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1. Introduction

Let f denote a complex-valued function in the open unit disc D.
Let I be a point on the unit circle C. An arc at ( is a curve "I q D such
that J U{f} is a Jordan arc. The point ( is an asymptotic point of f
for the asgmptot,ic ualue a (a : a is admitted) if there exists an arc at (
on which / has the limit a at C. Let A(J) denote the set of asymptotic
points of /. The class s( consists by definition of all nonconstant holo-
morphic functions / for which .aff) is a dense subset of C.

A set § s D end,s at po,ints (of C) if for each e ) 0 there exists a
ä> 0 suchthateachcomponent of §n{l - ö< lzl < 1} has diameter
less than e. The class 94 consists by definition of all nonconstant holo-
morphic functions / for which every leuel, set {z : lf@l : ,i} ends at points.

The classes .g( and 4 were introduced by G. R. Maclane [6, p. 7].
One of Maclane's theorems [6, p. f0] includes the result

(M) d:4.
X'or a set § of complex numbers /-t(,S) denotes {z e D : /(z) € §}.

Let L, be a line in the complex plane. If / is a nonconstant holomorphic
function for u'hich the lirue set f-|(Lr) ends at points then /-1(Z) ends at
points for every line L and el € .g4. These results follow from Corollary
1.1. and Corollary 1.2, respectively, in Section 2.

fn Section 3, classes of real-valued harmonic functions, .il, arrd 4,,
analogous to the classes s( and Z are introduced. By Theorem 2, d, -92, arrd this class contains the harmonic conjugate of each of its elements.
Al aspect of the boundary behavior of these functions is described in
Theorem 3. Theorem 4 gives a grov"th condition that is sufficient for a
function to belong to this class.

A function / has a li,nearl,y access,i,ble asgmptotia aalue a!, ( if there
exists an arc J at' f such that f maps "I one-to-one into a line -L.
Some point of L, or possibly oo, is an asymptotic value of f along J.
Leb Ailf) denote the set of asymptotic points of / for linearly accessible
asymptotic values.

Let Z consist of all / such that el e d. X'or a nonconstant holo-
morphic ;f, a necessary and sufficient condition for f e '€ is that A{f)
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beadensesubsetof c (TheoremS).x'or /€? and 7 a nontrivialsubarc
of C, Theorem 6 gives some information about, the directions of accessibility

of the linearly accessible asymptotic values yielded by points of Ar(f) l1 y.

These results are contained in Section 4.

A closed arc y (possibly a point) is the limi't of a sequence of arcs {y"\
(denoted f* + T) if for each e > 0 each point of 7* is within e of y
and each point of 7 is within e of yo (both in the spherical metric) for
all n, sufficiently large. A nontrivial arc y c C is a Koebe ara of f for
the value a (a : co is admitted) if there exists a sequence of arcs {7.}
(y,cD,zt:|,2,...) such that To+T arrd JQ)'-->a. Define the

class x as follows: I e2< if / is a nonconstant holomorphic function

in D that has no Koebe arcs for the value oo.

rn Section 5, it is shown that the inclusion K g7) holds properly
(Theorem 7). Thus if f eX then / has no Koebe arcs [6, p. f 8].

Section 5 also contains a brief summary of some well-known results con'
cerning the classes mentioned above as well as the class of normal functions

of O. Lehto and K. I. Virtanen [5].
The author's Ph.D. thesis (Rice University, 1965) contained Corollary

1.3 and part of Theorem 2.

2. Line sets

Let C €C. Recall that tlne range of f at e, R$, ('), is the set of all

complex numbers a such that { e /-'({"}) (the bar denotes closure).

Asequence of arcs {2"} is dnthe sef § if 7"c§ (n:1,2,...).
Note that it is not necessary that any y^ be a component of B.

Lemma. Let f be a nonconstant holantorphi,c function in D. Supgtose

that a nontr'i,aial a,rc y c C is the li'mit of & sequence of arcs {y") i,n l-'@)
tnhere L i,s u line. Then for each C e y, the complement of R(1, C) i'n the

plane cons'i,sts of at most one compler number.

Proof. Let C ey. Let .l: be an open disc centered at C, and let

/:NfiD. Let E be a homeomorphism of D onto i ttrt is holo-

morphic in D. Choose 0 (real) so that Re (ei6rr) is constant for w e L,
andset g:enf(q).

The nontrivial arc q-'(y fi Å) is the limit of a §equence of arcs in
U g-r(y.fi /). Since / maps each y" inLo -L, it follorvs from the choice

of 0 lha| the union is contained in a level set of eg. Therefore ece*,
and thus ee e, d by (M). By a result of Maclane [7, Theorem 10] either
g e d or g has a Koebe arc for co. In either case, since g is not constant,

it follows from results of F. Bagemihl and \Y. Seidel [2, Theorem 1 and
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Theorem 3] that g is not normal. Therefore, the complement of g(D)
contains at most one complex number. Since g(D) : l@) and .l[ was an
arbitrary disc centered at (, the proof is complete.

