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INTRODUCTION

Consider a finite alphabet
I ={zy,...,2} (r=1)
and an infinite alphabet .
Aw=Ax,p,y,00,f1,71,-.}

such that I, and A4, are disjoint. Regular expressions over I, and A4,
are defined in the usual way (cf. [7], p. 3).

If X and Y are regular expressions over the alphabet I,, we say
that the equation X = Y isvalid iff X and Y denote the same language,
ie., |X|=1Y]|. The set of all valid equations between regular expres-
sions over the alphabet I, is denoted by V.. Obviously

VieVoc V...,

where all inclusions are proper. The union of all sets ¥V, is denoted by V..

Let X and Y be regular expressions over the alphabet 4.. By
S,, r=1,2,..., we denote the set of equations of the form X =Y
such that a valid equation always results when each letter of A4, appear-
ingin X or Y is substituted by some regular expression over I,. The
intersection of all sets S, is denoted by S.. It is known (cf. [7], p. 128)
that

Sy =285=...=28

and S, is properly included in S .

Let ¢ be the operator defined for languages such that ¢(L) is the
language consisting of all such words which are obtained by permuting
the letters in some word belonging to L . For regular expressions X and
Y over I, the equation X = Y is said to be ¢-valid iff the languages
¢(|X|) and ¢(]Y]|) are equal. By C,, r=1,2,..., we denote the set
of equations of the form X = Y, where X and Y are regular expressions
over A, such that whenever the letters of A, appearing in X or Y
are substituted by some regular expression over I,, the resulting equation
is ¢-valid. The intersection of all sets C, is denoted by C, . It is proved
by Lepistd [2] and Linna [3], that
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8, =0 =Ch=...=0Ch,.

A basis of V; is given by Red’ko in [5] and Salomaa in [7, p. 130].
A basis of O, is given by Red’ko in [6] and Salomaa in [7, p. 139] and also
by Pilling in [4] and Conway in [1]. In this paper we consider a basis S
of ¥, and abasis T' of O, which are almost identical with those mentioned
above. The main purpose of this paper is to prove that the axioms in S
and 7 are independent.

§ 1. The basis S of V;

1.1. Let S be a subset of §; consisting of the following 11 equations,
called the axioms:

Ay x+@B+y)=+p+7y,
A, x(By) = (xp)y

A x+p=p+«,

Ay af = fx,

As x(f+y)=af +oy,
A6 ¢*“:0"

A; px = ¢,

Ag (xf*)* = ¢* + ax™f*,
Ay (@*)* = ¢*,

Ajp (x + B)* = a*p*,

Ay o = ()¥Pp* o+ ...+, n=1,2,...

It is assumed in Ag and A;; that A; and A, are satisfied and hence the
sum and catenations are written without parentheses. A;; is in fact an
infinite axiom-scheme.

By a substitution instance of an axiom we mean the result of substitut-
ing all letters of 4, appearing in the axiom by some regular expression
over the alphabet I, .

We give also the following inference rule:

R (Replacement). Assume that 1, is a well-formed part of a regular
expression X; and that X, is the result of replacing (some occurrence
of) Y, by a regular expression Y,. Then from the equations X; =2
and Y, =Y, one may infer the equation X, = Z.

An equation is generated by S, in symbols — X = Y, iff there is a
finite sequence of equations such that each of them either is a substitution
instance of an axiom or may be inferred from some equations occurring
earlier in the sequence by R and, furthermore, X = Y is the last equa-
tion in the sequence. The set S is a basis of V; iff every equation in ¥,
is generated by S .
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1.2. The following lemma is an immediate consequence of A; and R,
and it is used in subsequent proofs without being explicitly referred to:

Lemma 1.1. Let X, Y, Z and U be arbitrary regular expressions
over Iy . Then X =X .If + X=Ythen - Y=X.1If - X=17
and +— Y =2 then - X=Z7Z. If - X=Z7Z and — Y =1U then
XA+ Y=Z+U, - XY=ZU and I X*=2%.

Lemma 1.2. Let X be an arbitrary regular expression over I,. Then

(1.1) X+ X=X
and
(1.2) FX+é=X.

Proof. If we substitute & = f = ¢ in Ay, we obtain by A,

(1.3) -t =9+ 4.
If we substitute o =¢*, f=¢ in Ay we obtain by A; and A,
(1.4) g = g 4 g

By A;—A;, (1.3) and (1.4) we can verify that the lemma holds true. [7.
Note. Only A,—A, are needed for Lemma 1.2.
As an immediate consequence of A, Ag Ay and A;, we obtain

Lemma 1.3. Let X be an arbitrary regular expression over I,. Then
(1.5) (X 4 gyr = X

Using Lemmas 1.2 and 1.3, we may conclude that the following theorem
is a consequence of the results of R=d’ko [5] and Salomaa [7, p. 130]:

Theorem 1.1. The set S, consisting of the equations A; — Ay, is a basis
of Vy.
§ 2. Independence of the axioms in S
2.1. We shall now show that the axiomsin 8 are independent. This is

done by construeting models in which all the axioms are satisfied excepr one.
We prove only that the axiom-scheme Aj; is independent of the other



6 Ann. Acad. Sci. Fennicae AL 517

axioms, i.e., we give a model in which A;—A,, are satisfied but for some
values of n Ay is not satisfied.

