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1. Introduction

Let f denote a complex-valued function in the open unit disc D.
Let { be a point on the unit circle C. An arc at ¢ is a curve J c D such
that J U{l} is a Jordan arc. The point ( is an asymptotic point of f
for the asymptotic value o (@ = oo is admitted) if there exists an arc at ¢
on which f has the limit a at (. Let A(f) denote the set of asymptotic
points of f. The class <A consists by definition of all nonconstant holo-
morphic functions f for which A(f) is a dense subset of C.

A set Sc D ends at points (of C) if for each &> 0 there exists a
0 > 0 such that each component of SN {1l — § < |z] < 1} has diameter
less than e. The class <£ consists by definition of all nonconstant holo-
morphic functions f for which every level set {z: |f(z)| = 4} ends at points.

The classes <A and £ were introduced by G. R. MacLane [6, p. 7].
One of MacLane’s theorems [6, p. 10] includes the result

(M) A=,

For a set S of complex numbers f-1(S) denotes {z € D: f(z) €S}.
Let L; be a line in the complex plane. If f is a nonconstant holomorphic
function for which the line set f~(L,) ends at points then f~(L) ends at
points for every line L and e/ € <A. These results follow from Corollary
1.1. and Corollary 1.2, respectively, in Section 2.

In Section 3, classes of real-valued harmonic functions, <A, and %,
analogous to the classes <A and <£ are introduced. By Theorem 2, A, =
<£, and this class contains the harmonic conjugate of each of its elements.
An aspect of the boundary behavior of these functions is described in
Theorem 3. Theorem 4 gives a growth condition that is sufficient for a
function to belong to this class.

A function f has a linearly accessible asymptotic value at ¢ if there
exists an arc J at [ such that f maps J one-to-one into a line L.
Some point of L, or possibly oo, is an asymptotic value of f along .J.
Let Ai(f) denote the set of asymptotic points of f for linearly accessible
asymptotic values.

Let € consist of all f such that ef € A. For a nonconstant holo-
morphic f, a necessary and sufficient condition for f€ € is that Ai(f)
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be a dense subset of €' (Theorem 5). For f € ‘¢ and y a nontrivial subare
of C, Theorem 6 gives some information about the directions of accessibility
of the linearly accessible asymptotic values yielded by points of Ai(f) N y.
These results are contained in Section 4.

A closed arc y (possibly a point) is the limit of a sequence of arcs {yn}
(denoted y,—y) if for each &> 0 each point of y. is within ¢ of y
and each point of y is within & of y. (both in the spherical metric) for
all n sufficiently large. A nontrivial arc y ¢ C' is a Koebe arc of f for
the value o (@ = oo is admitted) if there exists a sequence of arcs {ya}
(pncD, mn=1,2,...) such that y,—y and f(y.)—a. Define the
class K as follows: f€X if f is a nonconstant holomorphic function
in D that has no Koebe arcs for the value oo.

In Section 5, it is shown that the inclusion ‘K ¢ ¢ holds properly
(Theorem 7). Thus if f€°X then f has no Koebe arcs [6, p. 18].
Section 5 also contains a brief summary of some well-known results con-
cerning the classes mentioned above as well as the class of normal functions
of 0. Lehto and K. I. Virtanen [5].

The author’s Ph.D. thesis (Rice University, 1965) contained Corollary
1.3 and part of Theorem 2.

2. Line sets

Let ¢ €C. Recall that the range of f at &, R(f, ), is the set of all
complex numbers « such that ¢ €f~'({x}) (the bar denotes closure).

A sequence of arcs {y.} is in the set S if yocS (R=1,2,...).
Note that it is not necessary that any y. be a component of S.

Lemma. Let f be a monconstant holomorphic function in D. Suppose
that a nontrivial arc y < C is the limit of a sequence of arcs {y.} in f~(L)
where L is a line. Then for each { €y, the complement of R(f, () in the
plane consists of at most one complex number.

Proof. Let { €y. Let N be an open disc centered at £, and let
A=NND. Let ¢ be a homeomorphism of D onto A that is holo-
morphic in D. Choose 6 (real) so that Re (¢“w) is constant for w € L,
and set ¢ = ¢°f(p).

The nontrivial arc ¢=i(y N j) is the limit of a sequence of arcs in
U ¢~ i(y. N A). Since f maps each y. into L, it follows from the choice
of 0 that the union is contained in a level set of e8. Therefore ef ¢ <,
and thus e g A by (M). By a result of MacLane [7, Theorem 10] either
g € A or g hasa Koebe arc for co. In either case, since g is not constant,
it follows from results of F. Bagemihl and W. Seidel [2, Theorem 1 and
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Theorem 3] that ¢ is not normal. Therefore, the complement of g(D)
contains at most one complex number. Since ¢(D) = f(4) and N was an
arbitrary disc centered at ¢, the proof is complete.