Ahalf-li,ne is a set of the form {w * trtr': I } 0} where w is a complex
number and rp is a real number. The next theorem is the main result of this
section.

Theorem 7. Let f be a monconstant hol,omorphi,c function in D. Let L
be a line and,l,et H be a half-line. If l-l(L) d,oes not end, at points of C, then
there er'i,sts a nontriuial subarc of C that is the limi,t of a sequence of arcs in
f-'(L) and, the limi,t of o, sequeTrce of arcs i,n f-L(H).

Proof. Since /-1(Z) does not end at points there exists a nontrivial arc
y c C that is the limit of a sequence of arcs {2"} in f-r(L). Assume
(take a subarc if necessary) that y + C and let 6 be the midpoint of 7.

Suppose first that ä is not a subset of Z and choose a half-line H' c H
such that H' f1 L : A. By the lemma, there exists e sequence {2"} c D
suchthat zn-C and f(2")e H' (n:1,2,...). Let T^ be thecompo-
nent of f-'(H') that contains z" _(n:1,2,...). Since y*(1 l^: b
(m:1,2,...; n:1,2,...), T"nC + A (n:1,2,...), T^+7,
artd z^ -+ (, it follows that at least one of the two subarcs of 7 determined
by the removal of e is the limit of a sequence of arcs in U l-,. Since
U I"cf-r(H')cf-t1U'1, this arc is the limit of a sequence of arcs in
f-'(H) as well as the limit of a sequence of arcs in f-r(L).

Suppose next that H c L. Choose a line LL so that Lrfi L : O
and let E, be a half-line such that H1c L1. By the preceding paragraph,
f-'(Hr) (and hence f-'(LrD does not end at points. Again by the preceding
paragraph, a nontrivial subarc of C is the limit of a sequence of arcs in
f''(H) since IIl1Lr: g. This is all that the Theorem claims in case
H c L. The proof of Theorem I is complete.

The following corollary is immediate.

Corollary 7.1. If f is a nomconstant holomorphi,c functi,on i,n D and,

f-'(H) ends at po,ints for some half-li,ne H, then f-,(L) ends at poi,nts for
eaery line L.

If c is a nonzero complex number and ).> 0, then the level set

{z: le'I@1: 11 is equal to the line set f-'(L) where L is the line
{ro: Re cw:Log 1'}. Thus the following result follov's from Corollary 1.1
and (M).

Corollary 1.2. Let f be a nonconstant holomorphi,c functi,on D and, let c
be a nonzero compler nuru,ber. A necessary and, suffici,ent coniliti,on that
e"f e sÅ i,s that f-'(H) end, at poi,nts for some half-l,i,ne H.
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Remark. In his Ph.D. dissertation (Purdue l)niversity, l97l), D. C.

Haddad proved Linat f€"e( if f-'(L) ends at points for some line L.
Corollary 1.2 extends this result since ef e:>4 implies that' f ed.

A holomorphic function in D that omits 0 can be written in the form

er where .F' is holomorphic in D, so the following result follows from

Corollary f.2 and (M).

corollary 1.3. Let f be a nonconstant holomorphi,c function i,n D sucft,

that f omits 0. If there eni,sts a .l > 0 such that L(1) : {z: lf(z)l : }'\
end,s at po'i,nts, then f e =t.

Remark. The definition of Z requires that every level set, of / end at
points. K. F. Barth and W. J. Schneider [4] have given an example of a
holomorphic function f in D for which -L(1") ends at points if 0 < ,1 < f
bub L().) does not end at points for 2 > 1.

3. Real harmonic lunctions

Lel u be a nonconstant real-valued harmonic function defined in D.
Let d, be the set of all z such that A(u) is a dense subset of C. Lel A,
be the set of all T such that every level set u-'({}'\) (l real) ends at
points.

Theorem 2. d, :4,. Moreoaer, if t, is a ltarmonic conjugctte of a

function u e €4,, then au ! bu e d,, for any real numbers a anil b such

that a2 ! bz 2 0. Im part'i,cular, d. contains the harm,onic coniugate of
ea,ch of its elements.

Proof .If z is a real-valued harmonic function in D and o is a harmonic

conjugate of u, let / be the holomorphic function such that R""f : u ar,d

T*f :u.Let H:{w:Rezo:0, Imw>0} and L:{w:Rezo:l}.
If u €=8, then f-'(H) ends at points since /-i(11) c rz-t({0}). There-

fore,byCorollary 1.2, e"f e.4 for anY c : o,- i,b w-ithateal, ä real, and

*z 1bz > 0. By the definition of {/1, Re (c/) - au ! ba e 91,, In
particular, u €.4, so that 4, c d,.