A model is an ordered quadruple (E,f,.f,,9), where E is a finite
non-empty set called the elements, f; and f, are functions mapping the
Cartesian product E X E into E, called the sum and catenation, and
g is a function mapping the set B into K, called the iteration. More-
over it is assumed that E can be divided into two disjoint sets K} = {¢ , x} .
where 2 €I,, and E,, which is possibly empty, with the following
property. For any e € E,, there is a regular expression X over H; such
that e = |X|. (Every regular expression X over K can be reduced,
interpreting f,, f, and ¢ as mappings, to an element ¢ € E, denoted
by e = |X|.) The elements of E, are denoted by ¢*, a« and b.

An equation X = Y between two regular expressions X and Y
over E is valid in the model iff |X| = |Y|. An equation of the form
& =1, where & and % are regular expressions over the alphabet A..
is satisfied in the model iff an equation valid in the model always resultx
whenever each letter over A, appearing in & or 7 is substituted by
some regular expression over E.!

If the set E consists of n elements we say that the model is n-valued.
If the independence of an axiom can be established using an n-valued
model but not using an (n-1)-valued model, we say that the independence
model of minimum cardinality in this case consists of 7 elements. Ob-
viously n = 2 for each axiom.

2.2. To establish the independence of A; and A;—A; we consider 2-
valued models consisting of the elements ¢ and z. In the first model
the sum and catenation of the elements are defined in Tables 1 and 2, the
iteration is defined by «* = x. In the subsequent tables defining ~ + f
and xf, the values of « determine the row and those of 3 the column.

Table 1 Table 2
«p | ¢ o B | b
$ b 4 P
s | e x| R

It is easy to verify that A;, Ay and Ay;—A;; ave satisfied in this model.

T It is assumed that the sumn and catenations occurring in Ag and Ay are performed
from left to right.
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Because ¢ + x =¢ but v + ¢ = x, A; is not satisfied in this model
and hence A; is independent.

2.3. In the second model consisting of the elements ¢ and =z the
catenation and iteration of the elements are defined as in 2.2, but the
sum of the elements is defined in Table 3.

Table 3

i @

QS ; KS R4

Z ! J X

Clearly A;—A, and A;—A;; are satisfied in this model, but A is not
satisfied, because ¢(¢p 4 ¢) = ¢z = ¢ whereas ¢ +dp=¢ + ¢ = = .

2.4. In the third 2-valued model the sum and catenation of the ele-
ments ¢ and x are defined in Tables 4 and 2, and the iteration is defined

by a* =¢.

Table 4
| |
¢ b
| ‘

Obviously A;—A; and A;—A;; are satisfied in this model, but A4 is not
satisfied because ¢*r = ¢ = ¢ # a .

2.5. In the fourth 2-valued model the sum and catenation of the ele-
ments ¢ and x are defined in Tables 4 and 5, and the iteration is defined
by o* =«.

Table 5
of - 2
¢ | ¢ »
I |

In this model all the axioms except A; are obviously satisfied. Because
dxr =x #£ ¢, A; is independent.
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2.6. Suppose that we have an n-valued (n = 2) model in which Ag
and A, are satisfied. Let y # ¢ be an element of the model. By A4 and
A, we now obtain ¢*y =y and ¢y = ¢. Thus we must have ¢* =~ ¢
in all models in which Ag and A, are satisfied.

We now consider 2-valued models in which A;, A;—A,; and either Ag
or Ag and A;; are satisfied. Let ¢ and x be the elements of the model.
Then ¢* = 2 and the only possible way to define the catenation of the
elements is given in Table 2.

Because ¢(d + ¢) = ¢ and ¢p + b = ¢ + ¢, we obtain, by A
¢+ ¢=4¢. Since ¢* + ¢p* ¢* = + ¢ and (¢$)* (P* +¢) =2z + ¢,
we obtain, by A, and either by Agor by Ay, ¢ + a2 =2 + ¢ = x . Because
%+ wrt g* —w -+ a*, ot = ($%)*F and (wn)* ($* + o) = a* (2 + ).
we obtain, either by Ag or by Ag and Ay, % = and x 4 o = 2. Thus
the only possible way to define the sum of the elements is given in Table 4.

