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1. Introduction

A regular language L is said to possess the finite power property (f.p.p.)
if and only if the set

(Lii=0,1,2,..1

is finite. In this paper, we consider the problem of finding an algorithm
for deciding whether a given regular language possesses f.p.p. First the
problem is solved in the case where L is a regular language over one
letter. Next some special cases are studied. A language L (1 € L) accepted
by a permutation automaton possesses fp.p. If L, = L, U {1}, where
L, # @ is a minimum root, then L, does not possess f.p.p. Some results
concerning the case L* = W(V) are also obtained. Finally, an algorithm
is given to determine whether there exists a word P € L* such that P’ ¢ L}
for all +=1,2,... The last result may give a solution to the general
problem. However, we have not been able to show this and the general
problem remains open.

2. Preliminaries and notations

Let V' Dbe a finite non-empty alphabet. A word over V is denoted by
P or @ and the empty word by /. The length of P is denoted by 1g(P).
By definition, Ig(Z) = 0. Denote by TI'(V) the set of all words over V.
A language is any subset of 1I'(1") . The empty language is denoted by @ .
In the following, we identify an element and its unit set to simplify nota-
tion: we may denote simply by P the language {P} consisting of the
word P . For any two languages L,,L,.L,UL,.L,NL,, L, — L,
and L,L, denote the umion, tntersection, difference and catenation of L,
and L,, and L* denotes the iteration of L. Regular expressions consid-
ered are restricted (i.e., use only operators U, ., x).

A language L is a star language if and only if (iff) there exists a lan-
guage L; such that L = L. In that case L, is called a root of L .

A finite deterministic automaton is an ordered quintuple 4 = (V, S,
F,sy,f), where V is an alphabet, S is a finite non-empty set of stafes,
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F c S is the set of final states, s, €S is the inilial state and f is the
transition function: f:8 <X V— 8.

The domain of the transition function f is extended from S < V to
S x W(V) in the usual way. Extend f further as follows: f:2% 270
2%, where for every S, c S and L c T (V)

f8;.,L)={s€8|s =f(s;,P) for some s, €S5,,P€L}.
The language L(A) accepted by the automaton A is defined by
L(4) = {P € W(V)|fts, . P) € F}.

The state graph of an automaton A4 accepting the language L is
denoted by G,(L). The nodes of G (L) are the states of A4 and, for
every pair s,s’ €S such that f(s,a) =s" for some a €V, there is
in G4L) a directed branch leading from s to s’ and labelled by a.
Let 4, be the reduced automaton accepting L . The corresponding state
graph is denoted by GyL) .

Denote by &(L),i=1,2,..., the graph obtained from G 4(L)
by substituting every state s of G (L) by s'. An infinite graph G_(L)
consists of an infinite sequence of the graphs @, such that from the final
states of GY(L),i=1,2,..., there are directed branches labelled by
J to the initial state of G'f'(L). Subsets of the states of G’ (L) are also
marked by the upper index 7. The only initial state of /(L) is s; and
every state s, where ¢ =1 and s € F, is a final state. The functions
fi 2" 2" 9% L >1,i=Fk, are defined as follows: for any

S, cS and Lc W(V),

fi(S%¥, L) = {s' € 8| There exist words P;, 1 =<j=<i k-1,
such that P,P,...P, ;. ,€L,f(s,,P;) €EF
for some s, €8;,f(s,, P))€EF ,2=5j=<7—Fk,
and f(sg, P;_j.1) = s}

(i.e., fi(St, L) is the set of all states s' € S' such that there is a path
leading from a state of S% to the state s' and labelled by a word belong-
ing to L). In the following, the notation f,(S%¥, L) often appears in the
case where S; and L consist of only one element. Then we write fi(s, P)

instead of fi({s},{P}). The function

E
N

L oSk L ow( ik
fo:25 x 270 52

is defined by

Define the operator B as follows: for any S ¢ U S

i=1
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B(S') ={s€Ss"€8 for some i}.

