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INTRODUCTION

In this paper we study the solutions of the elliptic partial differential
equation

Au: Pu

on open Riemann surfaces for densities P which u'e call tr,cceptable. This
means that there exists a positive P-superelliptic function r,-l defined on
the whole surface. The equation has earlier beetr studied by II. Azawa

[f f], L. Myrberg [6]-[8], H. Royden [12] a.o. with a stronger restriction
P > 0, which guarantees the validitl' of tire maximum principle contrary
to our situation.

After some preliminaries we solve the first bounclary vaiue problem in
section 2 and construct the Greetr's function for regular legiotrs in section 3.

This will be done usitrg Perron's method. In sectiorr .1 it appeals that our
condition for P is equivalent, to the Dirichlet, problem to be uniquely
solvable in compact regions with regular boundaries. §ufficierrt conditions
for the existence of the Green's function on the 'whole strface will be given
in section 5 after rryhich u'e introd.uce solution spaces BP and MP in section 6.

Our main purpose is to compare these Bauach .qpaces 'w'ith different
densities P. This has earlier been done for BP bv Ro5-den [12] and Nakai
[10], when P > 0. We give generalisations of Nakai's result for acceptable
densities in section 7. Finallrv in section 8 rr-e compai'e the -clraces BP a,nd.

.F1B when P 
= 

0 and state a nely isometry coudition fol them. By using
this we can shou. that Nakai's t'ondition is not r. Irece-q-qary one.

1. PRELIIUINARIES

1.1. Notations and detinitions

By fi we denote an open Priemantr surface.
By a regular reg'ion K we rne&i1 al1 open connected. set, ryhose closure

.I{ is compact and whose bounclarv ?ff consists of a finite numlrer of
closed analyt'ic curYes.
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By {.B"} we denote an exha,ustion of -8, which has the following

properties: (l) .8, is a regular region, (2) E^ 6 r?,*, , (3) ö A,: A .

The set Co(K) is the set of all contiuuous real valued -rliirrg. in u
region K, Co(R): C0. Wedenotethat z eC"(K), if thefuncbion zc has

continuous partial derivatives up to the order ra , C"(R) : Cn.

Bv a d,ensi,ty P we mean a real valued function which belongs to Cr
arrd is transformed in the change of local parameter in such a way that

P(z) ldz\z

is invariant.
If P is a density, the elliptic l,artial differential equation

(1.1) tu :. Pu,

is invariantly defined on a ll,iemann surface.
Definition 7.1.1. A real ',-alued, function u is sa'id, to be a P-solution

in u region K , i,f u e CI(K) and i,t is a solu,ti,on of (1.1) in K.
Definition 1.1.2. Let K be a aa'm,pact region whose boundary 'is the

un'ion, of two di,sjoi,nt sets k, and' kr. We say that a P-solutioru tt'p(K, kt)
is tlte elltTttic measure of k, with resgtect to K, if i,t i,s i,dentically orue an
It, and, zero o?L kr. If es,peci,ally k, i.s em,pty , we say that w o(K , A K) : w ,(K)
i,s the elli,gtti,c meusure of K.

Definition 1.1.3. We say that rt' reul uu.lued, fu,nction Gr(K,z,zo) i.s

the Green's functi,on of (1.1) 'in ct, contpctc,t region K if
(1) Gr(K,z,zo) ,i,s a P-soluti,onin ,Ii-{zo} arilcontinuousitt E-{ro]t,
(2) Gr(K,z,zi *loglz-zol i,s houncleil i,n a nei,ghbourhood of zo,
(3) Gr(K,z,zo):0, when ze 0K,zoe K.
The Green's function of a compact region K is usually denoted by

G,(K).
ff we handle an exhaustion {-8"} , rve denote for short wp(R,) : rob ,

Gr(R,,): Gä etc. .

1.2. Some auxiliary results

We state some important results rre shall ueecl iater ou. The first one

deals u,ith the situatioir in the small.
Lemma 1.2.1. To euery pararnetric clisc (T/, ") tltere erists a reduaed,

d,isc (Vo, z), VocV, strch that in Yo the follouirt;1 «,re ucrlid,:

(l) There erists one and, only one P-solutiott, which i's equal to a giaen

funati,on f eCo@Yi on 1Vo.
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(2) Equati,on (1.1) has the Green's functi,on Gr(Vil.
(3) G.(%) has the following propert'ies:

aa
(a) * (Gr(Vo, z, zo) * log la-zol) and, * 

(Gr(Vo, z, zo) *
log lz-zol) ure bouwled.

