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7.1. The density
D 

=1 
let IV(o,T

in the rectangle

R(o , T),

7. Introduction

theorem. For *{a11 ,

, D) stand for the number

n L@,x,)
rmodD

f > 0, and for integral
of zeros of the function

The quantity 1{(a , T , D) has been extensively investigated; the
best, known general upper estimate (apart from a logarithmic factor) is
the follov'ing result of Montgomery:

IV(o , T , D) < (DT)*'' (*'å) 11 - a) pa,(1.1)

(1.3)

(1.4)

co(x) -

a(a) :

with l:LogDT, uniformly for $<a<L,T>2,D>1. (X'or
history and reference, see Montgomery [7], Chapter 12; in particular,
(1.1) is essentially theorem 12.1.)

The result (l.t) is obtained using certain theorems on Dirichlet poly-
nomials involving Dirichlet characters, and a mean-value estimate for
lL(* + dt , X)ln. The object of the present paper is to show that the meth-
od of Montgomery can be refined to 5'ield the following improvement of (1. t)-

Theorem. Ior any fi,reil e ) 0 there erist (calculable) numbers A
:C(e),8:B(e) such that uniformly for *="<L,T>2,D>L
(1.2) N(a,T,D)<C(DT1<'t"l+")(I-d)rB

wi,th

4

6a.-3 " ii- I
6u-4" 4

=1- for*{a
2 

- 
a' 

I
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( 1.5)

O onsequeratly , in urly ca,se,

(1.6) /Y(* ,7 , D) < C(DT1k''o'i'r)(1*o) lB

1.2. Remarks on special cases. In the case of the zeta-function (D : 1) ,

better results have been obtained by Huxley [4] and Bombieri (announced
in a lecture in Moscow in September 1971). n'or example, they find in
(1.6) @o: 2.+ for D : I . Also the range of validity of the density
hylothesis is found to be wider than our range a > f, .

Arrother interesting special case is T < l. In this case it can be proved
that al(a) is strictlg less than 2for a near 1. Indeed, one may take in (1.2)

o(x) - 4x-2

estimates of Burgess for
into details here.

I-functions (see [3]). Hou'ever, \r'e do not go

1.3. Methoil of the proof. For the proof of the theorem we shall intro-
duce two new ideas into the Dirichlet polynomial method of Montgomery.

X'irstly, given a point so : do { i,to in R(x , T) and a character f,
(mod D) , there exists a region

L(t , X,). If s : 6 + it lies in (1.7), ancl, moreo\rer,

6 2o(so,y) + t, t fo, {l',

(1 .7)

free of zeros of

(1.8)

then we have by function-theoretic arguments (the Borel-Carathdodory
theorem and the three-circles theorem of lladamarcl applied to the func-
tion log (L(s , il) the estimate

(1.e) lL(s , x) i < Cr(') (DT)' ,

provided in the case )(: X,o we also have tot 2 2l' (a principle, used
by Bombieri for the zeta-function in [2]).

Secondly, we shall apply the Halåsz-Montgomery method to a set of
auxiliary Dirichlet polyrnomials of the form B"(s , f), where B(s , X)
are »short» Dirichlet polynomials, serving as indicators of zeros, anci a is
a suitable positive integer. The estimate (1.9) appears to be useful in sharp-
ening the llalåsz-Montgomery method.
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1.4. Arithmetical applications. The quantity ao in (1.6) plays an im-
portant role in prime number theory. Two examples:

(i) Let p be a fixed prime ä 3 , and let D run over the sequence D
: pn,,tL: L,2,... Let p(D, k) standfortheleastprime : fu(modD).
In [l] it is proved thal p(D,k) < C(p, lDBt3+' if (D, k) : I . Our theo-
rem gives a similar result with $ replaced by ,0.

(ii) Let q be an odd prime, (q ,lc) : I , and let G(q , k) be the least
Goldbach's number (a number of the form p, f p, with pr, ?z primes)
which is : k(mod g) . Then we have by the method of [5] the estimate

G(q,k) SCr(r)q-r'*" .

1.5. Notation. Throughout, e will be a fixed number, 0 < , < #, ,
and the constants Br,, Br, . . . will depend on e . The ccnstants in the
symbols ( are absolute (numerical), in (u they depend on e .

As usual, p(n) and g(m) stand for Möbius's and Buler's functions,
and z(n ) for the number of positive divisors of n .