Obviously, the graph ¢ _(L) accepts a word P iff B(f, (st,P))NF # O
and the language accepted by (L) is L* or L* — 2, depending on
whether A€L or 1¢L.

Definition. A regular language L possesses the finite power property
(fp.p.) iff the set

is finite.
We consider the problem of finding an algorithm for determining
whether a given regular language L c W(V) possesses f.p.p.

3. One-letter case

In this section the f.p.p.-problem is solved in the case where the alpha-
bet consists of one letter.

The first lemma holds also for all finite V's.

Lemma 1. If L 5 A, O isa finite language or else L = O and )¢ L,
then L does not possess f.p.p.

Proof. In the first case,

max {lg(P)|P € L™} < max {lg@)Q € L'} ,i=1,2,...
and, in the second,
min {Ig(P)|[P € L'} < min{lg(@)Q €L}, i=1,2,...

Thus, in both cases L= L/ for all i+ j.
Lemma 2. FEvery regular language over the alphabet {a} can be expressed
wn the form

(1) (@)@ U ... UaPm)U @ U...Ugn),

where ¢, p;s and q]'.s are integers such that ¢ = 0,0 < p; < py < ... < Pm
and 0 =q, <qg, <...<(n

Proof. Salomaa [2], pp. 130—131.

Theorem 1. Let L be an infinite regular language over the alphabet
{a} and 2 € L. If a reqgular expression of the form (1) represents L, then

L* — L(m tn)(c4py)-te .

Proof. Since L is infinite, we have ¢ > 0 in (1). It suffices to show
that L* ¢ Li*tWCtpdte  Thus, assume that P € L*. Then lg(P) can
be expressed in the form
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m n

le(P) = ¢ + S o+ S g
i= =1
where =0,y =0,0=i=m,1=j=n, are integers, and if
2 >0 and p,; >0, then at least one a; is positive for some ¢ > 0.
Now, there exist integers ki =0, =0.1=7{<=m .1 =j=n, such
that
lg(P) = 2oc + z [kie+py) + @ilp + Z [hi(e+p1) + yilg; -
i=1 i=1

’

where 0 <a] <c+p, . 0=y <c-tp,.1=i=m.1=j=n.
Denote

o= Z ,Z;,,])i — El ]?‘,'(]j .

=1 i
If » =0, then we conclude that
P € ]Jx‘— B N AR AT c ‘L(m—}n)(c “p) .

Let > 0. Then
Ig(P) = (g + 1) +rpy — > i > .’/}‘Ij
o1 i=1
and since there exist integers &k = 0 and 0 -2 = ¢ such that rp, =
(ke + 7)p,, we obtain

m n

1g(P) = (&g + 7 4 kpy)e = 'py — X alp; — > !/;;‘I, .
(-1

i j=1
Therefore,
L T I SEET I A o (m - njc-p) ¢
€L c L .

which completes the proof.

Lemma 1 and Theorem 1 give necessary and sufficient conditions for
a regular language L over {a} to possess fp.p.

There is an algorithm to convert a regular expression representing a
language L over {a} into the form (1). We can algorithmically also test
whether two regular expressions represent the same language. Theorem 1
gives one number 7 such that L' = L*. Hence. there is an algorithm
for finding the number min {¢/L’ = L*}. since it suffices to test only
a finite number of equations between regular expressions.

4, Some special cases

Let L be an infinite language over T and % € L. Obviously, L'~'
cLi,i=1,2...., and if P€L* IgP)-="F. then PeLr.
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Theorem 2. If a language L, A € L, possesses f.p.p. (respectively does
not possess f.p.p.) and a language L, satisfies the conditions (i) A € L,,
(i) Lf = L* and (iii) L — L, (respectively L, — L) is finite, then L,
possesses f.p.p. (respectively does not possess f.p.p.).