(b) Gp(Vo, z, zr) 2 0.

aa
(c) inf ; Gr(Vo, z, z) ) Lt qn.d sulr; Gp(Yo,:. ao) < co ,

"eOYo 
dfr 'eti,o Ott

where n is the d,irection, af the i,nward, noriacr,l.

For the proofs see e.g. [+] pp. 20, 66, 77 and 80 regardiirg l, 2 and 3 a

and [9] regarding 3 c as well as the existence and continuity of the normal
clerivative. 3b follows from I and 3a.

By the expression red,uced, disc we shall alv'ayFj me&Ir a parametric disc

V, forr,vhich lemma 1.2.1 is valid.
Next we present' Harnack's inequalities for P-solutions. They are proved"

by using lemma 1.2.i and the compactness of K quite as for non-uegative
densities (Cf. tgl).

Lemma 7.2.2, Let K be a comp.,ctct atd, [, a regulur region uith L c I{.
Then there erists a posi,ti,ae constant l; such tltat for each, puir of poi,nts (zr, az)

i,n L and, far each non-negatiue P-solutiotr, u 'i,n K we k«ue

It-ru(zr) ! u,(zr) ! ku(zr).

Remark 1.2.3. If u, 'is a non'rtegatiue P-solution, which uani'sh,es at

one poi,nt, then by lemtna 1".2.2 i,t uanishes id,enticallgl.

A corollary of these iuequalities is the Harnack's principle, rvhich by
obvious modifications cåu be shorvrr in the same \\'av as for harmonic
functions (Cf. [1] p. 236 and [2] p. t3+).

Lemma 1.2.4. Let [i be u noru-enpty fanily of P-solutions on a Rie'
mann surfaae wi,th the follorci,ng propefi y : If u1, u, e (i , tlt ere erists cr' function
u € tl such, that u )- max(ut, uz). Then, the fultction u,6:

%o:sllP i-ulzteU\

is ei,ther a P-sol,ution or id,enti,cally 'i T. .

1.3. §ubelliptic tunctions

When solving the first boundary value problem we shall use arixiliary
functions which we call subellipti,c. They can be defined in the same way
as for non-negative densities and. also have similar properties (Cf. [8]).
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Their role will be the same as the subharmonic functions have in the theory
of harmonic functions.

Delinition 1.3.1. A real aalued function u is sai,il, to be P-subelli,pti,a
,i,n aregi,on K, i,f ueCo(K) and,toanypoi,nt zoe K thereer'istsared,uced,
d,i,sc (Vo,zo): {zllz-zol< ro}, Voc K such that i,n the di,sc (V,, zs):
{z I lz -zrl < r}

a(zo) < Il1V,,zr\ . 0 < r !rs,
where

2t

If (y,,^): * f up'e'+', -u1,*ur,,reiö,z,)rd,g.

a i,s sai,il, to be P-sugterellig,ti,co, il -, is P-subelli4tti,c.

ff especially a eC'(K), we can d"educe from Green's formulas

(I.8.1) u(zo): If (V,,d - * { [ nr*r,,z,z) (Åa(z)-P(z)u(z))drd,y .

yt

This implies the follorving result.

Remark 7.8.2. A fu,nction u e Az(K) i.s P-su,bellipticin K if ancl,only if
(1.3.2) iJa-PuZ\.
A functdon a e Cz(K) i,s a P-sol,ution in K if ancl only if for eaah (Vo, zo)

a(zo) : I:(V"zo)' 0 ( r { ro'

Remark 1.3.3. Let P and, A be tlensiti,es tuitk P < I . Then eaery

non-negat'i,ae Q -subelli,gtti,c function i,s P -subelliptic.
The next trvo lemmas are direct consequences of the definition.
Lemma 1.3.4. If u, arud' uz are P-subelliptic ancl x a non-negatiue

constant, then u, * az , aa, anil, max(o, , r:r) are P-su,belliptic.
Lemma 1.3.5. If u is P-subelli,ptic itt, « regi,on K and' Vo is a reduced

d,isc, Voc K , then the function ar,

la in K-Vo
'b:t Il in vo

i,s P-subelli,pti,c i,n K.
The function uo is called the P-moilifi,cati,on of a (in Vr).
fn the continuation we have great use of the next forms of the maximum

principle.
Lemma 1.3.6. Let a be a posi,tiue P-sryterelli,gttic fu,ncti,on on a Ri,emann

surfa,ce R . If for a P-subell,iptic functi,on u
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a0=s#p;:M(*,
then ei,ther u < Mu or a :.fuIat .

