ANNALES ACADEMIAE SCIENTIARUM FENNICAE

 $S_{eries} \ A$

I. MATHEMATICA

516

FINITE POWER PROPERTY OF REGULAR LANGUAGES

 $\mathbf{B}\mathbf{Y}$

MATTI LINNA

HELSINKI 1972 SUOMALAINEN TIEDEAKATEMIA

,

Copyright © 1972 Academia Scientiarum Fennica

ISBN 951 - 41 - 0056 - 5

Communicated 11 February 1972 by ARTO SALOMAA

KESKUSKIRJAPAINO HELSINKI 1972

•

1. Introduction

A regular language L is said to possess the *finite power property* (f.p.p.) if and only if the set

$$\{L^i | i = 0, 1, 2, \ldots\}$$

is finite. In this paper, we consider the problem of finding an algorithm for deciding whether a given regular language possesses f.p.p. First the problem is solved in the case where L is a regular language over one letter. Next some special cases are studied. A language $L(\lambda \in L)$ accepted by a permutation automaton possesses f.p.p. If $L_{m'} = L_m \cup \{\lambda\}$, where $L_m \neq \emptyset$ is a minimum root, then $L_{m'}$ does not possess f.p.p. Some results concerning the case $L^* = W(V)$ are also obtained. Finally, an algorithm is given to determine whether there exists a word $P \in L^*$ such that $P^i \notin L^i$ for all $i = 1, 2, \ldots$ The last result may give a solution to the general problem. However, we have not been able to show this and the general problem remains open.

2. Preliminaries and notations

Let V be a finite non-empty alphabet. A word over V is denoted by P or Q and the empty word by λ . The length of P is denoted by $\lg(P)$. By definition, $\lg(\lambda) = 0$. Denote by W(V) the set of all words over V. A language is any subset of W(V). The empty language is denoted by Ø. In the following, we identify an element and its unit set to simplify notation: we may denote simply by P the language $\{P\}$ consisting of the word P. For any two languages $L_1, L_2, L_1 \cup L_2, L_1 \cap L_2, L_1 - L_2$ and L_1L_2 denote the union, intersection, difference and catenation of L_1 and L_2 , and L^* denotes the iteration of L. Regular expressions considered are restricted (i.e., use only operators $\cup, \cdot, *$).

A language L is a star language if and only if (iff) there exists a language L_1 such that $L = L_1^*$. In that case L_1 is called a root of L.

A finite deterministic automaton is an ordered quintuple $A = (V, S, F, s_0, f)$, where V is an alphabet, S is a finite non-empty set of states,

A. I. 516

 $F \subseteq S$ is the set of final states, $s_0 \in S$ is the initial state and f is the transition function: $f: S \times V \to S$.

The domain of the transition function f is extended from $S \times V$ to $S \times W(V)$ in the usual way. Extend f further as follows: $f: 2^{S} \times 2^{W(V)} \rightarrow 2^{S}$, where for every $S_1 \subseteq S$ and $L \subseteq W(V)$

$$f(S_1, L) = \left\{ s \in S | s = f(s_1, P) \text{ for some } s_1 \in S_1, P \in L \right\}.$$

The language L(A) accepted by the automaton A is defined by

$$L(A) = \{ P \in W(V) | f(s_0, P) \in F \}.$$

The state graph of an automaton A accepting the language L is denoted by $G_A(L)$. The nodes of $G_A(L)$ are the states of A and, for every pair $s, s' \in S$ such that f(s, a) = s' for some $a \in V$, there is in $G_A(L)$ a directed branch leading from s to s' and labelled by a. Let A_0 be the reduced automaton accepting L. The corresponding state graph is denoted by $G_0(L)$.