We have thus obtained the model in which the sum and catenation of
the elements are defined in Tables 4 and 2, and the iteration is defined by
a* = x . In this model all the axioms are satisfied and hence the inde-
pendence of A;, Ay, A, and Ag—A;; cannot be established using 2-valued
models.

2.7. To establish the independence of A,, Ag and A, we consider 3-
valued models consisting of the elements ¢. ¢* and x. In the first
model the sum and catenation of the elements are defined in Tables 6
and 7. The iteration is defined by ~* = ¢*.

Table 6 Table 7
L L N
¢ i ¢ $* = | é B ) i
- e e e
@ s ¢ w 5 : | oz % oz

Clearly A; and Ag—A;; are satisfied in this model.

If we define ¢ <z < ¢*, then « 4 f = max(x,p) and we can
conclude that A; is satisfied.

Obviously A, and A; are satisfied, if a« = ¢* . If x # ¢* then x(fy) =
x = (xf)y and x(f+y) =« =oa+ a =xf + «y. Thus A, and A; are
satisfied in this model.

A, is not satisfied, because x¢ = x whereas ¢x = ¢.
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2.8. In the second 3-valued model the sum, catenation and iteration
of the elements are defined in Tables 8, 9 and 10.

Table 8 Table 9 Table 10
G DA S B A NS S R N A
$ f A s 4 4 b I P
A A R ! o e
@ } & @ E I ¢ = x| ¢

Obviously A;, A;, Ay, A, A; and Ay are satisfied in this model.

It is clear that A, is satisfied if one of the expressions «, g or y is
either ¢ or ¢*. Because x(wxx) = x = (xx)r, A, is satisfied otherwise.

If f+9+#¢ then x(f+yp)=ax=aft+ay. If p+y=4¢, ie.,
f=v=4¢, then x(p ~y)=¢ =2p +—xy. Obviously A; is satisfied
also in the cases where ~ is either ¢ or ¢*.

It is easy to verify that A;; and A;; are satisfied, because both sides
of these equations are simultanously either equal to ¢é* or equal to ¢ .

In this model we have ¢* -+ axax* ¢* = ¢* L d = ¢* and (xp*)* = ¢ .
Thus Ag is not satisfied.

2.9. In the third 3-valued model the sum and catenation of the ele-
ments are defined as in 2.8, and the iteration is defined in Table 11.

Table 11

% %%
b &*
éx

For the same reasons as in 2.8, A;—A. are satisfied in this model.

It is easy to verify that Ag, A}, and A;; are satisfied, because both sides
of these equations are simultanously either equal to ¢* or equal to «.

Because (¢*)* = == ¢*, Ay is nouv satisfied.

2.10. Consider an n-valued (n = 3) model in which A;—A, are satis-
fied. By the note following Lemma 1.1, we must have « 4+« =« and
v+ éd=¢+a=0o. We must also have «* = ¢, because if «* = ¢
we obtain, by Ag, ~%* = ¢* + ¥ = ¢* + b = ¢* but, by 2.6, ¢* £ .
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We consider now 3-valued models in which A;— A4 are satisfied. With-
out loss of generality we may suppose that the elements of these models
are ¢, ¢* and x.

Suppose first that a* = x. Then, by Ag, & = &* = ¢* - aa™ = ™ - 2.
Thus we must have ax =2 and ¢* - x = x. Thus the only possible
way to define the sum, catenation and iteration of the elements is given
in Tables 8, 9 and 12. But it is easy to verifv that all axioms are satisfied
in this model.

Table 12

o4 x*

é &%
é:k éx

Suppose now that a* = ¢*. Then. by Ay ¢* - v =¢*. and, by
Ay, A and A, x = x¢* = a(¢p* — ) = x + ax. Thus ax = ¢*. Now
the only possible way to define the sum is given in Table 6 and the only
way to define the iteration is a* = v. The catenation can be defined
either by Table 9 or by Table 13. In both cases all the axioms are satisfied.

Table 13
_acﬁ" B ~'d) s .
é & 4 &
é* & ) :
v b é

Thus the independence of A;, A,. Ay, and A;; cannot be proved using
3-valued models.

2.11. To establish the independence of A, we consider a 4-valued model
consisting of the elements ¢, ¢*, x and @ = ax . The sum and catena-
tion of the elements are defined in Tables 14 and 15, and the iteration is
defined by «* = ¢*.
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Table 14 Table 15
R IR N N N A
N s s e s s
pooe e e A
. N @ $ o aa
@ E a ¢* a a P9 a a ¢ |

If we define ¢ <a < <¢*, then « 4+ f = max(x, ). It is now
easy to verify that A;, A;, A, and Ag—A,; are satisfied in this model.