Proof: If there exists a point zo rvith a(zr'1 : Ma(z), then in a

reduced disc (Vo , zo\

u(zo): Mo(z)>- IPM,,,(v,,zd>:I:(v,,zo)/a(z), 0 < r { ro.

Therefore

l**--,(Y,,2o):0, o < r ( ro.

Bylemma 1.2.1anddefinition 1.3.1thisisonlypossible,when Ma - u -0.
This proves the lemma.

Lemma 1.3.7. Let K be a compact regi,on, a 'i,n, K a P-su'perel,li'gtti,o

Junction, positi,ue and, continuous i,n R. If for a P-subellipti,a functi,on
u d,efi,ned,i,n K supz20 q,nd,

K

a(z\lim .+<tll.--cr-,
z+eeoK @(z) -

then ei,ther a < Ma or a : Ma .

The proof will be quite similar to the special case P ) 0, co : wp(K),
(cf. tSl).

We often use the latter in the following form.
Corollary 7.3.8. Let K be a compact regi,on, a in' K a P-superellipti,c

functi,on, pos'i,t'i,ae and, contdnuous ,i,n E. If for a P-subell,i,1tti,o funation u

defi,neil, in K
lim u(z) < 0

z+ aeaK

then a<0 i,n K.
Fiually u,e give tlie definition of a Per"ron family and state its charac-

teristic property which follou,s from Hamack's principle, lemma 1.2.4,

quite as in the harmonic case.

Detinition 1.3.9. A non-emgtty family Ip of P-subelli'pti.c functi,ons a
on a Riemann surface i,s called, a Perron fami,ly, i,f the followi,ng two con-

d,iti,ons are fulfilleil,.
(l) If ,r,are Fr, then max(zr,ur)e Io.
(2') If a e n p, then euery P-mod,i,fi,cation uo e I p .

Lemma 1.3.10. Il I, i,s a Perron fami,ly, the functi,on

zo:slrP{alaelr\
'is ei,ther u P-solution or ,id,enti,cally f co .

11



L2 Ann. Acad. Sci. I-ennicre A. I. 515

2. THE FIRST BOUNDARY VALUE PROBLEM

2.7. Aeceptable ilensities and the uniqueness of a solution

ft is well known that the solution of Dirichlet,'s problem is not ahva;'s
unique for an arbitrary density. Therefore we present arestrictive condition.
v'hich guarantees the uniqueness by making use of corollary 1.8.8.

Definition 2.1.1. A d,ensi,ty P i,s acceptable by @ on q, R,iemann surfaoe
R, i,f there ex,ists a real aalued, positiae P-superellipttic functi,on a . c,t ,is

called, the acceytt,ing function of P.
If a density P is acceptable b1, or € C2, then v'e have by remark 1.3.2

a lower bound for P

(2.1.r)
,t1(o

ct)

This shorvs that acceptable derrsities can also have negative values ancl
they form a rvider class than non-negative densities.

From here on any density we use will always be acceptable by its trc-
cepting function co . This function will plav a somewhat similar role as
the positive constants have ia the theory of non-negative derrsities.

Remark 2.1.2. Euery non-negati,ue density ,is acceptable by 1.
Remark 2.1.3. If Q i.s acceptable by u q,nd, P is ct density u:i,tlt,

P > Q , then P is also acceptable bg o .

I{ow we s}rov'that our oondition guarantees the uniquerress of Dirichlet's
problem.

Theorem 2.7.4. Let P be acceptable anrl K cr, com,pact region. Tltert
the first boundary ualue problem has at most one soluti,on.

