Series A

I. MATHEMATICA
 516

FINITE POWER PROPERTY OF REGULAR LANGUAGES

BY

MATTI LINNA

Copyright © 1972
Academia Scientiarum Fennica
ISBN 951-41-0056-5

Communicated 11 February 1972 by Arto Salomaa

1. Introduction

A regular language L is said to possess the finite power property (f.p.p.) if and only if the set

$$
\left\{L^{i} \mid i=0,1,2, \ldots\right\}
$$

is finite. In this paper, we consider the problem of finding an algorithm for deciding whether a given regular language possesses f.p.p. First the problem is solved in the case where L is a regular language over one letter. Next some special cases are studied. A language $L(\lambda \in L)$ accepted by a permutation automaton possesses f.p.p. If $L_{m^{\prime}}=L_{m} \cup\{\lambda\}$, where $L_{m} \neq \varnothing$ is a minimum root, then $L_{m^{\prime}}$ does not possess f.p.p. Some results concerning the case $L^{*}=W(V)$ are also obtained. Finally, an algorithm is given to determine whether there exists a word $P \in L^{*}$ such that $P^{i} \notin L^{i}$ for all $i=1,2, \ldots$ The last result may give a solution to the general problem. However, we have not been able to show this and the general problem remains open.

2. Preliminaries and notations

Let V be a finite non-empty alphabet. A word over V is denoted by P or Q and the empty word by λ. The length of P is denoted by $\lg (P)$. By definition, $\lg \left(\lambda_{1}\right)=0$. Denote by $W(V)$ the set of all words over V. A language is any subset of $W\left(V^{\prime}\right)$. The empty language is denoted by \varnothing. In the following, we identify an element and its unit set to simplify notation: we may denote simply by P the language $\{P\}$ consisting of the word P. For any two languages $L_{1}, L_{2}, L_{1} \cup L_{2}, L_{1} \cap L_{2}, L_{1}-L_{2}$ and $L_{1} L_{2}$ denote the union, intersection, difference and catenation of L_{1} and L_{2}, and L^{*} denotes the iteration of L. Regular expressions considered are restricted (i.e., use only operators $U, \cdot, *$).

A language L is a star language if and only if (iff) there exists a language L_{1} such that $L=L_{1}^{*}$. In that case L_{1} is called a root of L.

A finite deterministic automaton is an ordered quintuple $A=(V, S$, $\left.F, s_{0}, f\right)$, where V is an alphabet, S is a finite non-empty set of states,
$F \subseteq S$ is the set of final states, $s_{0} \in S$ is the initial state and f is the transition function: $f: S \times V \rightarrow S$.

The domain of the transition function f is extended from $S \times V$ to $S \times W(V)$ in the usual way. Extend f further as follows: $f: 2^{4} \times 2^{W(V)} \rightarrow$ 2^{S}, where for every $S_{1} \subseteq S$ and $L \subseteq W(V)$

$$
f\left(S_{1}, L\right)=\left\{s \in S \mid s=f\left(s_{1}, P\right) \text { for some } s_{1} \in S_{1}, P \in L\right\}
$$

The language $L(A)$ accepted by the automaton A is defined by

$$
L(A)=\left\{P \in W(V) \mid f\left(s_{0}, P\right) \in F\right\}
$$

The state graph of an automaton A accepting the language L is denoted by $G_{A}(L)$. The nodes of $G_{A}(L)$ are the states of A and, for every pair $s, s^{\prime} \in S$ such that $f(s, a)=s^{\prime}$ for some $a \in V$, there is in $G_{A}(L)$ a directed branch leading from s to s^{\prime} and labelled by a. Let A_{0} be the reduced automaton accepting L. The corresponding state graph is denoted by $G_{0}(L)$.

Denote by $G_{A}^{i}(L), i=1,2, \ldots$, the graph obtained from $G_{A}(L)$ by substituting every state s of $G_{A}(L)$ by s^{i}. An infinite graph $G_{\infty}(L)$ consists of an infinite sequence of the graphs G_{A}^{i} such that from the final states of $G_{A}^{i}(L), i=1,2, \ldots$, there are directed branches labelled by λ to the initial state of $G_{A}^{i+1}(L)$. Subsets of the states of $G_{A}^{i}(L)$ are also marked by the upper index i. The only initial state of $G_{\infty}(L)$ is s_{0}^{1} and every state s^{i}, where $i \geqq 1$ and $s \in F$, is a final state. The functions $f_{i}: 2^{s^{k}} \times 2^{W(V)} \rightarrow 2^{s^{i}}, k \geqq 1, i \geqq k$, are defined as follows: for any $S_{1} \subseteq S$ and $L \subseteq W(V)$,