Denote by $G_A^i(L)$, $i = 1, 2, \ldots$, the graph obtained from $G_A(L)$ by substituting every state s of $G_A(L)$ by s^i . An infinite graph $G_{\infty}(L)$ consists of an infinite sequence of the graphs G_A^i such that from the final states of $G_A^i(L)$, $i = 1, 2, \ldots$, there are directed branches labelled by λ to the initial state of $G_A^{i+1}(L)$. Subsets of the states of $G_{\infty}^i(L)$ are also marked by the upper index i. The only initial state of $G_{\infty}(L)$ is s_0^1 and every state s^i , where $i \ge 1$ and $s \in F$, is a final state. The functions $f_i: 2^{s^k} \times 2^{W(V)} \to 2^{s^i}$, $k \ge 1$, $i \ge k$, are defined as follows: for any $S_1 \subseteq S$ and $L \subseteq W(V)$,

$$\begin{split} f_i(S_1^k,L) &= \{s^i \in S^i | \text{ There exist words } P_j \ , \ 1 \leq j \leq i-k+1 \ , \\ & \text{ such that } P_1P_2 \dots P_{i-k+1} \in L \ , f(s_1 \ , P_1) \in F \\ & \text{ for some } s_1 \in S_1 \ , f(s_0 \ , P_j) \in F \ , \ 2 \leq j \leq i-k \ , \\ & \text{ and } f(s_0 \ , P_{i-k+1}) = s \} \end{split}$$

(i.e., $f_i(\mathbf{S}_1^k, L)$ is the set of all states $s^i \in S^i$ such that there is a path leading from a state of S_1^k to the state s^i and labelled by a word belonging to L). In the following, the notation $f_i(S_1^k, L)$ often appears in the case where S_1^k and L consist of only one element. Then we write $f_i(s, P)$ instead of $f_i(\{s\}, \{P\})$. The function

 $f_{\infty}: 2^{\mathbf{S}^{k}} \times 2^{\mathbf{W}(V)} \to 2^{i=k} \overset{\overset{\times}{\mathbf{U}} s^{i}}{\to} 2^{i=k}$

is defined by

$$f_\infty(S_1^k$$
 , $L) = \bigcup_{i=k}^\infty f_i(S_1^k$, $L)$.

Define the operator *B* as follows: for any $S' \subseteq \bigcup_{i=1}^{\omega} S^i$,

 $B(S') = \{s \in S | s^i \in S' \text{ for some } i\}.$

Obviously, the graph $G_{\infty}(L)$ accepts a word P iff $B(f_{\infty}(s_0^1, P)) \cap F \neq \emptyset$ and the language accepted by $G_{\infty}(L)$ is L^* or $L^* - \lambda$, depending on whether $\lambda \in L$ or $\lambda \notin L$.

Definition. A regular language L possesses the finite power property (f.p.p.) iff the set

$$\{L^i|i=0\ ,1\ ,2\ ,\ldots\}$$

is finite.

We consider the problem of finding an algorithm for determining whether a given regular language $L \subseteq W(V)$ possesses f.p.p.

3. One-letter case

In this section the f.p.p.-problem is solved in the case where the alphabet consists of one letter.

The first lemma holds also for all finite V's.

Lemma 1. If $L \neq \lambda$, Ø is a finite language or else $L \neq \emptyset$ and $\lambda \notin L$, then L does not possess f.p.p.

Proof. In the first case,

$$\max\left\{ \lg(P) | P \in L^{i-1} \right\} < \max\left\{ \lg(Q) | Q \in L^i \right\}, \, i=1\,,\,2\,,\ldots$$

and, in the second,

$$\min \{ \lg(P) | P \in L^{i-1} \} < \min \{ \lg(Q) | Q \in L^i \}, i = 1, 2, \dots$$

Thus, in both cases $L^i \neq L^j$ for all $i \neq j$.

Lemma 2. Every regular language over the alphabet $\{a\}$ can be expressed in the form

(1)
$$(a^c)^*(a^{p_1} \cup \ldots \cup a^{p_m}) \cup (a^{q_1} \cup \ldots \cup a^{q_n}),$$

where c, p'_i s and q'_j s are integers such that $c \ge 0$, $0 \le p_1 < p_2 < \ldots < p_m$ and $0 \le q_1 < q_2 < \ldots < q_n$.

Proof. Salomaa [2], pp. 130-131.

Theorem 1. Let L be an infinite regular language over the alphabet $\{a\}$ and $\lambda \in L$. If a regular expression of the form (1) represents L, then

$$L^* = L^{(m+n)(c+p_1)+c}$$
.