Proof : If rr, ancl uz are P-solutions with z, : ,uz ot\ 0J( , then b;-
corollary 1.3.8 both ur-- uz and uz- uL are non-positive in K. There-
fore 'td1 : 11n ,

The theory of non-negative densities is strongly based on the maximum
principle v,-hieh states that for a P-solution u in a compact region Ii,
u, e Co(R) ,

(2 ,L.2) sup lul :- slrp lul
KOK

Norv the situation is more complicated. We have bv rcstricting ourselves
to the acceptable densities achieved the uniqueness of the first boundary
value problem. This does, however, lrot imply the existenee of an extremum
principle for the boundary values as the follorving simple example shov's.

Example 2.1.5. We choose K : {z I lal < l} and
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P is acceptable by u(z) : 2lzln- S lzl' * 2 which is a P-solution. On
AK u : L but in K u has both greater and smaller values, because

zr(0) : 2 and u1!l/ z1 : $.
This happens because acceptable densities can have both positive and

negative values. In fact, if P < 0 is acceptable, then for a P-solution
u in a compact region K, ueCo(R),

inf leci - inf lu I .

KOK

2.2. Existence of a solution

(2.1.3 )

We start by defining what we mean by a regular bounclary.

Definition 2.2.1. Let K be a compact regi,on. \Ye say that 0K i,s P-
regular, if for any continuous bound,ary aalues the Dirichlet ltroblem has a
uni,que solut'ion whi,ch i,s a P-solut'ion. If especially the soluti,on i,s harmonic,
we sag thut 0K is regular.

X'or non-negative densities the solvability of the first boundary value
problem has been thoroughly investigated. Therefore u,e do not enter deeper
into it, but cite the following result (Cf. [I3] p. 74L and 759).

Lemma 2,2,2. Let K be a compact regi,on. If AK is regular, it is also
P-regular for each non-negatiue P.

There is, horvever, not much literature about the case where the
maximum principle is rrot valid, which is just the situation 'rve have. That
is why we have to examiire this possibility mol:e closely. We intend bo keep
lemma 2.2.2 as knorvn and advauce from it b;' Perron's method. X'irst, we
define in the usual way the family 7(/) and its least, upper bound.

Definition 2.2.3. Let P be accegttable, K a co;npact region and, f a
real aalued, cont'i,nuous functi,on d,efined, on AI(. Then

V(f):{ulu P-subetli,pti,c i,n K an,I Tfr u@<fG)\
'+Ce}K

and,

?,/:suP {ulueYff)).
It is easy to see thal V (f) is a Perron farnil; , or empty. I{ow we are

able to extend lemma 2.2.2 to acceptable densities.
Theorem 2.2.4. Let K be a com,pact region,. If AK i,s regular, i,t is also

P-regular for each acceptable d,ensi,ty P.
Proof : If P > 0 then this is true by lemma 2.2.2.Thercforewe suppose

that P has also negative values.
Let first I eCoQK), / > 0. If P is acceptable by ,, then there

e xists a positive constant ll4 such Lhat' Mo 2 f on 0K.
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LeL Q be a non-negative density such that I > P ir K. By lemma
2,2.2 lhere exist Q-solutions o, and u, such that otr AK

at:Ma-f 20, ar:f 2o.

The functior o1 : Ma - u, is in K P-superelliptic (Il,emark I.3.3) and

is equal to f on 0K. If now aeVff) then lim a(z) _ or(f) {0. 81'
t+ E€.0K

corollary 1.3.8 u 3a\ in I{. Therefore V(f) is bounded from above
by ,r.

On the other hand o, is P-subelliptic and belongs to 7(/) which is
thus non-empty. By lemma I.3.I0 q.U is a P-solution and by construction

f G) : lim ar(z) < lim u1@) l tim u1@) ( trrr(6) : f (C) ,

;*g *E ,+t
that is,

,r*u*oÅ"):f(c), f>o.
For non-negative boundarv values zy is thus the solutiorr of Dirichlet's
problem.

If / € C|(AK) and has also negative values, then rve can use the de-

composition

f :l- _ f- , .f= eCoeK) , ,fn > 0.

By the preceding part there exist P-solutions u1a and z7- such that
on 0K uy* : f* , The P-solution %f : %J+ - n1- has then the right
boundary values.