$$
\begin{aligned}
f_{i}\left(S_{1}^{k}, L\right)= & \left\{s^{i} \in S^{i} \mid \text { There exist words } P_{j}, 1 \leqq j \leqq i-k+1,\right. \\
& \text { such that } P_{1} P_{2} \ldots P_{i-k+1} \in L, f\left(s_{1}, P_{1}\right) \in F \\
& \text { for some } s_{1} \in S_{1}, f\left(s_{0}, P_{j}\right) \in F, 2 \leqq j \leqq i-k \\
& \text { and } \left.f\left(s_{0}, P_{i-k+1}\right)=s\right\}
\end{aligned}
$$

(i.e., $f_{i}\left(\mathrm{~S}_{1}^{k}, L\right)$ is the set of all states $s^{i} \in S^{i}$ such that there is a path leading from a state of S_{1}^{k} to the state s^{i} and labelled by a word belonging to L). In the following, the notation $f_{i}\left(S_{1}^{k}, L\right)$ often appears in the case where S_{1}^{k} and L consist of only one element. Then we write $f_{i}(s, P)$ instead of $f_{i}(\{s\},\{P\})$. The function

$$
f_{\infty}: 2^{s^{k}} \times 2^{W(V)} \rightarrow 2^{\bigcup_{i=k}^{x}, ~}
$$

is defined by

$$
f_{\infty}\left(S_{1}^{k}, L\right)=\bigcup_{i=k}^{\infty} f_{i}\left(S_{1}^{k}, L\right)
$$

Define the operator B as follows: for any $S^{\prime} \subseteq \bigcup_{i=1}^{\infty} S^{i}$,

$$
B\left(S^{\prime}\right)=\left\{s \in S \mid s^{i} \in S^{\prime} \text { for some } i\right\}
$$

Obviously, the graph $G_{\infty}(L)$ accepts a word P iff $B\left(f_{\infty}\left(s_{0}^{1}, P\right)\right) \cap F \neq \varnothing$ and the language accepted by $G_{\infty}(L)$ is L^{*} or $L^{*}-\lambda$, depending on whether $\lambda \in L$ or $\lambda \notin L$.

Definition. A regular language L possesses the finite power property (f.p.p.) iff the set

$$
\left\{L^{i} \mid i=0,1,2, \ldots\right\}
$$

is finite.
We consider the problem of finding an algorithm for determining whether a given regular language $L \subseteq W(V)$ possesses f.p.p.

3. One-letter case

In this section the f.p.p.-problem is solved in the case where the alphabet consists of one letter.

The first lemma holds also for all finite V 's.
Lemma 1. If $L \neq \lambda, \emptyset$ is a finite language or else $L \neq \varnothing$ and $\lambda \notin L$, then L does not possess f.p.p.

Proof. In the first case,

$$
\max \left\{\lg (P) \mid P \in L^{i-1}\right\}<\max \left\{\lg (Q) \mid Q \in L^{i}\right\}, i=1,2, \ldots
$$

and, in the second,

$$
\min \left\{\lg (P) \mid P \in L^{i-1}\right\}<\min \left\{\lg (Q) \mid Q \in L^{i}\right\}, i=1,2, \ldots
$$

Thus, in both cases $L^{i} \neq L^{j}$ for all $i \neq j$.
Lemma 2. Every regular language over the alphabet $\{a\}$ can be expressed in the form

$$
\begin{equation*}
\left(a^{c}\right) *\left(a^{p_{1}} \cup \ldots \cup a^{p_{m}}\right) \cup\left(a^{q_{1}} \cup \ldots \cup a^{q_{n}}\right) \tag{1}
\end{equation*}
$$

where $c, p_{i}^{\prime} s$ and $q_{j}^{\prime} s$ are integers such that $c \geqq 0,0 \leqq p_{1}<p_{2}<\ldots<p_{m}$ and $0 \leqq q_{1}<q_{2}<\ldots<q_{n}$.