Proof. Since L is infinite, we have c > 0 in (1). It suffices to show that $L^* \subseteq L^{(m+n)(c+p_1)+c}$. Thus, assume that $P \in L^*$. Then $\lg(P)$ can be expressed in the form

$$\lg(P) = x_0 c + \sum_{i=1}^m x_i p_i + \sum_{j=1}^n y_j q_j \,,$$

where $x_i \ge 0$, $y_j \ge 0$, $0 \le i \le m$, $1 \le j \le n$, are integers, and if $x_0 > 0$ and $p_1 > 0$, then at least one x_i is positive for some i > 0. Now, there exist integers $k_i \ge 0$, $h_j \ge 0$. $1 \le i \le m$, $1 \le j \le n$, such that

$$\lg(P) = x_0 c + \sum_{i=1}^m [k_i(c+p_1) + x'_i]p_i + \sum_{j=1}^n [h_j(c+p_1) + y'_j]q_j,$$

where $0 \leq x'_i < c + p_1$, $0 \leq y'_j < c + p_1$. $1 \leq i \leq m$, $1 \leq j \leq n$. Denote

$$r = \sum_{i=1}^m k_i p_i + \sum_{j=1}^n h_j q_j \, .$$

If r = 0, then we conclude that

$$P \in L^{x_1 + \ldots + x_m + y_1 + \ldots + y_n} \subset L^{(m+n)(c+p_1)}.$$

Let r > 0. Then

$$\lg(P) = (x_0 + r)c + rp_1 + \sum_{i=1}^m x'_i p_i + \sum_{j=1}^n y'_j q_j$$

and since there exist integers $k \ge 0$ and $0 < r' \le c$ such that $rp_1 = (kc + r')p_1$, we obtain

$$\lg(P) = (x_0 + r + kp_1)c + r'p_1 + \sum_{i=1}^m x'_i p_i + \sum_{j=1}^n y'_j q_j.$$

Therefore,

$$P \in L^{x'_1 + \ldots + x'_m + y'_1 + \ldots + y'_n + r'} \subseteq L^{(m+n)(c-p_1) + c} .$$

which completes the proof.

Lemma 1 and Theorem 1 give necessary and sufficient conditions for a regular language L over $\{a\}$ to possess f.p.p.

There is an algorithm to convert a regular expression representing a language L over $\{a\}$ into the form (1). We can algorithmically also test whether two regular expressions represent the same language. Theorem 1 gives one number i such that $L^i = L^*$. Hence, there is an algorithm for finding the number $\min \{i | L^i = L^*\}$, since it suffices to test only a finite number of equations between regular expressions.

4. Some special cases

Let *L* be an infinite language over *V* and $\lambda \in L$. Obviously, $L^{i-1} \subseteq L^i$, $i = 1, 2, \ldots$, and if $P \in L^*$, $\lg(P) = k$. then $P \in L^k$.

Theorem 2. If a language $L, \lambda \in L$, possesses f.p.p. (respectively does not possess f.p.p.) and a language L_1 satisfies the conditions (i) $\lambda \in L_1$, (ii) $L_1^* = L^*$ and (iii) $L - L_1$ (respectively $L_1 - L$) is finite, then L_1 possesses f.p.p. (respectively does not possess f.p.p.).

Proof. Assume first that L possesses f.p.p. This implies the existence of an integer k such that $L^k = L^*$. Let

$$k_1 = \max \left\{ \lg(P) | P \in L - L_1 \right\}.$$

Since the case $L - L_1 = \emptyset$ is trivial, we may assume that $L - L_1 \neq \emptyset$. Hence, $k_1 > 0$. Since, by (ii), $L - L_1 \subseteq L_1^*$, we obtain $L - L_1 \subseteq L_1^{k_1}$ and, consequently, $L \subseteq L_1^{k_1}$. Therefore, $L_1^{k_{k_1}} = L_1^*$ and L_1 possesses f.p.p. Assume now that L does not possess f.p.p. and denote

$$k_2=\max\left\{ \lg(P)|P\in L_1-L\right\}.$$

Then, similarly as above, we can show that $L_1 \subseteq L^{k_2}$. Hence, L_1 does not possess f.p.p.

Next we give an example of languages possessing f.p.p.

Definition. An automaton $A = (V, S, F, s_0, f)$ is called a *permutation automaton* iff, for every $a \in V$ and $s, s' \in S, f(s, a) = f(s', a)$ implies that s = s'.

