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An extension for the concept of finite index of a context-free grammar

1. BRAINERD [1] and Savomaa [7] have considered the concept of
finite index of a context-free grammar. Salomaa extends the notion of
index to include context-free languages and he also proves that the family
of languages of finite index is properly included in the family of context-
free languages. Problems related to the concept of finite index have also
been considered by YNTEMA [9], N1vaT [6], GINSBURG and SPANIER [3]
and GrUska [4]. In [5] we considered an extension of finite index to the
case of ordered context-free grammars. In this paper we consider this
extension in the case, where the relation by which the ordering is defined
is empty and we thus have an ordinary context-free grammar and language.
We shall show that our extension of the concept of finite index is so general
that for every context-free language there exists a grammar which has
this property and generates the language in question.

Let G = (Iy,Ir,X,,F) be a context-free grammar, where I N 18
the set of nonterminals, I, the set of terminals, X, € Iy is the initial
symbol and F is the set of productions. For any word P,Ig(X | P)
denotes the number of occurrences of the letter X in P and lg P the
length of the word P .

Let L be the language generated by G and let

(1) D:X0:P0:>"‘=>P,:Q

be a derivation according to G . By the length of a derivation we mean
the number of times we have applied productions. Thus, the length of the
derivation (1) equals . If there exist a natural u(i) and an integer j
such that

- {lgun- | P) < ui) (X, €1y,

lg(X; | Pjpy) = u(i) ,

then we say that the derivation D goes through the point w«(i) with
respect to X;. We further say that the derivation D goes through wu(s)
k: times with respect to X;, if there exist k; distinct indices j for
which the condition (2) holds. We say that a grammar @ possesses the
finite point property with respect to a set S(c Iy) (f.p.p. S) iff for each
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X; €S there exist natural numbers «(:) and v; such that every word
Q(€ L) has a derivation according to G which goes through wu(:) with
respect to X; at most v; times. We see immediately that if a grammar
is of finite index, it also possesses f.p.p. Iy . If a grammar, on the contrary,
possesses f.p.p. Iy, it may be impossible to assert any bound for the num-
ber of occurrences of a nonterminal. Therefore the condition that a grammar
possesses f.p.p. Iy is not so strict as the condition that a grammar is of
finite index. The following theorem shows, on the other hand, that the
extension is an essential one:

Theorem. For every context-free language L there exists a grammar
G=(y,Ir,X,, F) such that L = L(G) and G possesses fp.p. Iy.
More specifically, Iy = IyUIy(IyNIy= ®) in such a way that o(Iy)
—=o(ly) or oIy)=oly) —1 if A€L or A€L respectively and every
word of L has a derivation according to G which goes through 1 at most
once with respect to each monterminal of Iy and through 3 zero times with
respect to each monterminal of Iy .

2. Before going to the proof of the above theorem we consider some
preliminary concepts. Assume in the following that 1 € L. Because for
every context-free grammar there exists an equivalent grammar in the
Chomsky normal form (cf. [2] and [8]) we may assume that G is in the
Chomsky normal form. This means that all the productions of G are of
the two forms X — YZ and X —a, where X, Y , Z are nonterminals
and « is a terminal letter. Denote

I, ={X ' Xel,}
and
V' ={X->7YZ,X -YZ X->YZEF}.

F" ={X -P|X—-P€FUF [IgP =2},
F'"'" ={X Y2, X—>YZ|X—>YZEF},
FO = (X - X | X €1,}.

Consider the grammars

G’ :([—:‘VSIT)XOJF,)
and
é :(iA\’slTyX[)aF),

where Iy =IyUly,F"=FUF UF"’ and F = F UF'" UFY The
following lemma is obvious:
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Lemma 1. The grammars G, G’ and G are equivalent.