Proof. Salomaa [2], pp. 130-131.
Theorem 1. Let L be an infinite regular language over the alphabet $\{a\}$ and $\lambda \in L$. If a regular expression of the form (1) represents L, then

$$
L^{*}=L^{(m \dashv n)\left(c+p_{1}\right)+c}
$$

Proof. Since L is infinite, we have $c>0$ in (1). It suffices to show that $L^{*} \subseteq L^{(m+n)\left(c+p_{1}\right)+c}$. Thus, assume that $P \in L^{*}$. Then $\lg (P)$ can be expressed in the form

$$
\lg (P)=x_{0} c+\sum_{i=1}^{m} x_{i} p_{i}+\sum_{j=1}^{n} y_{j} q_{j}
$$

where $\quad x_{i} \geqq 0, y_{j} \geqq 0,0 \leqq i \leqq m, 1 \leqq j \leqq n$, are integers, and if $x_{0}>0$ and $p_{1}>0$, then at least one x_{i} is positive for some $i>0$. Now, there exist integers $k_{i} \geqq 0, h_{j} \geqq 0.1 \leqq i \leqq m, 1 \leqq j \leqq n$, such that

$$
\lg (P)=x_{0} c+\sum_{i=1}^{m}\left[k_{i}\left(c+p_{1}\right)+x_{i}^{\prime}\right] p_{i}+\sum_{j=1}^{n}\left[h_{j}\left(c+p_{1}\right)+y_{j}^{\prime}\right] q_{j}
$$

where $0 \leqq x_{i}^{\prime}<c+p_{1}, 0 \leqq y_{j}^{\prime}<c+p_{1} .1 \leqq i \leqq m, 1 \leqq j \leqq n$.
Denote

$$
r=\sum_{i=1}^{m} k_{i} p_{i}+\sum_{j=1}^{n} h_{i} q_{j}
$$

If $r=0$, then we conclude that

$$
P \in L^{x_{1}+\ldots+x_{m}+y_{1}+\cdots+y_{n}} \subseteq L^{(m+n)\left(c+p_{1}\right)}
$$

Let $r>0$. Then

$$
\lg (P)=\left(x_{0}+r\right) c+r p_{1}+\sum_{i=1}^{m} x_{i}^{\prime} p_{i}+\sum_{j=1}^{n} y_{j}^{\prime} q_{j}
$$

and since there exist integers $k \geqq 0$ and $0<r^{\prime} \leqq c$ such that $r p_{1}=$ $\left(k c+r^{\prime}\right) p_{1}$, we obtain

$$
\lg (P)=\left(x_{0}+r+k p_{1}\right) c+r^{\prime} p_{1}+\sum_{i=1}^{m} x_{i}^{\prime} p_{i}+\sum_{j=1}^{n} y_{j}^{\prime} q_{j}
$$

Therefore,
which completes the proof.
Lemma 1 and Theorem 1 give necessary and sufficient conditions for a regular language L over $\{a\}$ to possess f.p.p.

There is an algorithm to convert a regular expression representing a language L over $\{a\}$ into the form (1). We can algorithmically also test whether two regular expressions represent the same language. Theorem 1 gives one number i such that $L^{i}=L^{*}$. Hence. there is an algorithm for finding the number $\min \left\{i \mid L^{i}=L^{*}\right\}$. since it suffices to test only a finite number of equations between regular expressions.

4. Some special cases

Let L be an infinite language over V and $\lambda \in L$. Obviously, L^{i-1} $\subseteq L^{i}, i=1,2, \ldots$, and if $P \in L^{*}, \lg (P)=k$. then $P \in L^{i .}$.

Theorem 2. If a language $L, \lambda \in L$, possesses f.p.p. (respectively does not possess f.p.p.) and a language L_{1} satisfies the conditions (i) $\lambda \in L_{1}$, (ii) $L_{1}^{*}=L^{*}$ and (iii) $L-L_{1}$ (respectively $\left.L_{1}-L\right)$ is finite, then L_{1} possesses f.p.p. (respectively does not possess f.p.p.).

Proof. Assume first that L possesses f.p.p. This implies the existence of an integer k such that $L^{k}=L^{*}$. Let

$$
k_{1}=\max \left\{\lg (P) \mid P \in L-L_{1}\right\}
$$

Since the case $L-L_{1}=\varnothing$ is trivial, we may assume that $L-L_{1} \neq \varnothing$. Hence, $k_{1}>0$. Since, by (ii), $L-L_{1} \subseteq L_{1}^{*}$, we obtain $L-L_{1} \subseteq L_{1}^{k_{1}}$ and, consequently, $L \subseteq L_{1}^{k_{1}}$. Therefore, $L_{1}^{k k_{1}}=L_{1}^{*}$ and L_{1} possesses f.p.p. Assume now that L does not possess f.p.p. and denote

$$
k_{2}=\max \left\{\lg (P) \mid P \in L_{1}-L\right\}
$$

Then, similarly as above, we can show that $L_{1} \subseteq L^{k_{2}}$. Hence, L_{1} does not possess f.p.p.