Theorem 3. A language L, where $\lambda \in L$, accepted by a permutation automaton possesses f.p.p. More specifically, if L is accepted by $A = (V, S, F, s_0, f)$, where $\# \overline{F} = k$, then $L^{k+1} = L^*$.

Proof. Assume the contrary: There is a word P such that $P \notin L^q$ but $P \in L^{q+1}$ for some q > k.

Let $G_A(L)$ be the state graph of A. Since $\lambda \in L$, we have $s_0 \in F$. Consider the infinite graph $G_{\infty}(L)$ corresponding to $G_A(L)$. Clearly, there exists an initial subword P_1 of P such that if $P'_1 \neq P_1$ is an arbitrary initial subword of P_1 , then $B(f_1(s_0^1\,,\,P_1'))\in\{s_0\}\cup \bar{F}$ and $B(f_1(s_0^1\,,\,P_1))$ $\in F - \{s_0\}$. Consequently, $B(f_{\infty}(s_0^1, P_1')) = B(f_1(s_0^1, P_1'))$ and $B(f_{\infty}(s_0^1, P_1))$ $= B(f_2(s_0^1, P_1)) = B(f_1(s_0^1, P_1)) \cup \{s_0\}$. Since $G_A(L)$ is the state graph of a permutation automaton, we have $\medskip (f_2(s_0^1\,,\,P')) \geq 2$ for an arbitrary initial subword P' of P such that $\lg(P') \ge \lg(P_1)$. Further, there exists an initial subword $P_2 = P_1 P_2'$ such that if P_2'' is an initial subword of P_2 and $\lg(P_1) \leq \lg(P_2'') < \lg(P_2)$, then $s_0 \in B(f_2(s_0^1, P_2''))$ or $B(f_2(s_0^1, P_2'')) \cap (F - \{s_0\}) = \emptyset$ and $s_0 \notin B(f_2(s_0^1, P_2))$ and $B(f_2(s_0^1, P_2))$ $\bigcap (F - \{s_0\}) \neq \emptyset. \quad \text{Consequently}, \quad B(f_{\infty}(s_0^1, P_2'')) = B(f_2(s_0^1, P_2''))$ and $B(f_{\infty}(s_0^1, P_2)) = B(f_3(s_0^1, P_2)) = B(f_2(s_0^1, P_2)) \cup \{s_0\}.$ Since $G_A(L)$ is the state graph of a permutation automaton, we have $\#(f_3(s_0^1, P_2'')) \ge 3$ for an arbitrary initial subword P'' od P such that $\lg(P'') \ge \lg(P_2)$.

By induction we obtain: If Q is an initial subword of P and $B(f_i(s_0^1, Q))$, $i \leq q$, is properly included in $B(f_{i+1}(s_0^1, Q))$, then

A.I. 516

 $\#(f_i(s_0^1, \mathbf{Q})) \ge i$. Since $P \notin L^q$ but $P \in L^{q+1}$, we conclude that $B(f_q(s_0^1, P))$ is properly included in $B(f_{q+1}(s_0^1, P))$. Hence, $\#(f_q(s_0^1, P)) \ge q > k$. By the assumption $k = \#\bar{F}$, we obtain $B(f_q(s_0^1, P)) \cap F \neq \emptyset$. This implies that $P \in L^q$, which is a contradiction.

Next we consider the minimum root of a regular language. The following lemma is found in Brzozowski [1], p. 469.

Lemma 3. If L is a star language there exists a unique root

(2)
$$L_m = (L - \lambda) - (L - \lambda)^2$$

of L contained in every other root of L. L_m is called the minimum roct of L.

If L is regular, we obtain from (2) that L_m is regular, too.

Theorem 4. If a regular language $L_m \neq \emptyset$ is a minimum root, then the language $L_{m'} = L_m \cup \lambda$ does not possess f.p.p.