Proof. Assume first that L possesses f.p.p. This implies the existence
of an integer k such that L* = L*. Let

%, = max {lg(P)\P € L — L,}.

Since the case L — L; = @ is trivial, we may assume that L — L, = O .
Hence, k, > 0. Since, by (ii), L — L, c L{, we obtain L — L, ¢ L}’
and, consequently, L c Lj'. Therefore, L' = L¥ and L, possesses
f.p.p. Assume now that L does not possess f.p.p. and denote

ky = max {lg(P)|P € L, — L} .

Then, similarly as above, we can show that L, c L* . Hence, L, does
not possess f.p.p.

Next we give an example of languages possessing f.p.p.

Definition. An automaton A4 = (I'.S.F.s,,f) is called a permuta-
tion automaton iff, for every « €V and s,s €S.,f(s,a)=f(s",a)
implies that s =¢".

Theorem 3. A language L, where A€ L, accepted by a permutation
automaton possesses f.p.p. More specifically, if L is accepted by A =
(V,S,F,sy,f), where #F =1k, then L''—=L*.

Proof. Assume the contrary: There is a word P such that P ¢ L’
but P € L' for some ¢ > k.

Let G,(L) be the state graph of A . Since 1€ L, we have s, € F .
Consider the infinite graph G (L) corresponding to G (L) . Clearly, there
exists an initial subword P, of P such that if P) = P, is an arbitrary
initial subword of P;, then B(f,(sh,P;)) €{s,) UF and B(fi(sy, P1))
€F — {s,}. Consequently, B(f.(s;,P;) = B(fi(sy . P) and B(f,.(so , P1))
= B(fa(sy s P1)) = B(fi(ss s Py)) U {sy}. Since G (L) is the state graph
of a permutation automaton, we have # (fy(s;.P’)) = 2 for an arbitrary
initial subword P’ of P such that lg(P’) =lg(P,). Further, there
exists an initial subword P, = P,P, such that if Pjis an initial sub-
word of P, and lg(P,) <lg(P;) < lg(P,). then s, € B(fy(sy, Py)) or
B(fufsh, )N (F —{sy}) = O and s, € Bifalsh. Py)) and B(flsh, Py)
N (F —{s)}) # 0. Consequently, B(f,(s;,Ps)) = B(fs(ss , P3)) and
B(f.(s5, Po) = B(fylsh, Po)) = B(falsh, P)) U{sy} . Since G,(L) is the
state graph of a permutation automaton, we have Z(fy(sy, Py)) = 3
for an arbitrary initial subword P od P such that 1g(P"”) = 1g(P,) .

By induction we obtain: If ¢ is an initial subword of P and
B(fi(sy, Q) .7 =q, is properly included in B(fi,i(sy,Q)), then
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Z£(fi(s5 Q) = 4 . Since P € L? but P €L#"" | we conclude that B(f(s; , P))
is properly included in B(f,,(s;, P)). Hence, #(fyso,P)) =q> k.
By the assumption k = #F, we obtain B(fy(s;, P)) N F # @ . This
implies that P € L?, which is a contradiction.

Next we consider the minimum root of a regular language. The follow-
ing lemma is found in Brzozowski [1], p. 469.

Lemma 3. If L 1is a star language there exists a unique root

) Ly = (L — 2) — (L — 22

—
(V)

L.

If L is regular, we obtain from (2) that L, is regular, too.

Theorem 4. If a regular language L. # @ is a minimum root, then the
language L, = L, U 1 does not possess f.p.p.

