Series A

I. MATHEMATICA

519

LINE SETS AND ASYMPTOTIC BEHAVIOR OF FUNCTIONS HOLOMORPHIC IN THE UNIT DISC

BY

R. L. HALL

Copyright © 1972 by
Academia Scientiarum Fennica
ISBN 951-41-0059-X

Communicated 11 February 1972 by Olli Lehto

1. Introduction

Let f denote a complex-valued function in the open unit disc D. Let ζ be a point on the unit circle C. An arc at ζ is a curve $J \subset D$ such that $J \cup\{\zeta\}$ is a Jordan arc. The point ζ is an asymptotic point of f for the asymptotic value $a(a=\infty$ is admitted) if there exists an are at ζ on which f has the limit a at ζ. Let $A(f)$ denote the set of asymptotic points of f. The class \mathcal{A} consists by definition of all nonconstant holomorphic functions f for which $A(f)$ is a dense subset of C.

A set $S \subset D$ ends at points (of C) if for each $\varepsilon>0$ there exists a $\delta>0$ such that each component of $S \cap\{1-\delta<|z|<1\}$ has diameter less than ε. The class \mathscr{L} consists by definition of all nonconstant holomorphic functions f for which every level set $\{z:|f(z)|=\lambda\}$ ends at points.

The classes \mathscr{A} and \mathscr{L} were introduced by G. R. MacLane [6, p. 7]. One of MacLane's theorems [6, p. 10] includes the result

$$
\begin{equation*}
\mathscr{A}=\mathscr{L} \tag{M}
\end{equation*}
$$

For a set S of complex numbers $f^{-1}(S)$ denotes $\{z \in D: f(z) \in S\}$. Let L_{1} be a line in the complex plane. If f is a nonconstant holomorphic function for which the line set $f^{-1}\left(L_{1}\right)$ ends at points then $f^{-1}(L)$ ends at points for every line L and $e^{f} \in \mathcal{A}$. These results follow from Corollary 1.1. and Corollary 1.2, respectively, in Section 2.

In Section 3, classes of real-valued harmonic functions, \mathscr{A}_{r} and \mathscr{L}_{r}, analogous to the classes \mathscr{A} and \mathscr{L} are introduced. By Theorem 2, $\mathscr{A}_{r}=$ \mathscr{L}_{r} and this class contains the harmonic conjugate of each of its elements. An aspect of the boundary behavior of these functions is described in Theorem 3. Theorem 4 gives a growth condition that is sufficient for a function to belong to this class.

A function f has a linearly accessible asymptotic value at ζ if there exists an arc J at ζ such that f maps J one-to-one into a line L. Some point of L, or possibly ∞, is an asymptotic value of f along J. Let $A_{l}(f)$ denote the set of asymptotic points of f for linearly accessible asymptotic values.

Let \mathscr{G} consist of all f such that $e^{f} \in \mathcal{A}$. For a nonconstant holomorphic f, a necessary and sufficient condition for $f \in \mathscr{E}$ is that $A_{l}(f)$
be a dense subset of C (Theorem 5). For $f \in \mathscr{E}$ and γ a nontrivial subare of C, Theorem 6 gives some information about the directions of accessibility of the linearly accessible asymptotic values yielded by points of $A_{l}(f) \cap \gamma$. These results are contained in Section 4.

A closed arc γ (possibly a point) is the limit of a sequence of $\operatorname{arcs}\left\{\gamma_{n}\right\}$ (denoted $\gamma_{n} \rightarrow \gamma$) if for each $\varepsilon>0$ each point of γ_{n} is within ε of γ and each point of γ is within ε of γ_{n} (both in the spherical metric) for all n sufficiently large. A nontrivial arc $\gamma \subset C$ is a Koebe arc of f for the value $a\left(a=\infty\right.$ is admitted) if there exists a sequence of arcs $\left\{\gamma_{n}\right\}$ $\left(\gamma_{n} \subset D, \quad n=1,2, \ldots\right)$ such that $\gamma_{n} \rightarrow \gamma$ and $f\left(\gamma_{n}\right) \rightarrow a$. Define the class \mathcal{K} as follows: $f \in \mathcal{K}$ if f is a nonconstant holomorphic function in D that has no Koebe arcs for the value ∞.