Proof. By (2), $L_m \neq \lambda$. In case $L_{m'}$ is finite the assertion follows by Lemma 1. Now let $L_{m'}$ be infinite. Assume the contrary: There is an integer $k \geq 0$ such that $L_{m'}^k = L_{m'}^k$. Let $P \neq \lambda$ be a word belonging to $L_{m'}$. Consider words

$$P_2 P^i P_3 \in L_{m'},$$

for which there exist words P_1 , P_4 and integers $j_1 \ge 0$, $j_2 \ge 0$ such that $P^{j_1}P_1$, $P_4P^{j_2} \in L_{m'}^*$ and $P_1P_2 = P$ or $= \lambda$ and $P_3P_4 = P$ or $= \lambda$ and, furthermore, $\lg(P_2)$, $\lg(P_3) < \lg(P)$. We claim that there is only a finite number of words of the form (3). Assume the contrary. Since the set $\{P'|\lg(P') < \lg(P)\}$ is finite, there exist words P_2 and P_3 , which appear in infinitely many words of the form (3). Thus, there is an infinite number of words of the form $P^{j_1}P_1P_2P^{j_2}P_3P_4P^{j_2}$, where j_1 and j_2 are fixed and $P^{j_1}P_1$, $P_4P^{j_2} \in L_{m'}^*$ and $P_1P_2 = P$ or $= \lambda$ and $P_3P_4 = P$ or $= \lambda$ and, furthermore, $P_2P^{i_1}P_3 \in L_{m'}$ for infinitely many values of i. From these values of i we can choose i_1 and i_2 such that

$$\lg(P^{i_2-i_1}) \ge \lg(P^{i_1}P_3P_4P^{j_1+j_2}P_1P_2P^{i_1}) .$$

This implies that

$$P_{2}P^{i_{2}}P_{3} = P_{2}P^{i_{1}}P_{3}P_{4}P^{j_{2}}P^{r}P^{j_{1}}P_{1}P_{2}P^{i_{1}}P_{3} \in L_{m'}\,,$$

where $r \ge 0$. Since $P_2 P^{i_1} P_3$, $P_4 P^{j_2}$, P^r and $P^{j_1} P_1$ belong to $L_{m'}^*$ and L_m is a minimum root, we have a contradiction.

Now define $s = \max \{ \lg(Q) | Q \text{ is of the form (3)} \}$. Then the word $P^{ks+1} \in L_{m'}^*$ but $P^{ks+1} \notin L_{m'}^k$. This is a contradiction and the proof is completed.

In the following, let $L^* = W(V)$. Then $a \in L$ for all $a \in V$. Thus, if $G_A(L)$ is the state graph of L, then $f(s_0, a) \in F$ for all $a \in V$ and

for every word $P \in W(V)$ there is a path in $G_{\infty}(L)$ from s_0^1 to some final states of $G_{\infty}(L)$ labelled by P. Furthermore, $\lg(P) \leq q$ implies that $P \in L^{q_1}$ for some $q_1 \leq q$.

Theorem 5. Let $L^* = W(V)$ and $\lambda \in L$. If in $G_0(L)$, $\# \overline{F} = k$ and there is no cycle in the subgraph consisting of the states of \overline{F} in $G_0(L)$, then $L^{k+1} = L^*$.

Proof. Consider a word $P \in W(V)$, $\lg(P) > k$. We can write $P = P_1P_2$, where $\lg(P_2) = k$. If $f(s_0, P_1) \in F$, then clearly $P = P_1P_2 \in L^{k+1}$. Now assume that $f(s_0, P_1) \notin F$. The length of the longest word leading from the state $f(s_0, P_1)$ to some state of \overline{F} such that every intermediate state belongs to \overline{F} is at most k-1. Hence, there exist words P_3 and P_4 such that $P_2 = P_3P_4$ and $P_1P_3 \in L$. Since $\lg(P_4) < k$, we have $P = P_1P_3P_4 \in L^{k+1}$.

Theorem 6. Let $L^* = W(V)$, $\lambda \in L$ and, in $G_0(L)$, $\overline{F} = \{s_n\}$. If the number of all different non-empty subsets of F is k, then L possesses f.p.p. iff $L^{2k+1} = L^*$.