So tl7 is the solution of the first boundary value problem and by
theorem 2.1.4 lhe onlY one.

3. THE GREEN'S FUNCTION IN REGULAR REGIONS

3.1. The existence of the Gteen's function

By lemma 1.2.1 every reduced disc has the Green's function. We shall
now show by using Perron's method that this implies the existence of the
Green's function in a regular region if the density is acceptable.

Definition 8.1.1. Let P be acceptable, K a regular region anil zo € K.
We saythataP-subellipti,cfuncti,on a d,efi,ned,in K - {zo} belongsto Wo if

(1) firr- a(z) < 0 ,
z+ E€0K
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(2) i,n a red,uced, d,isc (Vo , zo) , 7o c K , the erpression,

a(z) * (lp(Vo, z,zo)

'is nan-pos'itiue and, bound,ed' from below.

Remark 5.1.2. Il a €Wp, then u < 0 i'n I{ - {zo}.
Lemma 3.1.3. Wp 'i,s a Perron fami,lY-
Proof: We start by showing that W, is not ctrptv. Let {Yo, zo),

(Yt, zo) be redtrced discs rvith TrcYs, VscK rurtl Kr: K - Vr.

We denote b5,

" 
: 

,ZIy,Gr(Vr, 
z, zs) , 0 < ct ( cc '

Let moreover u lte a P-solutiol in 7o u'ith .u - b wp(Kt ' 0K) o'.r )Ys,
rvhere b is a constant, ehosen so that u 2 a on ä21 :rnrl iet g be the
follov-ing function

ao(z) + Gr(Ys, z, zs) - 0 .

In fact, let ze Ve. If zQYr, theu

uo(z) + Gn(Vs, z, za) -: u(z) + G*(Yg, ?, zr) 
= 

0

If ze Vr,then

( b(wp(Kr,0K, z) - wr(K,z) ) in K -- Yo
g(2, zil : I

I z(z) - Gp(Vo, z, zo) - bu'*(K, z) in y, - {,0} '

Then g is P-subelliptic.Thisisclearif zeK-T-'o urr :€Vs-{ro}.
If. z e OVs , let, (V, z) be a retluer'c} disc, I-' g 1(r. Tireii

g(2, zi : b(wp(Kt , oK, z) - wt'(K' z) )

: I{1*r1*,,u*)-.p(r)) < ti@ '

From the construction follows that

(1) lim g(2, zo) : 0
z+ Ee1K

(2) g(2, zo) * Gr( Vo, z, zs) - tL(z) -- 1117'r(I{. :) in T'o '

Because u - bwr(I{) < 0 and boundecl from belorv in Ys, g e Wt .

Next rre notice tiiat if D1 1'u-, e II/r,, then clearlv rnax(o, ,tsr\ e Wp,

too.
Let then a e llr, ancl r,'0 be its P-mod.ification in the disc Vz.

Now in To

{ a(z) -r Gn(Vs, ?, zs) 
= 

0 on (,AVr) n Fo ,
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Because aol Gp(Vo) is a P-solution in yofl Vz it must be there non-
positive.

After this it is obvious that aoe Wp.
This shows Wp lo be a Perron family.
Now we can proye the existence of Gr(K).
Theorem 3.1.4. Let P be accelttable and, K a regular regi,on. Then the

Green's functi,on G*(K) er'ists and,

Gr(K, z, zo) : - sup {a I a e Wp}'

Proof : We have shown that I4/p is a Perron family which is bounded
above by zero. Therefore

u(2, z) - sup {u i u e lV p'i

is a P-solution in K - {ro}. Moreover by definition and lemma 3.1.3

u(2, zr) - log lz - zrl is bounded in a neighbourhood of zo and

,!#u!@'zo):o'
Thus -u(2, zo) : Gp(K, z, zo) .

Remark 3.1.5. The Green's function 'is symmetri,c, that is

Gr(K, z, zo) : Gr(K, z, z) .

3.2. The linear mapping Tf;o

We define here the linear mappirig T§0. Ir will be used in proving the
properties of the linear transformation Teq rvith which we examine the
isometry of solution spaces in sections 7 and 8.

The proof of the following lemma is a d.irect consequence of Gleen's
formulas and theorems 2.2.4 and 3.1.4.