In a word P over Iy a nonterminal X or X may be in two states,
namely, in the yes-state and in the no-state. A derivation can change
the state according to the following rules. Let P; = P, be a step in a
derivation according to some of the grammars &, G and G. If, for a
nonterminal X ,lg (X | P;) =1g (X | P,), then X is in the same state
in both words P; and P,; if lg(X | P;) <lg (X |P,), then X is in
the yes-state in the word P, (and thus the state changes if X is in the
no-state in the word P;); finally, if Ig (X | P)) =1g(X | P,) + 1, then
X is in the no-state in the word P,. Respectively we define the changes
for a nonterminal X . We assume that in the words X, and X, (the
initial symbols) the nonterminals X, and X, are in the yes-state re-
spectively. Thus, it should be noted that the state of X (or X,) in some
word P depends on the derivation by which we get P from X, or X, .
Let P;= P, be a derivation according to the grammar G ,G& or G.
Let S(P;,P,) be the subset of Iy such that

S(P,Py) ={X,X|X€Iy,X€Iy,Ig(X|P)=1g(X|P)+1,
lg (X | Py) =lg (X | Py) + 1}.
We say that the derivation satisfies the condition A4 iff X (or X) belongs

to the set S(P;, P,) onlyif X (or X) isin the yes-state in the word P; .
In this case we denote

(3) P, = P,,P,= P, P, = P,,

G4 6,4 G,4
where we have a derivation according to @, G or G respectively. If
some word P generates a word @ according to G, G or G as follows:

P=P0:>P1:>"'3Pr:Q (721)-

where every step P;=> P;,; (¢t =0,1,...,r — 1) satisfies the condition
A, we say that the derivation P £ @ satisfies the condition 4 and
denote analogously to (3)
rPio,PEg,PXg.
6,4 G4 G.4
(The derivation P X P is defined to satisfy the condition 4 .) We now
prove

Lemma 2. Let there exists a dertvation

X, % T.XT,
G
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such that X is in the yes-state in T,XT, and T, and T, are words over
INUIp. If there exists a derivation

(4) X2 8,Y8,(X,Y€ly)
G

of length =1, where S, and S, are words over Iy U Ip, then there exists
o dertvation
(5) T.XT, = TS, YS,T,

G4

of length =1 such that
S1YS, X 8,78, .
¢

In (5) we apply only productions the left-hand sides of which belong to Iy .
Every word, except T,S;YS,T, of the derivation (5) contains exactly one non-
terminal of Iy and S;YS, is a word over Iy . If in the word T\ XT, some
nonterminal of Ty or T, is in the yes-state, so it is in the word T,S;YS,T, .

Proof. We prove lemma 2 by induction on the length of the deriva-
tion (4). Assume first that the derivation (4) is of the length 1. Then (4)

is X=>YZ or X=2Y . Consider, for instance, the derivation
¢ ¢

T.XT,= T,YZT,.
G4
We can see that this derivation satisfies the conditions of the derivation
(5) for arbitrary T,,7T, over IyU I;. Therefore the lemma is true in
this case.

Assume now that the lemma is true for all words 7', T, over Iy U Iy,
if the length of the derivation (4) is smaller than n(=2). Consider a der-
ivation (4) of the length =». Write it in the form
(6) X = ZU X 8,Y8S,.

¢

G

We can now conclude that there exist derivations
Z 2 8,Y8,, U= 8,,
¢ G
where S, = 838, or derivations
Z28,,U% 8,Y8,,
¢ ¢

where S; = S;5;. Suppose, for instance, the preceding case; the other
case can be treated analogously. Assume first that the length of the der-
ivation
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(7) 7= 8,78,
G

equals 0. Consequently 8, =S8;=21,Y =2 and S,=4.8,. We thus
have a derivation

(8) U=2,.

G
Consider the derivation
T, XT, = T,YUT,.

G4

We can see, by (8) and the inductive hypothesis, that this derivation
satisfies the conditions of the derivation (5) in lemma 2.