Proof. If $L^{2k+1} = L^*$, then clearly *L* possesses f.p.p. Conversely, let *L* possess f.p.p. Assume the contrary: There is a word *P* such that $P \notin L^{q-1}$ but $P \in L^q$ for some q > 2k + 1. Consider the infinite graph $G_{\infty}(L)$ corresponding to the graph $G_0(L)$. Obviously, there exist words P_1 and P_2 such that $P = P_1P_2$ and P_1 is the shortest word leading to the state s_n such that in P_2 there is no letter leading out from the state s_n . Let $f_2(s_0^1, P_1) \cap F^2 = S_1^2$. Obviously, $\# S_1^2 \ge 1$ and hence $s_0^3 \in f_3(s_0^1, P_1)$. Now, there exists an initial subword P'_2 of P_2 such that if $P''_2 \neq P'_2$ is an initial subword of P'_2 , then $f_2(S_1^2, P''_2) \cap F^2 \neq \emptyset$ and $f_2(S_1^2, P''_2) = \{s_n\}$. Since $s_0^3 \in f_3(S_1^2, P''_2)$, we have $B(f_{\infty}(S_1^2, P''_2)) = B(f_2(S_1^2, P''_2) \cup f_3(S_1^2, P''_2))$, Furthermore, $B(f_{\infty}(S_1^2, P''_2)) \cap F = B(f_3(S_1^2, P''_2)) \cup f_4(S_1^2, P''_2)) \cap F$.

By induction we obtain: If P_3 is an arbitrary initial subword of P_2 , then there exists an integer i such that

(4)
$$B(f_j(S_1^2, P_3)) = \{s_n\}, 2 \leq j \leq i-1,$$

(5)
$$B(f_{\alpha}(S_1^2, P_3)) = B(f_i(S_1^2, P_3) \cup f_{i+1}(S_1^2, P_3)) .$$

Since $P \notin L^{q-1}$ but $P \in L^q$, there exist words $Q_i, Q'_i, i = 1, 2, \ldots, q-1$, such that $P = P_1Q_iQ'_i$ and $P_1Q_i \notin L^i, P_1Q_i \in L^{i+1}$ and $\lg(Q_i) < \lg(Q_{i+1})$. Denote $S_2 = S_1 \cup \{s_0\}$. Consider the sets $B(f_{\infty}(S_1^2, Q_i)) \cap F, i = 1, 2, \ldots, q-1$. Since q-1 > 2k, some set appears at least three times. Thus, by (4) and (5), there exist $S_3 \subseteq S$, where $s_0, s_n \in S_3$, and a subword Q of P_2 such that $B(f_{\infty}(s_n^1, Q)) = \{s_n\}, B(f_{\infty}(S_3^1, Q)) \subseteq S_3$ and $f(S_3, Q) = \{s_n\}$. Therefore, $Q^i \notin L^i$ but $Q^i \in L^*$ for $i = 1, 2, \ldots$, which implies that L does not possess f.p.p. This is a contradiction completing the proof.

5. The main result

Definition. Let S_1 and S_2 be subsets of S in $G_0(L)$. Then define

$$\begin{split} L^1_{S_1S_2} &= \{ P \in W(V) | f(s_1 , P) = s_2 , s_1 \in S_1 , s_2 \in S_2 \} \,, \\ L^\infty_{S_1S_*} &= \{ P \in W(V) | B(f_\infty(S_1^1 , P)) \ \underline{\subset} \ S_2 \} \,. \end{split}$$

Lemma 4. The language L_{S,S_*}^{∞} is regular.

Proof. It is a well-known fact that L_{S,S_*}^1 is regular. Obviously,

(6)
$$L_{S_1S_2}^{\infty} = (L_{S_1S_2}^1 \cup L_{S_1F}^1 L^* L_{s_0S_2}^1) - (L_{S_1\overline{S}_2}^1 \cup L_{S_1F}^1 L^* L_{s_0\overline{S}_2}^1).$$

Hence, L_{S,S_*}^{∞} is regular, too.