In Section 5, it is shown that the inclusion $\mathcal{K} \subset \mathscr{G}$ holds properly (Theorem 7). Thus if $f \in \mathcal{K}$ then f has no Koebe arcs [6, p. 18]. Section 5 also contains a brief summary of some well-known results concerning the classes mentioned above as well as the class of normal functions of O. Lehto and K. I. Virtanen [5].

The author's Ph.D. thesis (Rice University, 1965) contained Corollary 1.3 and part of Theorem 2.

2. Line sets

Let $\zeta \in C$. Recall that the range of f at $\zeta, R(f, \zeta)$, is the set of all complex numbers α such that $\zeta \in \overline{f^{-1}(\{\alpha\})}$ (the bar denotes closure).

A sequence of arcs $\left\{\gamma_{n}\right\}$ is in the set S if $\gamma_{n} \subset S \quad(n=1,2, \ldots)$. Note that it is not necessary that any γ_{n} be a component of S.

Lemma. Let f be a nonconstant holomorphic function in D. Suppose that a nontrivial arc $\gamma \subset C$ is the limit of a sequence of arcs $\left\{\gamma_{n}\right\}$ in $f^{-1}(L)$ where L is a line. Then for each $\zeta \in \gamma$, the complement of $R(f, \zeta)$ in the plane consists of at most one complex number.

Proof. Let $\zeta \in \gamma$. Let N be an open disc centered at ζ, and let $\Delta=N \cap D$. Let φ be a homeomorphism of \bar{D} onto $\bar{\Delta}$ that is holomorphic in D. Choose θ (real) so that $\operatorname{Re}\left(e^{i \theta} w^{\prime}\right)$ is constant for $w \in L$, and set $g=e^{i \theta} f(\varphi)$.

The nontrivial are $\varphi^{-1}(\gamma \cap \bar{\Delta})$ is the limit of a sequence of arcs in $\mathcal{U} \varphi^{-1}\left(\gamma_{n} \cap \Delta\right)$. Since f maps each γ_{n} into L, it follows from the choice of θ that the union is contained in a level set of e^{g}. Therefore $e^{g} \notin \mathscr{L}$, and thus $e^{g} \notin \mathscr{A}$ by (M). By a result of MacLane [7, Theorem 10] either $g \notin \mathscr{A}$ or g has a Koebe arc for ∞. In either case, since g is not constant, it follows from results of F. Bagemihl and W. Seidel [2, Theorem 1 and

Theorem 3] that g is not normal. Therefore, the complement of $g(D)$ contains at most one complex number. Since $g(D)=f(\Delta)$ and N was an arbitrary disc centered at ζ, the proof is complete.

A half-line is a set of the form $\left\{w+t e^{i \psi \psi}: t \geq 0\right\}$ where w is a complex number and ψ is a real number. The next theorem is the main result of this section.

Theorem 1. Let f be a nonconstant holomorphic function in D. Let L be a line and let H be a half-line. If $f^{-1}(L)$ does not end at points of C, then there exists a nontrivial subarc of C that is the limit of a sequence of arcs in $f^{-1}(L)$ and the limit of a sequence of arcs in $f^{-1}(H)$.

Proof. Since $f^{-1}(L)$ does not end at points there exists a nontrivial arc $\gamma \subset C$ that is the limit of a sequence of arcs $\left\{\gamma_{n}\right\}$ in $f^{-1}(L)$. Assume (take a subarc if necessary) that $\gamma \neq C$ and let ζ be the midpoint of γ.