Lemma 3.2.7, Let K be a regular regiott, P oncl Q acceptable, ctr,il
ue Co(R) a P-solution,. We d,efine the littear trunsfor»tcr,tion, Tf;nu, as

follous:

(8.2.1) r§nu(zo) : u(zo) . *J I @(z) - Q(z)) Gq(I{, z. z,)u(z) dudy .

K

Then

(l) f§0" e Co(K) und, ,i,s a Q-sohtti,on in K .

(2) T$ru : u on AK .

Remark 3.2,2. Let lt, %re}o(R) be P-solutions anil c a positi,ue

aonstant.
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(l) If lul { aur, then if§e"l I aT§,qur.

(2) TffrT§qu: u.
(3) Let P and, Q beacceptableby a. If lul3cro, then lT$nul{ca.
We usually denote T7r: fho .

3.3. The uniqueness of the Gresn's function

We want to prove that the Green's function Gr(K) is uniquely deter-
mined. For that we need some auxiliary results.

Lemma 3.3.1. Let P be acceptable, L a alosetl set and, K a regular
reqi,on contai,ning L. If the harmm,i,c rrTeasure of L rcith respect to K i,s

zero, then olso 'i,ts ellipfii,c nleasure wp(K, L) 'is zero.

Proof : Let {K"} be an exhaustion of K -.L by regular regions K, ,

AK* : AK U k" and h(lc") the harmonic measure of lc^ with respect
to K^. We denote wp(Kn, k,) : wh , TtI: Tb, and Gr(K-) : Gi -

Then ru! : Tbph(k") ' Because K is compact, iPl Gr(K) is integrable and-

iPGbh(k") < iPl GP6) .

If we continue the domain of Gih(k") over the whole K Tty setting
Gbh(k"): 0 in K - K,, u'e get by Lebesgue's theorem of dominated
conYergence (Cf. e.g. [5] p. 23a)

:: I I p Gbtt(k,) drds : I I rl§ri h(k^) d,rd,y : 0,
r(a K

because limä(fr") :0. Therefore

wp(K, L) ::::rä : 
:g rbph(ti,) : 0 ,

which proves the theorem.
By using this result we can pro\-e the follorving lemml, qr,rite i:r the

sa,me way as for the non-negative densities (Cf. i7l).
Lemma 3.3.2. Let K be a regulur region and, L a closed' set conta'ined

i,n K wi,th the harmoni,c nleo,sure in respect to K zero. If P i's acceptuble

and, u a P-solution whinh aanishes on 0K and,'i,s bou,nd'ed, i,n K - L, then

u :0 . Moreoaer eaery bound,eil P-solution clefi,neil, in, K - L i,s cr' P-
solution i,n the whole K .

Now we are able to show the uniqueness.
Theorem 3.3.3. ry P is acceptable and, K a regular region, Gr(K) is

u,niquel,y d,etermined,.

,
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Proof : U gr(K) is also a Green's function in K, ther gp(K,z,zo) -
Gr(K,z,zo) vanishes on AK and is bounded in K -{"}. Therefore
gp(K, z, z) - Gr(K, z, zo) : O .

4. THE EXISTENCE OF §OLUTIONS ON THE WHOTE SURFACE

4.1. Solutions for acceptable tlensities

We shall show that every acceptable detrsity P , P + O, has a non-
constant solution defined on the lrhole surface. The proof of the auxiliary
lemma and the main result are again quite similar to the ones for non-
negative densities (Cf. [6] and [9]).

Lemma 4.1.1. Let P be acce,ptable , iR"\ asr erhau,stion of R und,

{u") aseguenceof P-soluti,ottsbound,edoneuerycompactset.ectch u" defined,

in R.. Then there eri,sts a subsequence, ruhich conLerges urui'form,ly on eaery

compact subset of R toward,s a P-solu,tion.
If rve now choose a point zo € -R, and if ru! is tire elliptic measure

of ,Bo , then the sequerrce

(4.r.r ) {u" I u"(z) : (wb@))-' wb@)}

is by lemma 1.2.2 bounded in every compact set because u"(zi: I for
each n. By lemma 4.1.1 we have

Theorem 4.7.2. Eaery acceptable densi,ty P , P + 0, has a positi'ue

non-constant P-soluti,on de,fi,ned on, the ushole surface.

