q22 and, q(Q-yz)ez,
(iii) 4: 2 , Q e q, and, 4(Q2 - rlrc) eZ .

Conaersel,y, a,ssun1,e that one of these conditions is sati,sfied, for O > 0.
?hen there are i,nfinitely many sets of conjugate algebr«ic integers lying on

lz - yi' : O if and only if either (i) holds, or I > q2 «ncl (ii) or (iii) hold,s.

Proof . Let lz T)2 : A ccntain at
integers. We know from Theorem 3 that
and that for some d. € A

least orle set of conjugate algeltraic
grc € q for some (minirnal) A > l,

( 75)

( 76)

Assume first that B € q, so K : I. Then the left-hand side of (75)
becomes z'-(a*2y)z+ A -yz +y(*+2y). Hence q(!) -y2)eZand a is determined mocl S b)-

(z - y)'t + Qrc - x@ - y)t € Alzl

N + 2y € A , §(* -1- 2y) -r q(0 y') -: 0 lrlocl q.

Thus (i) or (ii) holds in this situation.
Norv assumethat Qeq, so K ) 2. lf q: l, i.e. ye Z, then (75)

implies first a € A and then OK € A. Hence (i) holds. Suppose therefore
that q ) 2. We look at the ccefficients of e ancl ,22 in (75). ancl obtain

(77) (- 1)K1{qr'ls"-'1 - 2.K§2tr-i : r-) mod g,o-, ,

(7s) (- \KK6 - l)q"^S"-'r - 2Ä(2{ - t)^92(-: : 0 rnocl 2q2t;-z

Eliminating & we get q'*-'',2K'. This is impossible for. 1{ } 4 as
22K-2 2 2l(2. Also, for K :3, rr-e cannot have qnl18. ,§o K :2, and
q218, whence Q: 2. Looking at the constant term in (75), rve have

-ASzu+§4+16O2:0 mod 16. From (78), u-!ee,. As 82:1
mod 8, §a: I mod 16, 'we obtain
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( 7e) &-+ 1(92- rit6) mcct 1

Hence (iii) holds.
Conversely, assume that one of the conditions (i), (ii), (iii) is true. Then

choosing a such t'hal u €A in case (i),* satisfies (76) in case (ii), and
cr satisfies (79) in case (iii), we can easih- verify that (25) holds. Now all
a of this kind are of the form cr : no -l- rcf, where 6 € A, ao is a fixed
rational, and rc : I , q ,4 in cases (i), (ii), (iii), respectively. We thus
have a one-to-one correspondence bet,veen algebraic integers on lz - ylz
: g a,cl algebraic numbers of the form ao * wE, all of .w-hose conjugates
lie in y'. The length of / is lAi:4QKt2. fn cases (ii), (iii) we cannot
have lll : 4w, and the result follor,r,s from Lemma 2l.In case (i) equality
can occur, but taking &o: 0, we see that the additional condition in
Lemrna 21 is satisfied. rn this case we alwavs have lÅl ) a. This completes
the proof of Theorem 4.

The case when 7 is irrational ancl totallr- real, 'which rvas treatecL in
[1], can also be dealt rvith using sirnilar methods. Lemma I applies also
to this case, and ,sing it \1-e carr shorv that the corresponding group S
of linear transformations is a four-group. we can again define H(z) : 

Å!r,
ancl tlris turns out to be the rational function f(4ls@) in equation 1sj or
[1]. Tlrns the construction of conjugate algebraic numbers o, l, - Tlz : e
is macle br- essentially the same technique as in the cases we have consid.ered.
The methccl of clealing with the integrity- conditions in [1] is basically the
same we have used here.

11. Examples

1. our first exarnple siro'n-s that. fol n : 3, the critical ca."e of eqlalitr-
can indeecl occur in (I3). in aclclition to (11) ancl (12.3) holcli1g. For slch
an example we are able to r-rite clomr the rninimal polr uomials of all sets
of conjugate algebraic integers on iz - yz: e*.