Suppose first that H is not a subset of L and choose a half-line $H^{\prime} \subset H$ such that $H^{\prime} \cap L=\varnothing$. By the lemma, there exists a sequence $\left\{z_{n}\right\} \subset D$ such that $z_{n} \rightarrow \zeta$ and $f\left(z_{n}\right) \in H^{\prime} \quad(n=1,2, \ldots)$. Let Γ_{n} be the component of $f^{-1}\left(H^{\prime}\right)$ that contains $z_{n}(n=1,2, \ldots)$. Since $\gamma_{m} \cap \Gamma_{n}=\varnothing$ $(m=1,2, \ldots ; n=1,2, \ldots), \quad \bar{\Gamma}_{n} \cap C \neq \varnothing \quad(n=1,2, \ldots), \quad \gamma_{n} \rightarrow \gamma$, and $z_{n} \rightarrow \zeta$, it follows that at least one of the two subarcs of γ determined by the removal of ζ is the limit of a sequence of arcs in $\cup \Gamma_{n}$. Since $\cup \Gamma_{n} \subset f^{-1}\left(H^{\prime}\right) \subset f^{-1}(H)$, this arc is the limit of a sequence of arcs in $f^{-1}(H)$ as well as the limit of a sequence of arcs in $f^{-1}(L)$.

Suppose next that $H \subset L$. Choose a line L_{1} so that $L_{1} \cap L=\varnothing$ and let H_{1} be a half-line such that $H_{1} \subset L_{1}$. By the preceding paragraph, $f^{-1}\left(H_{1}\right)$ (and hence $f^{-1}\left(L_{1}\right)$) does not end at points. Again by the preceding paragraph, a nontrivial subarc of C is the limit of a sequence of arcs in $f^{-1}(H)$ since $H \cap L_{1}=\emptyset$. This is all that the Theorem claims in case $H \subset L$. The proof of Theorem 1 is complete.

The following corollary is immediate.
Corollary 1.1. If f is a nonconstant holomorphic function in D and $f^{-1}(H)$ ends at points for some half-line H, then $f^{-1}(L)$ ends at points for every line L.

If c is a nonzero complex number and $\lambda>0$, then the level set $\left\{z:\left|e^{r f(z)}\right|=\lambda\right\}$ is equal to the line set $f^{-1}(L)$ where L is the line $\{w: \operatorname{Re} c w=\log \lambda\}$. Thus the following result follows from Corollary 1.1 and (M).

Corollary 1.2. Let f be a nonconstant holomorphic function D and let c be a nonzero complex number. A necessary and sufficient condition that $e^{c f} \in \mathscr{A}$ is that $f^{-1}(H)$ end at points for some half-line H.

Remark. In his Ph.D. dissertation (Purdue University, 1971), D. C. Haddad proved that $f \in \mathscr{A}$ if $f^{-1}(L)$ ends at points for some line L. Corollary 1.2 extends this result since $e^{f} \in \mathscr{A}$ implies that $f \in \mathscr{A}$.

A holomorphic function in D that omits 0 can be written in the form e^{F} where F is holomorphic in D, so the following result follows from Corollary 1.2 and (M).

Corollary 1.3. Let f be a nonconstant holomorphic function in D such that f omits 0 . If there exists a $\lambda>0$ such that $L(\lambda)=\{z:|f(z)|=\lambda\}$ ends at points, then $f \in \mathscr{L}$.

Remark. The definition of \mathscr{L} requires that every level set of f end at points. K. F. Barth and W. J. Schneider [4] have given an example of a holomorphic function f in D for which $L(\lambda)$ ends at points if $0<\lambda<1$ but $L(\lambda)$ does not end at points for $\lambda>1$.

3. Real harmonic functions

Let u be a nonconstant real-valued harmonic function defined in D. Let \mathscr{A}_{r} be the set of all u such that $A(u)$ is a dense subset of C. Let \mathscr{L}_{r} be the set of all u such that every level set $u^{-1}(\{\lambda\})$ (λ real) ends at points.

Theorem 2. $\mathcal{A}_{r}=\mathscr{L}_{r}$. Moreover, if v is a harmonic conjugate of a function $u \in \mathscr{A}_{r}$, then $a u+b v \in \mathscr{A}_{r}$ for any real numbers a and b such that $a^{2}+b^{2}>0$. In particular, \mathcal{A}_{r} contains the harmonic conjugate of each of its elements.