Assume now that the length of the derivation (7) is = 1. Because
it must be <n, we can decide, by induction hypothesis, that if Z is
in the yes-state in the word 7,ZUT,, then there exists a derivation

9) T, 20T, % 17,8, YS,UT,
G0

of the length =1 such that S;¥S; = 8,YS, according to G. In (9)
we apply only productions the left-hand sides of which belong to Iy .
Every word, except 7T,8;YS;UT, contains exactly one nonterminal of
Iy and S8,YS; is a word over Iy. If in the word T,ZUT, some non-
terminal of Iy is in the yes-state, then so it is in the word 7,8,YS;UT, .
In addition, all the nonterminals of S;¥S; are in the yes-state in the
word 7,S;YS;UT,. Consider the derivation

(10) T.XT, = T,ZUT, £ T,8,YS,UT, .

G G

This derivation satisfies the condition of the derivation (5) in lemma 2.
Because X is in the yes-state in the word 7,X7T,, it follows that Z is
in the yes-state in 7T,ZUT, and the whole derivation (10) satisfies the
condition 4 . Thus we can write (10) in the form

(10y’ T.XT, % 1,8, YS,UT, .
4

Further S;YS;U = 8,YS,U £ 8,Y8,8, = 8,VS, according to G . Also
we see immediately that all the productions we have applied in (10)" start
from nonterminals of Iy and every word, except 7,S;YS;UT,, contains
one nonterminal of Iy . By induction hypothesis, S;YS;U is a word
over Iy. Let some nonterminal of Iy be in the yes-state in the word
T,XT, . Then it is also in the yes-state in the word 7, ZUT, and therefore,
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by the induction hypothesis, also in the yes-state in the word T,8:YS,UT, .
The nonterminal U is in the yes-state in word 7,ZUT,. By induction
hypothesis it is in the yes-state in the word T,8;YS;UT,. Therefore
it follows that all the nonterminals of S;YS;U are in the yes-state in
the word 7,8;YS;UT,. Our lemma is thus established.

3. We now begin the proof of our above theorem. Assume as above
that 12 ¢ L(G) and @G is in the Chomsky normal form. Consider a der-
ivation (1) according to G . Let the word @ be fixed in the following
way. Let there exist a derivation

X, 2 8,78,
G

of length =1 such that S,YS, £ @ according to G. By lemma 2, we
then have a derivation

X, = 8.v8,
G4
such that
S1YS, 2 8,78, % Q.
¢ ¢
On the other hand, all the nonterminals of S;YS; are in the yes-state
in the word S;YS,. Let X be a nonterminal of 8;YS; such that S;¥S,

is of the form 7,XT, (by lemma 2,7T; and T, are words over Iy U Iy)
and there exists a derivation

X £ 8,28,
¢
such that

(11) TS, 78T, = Q .
G

By lemma 2, we thus have

X, % T, XT, = T,XT, = T,S;Z8,T, ,
G,A G.A G4
where
S;zs;;;; S,ZS, .
Hence, by (11),
T,S,Z8,T, = Q .
G

Every nonterminal of 7,8;ZS;T,. except possibly X, is in the yes-
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state in the word 7,8;ZS,T,. We continue in this way to obtain a der-
ivation

(12) X,=> P

such that P = @ according to ¢ and every nonterminal of P is in the
no-state or if some nonterminal, say X, is in P in the yes-state and
P is of the form P = T, XT,, then there exists no derivation of the form

X = 8,78,
G

of length =1 such that
T,8,YS,T, = Q.
G

If X is in the yes-state in the word P, then the only applicable pro-
ductions which start from X are of the foorm X —a (a is a terminal
letter).

Assume that P is of the form 7,XT, and there exists a derivation
(13) X £ BXC

G

of length =1 such that B and C are words over Iy U, and

(14) T,BXCT, = Q.
G
We then say that P has a cycle. Let X;,X,, -+, X, (»n = 2) be some

distinet nonterminals of P such that P is of the form
(15) P=7XTJX,.. TXT,.,.

We also say that P has a cycle if there exist derivations
*
X; = BIXi(2) Gy,
¢
*
-Xi(2) :Z Bi(2) Xi(3) 0;(2) s

.....