Proof. By (2),Lm # A. In case L, is finite the assertion follows
by Lemma 1. Now let L, be infinite. Assume the contrary: There is
an integer k = 0 such that L!, = L¥* . Let P s . be a word belonging
to L, . Consider words

(3) P,P'Py €L, ,

of L contained in every other root of L. L. ts called the minimum roct
of

for which there exist words P;,P, and integers j, = 0,j, =0 such
that P:P,,P,P:€L%* and PPy,=P or=/% and P;P,=P or
= A and, furthermore, lg(P,),lg(P;) <l1g(P). We claim that there is
only a finite number of words of the form (3). Assume the contrary. Since
the set {P’|lg(P’) << 1g(P)} is finite, there exist words P, and P, which
appear in infinitely many words of the form (3). Thus, there is an infinite
number of words of the form PP ,P,P'P,P,P", where j, and j, are
fixed and P:P,,P,P:€L¥ and P,P,=P or =) and P,P,=P
or = A and, furthermore, P,P'P, € L, for infinitely many values of 7.
From these values of ¢ we can choose i; and ¢, such that

]g(P"“_i‘) > lg(Pi‘P3P4Pj;;sz1P2Pil) .
This implies that
P,P:P, = P,P"P,P,P*P"P'P,P,P"P, € L,.,

where 7 =0. Since P,P"P,,P,P: P and P'P, belong to LZ
and L, 1is a minimum root, we have a contradiction.

Now define s = max {lg(@)/@ is of the form (3)}. Then the word
Pretle L¥, but P+l e LF,. This is a contradiction and the proof is
completed.

In the following, let L* = W(V). Then a € L for all ¢« € V. Thus,
if G (L) is the state graph of L, then f(s,,a) € F forall « €V and
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for every word P € W (V) there is a path in G_(L) from s; to some
final states of G _(L) labelled by P . Furthermore, lg(P) = q implies
that P € L for some ¢; <gq.

Theorem 5. Let L*¥ = W(V) and L€L. If in GyL),#F =1k
and there is no cycle in the subgraph consisting of the states of F in Gy(L),
then L*+' = L*.

Proof. Consider a word P € W (V) ,lg(P) > k. We can write P =
P.,P,, where lg(P,) =Fk. If f(s,,P,) €F, then clearly P = PP,
€ L¥*'. Now assume that f(s,, P;) € F. The length of the longest word
leading from the state f(s,, P;) to some state of F such that every inter-
mediate state belongs to F is at most £ — 1. Hence, there exist words
P, and P, such that P, = P;P, and P, P;€L. Since lg(P,) <k,
we have P = P,P,P,€L'"".

Theorem 6. Let L* = W(V),A€L and, in GyL),F = {s,}. If the
number of all different non-empty subsets of F s k, then L possesses
fpp. iff L* = L*.

Proof. If L**' = L*, then clearly L possesses f.p.p. Conversely, let
L possess f.p.p. Assume the contrary: There is a word P such that P ¢
L' but P € 17 for some q > 2k -+ 1. Consider the infinite graph @ (L)
corresponding to the graph Gy(L). Obviously, there exist words P,
and P, such that P = P,P, and P, is the shortest word leading to
the state s, such thatin P, thereis no letter leading out from the state s, .
Let  fo(st, P;)NF2=_8}. Obviously, #A87 =1 and hence s,€
fa(sy, P;) . Now, there exists an initial subword P, of P, such that if
P, = P} is an initial subword of P,, then f,(S},P;))N F2 =+ @ and
fo(S3, Py) = {s.}. Since s} €f3(S7,P;), we have B(f,(Si,P;) =
B(fy(S2, P3) Ufy(ST, Py)), Furthermore, B(f,,(S3, Py) N F = B(fy(S%, P})
UfulS1, P)NF.