Proof. If u is a real-valued harmonic function in D and v is a harmonic conjugate of u, let f be the holomorphic function such that $\operatorname{Re} f=u$ and $\operatorname{Im} f=v$. Let $H=\{w: \operatorname{Re} w=0$, $\operatorname{Im} w \geq 0\}$ and $L=\{w: \operatorname{Re} w=1\}$.

If $u \in \mathscr{L}_{r}$ then $f^{-1}(H)$ ends at points since $f^{-1}(H) \subset u^{-1}(\{0\})$. Therefore, by Corollary 1.2, $e^{c f} \in \mathcal{A}$ for any $c=a-i b$ with a real, b real, and $a^{2}+b^{2}>0$. By the definition of $\mathscr{A}, \operatorname{Re}(c f)=a u+b v \in \mathscr{A}_{r}$. In particular, $u \in \mathscr{A}_{r}$ so that $\mathscr{L}_{r} \subset \mathscr{A}_{r}$.

If $u \notin \mathscr{L}_{r}$, then $e^{f} \notin \mathscr{L}$. Thus $f^{-1}(L)$ does not end at points of C by Corollary 1.3. By Theorem 1 there exists a nontrivial arc $\gamma \subset C$ that is the limit of a sequence of arcs in $f^{-1}(L)$ and the limit of a sequence of arcs in $f^{-1}(H)$. But then no interior point of γ can be an asymptotic point of u, so $u \notin \mathcal{A}_{r}$. This argument shows that $\mathcal{A}_{r} \subset \mathscr{L}_{r}$ and completes the proof of Theorem 2.

Remark. A different proof of the equality $\mathscr{A}_{r}=\mathscr{L}_{r}$ can be obtained from [6, Theorem 1, p. 10].

Remark. The equivalence of the statements $e^{f} \in \mathscr{L}$ and $\operatorname{Re} f \in \mathscr{L}_{r}$ is clear from the definitions. Since $\mathscr{A}_{r}=\mathscr{L}_{r}$ and $\mathscr{A}=\mathscr{L}$, it also follows that $e^{f} \in \mathscr{A}$ is a necessary and sufficient condition for $\operatorname{Re} f \in \mathscr{A}_{r}$.

Remark. F. B. Ryan and K. F. Barth [9] have constructed functions f and g, both belonging to \mathscr{A}, such that $f+g$ is not constant and $f+g \notin \mathscr{A}$. An examination of their construction reveals that $\operatorname{Re} f \in \mathscr{A}_{r}$ and $\operatorname{Re} g \in \mathscr{A}_{r}$. Then $\operatorname{Re} f+\operatorname{Re} g \notin \mathscr{A}_{r}$ because $\operatorname{Re}(f+g) \in \mathcal{A}_{r}$ implies that $e^{f+g} \in \mathscr{A}$ which implies that $f+g \in \mathscr{A}$.

A level curve of u is a component of a level set of u. A level curve Λ is called simple if $f^{\prime}(z) \neq 0$ for all $z \in \Lambda$ where f is a holomorphic function in D such that $\operatorname{Re} f=u$.

Theorem 3. Let $u \in \subseteq \mathcal{L}_{r}$ and let γ be a nontrivial open subarc of C. Then either
(1) there exists a point $\zeta \in \gamma$ and an arc J at ζ such that J is contained in a simple level curve of u, or
(2) there exists a real number B such that for each $\zeta \in \gamma, u(z) \rightarrow B$ as $z \rightarrow \zeta(z \in D)$.

Remark. In case (2) it follows from the reflection principle of Schwarz that u has a harmonic continuation across γ.

Proof. Suppose that (1) does not hold. It will be shown that (2) must hold.