*
Xi(n) :g Bi(n)X] Ci(n)

such that Xy; # X, if j#k and X,5,..., X, are the non-
terminals X, ,..., X, in some order, B’s and C’s are words over Iy U I,
and, in addition,
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*
(17) X\Ty- - Ti(j)Bi(j)Xi(j+I)Ci(j)Ti(j)+1 Ty =G> Q,

where j runs through the values 1,...,n (¢((l)=i(n+ 1)=1).

Assume that P has a cycle of the form (13). Let R be the last word
in the derivation (12), where X is in the yes-state. Assume that R is
of the form N,XN,XN,. Without loss of generality we may assume
that the occurrence of the nonterminal X between N; and N, dis-
appears and the occurrence of X between N,XN, remains in the der-
ivation

(18) N,XN,XN, = P

C,4

which is a part of the derivation (12). Also we find that R cannot contain
a nonterminal of Iy, because in that case X would also be in the yes-
state in the following word (by lemma 2) contradicting the choice of R .
Because P is in this case of the form 7,X7T, we may conclude that there
exist derivations

(19) N XN, 2T, N, 2T,.
e ©

The derivations (19) are obtained because in the derivation (18) we do
not apply any production for the nonterminal X between N, and Nj.
It should be noted that, by lemma 2, the only productions which we apply
for X in the derivation (12) (and consequently in the derivation (18))
are of the foorm X — X . Because P has a cycle of the form (13) there
exists, by lemma 2, a derivation

R = N, XN, XN, = N]XNzXN3 =*> N, XN,B'XC'N, = R, .
G, A G4

Every nonterminal which is in the yes-state in the word R is also, by
lemma 2, in the yes-state in the word R;. Therefore we can apply the
derivation (18) for R; and get, by (19),

R, % T\ BXC'T, = P, .
G,4
By lemma 2, it follows that

B'XC £ BXC.
G

Hence, by (14) P; Sy according to G . If it is possible, we now con-
tinue from P; in the same way as in the derivation (12). We thus have
a derivation
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(20) X 2pPip,
G4 G
where lg P’ = P; >IgP and P’ 29 according to @G .
Assume now that P’ has a cycle of the form (16) and P’ is thus of
the form P =T,X,T,X,---T,XT,,,. Because P’ ZQ according
to G, we can infer that

% ’ ’ *
(21) T1;Q1»X1=>QlyTzin,XziQ2,~~~aTn+1=>Qn+1
G G G G G

such that Q,010,Q; - - - Q.. = @ . Because of the relations (17), it follows
that

B & ’ . ¢
(22) Bi(j)Xi(j-{-l)Oi(j) Z> Qjy U=1,2,...,n).

Let R be the word in the derivation (20) such that one of the nonter-
minals X;, X,,..., X, is in the yes-state in R and in the other words
of the derivation

(23) RE P
G.4

(which is a part of the derivation (20)) all the nonterminals X, ,..., X,
are in the no-state. Assume, for instance, that X, is in the yes-statein R .
The case, where some other of the nonterminals X,,..., X, is in the
yes-state in R can be treated analogously. Because the only productions
the left-hand sides of which belong to Iy and which we have possibly
applied in (20) are of the form X — X, we can conclude that in the
derivation (23) we have not applied any production for the nonterminals
X,,...,X. or for the nonterminal X, which remains in the deriva-
tion (23). Suppose that R is of the form

R = N{X, N, X,N,X,N, ... X,N,.,

and the nonterminal X; between N; and N, disappears in the beginning
of the derivation (23). From the above it now follows that

IN{XINI .
[
(24) e
l N=T;, i=2,...,n-+1).

G

Because X, is in the yes-state in R we have, by (16) and lemma 2,

R= N{X,N\X, N, 1> NIX,NBX;pCr -+ Nopy = R,

G4 G4
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It should be noted that it follows from the choice of R that N;X;N; and
Ny--+N,,., are words over Iy U I; and we can apply lemma 2. Because
in By X, is in the yes-state (by lemma 2) we get further, by (16) and
lemma 2,

By = N\X,\NB X001 - Xygy -+ Ny =
G4 G4
VIX N, B X1(2)Cl ’ l(z)Xl(s)Ol( "Ny =R,
Continuing in the same way we finally get
Rn—l :1; ZV; . l(n)A Ot(n - N L ES B R” .