A half-line is a set of the form {w -+ te™ : ¢ > 0} where w is a complex
number and v is a real number. The next theorem is the main result of this
section.

Theorem 1. Let f be a nonconstant holomorphic function in D. Let L
be a line and let H be a half-line. If f~(L) does not end at points of C, then
there exists a nontrivial subarc of C that is the limit of a sequence of arcs in
SYL) and the limit of a sequence of arcs in f~(H).

Proof. Since f~1(L) does not end at points there exists a nontrivial arc
y c C that is the limit of a sequence of arcs {y.} in f1(L). Assume
(take a subarc if necessary) that y = C and let { be the midpoint of y.

Suppose first that H isnot a subset of L and choose a half-line H' « H
such that H'N L = @. By the lemma, there exists a sequence {z.} c D
such that z, —{ and f(z.) €H" (n=1,2,...). Let I', be the compo-
nent of f~}(H’) that contains z, (n=1,2,...). Since »,.NI, =@
m=1,2,..5; n=1,2,...), LNC#£G nm=1,2,...), yn—>yp,
and z, — {, it follows that at least one of the two subarcs of y determined
by the removal of { is the limit of a sequence of arcs in U I,. Since
Ul.cfYH')cfYH), this arc is the limit of a sequence of arcs in
S7U(H) as well as the limit of a sequence of arcs in f~1(L).

Suppose next that H c L. Choose a line L; so that L,NL =@
and let H; be a half-line such that H; c L,. By the preceding paragraph,
S7(H,) (and hence f~1(L,)) does not end at points. Again by the preceding
paragraph, a nontrivial subarc of € is the limit of a sequence of arcs in
fU(H) since HN L, = . This is all that the Theorem claims in case
H c L. The proof of Theorem 1 is complete.

The following corollary is immediate.

Corollary 1.1. If f is a monconstant holomorphic function in D and
S7H(H) ends at points for some half-line H, then f-Y(L) ends at points for
every line L.

If ¢ is a nonzero complex number and 2> 0, then the level set
{z:1e?®| = A} is equal to the line set f-(L) where L is the line
{w:Re cw = log }. Thus the following result follows from Corollary 1.1
and (M).

Corollary 1.2. Let f be a nonconstant holomorphic function D and let ¢
be a monzero complex number. A mnecessary and sufficient condition that
e/ € A s that fA(H) end at points for some half-line H.



6 Ann. Acad. Sci. Fennice A.I. 519

Remark. In his Ph.D. dissertation (Purdue University, 1971), D. C.
Haddad proved that f€ oA if f(L) ends at points for some line L.
Corollary 1.2 extends this result since e/ € <A implies that f€ A

A holomorphic function in D that omits 0 can be written in the form
¢’ where F is holomorphic in D, so the following result follows from
Corollary 1.2 and (M).

Corollary 1.3. Let f be a monconstant holomorphic function in D such
that f omits 0. If there exists a 2> 0 such that L(2) = {z: |f(z)| = 4}
ends at points, then f€ L.

Remark. The definition of £ requires that every level set of f end at
points. K. F. Barth and W. J. Schneider [4] have given an example of a
holomorphic function f in D for which L(Z) ends at pointsif 0 <1 <1
but L(A) does not end at points for 2> 1.

3. Real harmonic functions

Let % be a nonconstant real-valued harmonic function defined in D.
Let <A, be the set of all » such that A(u) is a dense subset of C. Let <4,
be the set of all « such that every level set w'({1}) (A real) ends at
points.

Theorem 2. A, = £,.. Moreover, if v 1is a harmonic conjugate of a
function u € A,, then au -+ bv € A, for any real numbers a and b such
that a® -+ 2> 0. In particular, A, contains the harmonic conjugate of
each of its elements.

Proof. If w is areal-valued harmonic function in D and v is a harmonic
conjugate of u, let f be the holomorphic function such that Re f = » and
Imf=v Let H={w:Rew=0, Imw >0} and L ={w:Rew =1}

If w €<£, then f-1(H) ends at points since f=(H)c w({0}). There-
fore, by Corollary 1.2, ¢/ € A forany ¢ = a — ib with areal, b real, and
a2+ 52> 0. By the definition of <A, Re (¢f) =au -+ bv€A,. In
particular, w € A, so that £, c A,

If we<t, then ef¢<L. Thus f(L) does not end at points of C
by Corollary 1.3. By Theorem 1 there exists a nontrivial arc y ¢ C that
is the limit of a sequence of arcs in f~1(L) and the limit of a sequence of
arcs in f-1(H). But then no interior point of y can be an asymptotic
point of w, so w & A,. This argument shows that <, ¢ <£, and completes
the proof of Theorem 2.