Next we give an example of languages possessing f.p.p.
Definition. An automaton $A=\left(V, S, F, s_{0}, f\right)$ is called a permutation automaton iff, for every $a \in V$ and $s, s^{\prime} \in S, f(s, a)=f\left(s^{\prime}, a\right)$ implies that $s=s^{\prime}$.

Theorem 3. A language L, where $\lambda \in L$, accepted by a permutation automaton possesses f.p.p. More specifically, if L is accepted by $A=$ $\left(V, S, F, s_{0}, f\right)$, where $\# \bar{F}=k$, then $L^{k+1}=L^{*}$.

Proof. Assume the contrary: There is a word P such that $P \notin L^{q}$ but $P \in L^{q+1}$ for some $q>k$.

Let $G_{A}(L)$ be the state graph of A. Since $\lambda \in L$, we have $s_{0} \in F$. Consider the infinite graph $G_{\infty}(L)$ corresponding to $G_{A}(L)$. Clearly, there exists an initial subword P_{1} of P such that if $P_{1}^{\prime} \neq P_{1}$ is an arbitrary initial subword of P_{1}, then $B\left(f_{1}\left(s_{0}^{1}, P_{1}^{\prime}\right)\right) \in\left\{s_{0}\right\} \cup \bar{F}$ and $B\left(f_{1}\left(s_{0}^{1}, P_{1}\right)\right)$ $\in F-\left\{s_{0}\right\}$. Consequently, $B\left(f_{\infty}\left(s_{0}^{1}, P_{1}^{\prime}\right)\right)=B\left(f_{1}\left(s_{0}^{1}, P_{1}^{\prime}\right)\right)$ and $B\left(f_{\infty}\left(s_{0}^{1}, P_{1}\right)\right)$ $=B\left(f_{2}\left(s_{0}^{1}, P_{1}\right)\right)=B\left(f_{1}\left(s_{0}^{1}, P_{1}\right)\right) \cup\left\{s_{0}\right\}$. Since $G_{A}(L)$ is the state graph of a permutation automaton, we have $\#\left(f_{2}\left(s_{0}^{1}, P^{\prime}\right)\right) \geqq 2$ for an arbitrary initial subword P^{\prime} of P such that $\lg \left(P^{\prime}\right) \geqq \lg \left(P_{1}\right)$. Further, there exists an initial subword $P_{2}=P_{1} P_{2}^{\prime}$ such that if $P_{2}^{\prime \prime}$ is an initial subword of P_{2} and $\lg \left(P_{1}\right) \leqq \lg \left(P_{2}^{\prime \prime}\right)<\lg \left(P_{2}\right)$, then $s_{0} \in B\left(f_{2}\left(s_{0}^{1}, P_{2}^{\prime \prime}\right)\right)$ or $B\left(f_{2}\left(s_{0}^{1}, P_{2}^{\prime \prime}\right)\right) \cap\left(F-\left\{s_{0}\right\}\right)=\emptyset \quad$ and $\quad s_{0} \notin B\left(f_{2}\left(s_{0}^{1}, P_{2}\right)\right)$ and $B\left(f_{2}\left(s_{0}^{1}, P_{2}\right)\right)$ $\cap\left(F-\left\{s_{0}\right\}\right) \neq \varnothing . \quad$ Consequently, $\quad B\left(f_{\infty}\left(s_{0}^{1}, P_{2}^{\prime \prime}\right)\right)=B\left(f_{2}\left(s_{0}^{1}, P_{2}^{\prime \prime}\right)\right) \quad$ and $B\left(f_{\infty}\left(s_{0}^{1}, P_{2}\right)\right)=B\left(f_{3}\left(s_{0}^{1}, P_{2}\right)\right)=B\left(f_{2}\left(s_{0}^{1}, P_{2}\right)\right) \cup\left\{s_{0}\right\}$. Since $G_{A}(L)$ is the state graph of a permutation automaton, we have $\#\left(f_{3}\left(s_{0}^{1}, P_{2}^{\prime \prime}\right)\right) \geqq 3$ for an arbitrary initial subword $P^{\prime \prime}$ od P such that $\lg \left(P^{\prime \prime}\right) \geqq \lg \left(P_{2}\right)$.