4,2. Aceeptable densities anal Dirichlet problem

We restricted the inspection to the acceptable densities in order to
guarantee the uniqueness of Dirichlet's ploblem. \Yith help of the pre-
ceding result \ye are norv able to notice that the lestriction is uot too
stringent.

Theorem 4.2.1. Let K be a cont4tact regi,oit, with a regular boured,ary anil
P a d,ensi,ty. 0K is P-regular i,f and, onl,y i,f P i,s acceptable.

Proof : If P is acceptable. then ä,K is P-regular by theorem 2.2.4.
Tf AK is P-regular, then by analysing the proofs which led to theorem
4.1.2 we see that it guarantees the existence of a positive P-solution tt
defined orr .8. P is then acceptable by u .

Ann. Acacl. Sei. I'ennicar
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5. THE GREEN'S FUNCTION ON THE WHOTE §URFACE

5.1. The tlelinition of the Green's function

Let P be acceptable, {.B"} an exhaustionof -E and zoe Rr. The

sequence {Gh@, zo)} is strictly increasing wherefore by lemma 1.2.4 it
either increases urriformly to f oo on every compact, set or there exists
a limit function Gp

(5.I.I) Gp(2, zo) : 
,l13 

Gfi(2, zr) ,

which we call the Green's function of P on -8.
It is known that every acceptable density has not Gp (Cf. [9]) .

Delinition 5.1.1. A ilensi,ty P is said, to be comgiletely acceptable, i'f
it i,s acceptable and' has the Green's function on, R ,

The function G, d.oes not depend on exhaustion but is irniquely deter-
mined by the following property:

Lemma 5.1.2. Let P be completely acceptable. Then Gr(2, zo) is the

smallest of functions u(2, z) such that
(1) u(2, zo) ds a non-negati'ue P-soluti,on on R - {"0} ,

(2) u(2, zo) * log lz - zol i,s bound,eil i,n a nei,ghbourhood, of 2o .

Proof: By lemma 3.3.2 u,(2, zi: Gfi(z,zo) - u(z,ao) is a P-solution
in -8,. Because o,(0 on 0R,,1)o <0 in -8,. Therefore

Gp(2, z) - u(z, a) : lg a,(2, zr) { a .

Remark 3.1.5 can be generalized to Gp,
Remark 5.1.8. The Green's funct'i,on Gp ds s.ym,m,etric. thcLt 'i,s,

Gr(z,zo): Gp(zo,z).

This implies that the existerrce of Gp does not depend on the pole eo

but only on the density and surface.
Before going more closely to the existence problem rve give a couple

of inequalities for G* for later use.

Lemma 5.7.4. Let P be completely acceptable by cL ancl K, L regular
regi,ons wi,th L c K . Then there erist Ttositiue constqnts l: and, m such

thatforeuery zs,z1 e L, and, ze R-K wehaae

(t) k-L Gr(2, z) ! Gp(2, zr) I lc G*(2, zfi ,

(2) Gr(2, zr) { m a(z) .

Proof: The first inequalities follow directly from lemma 1.2.2 and
remark 5.1.3. For the second formula let
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Z::f
Then in Rn - K we have

'which gives

Gr(2, zo)

Remark 5.1,5. Let P be

Then by lernme, 5.1.4 (l ) tlr,e

a - inf a(z)
ze 0K

Gb@, u(z) ,

§: j:: Gb@, zo) = o co(z) .

a densit'U, A completely acceptable ctnd, u e Co

canaergence of tlte ,i,ntegral

.9

zil =;

"[.{ 
iP {')l Gq(2, zo) lu(r)l ctxctv

does ytot depenrl on the pole ?s .

5.2. The existence of G,

when examining isometric relations of solution spaces l-e need rhe'
Green's function Gp. Therefore we investigate on which conditions densi-
ties are completely acceptable. The first result is that er.ery density P
having an acceptable minorant Q,8 + P , is completely acceptable. Thr:
second sa;. s that a density P acceptable by o is completely acceptable
if a kind of elliptic measure of the ideal boundary with respect to ar is posi-
tive.

Theorem 5.2.1. A d,ensi,ty P i,s completely acceptable, i,f there exists an.
acaeptable density Q wi,th P > 8, P + Q .