G,4

By lemma 2, it follows that each nonterminal which is in the yes-state
in R is also in the yes-state in R.. Therefore we can apply the deri-
vation (23) for R. and we thus get, by (24).

Ro 2 T\BX 01 BuyXiCiy+ Tuir = P}
G, A

It further follows, by lemma (2), (21) and (22), that

n %k
Pl T T BIXI(Z)O t(n) t(n)X Ol(n) v an;—l
* ’ ’
=G> T:¢, - Ti(n)Qi(n) e Tn—j—l

% QIQ; e Ql(n)Q:(n) o Qn+l - Q -

If it is possible, we now continue from P] in the same way as in the der-
ivation (12). We thus have a derivation

5P

c 4 CaA
where lg P’ =lgP,>IlgP >IgP and P’'Z Q according to @.
In this way we continue eliminating one cycle after another. Because the
length of the word @ is fixed we finally get a derivation

(25) X, 2 PYG=0,P%=P),
G,4
where P has no cycles. In each word of the derivation (25) there exists
at most one nonterminal of Iy .
In PY there exists a nonterminal X with the property that if Y
runs through all the nonterminals of P® and P® is written in the
form KYM , then there exist no derivations of the form
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(26) Y £ BXC

¢
of length =1 such that

KBXOM = @.
G
We prove this statement indirectly. In fact, assume the contrary, for
every nonterminal of P® there exists at least one derivation of the form
(26). Let X;,X,,...,X. be the distinct nonterminals of PO and let
P respectively be of the form PO =KXM;,j=1,2,...,n.
We then have a sequence

* Y
Kierny = BioXjwlin ¢ =1,2,3...)

such that

J

- %
(27) K00 Bi Xy Ciy M-y = Q.

Because the number of the nonterminals X; is finite, there must be two
distinct values of ¢, say k and m(k < m), such that j(k) = j(m) and
Xy = Xjem - We then have

J J

3
Xjmy :; Bin—1y Xjtn—1) Cigm—1) -

%
Xjm—1y > B2 Xjm—2Cjm—2) -

Xf(k+1) :; Bj(k)Xj(k)Cf(k)

such that (27) holds. This means that PY has a cycle which is impossible.
Let, for instance, X be the nonterminal with the above property.

We then eliminate X from the word P® by applying all possible pro-

ductions which start from X . We thus have a derivation

(28) PO X g
G
such that
(29) EZQ
G

and the nonterminal X does not occur in the derivation (29). Let

(30) EiE,

G,4
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be any derivation which we get in the same way as the derivation (12),
in other words, by applying productions of the form (5) and X — X
such that

EZq.
G

Assume further that E, is a word over Iy U I,. The eliminated non-
terminal X cannot occur in any derivation of the form (30). In fact,
assume that there exists a derivation

EXE,,

G,4

where X € E, such that B, = @ according to G. If E, contains a
nonterminal of Iy, we can form a derivation

EXZEXE,
G4 G

such that X € B, , K, g @ according to G and E, isaword over Iy U I, .
We now have, by lemma 1, a derivation E i E, i @ according to G .
This, however, leads to a contradiction.

Assume that E; has a cycle, for instance, of the form (16). Suppose
that the nonterminals X, , X,,..., X, are in the no-state in the every
word of the derivation

(31) PO X g
G

Let, for instance, P® be of the form

PO — N, X,N,X, - X.N,
and E, of the form

E,— T X,T,X, X, T, .