Theorem 7. Let L be a regular language, $\lambda \in L$, and in $G_0(L)$, # S = n + 1. There exists a word $Q \in L^*$ such that $Q^i \notin L^i$, i = 1, $2, \ldots$, iff there exist $S_1 \subseteq S$, where $s_0 \in S_1$, and $S_2 \subseteq \overline{F}$ such that

(7)
$$L_1 = (L_{S_1S_1}^{\infty} \cap L_{S_2S_2}^{\infty} \cap L^*) - L_{S_1\overline{S}_2}^1 \neq \emptyset .$$

Proof. Assume first that $L_1 \neq \emptyset$. Let $P \in L_1$. This implies that $P \notin L$ and hence $P \neq \lambda$. By (7), $f_1(s_0^1, P) \in S_2^1$ and $f_2(s_0^1, P) \subseteq S_1^2$. Similarly, $f_2(s_0^1, P^2) \subseteq S_2^2$ and $f_3(s_0^1, P^2) \subseteq S_1^3$. We can generally verify that for all $j \leq i$, $f_j(s_0^1, P^i) \subseteq S_2^i$ and $f_{i+1}(s_0^1, P^i) \subseteq S_1^{i+1}$. Therefore, $P^i \notin L^i$, $i = 1, 2, \ldots$

Assume, conversely, that $P \in L^*$ but $P^i \notin L^i$, $i = 1, 2, \ldots$ Let

$$S' = \bigcup_{i=0}^{\infty} B(f_{\infty}(s_0^1, P^i))$$

and choose

$$S_2 = \left\{s \in S' \,|\, (\bigcup_{i=1}^{\infty} B(f_{\infty}(s^1\,,\,P^i))) \cap F = \varnothing\right\}.$$

We claim that $S_2 \neq \emptyset$. Consider, in $G_{\infty}(L)$, the states $f_1(s_0^1, P)$, $f_1(s_0^1, P^2), \ldots, f_1(s_0^1, P^{n+1})$. Since #S = n + 1, there exist integers i_1 and i_2 such that $1 \leq i_1 < i_2 \leq n + 2$ and $f(s_0, P^{i_1}) = f(s_0, P^{i_2})$. The states $f(s_0, P^i)$, $i_1 \leq i \leq i_2$, belong to the set S_2 for otherwise the condition $P^i \notin L^i$, $i = 1, 2, \ldots$, does not hold. Thus $S_2 \neq \emptyset$.

Since the number of different subsets of the set S' is finite, there exist positive integers k_1 and k_2 such that $k_2 - k_1 \ge n + 2$ and

$$B(f_{\infty}(s^1_0\,,\,P^{k_1}))=B(f_{\infty}(s^1_0\,,\,P^{k_2}))$$
 .

Choose $S_1 = B(f_{\infty}(s_0^1, P^{k_1}))$ and $Q = P^{k_2-k_1}$. Since $P^{k_1} \in L^*$, then also $s_0 \in S_1$.

From the considerations above it follows that

$$P^{k_2-k_1} \in L^\infty_{S,S_1} \cap L^\infty_{S,S_2} \cap L^*$$
 .

Assume now that $s \in S_1$. Consider the states $f(s, P), f(s, P^2), \ldots, f(s, P^{n+2}), \ldots, f(s, P^{k_2-k_1})$. Since # S = n + 1, there exist integers i_1 and i_2 such that $1 \leq i_1 < i_2 \leq n + 2$ and $f(s, P^{i_1}) = f(s, P^{i_2})$. The states $f(s, P^i), i_1 \leq i \leq k_2 - k_1$, belong to the set S_2 for otherwise the condition $P^i \notin L^i, i = 1, 2, \ldots$, does not hold. Thus $P^{k_2-k_1} \notin L^1_{S_1\overline{S_e}}$, which implies that $P^{k_2-k_1} \in L_1$. This completes the proof.

It is a well-known fact that there is an algorithm for constructing a regular expression representing the language $L_{S_1S_2}^1$. Hence, by (6), we can algorithmically construct a regular expression representing the language $L_{S_1S_2}^{\infty}$ and test whether in (7) $L_1 \neq \emptyset$. If the answer to the following problem is yes, then Theorem 7 solves the f.p.p.-problem.

Problem. Let L, where $\lambda \in L$, be a regular language not possessing f.p.p. Does there always exist a word $P \in L^*$ such that $P^i \notin L^i$ for all $i = 1, 2, \ldots$?

For instance, in cases like Theorems 4 and 6 the answer is yes.

University of Turku Turku, Finland

References

[1] BRZOZOWSKI, J. A.: Roots of star events, J. Assoc. Comput. Mach. 14, 1967, 466-477.

[2] SALOMAA, A.: Theory of Automata, Pergamon Press, 1969.

Printed September 1972