By induction we obtain: If Q is an initial subword of P and $B\left(f_{i}\left(s_{0}^{1}, Q\right)\right), i \leqq q, \quad$ is properly included in $B\left(f_{i+1}\left(s_{0}^{1}, \mathrm{Q}\right)\right)$, then
$\#\left(f_{i}\left(s_{0}^{1}, \mathrm{Q}\right)\right) \geqq i$. Since $P \notin L^{q}$ but $P \in L^{q+1}$, we conclude that $B\left(f_{q}\left(s_{0}^{1}, P\right)\right)$ is properly included in $B\left(f_{q+1}\left(s_{0}^{1}, P\right)\right)$. Hence, $\#\left(f_{q}\left(s_{0}^{1}, P\right)\right) \geqq q>k$. By the assumption $k=\# \bar{F}$, we obtain $B\left(f_{q}\left(s_{0}^{1}, P\right)\right) \cap F \neq \varnothing$. This implies that $P \in L^{q}$, which is a contradiction.

Next we consider the minimum root of a regular language. The following lemma is found in Brzozowski [1], p. 469.

Lemma 3. If L is a star language there exists a unique root

$$
\begin{equation*}
L_{m}=(L-\lambda)-(L-\lambda)^{2} \tag{2}
\end{equation*}
$$

of L contained in every other root of $L . L_{m}$ is called the minimum roct of L.

If L is regular, we obtain from (2) that L_{m} is regular, too.
Theorem 4. If a regular language $L_{m} \neq \varnothing$ is a minimum root, then the language $L_{m^{\prime}}=L_{m} \cup \lambda$ does not possess f.p.p.

Proof. By (2) , $L_{m} \neq \lambda$. In case $L_{m^{\prime}}$ is finite the assertion follows by Lemma 1. Now let $L_{m^{\prime}}$ be infinite. Assume the contrary: There is an integer $k \geqq 0$ such that $L_{r i^{\prime}}^{k}=L_{m^{\prime}}^{*}$. Let $P \neq \lambda$ be a word belonging to $L_{m^{\prime}}$. Consider words

$$
\begin{equation*}
P_{2} P^{i} P_{3} \in L_{m^{\prime}}, \tag{3}
\end{equation*}
$$

for which there exist words P_{1}, P_{4} and integers $j_{1} \geqq 0, j_{2} \geqq 0$ such that $P^{j_{1}} P_{1}, P_{4} P^{j_{2}} \in L_{m^{\prime}}^{*} \quad$ and $\quad P_{1} P_{2}=P \quad$ or $=\lambda \quad$ and $\quad P_{3} P_{4}=P \quad$ or $=\lambda$ and, furthermore, $\lg \left(P_{2}\right), \lg \left(P_{3}\right)<\lg (P)$. We claim that there is only a finite number of words of the form (3). Assume the contrary. Since the set $\left\{P^{\prime} \lg \left(P^{\prime}\right)<\lg (P)\right\}$ is finite, there exist words P_{2} and P_{3}, which appear in infinitely many words of the form (3). Thus, there is an infinite number of words of the form $P^{j_{1}} P_{1} P_{2} P^{i} P_{3} P_{4} P^{j_{2}}$, where j_{1} and j_{2} are fixed and $P^{j_{1}} P_{1}, P_{4} P^{j_{2}} \in L_{m^{\prime}}^{*}$ and $P_{1} P_{2}=P$ or $=\lambda$ and $P_{3} P_{4}=P$ or $=\lambda$ and, furthermore, $P_{2} P^{i} P_{3} \in L_{m^{\prime}}$ for infinitely many values of i. From these values of i we can choose i_{1} and i_{2} such that

$$
\lg \left(P^{i_{2}-i_{1}}\right) \geqq \lg \left(P^{i_{1}} P_{3} P_{4} P^{j_{1}+j_{2}} P_{1} P_{2} P^{i_{1}}\right)
$$

This implies that

$$
P_{2} P^{i_{2}} P_{3}=P_{2} P^{i_{1}} P_{3} P_{4} P^{i_{2}} P^{r} P^{j_{i}} P_{1} P_{2} P^{i_{1}} P_{3} \in L_{m^{\prime}}
$$

where $\quad r \geqq 0$. Since $P_{2} P^{i_{1}} P_{3}, P_{4} P^{j_{2}}, P^{r}$ and $P^{j_{1}} P_{1}$ belong to $L_{m^{\prime}}^{*}$ and L_{m} is a minimum root, we have a contradiction.

Now define $s=\max \{\lg (Q) \mid Q$ is of the form (3) \}. Then the word $P^{k s+1} \in L_{m^{\prime}}^{*}$ but $P^{k s+1} \notin L_{m^{\prime}}^{k}$. This is a contradiction and the proof is completed.