Obviously Aj is satisfied if « is either ¢ or ¢*: likewise if f =y
or either g or y is ¢ . A;is also satisfied in other cases, as seen as follows:
B+ y) = a = aff + ay if either f or y is ¢*¥ and
x(p -+ y)=a=af -+ vy otherwise. If either f or y is either ¢* or =z
then a(f +~y)=a=af + ay and a(f +y) =¢ = aff + ay otherwise.

Because xz(ra) = za = a whereas (2x)a = aa = ¢, A, is not satis-
fied.

2.12. To establish the independence of A, we consider a 4-valued model
consisting of the elements ¢, ¢*, « and @ = x*. The sum, catenation
and iteration of the elements are defined in Tables 16, 17 and 18.

Table 16 Table 17 Table 18
x+f | ¢ x a ol b P oz a x| oar |
¢ i ¢ ¢ = a ¢ ' ¢ ¢ S 4 0 4 ¢* ‘
P T ¢*E
N . 46 * a a c e
e a0 4 e e a a

If we define ¢ < < ¢* < a, then x + f = max (x,f). It is now
easy to verify that A;—A,, Ag A; and A, are satisfied in this model.

Clearly A, is satisfied if « is either ¢ or ¢* or f =y or either g or
v is ¢ . Ajis also satisfied in other cases because z(f - y) = a = aff + xy
if neither g nor y is @ and «(f + y) = a = af + xy if either 3 or
v is a, and a(f +y)=a=o0af + ay.
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Ag and Ay, are clearly satisfied if « is either ¢ or ¢*; likewise in
other cases, because both equations are reduced to the form a = a .

We have now (¢* + x)* = (¢*)* = ¢* and (¢p*)*2* = ¥ a = « .
Thus A,, is not satisfied.

2.13. We now consider the 4-valued models in which A,—A,, are satis-
fied. Let ¢, ¢*,  and @ be the elements of the model. Because we
must have ¢x =adp=¢, P*a =ad* =a and a4+ ¢P=¢ +nx =
x + x = «, there are three possibilities to define the fourth element « .
namely, ¢ =axr, a=¢* + 2 or a=a*.

If o* =ua, then, by Ay, v =2a* = (v + 2)* = x*x* = a2z and, by
Ay, =% = ¢* - axt = P* - x. Here> ax=¢* 4+ a2 =2a*=2a
and we cannot define ¢. By 2.10, a* £ ¢, and hence we must define
x* to be either ¢* or a.

If a* =4¢*, we obtain, by A; ¢* = a% = ¢* + aw* = ¢* + a,
and we must define ¢ =ax. By A; we now obtain = x¢* =
xp* Lx)=vtax=x+ a.

By A, and A we have then ¢* = a* = (x + a)* = a* a* = ¢* and
¢* = ¢* - aa* = ¢* 4+~ a. Thus we must define the sum of the ele-
ments by Table 14, and the iteration by «* = ¢* . But it is immediatelyv
clear that A; and Aj are satisfied in this model.

If ¥* =a. we obtain, by Ay and A, a = ¢* + wa* = ¢* L 2a,
a=an, a* = (p* + ax*)* = (va*)* = ¢* + azv*a* = ¢* +- xa =« and
a=a* =¢¥ +ao* =¢*¥ +a. Because a =¢* + xa, xe¢ is either
@ or . Then, by A; and A, 2za = 2(¢* + 2a) = v + x(xa) and
@ = aa = (¢* — za)a = a + xe and thus in both cases « + « = «.
Because (¢p* + a)* = a* = a, ¢* + v is either @ or z. Thus we have
two possibilities to define the sum, namely, those given in Tables 19 and
20. In both cases it is immediately clear that A, is satisfied. Obviously
A, is also satisfied if « is either ¢, ¢* or a, or n = 1. If the sum
is defined in Table 19, ¢* 4+ a4 ... =a and A, is satisfied, because
$*¥*a =a and aa = a. If the sum is defined in Table 20, x + ¢* = =

Table 19 Table 20
ol L S L el AL
] R é b  *  » o«
S P S U b 6 * v«
. a r  a 2 : ' v a
@ K 7 a a | a a o« @ o«
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and, by A; and A,, xa = (x - ¢¥*)a =26 + a = a and ax = (x + ¢¥)x =
xx + x . Thus ax is either » or a, and (2")* = a. Thus A;; is satis-
fied also in this case.

In all 4-valued models in which A,—A,, are satisfied also A; and A
are satisfied. Thus the independence of A; and A,;; cannot be established
using 4-valued models.

2.14. In the following 5-valued models establishing the independence
of A, and A;; we have the elements ¢, ¢*, ©, a =¢* 4 2 and b = a*.
In the first model the sum, catenation and iteration of the elements are
defined in Tables 21, 22 and 23.