Let γ_{1} be a nontrivial closed subarc of γ. Suppose, without loss of generality, that there exist α and $\beta,-\pi<\alpha<\beta<\pi$, such that $\gamma_{1}=\left\{e^{i t}: \alpha \leq t \leq \beta\right\}$. For each $r, 0<r<1$, let $S(r)=$ $\{z: r<|z|<1, \alpha<\arg z<\beta\}, B^{*}(r)=\sup \{u(z): z \in S(r)\}$, and $B_{*}(r)=$ $\inf \{u(z): z \in S(r))\}$. Let B^{*} (resp. B_{*}) denote the limit of $B^{*}(r)$ (resp. $\left.B_{*} r()\right)$ as $r \rightarrow 1$. It is clear that

$$
B_{*} \leq B^{*}
$$

Let f be a holomorphic function in D such that $\operatorname{Re} f=u$. If $B^{*}=-\infty$ (resp. $B_{*}=+\infty$) then it follows from the reflection principle of Schwarz and the identity theorem that e^{f} (resp. e^{-f}) is constant. But u is not constant, so

$$
B^{*}>-\infty \text { and } B_{*}<+\infty
$$

Now suppose that $B_{*}<B^{*}$. Choose $\lambda, B_{*}<\lambda<B^{*}$, so that $f^{\prime}(z) \neq 0$ for all z such that $u(z)=\lambda$. Since $B_{*}<\lambda<B^{*}$, there exists a sequence $\left\{z_{n}\right\} \subset u^{-1}(\{\lambda\})$ that converges to some point $\zeta \in \gamma_{1}$. Let Λ be any simple level curve of u. Since $u \in \mathscr{L}_{r}, \bar{\Lambda} \cap C$ consists of either one or two points. Thus if $\zeta \in \bar{\Lambda} \cap C$, there exists an arc J at ζ such that $J \subset \Lambda$. Therefore, the assumption that (1) fails to hold implies
that $\bar{\Lambda} \cap \gamma=\varnothing$. Since each level curve $\Gamma(\lambda)$ in the level set $u^{-1}(\{\lambda\})$ is simple and $z_{n} \rightarrow \zeta \in \gamma_{1}$, it follows that at most finitely many of the z_{n} can belong to a single level curve $\Gamma(\lambda)$. Also, for each $r, 0<r<1$, at most finitely many of the level curves $\Gamma(\lambda)$ intersect the disc $D_{r}=\{|z| \leq r\}$. Since $\overline{\Gamma(\lambda)} \cap \gamma=\emptyset$ and $\overline{\Gamma(\lambda)} \cap C \neq \emptyset$ for each level curve $\Gamma(\lambda)$, it follows that at least one of the two nontrivial subarcs of γ determined by the removal of ζ is the limit of a sequence of arcs in $u^{-1}(\{\lambda\})$. But this contradicts the fact that $u \in \mathscr{L}_{r}$.

Therefore, $B^{*}=B_{*}=B$ and (2) holds. This completes the proof of Theorem 3.

If h is a real-valued function in D, let $h^{+}(z)=\max (h(z), 0)$. The following theorem is an immediate consequence of a result of MacLane [6, p. 36].

Theorem 4. Let u be a nonconstant real-valued harmonic function in D. Suppose that there exists a set $\Theta \subset[0,2 \pi]$ such that Θ is dense in $[0,2 \pi]$ and such that

$$
\begin{equation*}
\int_{0}^{1}(1-r) u^{+}\left(r e^{i \theta}\right) d r<\infty \quad(\theta \in \Theta) \tag{3}
\end{equation*}
$$

Then $u \in \mathscr{A}_{r}$.
Proof. Let f be a holomorphic function in D such that $\operatorname{Re} f=u$. Since $\log ^{+}\left|e^{f(z)}\right|=u^{+}(z)$ for each z it follows from (3) and [6, p. 36] that $e^{f} \in \mathscr{A}$. Thus $u \in \mathscr{A}_{r}$. This completes the proof of Theorem 4.

4. Linearly accessible asymptotic values

Theorem 5. Let f be a nonconstant holomorphic function in D. A necessary and sufficient condition for $f \in \mathscr{E}$ is that $A_{l}(f)$ be a dense subset of C.