In the following, let $L^{*}=W(V)$. Then $a \in L$ for all $a \in V$. Thus, if $G_{A}(L)$ is the state graph of L, then $f\left(s_{0}, a\right) \in F$ for all $a \in V$ and
for every word $P \in W(V)$ there is a path in $G_{\infty}(L)$ from s_{0}^{1} to some final states of $G_{\infty}(L)$ labelled by P. Furthermore, $\lg (P) \leqq q$ implies that $P \in L^{q_{1}}$ for some $q_{1} \leqq q$.

Theorem 5. Let $L^{*}=W(V)$ and $\lambda \in L$. If in $G_{0}(L), \# \bar{F}=k$ and there is no cycle in the subgraph consisting of the states of \bar{F} in $G_{0}(L)$, then $L^{k+1}=L^{*}$.

Proof. Consider a word $P \in W(V), \lg (P)>k$. We can write $P=$ $P_{1} P_{2}$, where $\lg \left(P_{2}\right)=k$. If $f\left(s_{0}, P_{1}\right) \in F$, then clearly $P=P_{1} P_{2}$ $\in L^{k+1}$. Now assume that $f\left(s_{0}, P_{1}\right) \notin F$. The length of the longest word leading from the state $f\left(s_{0}, P_{1}\right)$ to some state of \bar{F} such that every intermediate state belongs to \bar{F} is at most $k-1$. Hence, there exist words P_{3} and P_{4} such that $P_{2}=P_{3} P_{4}$ and $P_{1} P_{3} \in L$. Since $\lg \left(P_{4}\right)<k$, we have $P=P_{1} P_{3} P_{4} \in L^{k+1}$.

Theorem 6. Let $L^{*}=W(V), \lambda \in L$ and, in $G_{0}(L), \bar{F}=\left\{s_{n}\right\}$. If the number of all different non-empty subsets of F is k, then L possesses f.p.p. iff $L^{2 k+1}=L^{*}$.

Proof. If $L^{2 k+1}=L^{*}$, then clearly L possesses f.p.p. Conversely, let L possess f.p.p. Assume the contrary: There is a word P such that $P \notin$ L^{q-1} but $P \in L^{q}$ for some $q>2 k+1$. Consider the infinite graph $G_{\infty}(L)$ corresponding to the graph $G_{0}(L)$. Obviously, there exist words P_{1} and P_{2} such that $P=P_{1} P_{2}$ and P_{1} is the shortest word leading to the state s_{n} such that in P_{2} there is no letter leading out from the state s_{n}. Let $f_{2}\left(s_{0}^{1}, P_{1}\right) \cap F^{2}=S_{1}^{2}$. Obviously, $\# S_{1}^{2} \geqq 1 \quad$ and hence $s_{0}^{3} \in$ $f_{3}\left(s_{0}^{1}, P_{1}\right)$. Now, there exists an initial subword P_{2}^{\prime} of P_{2} such that if $P_{2}^{\prime \prime} \neq P_{2}^{\prime}$ is an initial subword of P_{2}^{\prime}, then $f_{2}\left(S_{1}^{2}, P_{2}^{\prime \prime}\right) \cap F^{2} \neq \varnothing$ and $f_{2}\left(S_{1}^{2}, P_{2}^{\prime}\right)=\left\{s_{n}\right\}$. Since $s_{0}^{3} \in f_{3}\left(S_{1}^{2}, P_{2}^{\prime \prime}\right)$, we have $B\left(f_{\infty}\left(S_{1}^{2}, P_{2}^{\prime \prime}\right)\right)=$ $B\left(f_{2}\left(S_{1}^{2}, P_{2}^{\prime \prime}\right) \cup f_{3}\left(S_{1}^{2}, P_{2}^{\prime \prime}\right)\right)$, Furthermore, $B\left(f_{\infty}\left(S_{1}^{2}, P_{2}^{\prime}\right)\right) \cap F=B\left(f_{3}\left(S_{1}^{2}, P_{2}^{\prime}\right)\right.$ $\left.\cup f_{4}\left(S_{1}^{2}, P_{2}^{\prime}\right)\right) \cap F$.