Tf uG.4,, ther_ eleZ. Thus /-1(Z) does not end at points of C

by Corollary 1.3. By Theorem I there exists a nontrivial atc y c C Lhat

is the limit of a sequence of arcs in f-t(L) and the limit of a sequence of
arcs in f-'(H). But then no interior point of y car' be an asymptotic
pointof u, so ,u, e "s(,. Thisargumentshov-s that :/", g Z, and completes

the proof of Theorem 2.

Remark. A different proof of the equality s/." : l!, can be obtained

from [6, Theorem 1, p. l0].
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Remark. The equivalence of the statements efe* and Ref e4,
is clear from the definitions. Since s4, - 4, and s( :%, it also follows
that el e s( is a necessary and sufficient condition for Re/€ s('.

Remarlc. F. B. B,yan and K. 3'. Barth [9] have constructed functions /
and g, both belonging to e4, such that f * g is not constant and

I * g e s(. An examination of their construction reveals that Re/€ s(.
and Re g € s(,. Then R""f + Re g e. d. because Re (/ + g) e d,
implies that el+e € s( which implies lhat f + g e d.

A leael, curue of z is a component of a level set of z. A level curve z1

is called si,m1ile if f '(z) * 0 for all z €.r1 where / is a holomorphic function
in D such that R'e f : 11-

Theorem 3. Let u,e lt, and, let y be a nontrinial, olten subarc of C.

Then either
(l) thereeristsapoi,nt e e y and,anarc J at ( suchthat J iscontuineil

in a si,mpl,e leael aurue of u, or
(2)thereeristsareal,number B suchthatforeach e ey, u(z)--->B as

z--->l@eD).
Remark.In case (2) it follows from the reflection principle of Schwarz

that 'u has a harmonic continuation across /.
Proof. Suppose that (1) does not hold. It will be shown that (2) must

hold.
Let Tt be a nontrivial closed subarc of y. Suppose, without

loss of generality, that there exist o( and P, - n 4a I § {n,
such that yr: {e" : a 4t I B}. For each r ,0 1r I l, Iet §(r) :
{z : r 1 lzl < L, d 1 arg z I §), B*(r) - sup {u(z) :z € B(r)}, and.B*(r) :
inf {u(z): z €§(r))}. LeL B* (resp. B*) denote the limit of B*(r) (resp.

B*r0) as r --> I. It is clear that

B*18*.
Lzl f be a holomorphic function in D such that R'e f - v. If

B* : - co (resp. B*. : * o) then it follows from the reflection principle
of Schwarz and the identity theorem that el (resp. "-f) is constant.
But z is not constant, so

B*>-oo and B*<f oo.

Now suppose that B* I B*. Choose )', B* { }t < B*, so that
f'(") * 0 for all a such lhat, u(z): 1,. Since B* ( A < B*, there exists
e sequence {""\ c u-'(U'}) that converges to some point e e yt. Let A
be any simple level curve of z. Since ue 4,, AO C consists of either

one or two points. Thus if C e ÄO C, there exrsts an arc "I at ( such
that J c A. Therefore, the assumption that (l) fails to hold implies
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that lfry: A. Since each level curve j-(2) in the level set z-1({,1})
is simple and z, * C e yt, it follows that at most finitely many of the
zn eturr belong to a single level curve l-(.1). Also, for each r , 0 ( r <-1,
at most finitely many of the level curves J-(,1) intersect the disc

D,:{l"l <r\. Since flan T : A ana I1,Qn C + A for each level
curve -l'(.1), it follows that at least one of the two nontrivial subarcs of
y determined by the removal of 6 is the limit of a sequence of arcs in
u-'({X}). But this contradicts the fact that u e 4,.

Therefore, B* : B*: B and (2) holds. This completes the proof
of Theorem 3.

If ä is a real-valued function in D, Iet h+(z): max (ä(z),0). The
following theorem is an immediate consequence of a result of Maclane
[6, p. 36].

Theorem 4. Let u be a nonconstant real-aalueil harmonic functi,on in D.
Buppose that there er,i,sts a set @ g l0 , Znf such that @ ,is d,ense in l0 , 2n]
and, such thut

I r - r)u* (rn'')d,r 1.o (o e o)

Tlten u, e g{,.
Proof. Let f be a holomorphic

Since log* lef@ | - u+ (z) for each
that ef e a4. Thus % e d,. This

(3)

function in D such that Re / - u.

z it follov,s from (3) and [6, p. 36]
completes the proof of Theorem 4.

4. Linearly accessible asymptotic values

Theorem 5. Let f be a nonconstant holom,orphic function i,n D. A
mecessary and, suffi,ci,ent condi,tion for f eZ ds that At(f) be a ilense subset
of c.