Proof. Suppose first that $f \notin \mathscr{E}$. Then $e^{f} \notin \mathscr{L}$ by (II) and the definition of \mathscr{E}. Thus there exists a line L such that $f^{-1}(L)$ does not end at points of C. Let H be a half-line such that $H \cap L=\varnothing$. By Theorem 1 there exists a nontrivial arc $\gamma \subset C$ that is the limit of a sequence of arcs in $f^{-1}(L)$ and the limit of a sequence of arcs in $f^{-1}(H)$. Since $H \cap L=\emptyset$, f can not have a linearly accessible asymptotic value at an interior point of γ. Thus $A_{l}(f)$ is not a dense subset of C. This proves the sufficiency of the condition.

Now if $f \in \mathscr{E}$ then $e^{f} \in \mathscr{A}$ and thus $u=\operatorname{Re} f \in \mathcal{A}_{r}$. Let γ be an open arc of C. Since $u \in \mathscr{A}_{r}$ and $\mathscr{A}_{r}=\mathscr{L}_{r}$, Theorem 3 applies; if either
(1) or (2) holds the conclusion $A_{l}(f) \cap \gamma \neq \varnothing$ follows. This proves the necessity of the condition and concludes the proof of Theorem 5.

For each $\theta, 0 \leq \theta<\pi$, let $\mathscr{P}(\theta)$ denote the set of all lines in the w-plane that have the angle of inclination θ with respect to the positive u-axis $(w=u+i v)$. Then f has an asymptotic value at ζ that is accessible through $\mathscr{P}(\theta)$ if there exists an arc J at ζ such that f maps J one-to-one into a line L where $L \in \mathscr{P}(\theta)$. For each $\theta, 0 \leq \theta<\pi$, let $A_{l}^{\theta}(f)$ denote the set of asymptotic points of f for asymptotic values accessible through $\mathscr{P}(\theta)$.

Theorem 6. Let $f \in \mathscr{E}$. Let γ be a nontrivial open subarc of C. If there exists a $\psi, 0 \leq \psi<\pi$, such that $A_{l}^{u "}(f) \cap \gamma=\emptyset$, then f has an analytic continuation across γ and the continuation maps γ one-to-one into a line L where $L \in \mathscr{P}(\psi)$.

Proof. Let $c=i e^{-i w}$. By Theorem 5 (or Corollary 1.2) $c f \in \mathscr{E}$ and it follows that $\operatorname{Re}(c f) \in \mathscr{A}_{r}$. The transformation $T(w)=c w$ maps the family $\mathscr{P}(\psi)$ one-to-one onto the family $\mathscr{P}(\pi / 2)$. By the hypothesis on ψ, Re (cf) must satisfy condition (2) of Theorem 3. Thus f has an analytic continuation F across γ and $\operatorname{Re}(c F)$ is constant on γ. Therefore F maps γ into a line L where $L \in \mathscr{P}(\psi)$.

If the derivative of F vanished at some point ζ of γ then it would follow from local properties of analytic functions that $\zeta \in A_{l}^{\psi}(f)$ contradicting the hypothesis. Since F^{\prime} does not vanish on γ and F maps γ into a line it follows that F is one-to-one on γ. This completes the proof of Theorem 6 .

5. Koebe arcs

Theorem 7. $\mathcal{K} \subset \mathscr{E}$ and the inclusion is proper.
Proof. Let f be a nonconstant holomorphic function in D such that $f \notin \mathscr{E}$. Then by Corollary 1.2 there exists a nontrivial arc $\gamma \subset C$ that is the limit of a sequence of arcs in $f^{-1}(L)$ where $L=\{w: \operatorname{Re} w=0\}$.