Because in the derivation (31) we do not apply any production for the non-
terminals X;(¢ =1,2,...,n), we may infer that

(32) NET (i=1,2,...,n+1).

e
Because E,; is assumed to have a cycle of the form (16), the relations (17),
(21) and (22) hold. By (32) and lemma 1, we may now replace 7 in (21)
by Ni{i=1,2,...,2+ 1) and thus we see that PY has a cycle
which is impossible. Therefore we may conclude that in the derivation (31)
there exists a word, where some of the nonterminals X,,..., X, are in
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the yes-state. If this word exists in the derivation (28), then the word E
also has this property. We thus see that a word of this kind can always
be found in the derivation (30). This means that if we eliminate a cycle
from E,;, we do not change the derivations (25) and (28) in any way.

We now continue by eliminating cycles from the words in the same
way as before and we thus get a derivation

E = B9,
G,A4
where E® does not contain any cycles. If E® contains nonterminals
of Iy then there exists in E® a nonterminal Y with the property that

if Z runs through all the nonterminals of E® and E® is written in
the form KZM , then there exist no derivations of the form

Z X Byc

¢
such that

KBYCM £ @ .

G

We eliminate this nonterminal by applying all possible productions which
start from Y . Thus

EO L w
G
such that
(33) wQ.
G

The eliminated nonterminals X and ¥ do not appear in the derivation
(33). Continuing in this way we finally get a derivation

(34) %20Q.
G

This derivation has the following properties:

(1) The number of occurrences of a nonterminal never decreases by
more than one before it again increases, with the exception of a part of
the derivation (34), in which the number of occurrences of this nonter-
minal monotonically decreases and the nonterminal wholly disappears
from the derivation.

(2) Each word of the derivation (34) contains at most one nonterminal
of Iy .

In order to reach the proof of the theorem, we have still to modify
the derivation (34) to some degree. For a nonterminal X € J ~» there exist
three possibilities:
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(i) X does not appear in the derivation (34) at all.
(i) X ocecurs in each word of the derivation (34) at most once.
(iii) In the derivation (34) there exists a word, where X occurs twice.

In case (i) we make no changes in the derivation (34).

Consider case (ii). Assume that in the derivation (34) X appears and
respectively disappears at least two times. When X appears the first
time, we have applied a production, where X is in the right-hand side
and which starts from a nonterminal different from X , for instance,
¥ —~ XZ . We now replace this production by ¥ —-XZ. When X in
the derivation (34) disappears the first time, we have applied a production
which is of the form X — X . This production is now unnecessary, be-
cause in the place of X there isalready X . In this way we can modify
the derivation (34) in such a way that X appears and disappears only
once in the modified derivation.

Consider case (iii). In the same way as in the preceding case we can
eliminate X every time when it appears, occurs only once and disappears
before we reach a word, where X occurs twice. After these arrangements
we see that the derivation (34) goes through 1 once with respect to X .

After the above modifications we have a modified derivation (34)
which goes through 1 at most once with respect to X € Iy. On the other
hand, in this modified derivation the nonterminal X of Iy may occur
twice in some words. We see, in addition, that the modification does not
affect any other nonterminals of Iy .

We now choose another nonterminal 1 of Iy and modify the deriva-
tion again in such a way that we have a derivation which goes through 1
at most once with respect to Y . Continuing in this way we finally get
a derivation

(35) X, =€

o §x

which goes through 1 at most once with respect to every nonterminal of I .
Further (35) goes through 3 zero times with respect to every nonterminal
of Iy. Because the word @ was arbitrary we can construct a derivation
of this kind for every word of L.

At the beginning of the proof we assumed that 2 € L. If 2€L, we
first form a A-free context-free grammar G’ such that L(G") = L — {4}
(see for instance [8]). There exists a context-free grammar G equivalent
to @, which is in the Chomsky normal form. For this grammar G we
perform the proof as above and form an equivalent grammar G which
satisfies our theorem. Then we add to the set Iy a nonterminal X, which
will be a new initial symbol. To the set of the productions of G we add
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the productions X;—>X, and X;—21. This new grammar clearly
satisfies our theorem and generates the language L . Our theorem is thus
established.

University of Oulu
Oulu, Finland
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