Proof . Suppose first that f e't. Then e/ e4 b.v ()I)and the definition
of Z. Thus there exists a line -t such that f-r(L) d.oes not end at points
of C. LetH be ahalflinesuchthat HnL:A.B:'Theorem l there
exists a nontrivial arc y c C lhat is the limit of a sequence of arcs in
f-'(L) and the limit of a sequence of arcs in f-t(H). Since I/ (1 L : A,
f can not have a linearly accessible asymptotic value at an interior point
of y. Thus A{f) is not a dense subset of C, This proves the sufficiency
of the condition.

Now if f eZ then ef € s( and thus z : Re,f e d". LeL 7 be an
open arc of C. Since u e d, and "s4, - 1., Theorem 3 applies; if either
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(l) or (2) holds the conclusion A1(f)ny + 0 follows. This proves the
necessity of the condition and concludes the proof of Theorem 5.

tr'or each 0 , 0 < 0 I n, tet, 9(0) denote the set of all lines in the
ar-plane that have the angle of inclination 0 with respect to the positive
z-axis (w : u * da). Then / has an asymptotic value at ( that is
access,ible through 9(0) if there exists an arc J at I such that / maps
J one-to-one into a lir'e L where Le9@). tr'or each 0,0 <0 <n,
leb A?(f) denote the set of asymptotic points of / for asymptotic values
accessible through 9(0).

Theorem 6. Let f eZ. Let y be anontriuial open subara of C. If there
eui,sts a y) ,0 < 1p (i6 such that At'ff) n y : A, then f has an analyti,c
contimuation across y and, the continuati,on malts y one-to-one ,i,nto a Line
L where L e9«p).

Proof. Let c: ie-iu'. By Theorem 5 (or Corollary t.2) cf e'å and it
follows that Re (c/) € d,. The transformation T(w) : 6ys maps the
family 9$p) one-Lo-one onto the family 9(rcl2). By the hypothesis on
? , Re (c/) must satisfy condition (2) of Theorem 3. Thus / has an analy'tic
continuation -F' across y and Re (c-E) is constant orl y. Therefore -F

maps Z intoaline L u,-here Le"@,).
If the derivative of -E' vanished at some point e of y then it would

follow from local properties of analytic functions that C e Ay$) contra-
dicting the hypothesis. Since .F' does not vanish on y and n maps y
into a line it follows that, E is one-to-one oL y. This completes the proof
of Theorem 6.

5. Koebe arcs

Theorem 7. ?i cZ and, the ,i,nclusion is proper.
Proof. Let f be a nonconstant holomorphic function in D such that

leZ. Then by Corollary 1.2 there exists a nontriyial arc y c C that is
the limit of a sequence of arcs in f-t(L1 where L : {w: Re ar : 0}.

Assume y + C (take a subarc if necessary) and let { be the midpoint
of y. By theLemma,thereexistsasequence {z"lcD such thal z.--->(
and Ref(z"l -> + oo. X'or each n:1,2,,.., let L, be the line
{zo: Re w:Ref(2")} and let A* be the component of f-t(L^) that
contains 2,. Since z.-> C, Aony^: A (m : 1,2,... ;7b : 1,2,,..),
Ä^nC+A (n:1,2,...), and. y^--->y, it follows that al least one
of the two subarcs of 7 determined by the removal of ( is the limit of
a sequence of arcs {y"} in U A. such that l(y'-) -, *. Thus f eK.
This proves that K q'€.
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Lef M$, r) denote the maximum modulus of / on the circle {l"l : r}.
Lel p(r) be a positive, increasing function on [0 , l) such fhat p(r) -t * oo

as r --+ 1. It follows from X'. Bagemihl, P. Erdös and W. Seidel [], Theorem

3 and Theorem 5] that there exists a function / holomorphic in D such

rhaf M$,r) 1p(r), 0 ( r <-1, and / has a Koebe arc for a. If p(r)
is chosen so that (l - r)p,(r) is integrable on the interval [0 , I) then it
follows from Theorem 4 that Re/ € d, or equivalently f eZ' Thus the
inclusion is proper and the proof of Theorem 7 is complete.

Let '11 denote the set, of nonconstant normal holomorphic functions
jn D. Then

tll c'X C'å c d
and each inclusion is proper.

The first inclusion was obtained by Bagemihl and Seidel l2l.Let w(z) :
c(L I z)lQ - z) where c:nil4 and let g(z): s'('). The restriction of
g to D has both the asymptotic values 0 and oo at 1. Therefore it follows

from Lehto and Virtanen [5] (or see [8, p. 86]) lhat g is not normal. How-
ever, it is clear lhat g e 'X; so 'lL +'X.

The final inclusion follows immediately from the definitions. The

propriety of the third inclusion was proved by Barth and Schneider [3].

University of Wi§,consin
Milwaukee, Wisconsin, U. S. A.
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