Assume $\gamma \neq C$ (take a subare if necessary) and let ζ be the midpoint of γ. By the Lemma, there exists a sequence $\left\{z_{n}\right\} \subset D$ such that $z_{n} \rightarrow \zeta$ and $\operatorname{Re} f\left(z_{n}\right) \rightarrow+\infty$. For each $n=1,2, \ldots$, let L_{n} be the line $\left\{w: \operatorname{Re} w=\operatorname{Re} f\left(z_{n}\right)\right\}$ and let Λ_{n} be the component of $f^{-1}\left(L_{n}\right)$ that contains z_{n}. Since $z_{n} \rightarrow \zeta, \Lambda_{n} \cap \gamma_{m}=\emptyset(m=1,2, \ldots ; n=1,2, \ldots)$, $\bar{\Lambda}_{n} \cap C \neq \varnothing \quad(n=1,2, \ldots), \quad$ and $\quad \gamma_{n} \rightarrow \gamma$, it follows that at least one of the two subarcs of γ determined by the removal of ζ is the limit of a sequence of arcs $\left\{\gamma_{n}^{\prime}\right\}$ in $\cup \Lambda_{n}$ such that $f\left(\gamma_{n}^{\prime}\right) \rightarrow \infty$. Thus $f \notin \mathcal{K}$. This proves that $\mathcal{K} \subset \mathscr{E}$.

Let $M(f, r)$ denote the maximum modulus of f on the circle $\{|z|=r\}$. Let $\mu(r)$ be a positive, increasing function on $[0,1)$ such that $\mu(r) \rightarrow+\infty$ as $r \rightarrow 1$. It follows from F. Bagemihl, P. Erdös and W. Seidel [1, Theorem 3 and Theorem 5] that there exists a function f holomorphic in D such that $M(f, r)<\mu(r), \quad 0 \leq r<1$, and f has a Koebe arc for ∞. If $\mu(r)$ is chosen so that $(1-r) \mu(r)$ is integrable on the interval $[0,1)$ then it follows from Theorem 4 that $\operatorname{Re} f \in \mathscr{A}_{r}$ or equivalently $f \in \mathscr{E}$. Thus the inclusion is proper and the proof of Theorem 7 is complete.

Let ${ }^{C} n$ denote the set of nonconstant normal holomorphic functions in D. Then

$$
N \subset \mathcal{K} \subset \mathscr{E} \subset \mathscr{A}
$$

and each inclusion is proper.
The first inclusion was obtained by Bagemihl and Seidel [2]. Let $w(z)=$ $c(1+z) /(1-z)$ where $c=\pi i / 4$ and let $g(z)=e^{u(z)}$. The restriction of g to D has both the asymptotic values 0 and ∞ at 1 . Therefore it follows from Lehto and Virtanen [5] (or see [8, p. 86]) that g is not normal. However, it is clear that $g \in \mathcal{K}$; so $\chi \neq \mathcal{K}$.

The final inclusion follows immediately from the definitions. The propriety of the third inclusion was proved by Barth and Schneider [3].

University of Wisconsin
Milwaukee, Wisconsin, U. S. A.

References

[1] Bagemihl, F., Erdös, P., and Seidel, W., Sur quelques propriétés frontières des fonctions holomorphes défines par certains produits dans le cercleunité. - Ann. Sci. Écolé Norm. Sup. (3) 70 (1953), 135-147.
[2] -»- and Seidel, W., Koebe arcs and fatous points of normal functions. - Comment. Math. Helv. 36 (1962), 9-18.
[3] Barth, K. F., and Schneider, W. J., Exponentiation of functions in MacLane's class A. - J. Reine Angew. Math. 236 (1969), 120-130.
[4] -»- -»- Level curves of functions holomorphic in the unit disc. - University of Maryland Technical Report TR71-38 (1971), 4 pp.
[5] Lehto, O., and Virtanen, K. I., Boundary behavior and normal meromorphic functions. - Acta. Math. 97 (1957), 47-65.
[6] MacLane, G. R., Asymptotic values of holomorphic functions. - Rice University Studies 49 (1963), no. 1, 83 pp.
[7] -»- Exceptional values of $f^{(n)}(z)$, asymptotic values of $f(z)$, and linearly accessible asymptotic values. - Mathematical Essays Dedicated to A. J. MacIntyre, 271-288, Ohio University Press, Athens, 1970.
[8] Norshiro, K., Cluster sets. - Ergebnisse der Mathematik und ihrer Grenzgebiete. N. F., Heft 28. Springer-Verlag, Berlin, 1960.
[9] Ryan, F. B., and Barth, K. F., Asymptotic values of functions holomorphic in the unit disc. - Math. Z. 100 (1967), 414-415.