Table 21 Table 22 Table 23

R0 LT O S N U NS S L IO Kl
A A A A A S I
B s e b e a b g 4 I

@ e e . b o o w b Folb

B B ‘b |

| {

bbb bbb b b b b b b b

It is easy to verify that A;, A, and A;—A,; are satisfied in this model.

A, is obviously satisfied if one of the expressions «, f§ or y is either
¢, ¢* or b. In other cases ~(fy) = x = (xf)y and A, is satisfied.

A;is clearly satisfied if ~ is either ¢, é* or b; likewise in the cases
where f or y iseither ¢ or bh. But so it is also in other cases, because
then «(f -+ y) =a =« +ay.

A, is not satisfied, because we have now ¢* - (x + ) =¢* + 2 = a
whereas (¢* - x) - v =a - v = 2.

Table 24 Table 25
B A O R A L L
N S8 b b b4
P e e A b
R z e w ¢ a b ;
a « a4 a b o : 46 o a a b
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2.15. The sum, catenation and iteration of the elements are now de-
fined in Tables 24, 25 and 23.

Because a = ¢* 4 & it is easy to verify that A;—A;, are satisfied in
this model. Because (22)* (¢* + @) = ¢* @ = a whereas x* =0, Ay is
not satisfied.

Note. It can be shown that it suffices to suppose that n is a prime
number in the axiom-scheme A;;. In this case the equations in the scheme
are independent of each other, as can be seen from the model below.

Consider a (k + 3)-valued model consisting of the elements

Yoo Yrso-os Yoo and gy o
where yk+2:€b> y0:¢*7 Y =&, Z/}.:‘ﬁ*_l“-l !/kfl:x*3 and
y,=uay;_; for ¢ =2,..., k—1. It is assumed that &k is a prime

number.
The sum, catenation and iteration of the elements are defined as follows:

Vit Y=Yt Y=Y T % =Y YT Yoor = Yoo1 T Y = Yo for
i=0,1, ..., k+2, and y; +y; =y, fori#jand 0=¢, j=k.
Let max(i,j) =m. Then yy, =y, f m =%k, otherwise yy, =y .
where 0<I<k and I=¢-+j (mod k). (y)* = (y,..)* =9y, and
Y)*¥ =ypyq for e=1, ..., k4 1.

In this model A;—A,, are satisfied and =0 also is A;; if n# = k (n prime) .
Because  (#1)* @* +ui+ ...+ ) = W) =y = (). Ay s
not satisfied if n =% .

2.16. We have now obtained the following result:

Theorem 2.1. Each of the axioms in the basis of V, is independent. For
A; and A;—A, the independence model of minimum cardinality consists of
two elements. For Ay, Ag and Aq it consists of three elements. For A, and A,
it consists of four elements. For Ay and Ay it consists of five elements.

§ 3. The basis T of C,

3.1. Consider a subset 7' of S; consisting of the following 11 equa-
tions: A;—Ay and Ay, given in 1.1, and

A (x 4+ B)* = (x* + B%) (xf)*.

Equations A;—Ay, Ap,; and A, are called the axioms.
By a substitution instance of an axiom we mean the result of substitut-
ing all letters of 4., appearing in the axiom by some regular expression
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over the alphabet A, . The replacement rule and the notion of generation
are defined as in § 1 with S replaced by 7'. The set 7' is a basis of O,
iff every equation in C, is generated by 7T .

3.2. Lemma 1.1 holds true with the set I, replaced by the set 4.,
and it is used in subsequent proofs without being explicitly referred to,
and exactly as in 1.2, we obtain the following:

Lemma 3.1. Let X be an arbitrary regular expression over A, . Then
FX+ X=X ad - X+d=X.

Lemma 3.2. Let X and Y be arbitrary regular expressions over A, .
Then

(3.1) — (XH)E = X
(3.2) EOXEXH = X%
(3.3) (XY XEYE
(3.4) (XYY = XY

Proof.! By Ag we obtain the following four equations:
(3.5) (R = g%+ XXAg.
)

3. )¥ = ¥

(3.6 (¢*X*)* p* ¢*(¢*)*X ¢

( ) (Xxlﬁk)x . ¢,< I Y$(AY*)V )’:}:

By (3.5), A; and Lemma 3.1, we can conclude that
)

(3.9 b X* = g% 4 XX* =% = X% = X — X*

and
(3.10) — X#*Y* = X* L ¥V* _ X*)% =% = X*)*% = X} — X*}'*,

Using Ay, (3.6) and (3.9), we obtain the equation (3.1). and hence, by (3.7)
and (3.9), also the equation (3.2).
The equation (3.3) is an immediate consequence of (3.1), (3.2). (3.8)
and (3.10).
Because, by A; and (3.2),
(¥ + XX*¥Y*)Y* = V* + XXN*Y*)* = )%  XX*)*
— (¢* + XX*)T*

t References to A;—A; and Ay are not mentioned in the following proofs.
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the equation (3.4) follows, by Ag and (3.9). .