By induction we obtain: If P; is an arbitrary initial subword of P,,
then there exists an integer ¢ such that
(4) B(fJ(S%is)):{sn}:QéJéi—l,

(3) B(f,.(S1, P3)) = B(fi(S7, Py) U fi 1 (ST, Py)) -

Since P ¢ L'~! but P € L?, there exist words Q,,Q,,i=1,2,...,
q— 1, such that P = P,Q,Q; and P,Q,¢L,P.,Q, €L*" and lg(Q,)
<1g(@;,;) . Denote 8,=.8;U{s,}. Consider the sets B(f,(S}, Q)
NF,i=1,2,...,9q—1. Since ¢ — 1> 2k, some set appears at
least three times. Thus, by (4) and (5), there exist S; S, where s, s,
€S, , and a subword @ of P, such that B(f.(s., @)) = {s.}, B(f.(S;,®Q))
c 8y and f(S;, Q) = {sn}. Therefore, Q' ¢ L' but @ €L* for i=1,
2,..., which implies that L does not possess f.p.p. This is a contra-
diction completing the proof.
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5. The main result

Definition. Let S; and S, be subsets of S in Gy(L). Then define
L, ={P€W(V)|f(s,, P) = 83,5, €8;,5,€8,},
&s, = (P € W(V)IB(f..(S1, P)) € S} -
Lemma 4. The language Lgs 1s regular.
Proof. 1t is a well-known fact that Lgg is regular.  Obviously,
(6) Lgs, = (Lys, U Ly pL*Lys) — (L5, U Ly pL*L,g) -

Hence, Lgs is regular, too.

Theorem 7. Let L be a regular language, A €L, and in GyL),
# S =mn+ 1. There exists a word @ €L* such that Q el ,i=1,
2, ..., iff there exist S; S, where s,€S8;, and S,c F such that

(7) Ly = (Lgs, N L, N L¥) — Lys, # O .

Proof. Assume first that L; = 0. Let P €L;. This implies that
P¢L and hence P 4. By (7),fi(sy,P) €S, and falss . P) c ST
Similarly, fa(ss, P?) S5 and fy(sy, P?) ¢ 83 . We can geneml]} verify
that for all j =<1i,fi(sy,P)c S and f_ (s, P)c S . Therefore,
Pel,i=1,2, o

Assume, conversely, that P €L* but P ¢L',i=1,2,... Let

= U B(f. (s}, P)

and choose

8

So={s €S'I(U B, P) N F = 0}

We claim that S, s @ . Consider, in G_(L), the states fy(s,,P),
falss s P2y, ... fa(sy, PPy . Since # S =mn+ 1, there exist integers
i, and 4, such that 1 =<4, <i, <n-+2 and f(s,, P") = fl(s,. P").
The states f(sy, P),0; =1 =15, belong to the set S, f01 otherwise
the condition P'e¢L',i=1,2,..., does not hold. Thus S, O.
Since the number of different subsets of the set S’ is finite, there
exist positive integers k; and k, such that k, —k,=n-+2 and

B(f.(s5, P*) = B(f,(s5 . P*)) .

Choose 8, = B(f,(st,P") and @ = P% ™. Since P"€L*, then
also s, €85, .
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From the considerations above it follows that
PsheLis N LT, N L*.

Assume now that s €.S;. Consider the states f(s,P),f(s,P?),....
fls, Py oo f(s, PoR) . Since # S =mn -1, there exist integers
iy and 7, such that 1=1¢ <i,=n-+2 and f[f(s, P = f(s, P").
The states f(s,P),i; =i <k, — k, ., belong to the set S, for other-
wise the condition P'@ L',¢=1,2,.., does not hold. Thus P&*
€ Liz , which implies that P*~* € L, . This completes the proof.

It is a well-known fact that there is an algorithm for constructing
a regular expression representing the language L;lsz. Hence, by (6),
we can algorithmically construct a regular expression representing the
language Lgs and test whether in (7) L, # © . If the answer to the
following problem is ves, then Theorem 7 solves the f.p.p.-problem.

Problem. Let L. where 2 € L, be a regular language not possessing
f.p.p. Does there always exist a word P € L* such that P ¢ L' for all
1=1,2,...1

For instance, in cases like Theorems 4 and 6 the answer is ves.

University of Turku
Turku, Finland
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