Take SQ) : "t - (3h + t)zz + (3h' i 2h)z - k, rr-her.e /z ancl l;
are suitabl;- chosen integers such that g(z) is irreducible or.er e ancl
has only one real zero. (E.g. t'ake k to be a large prime.) The, cl : a :r:l,X:l6h,6h+4),2:0. Further glU, so that x:0. Hence
we clo have equality in (13), s.hile the other conditions are clearlr- satisfiecl.
By a rvell-known theorem of I(ronecker, exactly all totally real algebraic
integers €, all of whose conjugates lie in l- 2 , Zf, are given by 6 :
2costn, for t e Q. since w : L, any set of conjugate argebraic integers
on ie - T)2 : Q* has minimal polynomial of the form
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lL*1
P(z)t :11 <ut"l - rch + 2 + 2 cos (2njlm))V(z)) ,

j:0
(i,^):r

for some positive integer rr..
It is also easy to construct similar examples for d > l. One such is

given by g(z) : zt - 6z2 { 9z - 5." 2.Takå y:\/*+(2m+"1/di, where nt,c€Q,m70,ttt is

notasquarein Q, and c>2i*.Then y isarootof g(z):z4-6rnzz

-Amcz*m'-mcL:0. Further d':l6nx>0, c has the meaning
(4), and (8) holds. From Lemma 1l and (43), rve find that the requirements

in Theorem l, ensuring the existence of infinitell- many sets of conjugate

algebraic numbers on lz - y)': 9*, are satisfied for this 7 rrith n:4'
As sr : 0, the integrity conditions take a much simplified form, and'

it is not hard to see that the following is true: There is no set of conjugate

algebraic integers on la - 7i2 : Q* unless m e Z , r61m' If these conditions

are satisfied, then there are, in fact, infinitely many such sets.

3. fn spite of the previous examples, it is not necessary that y be an

algebraic integer in order for the circle ja - Tl2 : Q* t'o contaiu infinitely
many sets of conjugate algebraic integers. For instance, rve can take y
to be the relevant root of

1r
2)

r,vhere f is a positit'e rational nutlber such that the ratio of I ancl its
denominator is at leasl n2.
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University of Turku
Finland.



References

l1] ExNole, V.: Conjugate algebraic integers on a circle rvith irrational center.
I[,at},. Z. 134, 337-350 (1973).

[2] Ronrrsox, R,. M.: fntervals containing infinitely ma,ny sets of conjugate alge-
braic integers. In: Studies in Mathematical Analysis and Related Topics:
Essays in llonor of George Pölya, pp. 305-315. Stanford: Stanford tTni-
versity Press 1962.

[3] -»- Conjugate algebraic integers on a circle. i:['[ath. Z. lI0,4I-51 (i969).
[4] SeNsoNo, G. -rro GrnnnrsnN, J.: Lectures on the theory of functions of a

complex variable If. Geometric theory. Groningen: \\.olters - Noordhoff
I969.

Printecl June L971


	IMG_20150508_0001
	IMG_20150508_0002
	IMG_20150508_0003
	IMG_20150508_0004
	IMG_20150508_0005
	IMG_20150508_0006
	IMG_20150508_0007
	IMG_20150508_0008
	IMG_20150508_0009
	IMG_20150508_0010
	IMG_20150508_0011
	IMG_20150508_0012
	IMG_20150508_0013
	IMG_20150508_0014
	IMG_20150508_0015
	IMG_20150508_0016
	IMG_20150508_0017
	IMG_20150508_0018
	IMG_20150508_0019
	IMG_20150508_0020
	IMG_20150508_0021
	IMG_20150508_0022
	IMG_20150508_0023
	IMG_20150508_0024
	IMG_20150508_0025
	IMG_20150508_0026
	IMG_20150508_0027
	IMG_20150508_0028
	IMG_20150508_0029
	IMG_20150508_0030
	IMG_20150508_0031