By induction we obtain: If P_{3} is an arbitrary initial subword of P_{2}, then there exists an integer i such that

$$
\begin{gather*}
B\left(f_{j}\left(S_{1}^{2}, P_{3}\right)\right)=\left\{s_{n}\right\}, 2 \leqq j \leqq i-1 \tag{4}\\
B\left(f_{\propto}\left(S_{1}^{2}, P_{3}\right)\right)=B\left(f_{i}\left(S_{1}^{2}, P_{3}\right) \cup f_{i+1}\left(S_{1}^{2}, P_{3}\right)\right) \tag{5}
\end{gather*}
$$

Since $P \notin L^{q-1}$ but $P \in L^{q}$, there exist words $Q_{i}, Q_{i}^{\prime}, i=1,2, \ldots$, $q-1$, such that $P=P_{1} Q_{i} Q_{i}^{\prime}$ and $P_{1} Q_{i} \notin L^{i}, P_{1} Q_{i} \in L^{i+1}$ and $\lg \left(Q_{i}\right)$ $<\lg \left(Q_{i+1}\right)$. Denote $S_{2}=S_{1} \cup\left\{s_{0}\right\}$. Consider the sets $B\left(f_{\infty}\left(S_{1}^{2}, Q_{i}\right)\right)$ $\cap F, i=1,2, \ldots, q-1$. Since $q-1>2 k$, some set appears at least three times. Thus, by (4) and (5), there exist $S_{3} \subseteq S$, where s_{0}, s_{n} $\in S_{3}$, and a subword Q of P_{2} such that $B\left(f_{\infty}\left(s_{n}^{1}, Q\right)\right)=\left\{s_{n}\right\}, B\left(f_{\infty}\left(S_{3}^{1}, Q\right)\right)$ $\subseteq S_{3}$ and $f\left(S_{3}, Q\right)=\left\{s_{n}\right\}$. Therefore, $Q^{i} \notin L^{i}$ but $Q^{i} \in L^{*}$ for $i=1$, $\overline{2}, \ldots$, which implies that L does not possess f.p.p. This is a contradiction completing the proof.

5. The main result

Definition. Let S_{1} and S_{2} be subsets of S in $G_{0}(L)$. Then define

$$
\begin{gathered}
L_{S_{1} S_{2}}^{1}=\left\{P \in W(V) \mid f\left(s_{1}, P\right)=s_{2}, s_{1} \in S_{1}, s_{2} \in S_{2}\right\}, \\
L_{S_{1} s_{2}}^{\infty}=\left\{P \in W(V) \mid B\left(f_{\infty}\left(S_{1}^{1}, P\right)\right) \subseteq S_{2}\right\} .
\end{gathered}
$$

Lemma 4. The language $L_{S_{1} S_{2}}^{\infty}$ is regular.
Proof. It is a well-known fact that $L_{S_{\mathrm{i}} S_{2}}^{1}$ is regular. Obviously,

$$
\begin{equation*}
L_{S_{1} S_{2}}^{\infty}=\left(L_{S_{1} S_{2}}^{1} \cup L_{S_{1} F}^{1} L^{*} L_{s_{s_{0}} S_{2}}^{1}\right)-\left(L_{S_{1} \bar{S}_{2}}^{1} \cup L_{\mathrm{S}_{1} F}^{1} L^{*} L_{s_{0} \bar{S}_{2}}^{1}\right) \tag{6}
\end{equation*}
$$

Hence, $L_{S_{1} S_{z}}^{\infty}$ is regular, too.
Theorem 7. Let L be a regular language, $\lambda \in L$, and in $G_{0}(L)$, $\# S=n+1$. There exists a word $Q \in L^{*}$ such that $Q^{i} \notin L^{i}, i=1$, $2, \ldots$, iff there exist $S_{1} \subseteq S$, where $s_{0} \in S_{1}$, and $S_{2} \subseteq \bar{F}$ such that

$$
\begin{equation*}
L_{1}=\left(L_{S_{1} S_{1}}^{\infty} \cap L_{S_{2} S_{2}}^{\infty} \cap L^{*}\right)-L_{S_{1} \bar{S}_{2}}^{1} \neq \varnothing . \tag{7}
\end{equation*}
$$

Proof. Assume first that $L_{1} \neq \varnothing$. Let $P \in L_{1}$. This implies that $P \notin L$ and hence $P \neq \lambda$. By (7), $f_{1}\left(s_{0}^{1}, P\right) \in S_{2}^{1}$ and $f_{2}\left(s_{0}^{1}, P\right) \subseteq S_{1}^{2}$. Similarly, $f_{2}\left(s_{0}^{1}, P^{2}\right) \subseteq S_{2}^{2}$ and $f_{3}\left(s_{0}^{1}, P^{2}\right) \subseteq S_{1}^{3}$. We can generally verify that for all $j \leqq i, f_{j}\left(s_{0}^{1}, P^{i}\right) \subseteq S_{2}^{j}$ and $\bar{f}_{i+1}\left(s_{0}^{1}, P^{i}\right) \subseteq S_{1}^{i-1}$. Therefore, $P^{i} \notin L^{i}, i=1,2, \ldots$