Lemma 3.3. Let X and Y be arbitrary reqular expressions over A, .
Then

(3.11) (X 4+ Y)F = X*Y*
and
(3.12) = (X 4 p¥)F = X*.,

Proof. By A;, Ay (3.2) and (3.10) we obtain first
(3.13) S (X V)R = (X 4 T (X T
= (X* 4+ YY" (XY)*(X* + YV*) (XY)* = (XY)*X*Y*.
Then, by (3.3), (3.10) and (3.13),
(3.14) - XHFYF = (XY = (XY - X*Y*)*
= (XY)* (X*Y*)* (XY X*Y*)*
= XY)¥XY(X*Y*)*)(X*Y*)* = (XY)*XY)*(X*Y*)* = (XY)*X*Y*
(3.11) now follows by (3.13) and (3.14).

By A, the equation (3.12) is an immediate consequence of (3.11). [].

By Lemmas 3.1 and 3.3 Theorem 3.1 follows from the results of Red’ko
[6], Salomaa [7] and Pilling [4].

Theorem 3.1. The sef T, consisting of the equations A;—A,, Ay and
Ay, s @ basis of (', .

§ 4. Independence of the axioms in T

4.1. To prove the independence of the axioms in 7' we use models
defined as in 2.1 with the following exception: We demand only that the
set I consists of elements one of which is ¢ .

It is easy to verify that A;, is satisfied in the models of A;—A,, Ay and
Ay given in § 2. Thus it suffices to prove only the independence of Ag and
Ajs. The cardinality of every model mentioned above is not, however,
minimum (because now the additional restriction concerning the set
is not made and A, need not to be satisfied), but we do not give new models.

4.2. We now consider the model given in 2.12. In that model A;—A,
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and A;; are satisfied. Because (¢* + 2)* = (¢*)* = ¢* and
((P*)* 4 a*) (p*2)* = (¢* + a)a = a, A, is not satisfied and it is
independent.

4.3. To prove the independence of Ag we consider a 5-valued model
consisting of the elements ¢, ¢*, @, ¢ and b. The sum, catenation
and iteration of the elements are given in Tables 26. 27 and 28.

Table 26 Table 27 Table 28
atf | 4 ¢ r a b o | b p*r a b x |
| | D
bbb ¢§¢¢¢¢¢? 4 | o
g b A ¢ | g
a | a a« a a b « ¢ a a o« b a |[0D
| .
b b b b b b b }(ﬁ b l?_ bh-b* Mibu b

If we define ¢ <o¢* <ax<<a<b, then x+ = max(x,p). The
catenation can be defined as follows: If ~ £¢ and B #¢, then
af = max(x , #) , otheiwise xf = ¢ . Now it is ecasy to verify that A, —A,
and Ay are satisfied in this model.

Obviously Ay is satisfied, if &« 22 or n=1. Butif »> 1, then
(@)*p* + x4+ ...+ 2" ) =ar = a =a%. Thus A is satisfied also in
this case.

Because ¢* - wa*e* = ¢* L+ vaa = ¢* - « = o but (2a¥)* = (va)* =
a* =b, Agis not satisfied.

4.4. We have now obtained the following result:

Theorem 3.2. Each of the axioms in T is independent.

4.5. We give one further model which establishes the independence
of A}, in such a way that besides the axioms A;—A, and A;;, the additional
conditions mentioned in Lemmas 3.1 and 3.3 are satisfied (i.e. all the equa-
tions given in the original formulation of Red’ko and Salomaa).

We use a 16-valued model and the numbers 1, 2, ..., 16 are used to
designate the elements of the model (¢ =1, ¢é* = 2). The sum, catena-
tion and iteration of the elements are given in Tables 29, 30 and 31.
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Obviously Aj, Ay, Ag, A;, Ag and the equations mentioned in Lemma 3.1
are satisfied in this model.

A; is clearly satisfied if « is either 1, 2, 7, 13, 14, 15 or 16, and also if
B* = 16 . That Ay is satisfied is §* = 2 can be seen from the table below:

x |3 4 5 6 8 9 10 11 12
xa¥ 9 10 11 12 8 9 10 11 12|

If p* = 10, we obtain after some calculation that, if « is either 3, 4, 8,
9 or 10, Ag is reduced to the form 10 = 10, and if « is either 5, 6, 11 or 12,
then (xf*)* = 16 = ¢* + ax*p* . If f* =12, we can similarly verify
that Ay is satisfied.