Remark. A different proof of the equality <4, = <£, can be obtained
from [6, Theorem 1, p. 10].
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Remark. The equivalence of the statements e/€<£ and Ref€ £,
is clear from the definitions. Since A, = £, and A = £, it also follows
that ef € A is a necessary and sufficient condition for Re f € <A..

Remark. F. B. Ryan and K. F. Barth [9] have constructed functions f
and ¢, both belonging to <A, such that f-+ g is not constant and
f+ g€ A An examination of their construction reveals that Ref € A,
and Reg €A,. Then Ref-+ Reg@ A, Dbecause Re (f+ g) €A,
implies that ¢/"¢ € A which implies that f+ g € A.

A level curve of % is a component of a level set of u. A level curve A
is called simple if f'(z) # 0 for all z € A where f is a holomorphic function
in D such that Ref = u.

Theorem 3. Let u € <L, and let y be a nontrivial open subarc of C.

Then either

(1) there exists a point €y and an arc J at { suchthat J is contained
n a simple level curve of w, or

(2) there exists a real number B such that for each { €y, u(z)— B as
z—>C( (z €D).

Remark. In case (2) it follows from the reflection principle of Schwarz
that % has a harmonic continuation across 7.

Proof. Suppose that (1) does not hold. It will be shown that (2) must
hold.

Let 7y, be a nontrivial closed subarc of y. Suppose, without
loss of generality, that there exist « and f, —ra<a<f<m,
such that y, ={¢":a <t <B}. For each r,0<r<1, let S(r)=
{z:r <|z|<1, x <argz <<f}, B*r) = sup {u(z) : 2 € S(r)}, and By(r) =
inf{u(z):z €8(r))}. Let B* (resp. B,) denote the limit of B*(r) (resp.
B,r()) as r—1. It is clear that

B, < B*.

Let f be a holomorphic function in D such that Ref=u. If
B* = — o (resp. By = -+ o0) then it follows from the reflection principle
of Schwarz and the identity theorem that ef (resp. e) is constant.
But « is not constant, so

B*> — o and B, <+ «©.

Now suppose that B, << B*. Choose A,B, < i< B* so that
f'(z) # 0 for all z such that u(z) = 4. Since B, < 4 < B*, there exists
a sequence {z.} c w}({4}) that converges to some point [ €y;. Let 4
be any simple level curve of w. Since u € %, ANC consists of either
one or two points. Thus if (€ A0 C, there exists an arc J at ( such
that J c A. Therefore, the assumption that (1) fails to hold implies
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that ANy = @. Since each level curve I'(1) in the level set w1({1})
is simple and 2z, — { €y,, it follows that at most finitely many of the
z, can belong to a single level curve I'(1). Also, for each r,0 <r <1,
at most finitely many of the level curves I'(1) intersect the disc

D, ={|z]| <r}. Since I'A)Ny =@ and I'A)NC # & for each level
curve I'(A), it follows that at least one of the two nontrivial subarcs of
y determined by the removal of { is the limit of a sequence of arcs in
uY({A}). But this contradicts the fact that u € <£,.

Therefore, B* = B, = B and (2) holds. This completes the proof
of Theorem 3.

If % is a real-valued function in D, let A" (z) = max (h(z), 0). The
following theorem is an immediate consequence of a result of MacLane
[6, p. 36].

Theorem 4. Let u be a nonconstant real-valued harmonic function in D.
Suppose that there exists a set @ c [0, 2] such that O is dense in [0, 27]
and such that

1
(3) f (I = rut(re®)dr < oo (0 €0).
0
Then u € A,.

Proof. Let f be a holomorphic function in D such that Ref = u.
Since log*t |ef®] = u*(z) for each z it follows from (3) and [6, p. 36]
that ef € SA. Thus w € A,. This completes the proof of Theorem 4.

4. Linearly accessible asymptotic values

Theorem 5. Let f be a nonconstant holomorphic function in D. A
necessary and sufficient condition for f€°E is that Ai(f) be a dense subset
of C.