Assume, conversely, that $P \in L^{*}$ but $P^{i} \notin L^{i}, i=1,-2, \ldots$ Let

$$
S^{\prime}=\bigcup_{i=0}^{\infty} B\left(f_{\infty}\left(s_{0}^{1}, P^{i}\right)\right)
$$

and choose

$$
S_{2}=\left\{s \in S^{\prime} \mid\left(\bigcup_{i=1}^{\infty} B\left(f_{\infty}\left(s^{1}, P^{i}\right)\right)\right) \cap F=\emptyset\right\}
$$

We claim that $S_{2} \neq \varnothing$. Consider, in $G_{\sigma_{8}}(L)$, the states $f_{1}\left(s_{0}^{1}, P\right)$, $f_{1}\left(s_{0}^{1}, P^{2}\right), \ldots, f_{1}\left(s_{0}^{1}, P^{n+1}\right)$. Since $\# S=n+1$, there exist integers i_{1} and i_{2} such that $1 \leqq i_{1}<i_{2} \leqq n+2$ and $f\left(s_{0}, P^{i_{1}}\right)=f\left(s_{0}, P^{i_{2}}\right)$. The states $f\left(s_{0}, P^{i}\right), i_{1} \leqq i \leqq i_{2}$, belong to the set S_{2} for otherwise the condition $P^{i} \notin L^{i}, i=1,2, \ldots$, does not hold. Thus $S_{2} \neq \varnothing$.

Since the number of different subsets of the set S^{\prime} is finite, there exist positive integers k_{1} and k_{2} such that $k_{2}-k_{1} \geqq n+2$ and

$$
B\left(f_{\infty}\left(s_{0}^{1}, P^{k_{1}}\right)\right)=B\left(f_{\infty}\left(s_{0}^{1}, P^{k_{2}}\right)\right)
$$

Choose $S_{1}=B\left(f_{\infty}\left(s_{0}^{1}, P^{k_{1}}\right)\right)$ and $Q=P^{k_{2}-k_{1}}$. Since $P^{k_{1}} \in L^{*}$, then also $s_{0} \in S_{1}$.

From the considerations above it follows that

$$
P^{k_{2}-k_{1}} \in L_{S_{1} S_{1}}^{\infty} \cap L_{S_{2} S_{2}}^{\infty} \cap L^{*}
$$

Assume now that $s \in S_{1}$. Consider the states $f(s, P), f\left(s, P^{2}\right), \ldots$ $f\left(s, P^{n+2}\right), \ldots, f\left(s, P^{k_{2}-k_{1}}\right)$. Since $\# S=n+1$, there exist integers i_{1} and i_{2} such that $1 \leqq i_{1}<i_{2} \leqq n+2$ and $f\left(s, P^{i_{1}}\right)=f\left(s, P^{i_{2}}\right)$. The states $f\left(s, P^{i}\right), i_{1} \leqq i \leqq k_{2}-k_{1}$, belong to the set S_{2} for otherwise the condition $P^{i} \notin L^{i}, i=1,2, \ldots$, does not hold. Thus $P^{k_{2}-k_{2}}$ $\notin L_{S_{1}}^{1} \bar{s}_{2}$, which implies that $P^{k_{2}-k_{1}} \in L_{1}$. This completes the proof.

It is a well-known fact that there is an algorithm for constructing a regular expression representing the language $L_{S_{1} S_{2}}^{1}$. Hence, by (6), we can algorithmically construct a regular expression representing the language $L_{S_{1} S_{2}}^{\infty}$ and test whether in (7) $L_{1} \neq \varnothing$. If the answer to the following problem is yes, then Theorem 7 solves the f.p.p.-problem.

Problem. Let L, where $\lambda \in L$, be a regular language not possessing f.p.p. Does there always exist a word $P \in L^{*}$ such that $P^{i} \notin L^{i}$ for all $i=1,2, \ldots$?

For instance, in cases like Theorems 4 and 6 the answer is yes.
University of Turku
Turku, Finland

References

[1] Brzozowski, J. A.: Roots of star events, J. Assoc. Comput. Mach. 14, 1967, 466-477.
[2] Salomat, A.: Theory of Automata, Pergamon Press. 1969.