It is easy to verify that (x 4 f)¥ = a*f* if a* =2 or f*¥ =2, ie.,
a or f8 iseither 1, 2 or 8. Hence we have in this model (x 4 ¢*)* = a*.
We suppose now that x* =2 and p* 2. If «*p* = 16, then either
max(ax* , f*) = 16 or max(x*,*) =12 and min(a*,p*) =10. In
the latter case we suppose that «* = 10 and p* = 12. Then « is either
3,4, 90r 10, and p is either 5, 6, 11 or 12. Hence « - f is either 7, 13,
14 or 15 and (x + B)*=16. If «*f* =10, then «* = f* = 10 and
hence « and B must take one of the values 3, 4, 9 or 10, and also « + f
assumes one of those values. Hence (x 4+ §)* = 10. If «*f* =12 we

can in a similar manner establish that (x -+ f)* = «*p*.
Table 29

«-+p 1 2 3 4 5 6 7 s 9 10 11 12 13 14 15 16
1 1 2 3 4+ 5 6 7T S~ oy 10 11 12 13 1+ 15 16
2 2 2 4 4 6 6 7 2 1o 1o 12 12 13 14 15 16
3 3 4+ 3 4+ 7T 7T 7T 3 9 10 13 13 13 14 15 16
4 4 4 4 4 7T 7T 7T 4 10 10 13 13 13 14 15 16
5 5 6 7 7 5 6 7 5 14 14 11 12 13 14 15 16
6 6 6 7 7 6 6 7 6 14 14 12 12 13 14 15 16
7 707 7 7 7 7 7 7 14 14 13 13 13 14+ 15 16
8 8§ 2 3 4 5 6 7 s w 10 11 12 13 14 15 16
9 9 10 9 10 14 14 14 9 9 10 15 15 15 14 15 16
10 10 10 10 10 14 14 14 1o 1o 10 15 15 15 14 15 16
11 1112 13 13 11 12 13 1l 15 15 11 12 13 15 15 16
12 12 12 13 13 12 12 13 12 15 15 12 12 13 15 15 16
13 13 13 13 13 13 13 13 13 15 15 13 13 13 15 15 16
14 14 14 14 14 14 14 14 14 14 14 15 15 15 14 15 16
15 15 15 15 15 15 153 15 15 15 15 15 15 15 15 15 16
16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16
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Table 30

«f |1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
‘ |

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 i

2 1 2 3 4+ 5 6 7 8 9 10 11 12 13 14 15 16 |

3 1 3 3 3 8 3 3 8 9 9 11 13 13 9 15 16 |

4 § 1 4 3 4 5 7 7 8 9 10 11 13 13 14 15 16 |

5 1 5 8 5 5 3 5 8 9 14 11 11 11 14 15 16 |

6 1 6 3 7 5 6 T 3 9 14 11 12 13 14 15 16 ;

7 01 7 3 7 5 7T 7 8% 9 14 11 13 13 14 15 16 |

8 ] 8 8 8 8 % 8 8 9 9 11 11 11 9 15 16 |

9 1 9 9 9 Hv H Yy 9 9 9 16 16 16 9 16 16 |

100 1 10 9 10 14 14 14 9 9 10 16 16 16 14 16 16 |
111 11 11 11 11 11 11 1l 16 16 11 11 11 16 16 16 |
12 1 12 13 13 11 12 13 11 16 16 11 12 13 16 16 16 |
13 .1 13 13 13 11 13 13 11 16 16 11 13 13 16 16 16 |
14 11 14 9 14 14 14 14 9 9 14 16 16 16 14 16 16 }
15 1 15 15 15 15 15 15 15 16 16 16 16 16 16 16 16 ;
16 |1 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 |

Table 31

o {12 3 4 5 6 7 8 9 10 1l 12 13 14 15 16 |
I !

e* | 2 2 10 10 12 12 16 2 10 10 12 12 16 16 16 16 5

Ay is clearly satisfied if n =1. If » > 1 and « # 15 then a" =«
and (a")*¥(p* -« + ... + a7 = a*(P* + «). It is now easy to verify
that o*(¢* + a) =a*. If > 1 then 15" = 16 and A, is also satisfied
in this case.

The fact that A;, A; and A; are satisfied in this model is in principle
easy to verify, but it needs much work. Hence we have done it by using
a computer. The program used and the results obtained are given in the
appendix.