2. Classification of the zeros

2.1. The class of the »gooil» zeros. LeL B, be a positive number to be
specified from certain conditions later. Let B, and B, be (sufficiently
large) integers such that

Ä'(* , T , D) < Br(DT)'(I-a) 7Ba

for all $<x{L,T>2,D>- L,DT{Br. Lzt €>2173e be
a real number which will be fixed during the follorving construcbion. Al,l
subsequent constants wil,l, be i,nd,epend,ent ol Br,, 82, Bz, amil, § .

Using the estimates (1.f ) and (2.1), and suppcsing Bz ) I and B, ) I
to be sufficiently large, we have the follou'ing alternatiyes: either

(2.2) A (*, f , D) < B r(DT):(l-s) /B'

for all $<a<I,T >2,D>1, or there exists a triple (u' ,T' ,D'|
with

(2.3) *=n'< 1- 5e,?' 22,D' 2L,D'T's B,

such that

(2.4) - log D'T'

Then, for the proof of
. Since the theorem is

(2.1)

Suppose that the second alternative occurs.
the theorem, we need an estimate for &' - fl'(6)

IV(o' , T' , D') > Br(D'T'1i(t-o(') l'u' ,l'
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interesting for a ) fi only, we may suppose that o' > Z. The triple
(a' , T' , D') will be fixed during the proof, and will henceforth be written
simply (u,T,D).

Consider the zeros p : B I i,r of all tr-functions (mod D) in the
rectangle R(a , T), and pick out a subset ,4. (the »good» zeros) of these

zeros from the following conditions:

(i) u!§{u*e,0(t17,
(ii) for the zeros ei : §i I i'ri e A of -L(s , 7;) , respectively, we have

(2.5) ln - ril2 212

if yi: Xi,i + j , and, furthermore,

12.6\ t 2 212

for all zeros of L(s , X,o) (i.e. of ((s)) in A .

(iii) the region

(2.7) o)-a*e,lt-rl1Z1z
does not contain any zeto of .[(s , td if g is counted into A as a zero

of L(s,il.

Lemma l. The class A can be selected, in such wag that its card,i,nalitg

lAl sati,sfi,es

(2.s) l,4l> l,-sN(u,T ,D).

Proof. By the definition of * we have

Å'(a * e, T, D) < Bz(Dqxr-a-e)18" .

Tf. Br (and so DT) is sufficiently large, the expression on the right is

< + Br(DT;':(t-r) 7a'

(note that a lower bound for -8, can be giren as a function of e only).
Ifence, in view of (2.4), 'we see that at least a fourth of the zeros in R(u 

' 
T)

satisfy the condition (i).
Next drop away from the zeros, satisflng (i), the zeros of ((s) for

which t t 212, at most ( tr3 in number. We may suppose that after
this at least a half of the zeros are left. n'rom the remaining zeros pick
out, a set satisfying the condition (2.5). So it is easily seen that at least

(2.9) > 7-3-l/(a ,T ,D)

zeros satisfy both (i) and (ii).
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X'inally, using again the definition of c, we have

.l[(" * e, T -f 212, D) < B.(D(T + zl\)€(r-o'-d lB'

<l,aN(u,T,D).
Ilence, for DT sufficiently large, at least a half of the zeros, counted
in (2.9), satisfy (iii), too. This completes the proof.

2.2 Construction of the polynomials B(s, 7) . In this section we
shall construct the Dirichlet polynomials B(s, 7) , mentioned in the
introduction.

Let

(2.10) x:(Dr)"Y: (DTlrtz+2",

(2.1r) M(",il:Zp(n)x(,tl)tl-',
Dsx

andfor n2L let
d,,: ) p(d,) .

iJk

Then d1 :1,d,.:0 for 24n<X,lil,"l{r(n) for n>X.
Let g be counted lfio A &s a zero of Z(s, 7) . Then we have the

identity (see [7], p. l0a)

(2.12) e-rtY * )d,.x(n)n-e s-"tY
n>X

e(fiq(D)D-rM(t , y)Yt-.1"(1 - S) *
-l/2+i@

I (zr,;1-' I tW { q, y.)M@) * s, ilY"I(w)d,w,
-r,,1-rn

where s(/) : I for X: Xo, and e(X) :0 otherwise.
If Df is sufficiently large, then the first, term on the right of (2.12) is

< å i, absolute value, in view of the condition (2.6) in the definition of ,4 .