Proof. Suppose first that f € €. Then ¢/ € £ by (M) and the definition
of €. Thus there exists a line L such that f}(L) does not end at points
of C. Let H be a half-line such that H N L = @. By Theorem 1 there
exists a nontrivial arc y ¢ C that is the limit of a sequence of arcs in
f(L) and the limit of a sequence of arcs in f~Y(H). Since HN L = @,
f can not have a linearly accessible asymptotic value at an interior point
of y. Thus A,(f) is not a dense subset of C. This proves the sufficiency
of the condition.

Now if f€¢ then ¢/ € A and thus v = Ref€ A, Let y be an
open arc of C. Since u € A, and A, = <£,, Theorem 3 applies; if either
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(1) or (2) holds the conclusion A,(f)Ny % @ follows. This proves the
necessity of the condition and concludes the proof of Theorem 5.

For each 6,0 <60 <z, let P(0) denote the set of all lines in the
w-plane that have the angle of inclination 0 with respect to the positive
u-axis (w = wu + w). Then f has an asymptotic value at ¢ that is
accessible through P(0) if there exists an arc J at { such that f maps
J one-to-one into a line L where L € P(f). For each 6,0 <0 < =z,
let AP(f) denote the set of asymptotic points of f for asymptotic values
accessible through <(6).

Theorem 6. Let f€G. Let y be a nontrivial open subarc of C. If there
exists @ v, 0 <y <z, such that AY(f)Ny = O, then f has an analytic
continuation across y and the continuation maps y one-to-one into a line
L where L € P(p).

Proof. Let ¢ = ie™™. By Theorem 5 (or Corollary 1.2) ¢f €€ and it
follows that Re (¢f) € A,. The transformation 7(w) = cw maps the
family P(y) one-to-one onto the family P(w/2). By the hypothesis on
v, Re (¢f) must satisfy condition (2) of Theorem 3. Thus f has an analytic
continuation F across y and Re (cF) is constant on y. Therefore F
maps y into a line L where L € P(p).

If the derivative of F vanished at some point ¢ of y then it would
follow from local properties of analytic functions that ¢ € Ay(f) contra-
dicting the hypothesis. Since F’ does not vanish on y and F maps y
into a line it follows that F is one-to-one on p. This completes the proof
of Theorem 6.

5. Koebe ares

Theorem 7. ‘K c ¢ and the inclusion is proper.

Proof. Let f be a nonconstant holomorphic function in D such that
f& . Then by Corollary 1.2 there exists a nontrivial arc y c C that is
the limit of a sequence of arcs in f~Y(L) where L = {w:Rew = 0}.

Assume yp # C (take a subarc if necessary) and let { be the midpoint
of y. By the Lemma, there exists a sequence {2.} = D such that z,— ¢

and Re f(z.) > 4+ c0. For each n=1,2,..., let L, be the line
{w:Rew = Ref(z.)} and let A, be the component of f-3(L.,) that
contains z,. Since z,—{, 4. Nyn = O m=1,2,...;0n=1,2,...),

A.NC#G (n=1,2,...), and p,—yp, it follows that at least one
of the two subarcs of y determined by the removal of ¢ is the limit of
a sequence of arcs {y,} in U A, such that f(y,) — oo. Thus f¢X.
This proves that X < €.
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Let M(f,r) denote the maximum modulus of f on the circle {|z| = 7}.
Let u(r) be a positive, increasing function on [0, 1) such that u(r) — +
as r — 1. It follows from F. Bagemihl, P. Erdos and W. Seidel [1, Theorem
3 and Theorem 5] that there exists a function f holomorphic in D such
that M(f,r) < u(r), 0 <r <1, and f has a Koebe arc for oo. If u(r)
is chosen so that (1 — r)u(r) is integrable on the interval [0, 1) then it
follows from Theorem 4 that Ref € A, or equivalently f€ ‘6. Thus the
inclusion is proper and the proof of Theorem 7 is complete.

Let ! denote the set of nonconstant normal holomorphic functions
in D. Then

NeKcEcA

and each inclusion is proper.

The first inclusion was obtained by Bagemihl and Seidel [2]. Let w(z) =
¢(1 + 2)/(1 — z) where ¢ = mi/4 and let g(z) = ¢“®). The restriction of
g to D has both the asymptotic values 0 and oo at 1. Therefore it follows
from Lehto and Virtanen [5] (or see [8, p. 86]) that ¢ is not normal. How-
ever, it is clear that g € K; so N # K.

The final inclusion follows immediately from the definitions. The
propriety of the third inclusion was proved by Barth and Schneider [3].

University of Wiscconsin
Milwaukee, Wisconsin, U. S. A.
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