If x=3 and g =5, we have in this model (x + )* = 16 and
(o* 4 B*) (xf)* = 15. Thus A, is not satisfied.
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Appendix

1C

2 C FORTRAN IV PROGRAM MENTIONED 1IN 4.5

3C

4 INTEGER SUM (16, 16). CATEN (16. 16)

5 LOGICAL Al, A2, A5

6 C

7 C SUM OF THE ELEMENTS

8§ C

9 WRITE (2, 10)

10 10 FORMAT (4HOI + J)

11 DO11I=1,16

12 READ (3, 11) (SUM (I, J), J = 1. 16)

13 11 FORMAT (1612)

14 WRITE (2, 12) (SUM (1, J), J = 1, 16)

15 12 FORMAT (1613)

16 CONTINUE

17 C

18 C CATENATION OF THE ELEMENTS
19 C

20 WRITE (2, 13)

21 13 FORMAT (4HOI*J)

22 DO 2I=1, 16

23 READ (3, 11) (CATEN (I, J), J = 1, 16)

24 WRITE (2, 12) (CATEN (I, J), J =1, 16)

25 C

26 C ARE Al. A2 AND A5 SATISFIED
27 C

28 Al = .TRUE.

29 A2 = .TRUE.

30 A5 = .TRUE.

31 DO 51I=1, 16

32 DO 5T =116

33 DO 5 K=1,16

34 C

35 C IPT=1-+1J JPK =J + K
36 C IJ = I*J IK = I*K JK = J*K
37 C

38 IPJ = SUM (1, J)

39 JPK = SUM (J, K)

40 IJ = CATEN (1, J)

41 IK = CATEXN (I, K)

42 JK = CATEN (J, K)

43 C

44 C ISI+-J+K)y=1I-+-J)~-K
45 C

46 IF (SUM (I, JPK). EQ. SUM (IPJ, K)) GOTO 3

47 Al = FALSE.

48

L=1
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49
50
51
53
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77

QQQ QQQ

QQaQ

14

15

WRITE (2, 14) L, 1, J, K
FORMAT (2HOA, I2, 17H IS NOT SATISFIED, 3I3)

IS I*(J*K) = (I*J)*K

IF (CATEN (I, JK). EQ. CATEN (IJ, K)) GOTO 4
A2 = .FALSE.

L=2

WRITE (2, 14) L, I, J, K

IS I¥(J + K) = I*J + I*K

IF (CATEN (I, JPK). EQ. SUM (IJ, IK)) GOTO 5
A5 = FALSE.

L=5

WRITE (2, 14) L, I, J, K

CONTINUE

OUTPUT IF Al, A2 OR A5 IS SATISFIED

=1
IF (Al) WRITE (2, 15) L

FORMAT (2HOA, I2, 13H IS SATISFIED)
L=2

IF (A2) WRITE (2, 15) L

L=5

IF (A5) WRITE (2, 15) L

CALL EXIT

END
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Input data

01020304050607080910111213141516
02020404060607021010121213141516
03040304070707030910131313141516
04040404070707041010131313141516
05060707050607051414111213141516
06060707060607061414121213141516
07070707070707071414131313141516
08020304050607080910111213141516
09100910141414090910151515141516
10101010141414101010151515141516
11121313111213111515111213151516
12121313121213121515121213151516
13131313131313131515131313151516
14141414141414141414151515141516
15151515151515151515151515151516
16161616161616161616161616161616
01010101010101010101010101010101
01020304050607080910111213141516
01030303080303080909111313091516
01040304050707080910111313141516
01050805050505080914111111141516
01060307050607080914111213141516
01070307050707080914111313141516
01080808080808080909111111091516
01090909090909090909161616091616
01100910141414090910161616141616
01111111111111111616111111161616
01121313111213111616111213161616
01131313111313111616111313161616
01140914141414090914161616141616
01151515151515151616161616161616
01161616161616161616161616161616
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I+J
12
2 2
3 4
4 4
5 6
6 6
707
8§ 2
9 10

10 10

112

1212

13 13

14 14

15 15

16 16

I*J
11
12
13
1 4
1 5
16
17
1 8
19
110
111
112
113
1 14
115
1 16

A1 IS SATISFIED
A 2 IS SATISFIED
A 5 IS SATISFIED

O© W T T 1 W kw

= e el el e et
SO R WwWw WO

O © W W W wwWwww

R R N TS

==
(=

13
13
13
14
15
16

He 0O M

=1 <t

© w =

10
11
13
13
14
15
16

=R BEE B e RS

b b et bl el e
Sy Ut W N e R R

or Tt o Qv

© w T G

(=2 BT = N B BTl

b b e e
T W LD MO W

—
(23NN

1 W o -

© oo W

14

12
13
14
15
16

Results obtained
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e b et e e e
QU H W W W H g g

—
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i I S e p—
S Ot He W W = e © o

© W 3 Tt WD

e e el et et i
SO WD = O

© o o 0 W W W W

o — =
S UL © - =

OO OO OO

[u—
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14
14
14

10
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16
16
14
16
16

11
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11
11
11
11
11
11
11
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16
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11
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16
16
16
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