Also, the contribution of the integers n> Yr: Y(DT1' - lDTltz+e"
may be supposed to be < å in absolute value. We may also suppose
that e-ttY ) f,. Then, writing ,t(q) for the integral m (2.12), we have

(2.13) I > b*y(n)n-al>å-l/(e)l ,b^-ilne-"tY.
X<n(Y.

Lemma 2. Ior the »»gooil» zeros we haue

I > b,1(n)n-a l>å.
Xqn(Y,



Ann. Acad. Sci. Fennicre A. I. 520

Proof. Remove in /(g) the integration to the line 6 :4 with q

- 1- 2u-3e. Now *=" ( 1- 5e, so that

-l+7e14<-å-3e.
Hence no singularity of the integrand lies between the lines o : - t
and o:q .

The integral over lTmwl2l? is <å in absolute value, provided
DT is sufficiently large. It remains to estimate the integral over llm a;l
<12.

If llmarl {/2, Re 'b:71, then w+ A lies in the rectangle

(2.14) I - a - 3e ( o {l - d. - 2e,lt - rl {12.

As noted in (1.7)-(1.9), we have

lL(o * dt , ill <" (DT)"

in the rectangle

a*2e(o(l,lt-tl<12
(owing to the zero-freeness condition (iii) in the definition of -4) . Con-
sequently, by the functional equation for Z-functions (see [8], p. 207),
we have

(2.t5) lL(o * it , ill K,(DT11|2-"+"

in the rectangle (2.14).
To estimate 1(q), note further that lf(w)l{Bn, that by (2.10)-

(2.1r) trivially

ltuI(p * w)l 
= 

(DT) ,

and that lY'l: (DT1,' *'tn
rt' : (+ * 7e)rt : * - " * # e - L4ae - 2Le2 < + - x - 5e - 21e2 .

Then we have

l/(e)l s + + B5@Tr-zr'"12 <f,
it DT is sufficiently large. This estimate combined with (2.I3) gives the
desired result.

Now construct the pol;rnomials

"'r':r,-r*.^?^r.rr,*,Å^Y'(n)n-" 
' 
j: t '2 ''" 'b
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with zb-'X1Yr,2bx>y1. Given azero g of Z(s,24) in A, we
have by lemma 2

(2.16) l.Bi(e , ill Z (+b) '
for at least one index j . There exists an index j' such that the condition
(2.16) holds with y : j' for at least b-L lAl zeros fuom A. Let these
zeros be enumerated as Qt,Qz,...,gr, let At:{q,...,Qt}, and
write for simplicity B(s , il: Bi,@ , X) .

By lemma I we obviously have

(2.17) N(a , T , D) <l4J .

The rest of the paper is devoted to obtaining an estimate for J .

3. The Haläsz-Montgomery methoil

3.1. A lemma on Dirichlet polynomials. The corollary of lemma I of
[6] can be stated in the follorving sharpened form (here ./ is a general
s;rmbol, not related to the set .4r) .

Lemma 3. Ior L < j < J let X; be any character, si: oi *'i,ti
any compi,er number, and, l,et o: min o1 . Let an,fr:I,... ,N be any
compler mumbers, anrl, write

N

f(s, X): å a^y(n)n-" .

Let
2iin 

r

(B.I ) K: J-ze(2n)-r}rl f tU,* si 2o * LU , xi|r,)f *I( u)dwlr .

i

rf

(3.2)

and i,f for I < j <J
( 3.3)

theru

IT

Vz > 4K > la^\z n,-2n ,
LI

n:L

l/(s;,x)l >Tl>o

(3.4) J<I{V-zi la*tzn-2o
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Proof . This is, essentially, a combination of lemma 1, its corollary, and
an identity in the proof of lemma 3 of [6]; note only that our quantity .K
is a constant multiple of the mean-aalue instead of the mar'i,mum of the
integral in (3.1). This sharpening is justified by the inequality (28) of [6].

3.2. An estimate lor K.'W'e shall apply lemma 3 in the caso sy : Qi ,
j : 1, . . ., J, qi running over the zeros in the sel Ar, and 7i being
the respective character for which L(Qi , X): 0 .

Lemma 4.

(3.5)

In the ca,se sj : Qj, j : 1, .. ., J we h,aue

K <, (DT)"-Ll2*6e 1gl-a

Proof.Let j, be anindexsuchthatthepairs (j, ,lc),lc - 1,. ..,J ,k
*h, give to K the largest, contribution. Then by (3.1) we have

r'f,'* |(3.6) R {J-Le(2")-'Zl I L(et,* pu- 2u*w,X;,1,*)N-l(uld,wl .

@JrJ-r* |

Now we classify the indices k in (3.6) into classes Cs, Ct, . . . from
the following condition: ke C, if z is the least non-negativeinteger such
that the region

(3.7) o2a * (r * l)e, lf - (rj,- ro)l {212

is free of zeros of ,L(s ,7i, th), .

X'or the cardinality l0,l of C, we have by the definition of a and
by the condition (ii) in the definition of .4 the estimate

(3.8)

(3.e)

for v : 1,2,... Further, t'rivially, lCol <J .

Next, for ke C,, we need an estimate for the integral in (3.6). To
this end, we remove the integration to the line d : qt with 4r : m&x
(l - o - (r, -r 4)e , e). Then

The residue, arising from the pole of L(s , X,o) at s : I is easily seen

to be negligible, as well as the integral over ll:m wl 2lz .

Now let Re ar : 4t , lIm wl 112. Then we have by the zero-freeness

condition (3.7) and by (3.9) (as in (2.15)) the estimate
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Ilence the integral in consideration is

(3.10) K, (DTYtz-nr+E NqLlz .

Combining (3.8) and (3.10) we conclude that the indices k in Cn con-

tribute to (3.6) at most

(3.11) B&P.zJ-t(DT)r/2-?1+E+§(r-a-w) Nq\lB'+4 .

for rrll, and for y:0

(3.12) <" (DT)"-'lz+se Nr-d'-ae 12

since max(l_ a-4e,s):r-oc-4e (recall that all -5e)'
In any case, we have a*(v*l)e(1*e, so that

| - u - ve - 4e lqr< I - u - w I e.

using this as -''.'::åä:ii]:1,;:ä:T],ll:^":n""**ion in (3 ,) is

Summing here over v : | ,2 , . . ., and taking into account the estimate
(3.12), we obtain (3.5).

3.3. The tinal inequality. We combine lemmas 3 and 4 in the case

(3.13) f(s,il: (B(s ,X)),r 1u32r-'.
(3.14) y: (4b)-".

Then we have .l[ :2j'"X ,

(3.15) an: 0 for n < 2-"N ,

(3.16) 2rlo"l, q" -l[(log N)B' .

The condition (3.3) of lemma 3 is satisfied by (2.I6), (3.13), and (3.14).

Also, the condition (3.2) will be satisfied if a is chosen (if possible) in such

way that

(3.17) (+b)-" > 4K ) @^i"-'* .
n:l

X'rom lemma 4 and (3.15), (3.16) we see that, (3.17) holds if

(4b1-n;' > B8(DT)"-ti2+6e N2-3a lB' '

This gives for -l[ a condition of the type

(3.18) ff 
= 

Ifo : Bro(DT)f(n\ lB" ,
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(3.1e) f(") - (a-*+6u)l$o-2).
Then, by (3.4) and (3.14)-(3.16), we have

(3.20) J <, v72-za lBtz .

4. Proot of the theorem

Let us choose for u the least integer such that the condition (3.r8)
is satisfied. By (3.I9) we have for f, ! a ! I

(4.1) l@) <("-*) lQ"-\lZae.
Ifence l@) < L | 24e 1$ , so that the condition u { 2e-L in (3.13)

holds.

Tf u{2, then -l[ <4Y1:4(DT)'+r6"; if u ]3, then If <lfflp.
So, in any ca,se, by (3.20) we have

(4.2) .r <, max (Iflfltr-c) , (DT1P+tz")(r-")) ,B* .

From (3.18), (4.1), (4.2), and (2.17) we obtain for ,X'(:r , T , D) an estimate
of the type (1.2) with ar(a) being given by (t.a) and (1.5), and the con-
sta,nts C , B berng independent of Br, Br, Br, and 6 .

We conclude that if 6 > 2 | 73e is given, and a : a(E), obtained
from the basic assumption in the beginning of the proof, is such lhat a(a)
* 73e ( § , then the estimates (2.4) and (a.2) give a contradiction, pro-
vided B, , Br, and. -8, are supposed to be sufficiently large. This com-
pletes the proof of the theorem.

University of Turku
Turku, tr'inland
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