Proof: P is acceptable by remark 2.1.3. According to theorem 4.1.2
there exists a positive Q-solution zu defined on the rvhole surface. rf {.8"}
is an exhaustion of .8, then by lemma l.Z.t Ti*u is a P-solution in -R,
with Tieu: u on AR,. Therefore 0 < Tieu < u in -8" arrd from
(3.2.1) we get the inequality

(5.2" 1 )

rln

The integrand is non-rregative and does not vanish identically. The sequence

{Gn (", zo)} cannot then increase towards infinity uniformly in every com-
paet set. This guarantees the existence of Gr.
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Next u,e give tw-o corollaries in order to show how this theorem can be
used" to prove the existence of the Green's function in different cases.

Corollary5.2.2. EuerA non-nega,tiae d,ensity P, P+0, is aompl,etel,y

acceptable.
Proof: Choose A:+P (Cf. t7l).
Corollary 5.2.3. Let P be acceyttable by at . If there exi,sts a parametria

d,i,sc V suclt, that o is not a P-solut'i,on at any poittt of V , then P is com-
pletely acceptable.

Proof : For anv disc lVr, z) , Vo c V , we have

I!,(Vo , z) < ot(z) .

Solutions of (1.1) in Z rvith bound.arv values @ are continuously depend-
ing on the density P . Therefore we ca,n choose a density Q with Q : P
in R-Y, Q<P in Y suchthat QfiP and

Ig(Yo,zo)!a(zo)

for arry disc \Vo, z), I7u c 7 . This density Q is now acceptable by ro

and a minorant of P . P is then completel;, acceptable.
This situation happens e.g. x.hen c,t e Cz(V) and it fails to be a P-

solution at one point of T/ .

ff we cannot, firrd arry acceptable minorant to the given density, we
have to solve the existence of the Green's function otherwise. In order
to find a relatively simple condition we introduce a suitable auxiliary'
function.

Let P be acceptable by o"r , K a regular region and {-8"} an ex-
haustion of -E wit,h R c Rr. We define on R - R a P-solutio\ @r
as follows:

LeL a'], be a P-solution in R^ - R witli

{r)k nr-
AK

aR"

Then 0 ! aft '! «; f'crr cacir re . By lemma 4.1.1 there exists a subsequence

{ar}} converging to :r P-solution (rr ott ,B - -K uniformly in compact

sets. It is easily seen that rorl does uot depend on exhaustion or subsequence.
By remark I.2.3 either @x := 0 or (rrr ) 0 .

Theorem 5.2.4. Let P be acceptable by @ . If there er'i,sts a regular
regi,on K such that raas 0 , theru P i,s com,pl,etely accepta,bl,e.

Proof : We construct an upper bound to the sequence {Gb@, zo)} b}'
using the sarne method rve had in the proof of lemma 3.1.3.

Let L be a regular regioir rvith .E g L and zo e K. Let moreovcr

{fi"} be an exhaustion of l? such that lim @k:ar and L gÄr. We

2L

{oor}
|. ,, ot]
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define in L a P-solution d; hy its kroulrdary l,alues:
u,here b is a constant chosen so that u,l, ä sup Gr(L

:€åK
every 'rb. This is possible because iirn otfu - do6 2 0 .

I§ext we form in Rn - {ru} a ä]-äfellipt,ic fuirctior

, \ {b@'}r{z)--l,(a)) in

As in the proof of lemma 3.1.3 \ye *qeo tha,t

G:ft(2, zr) 5! gn(z .2,,\ .

1g 
Gbtz, ?o). 

:'fi, 
!t"G, zo)

I b(u(z) - lo6(r))

Therefore the sequence {Gh@, zr)} has a lirnit, function

ui:b*k on AL,

, z, zo) on AK for

1 g"@, zatli

R"-L
L {ro}.

in R-L
iri L {ro}

Gp.

6. THE CLASSIFICATION OF DEN§ITIES AND SOLUTIONS

6.1. The elliptic measure

By definition 1.1.2 the elliptic measure u:i of a legulal region Bo is
a P-solution defined in -8, with wi: 1 ott DÄ". 81- using this rr-e define
the elliptic measure of -E for P.

Definition 6.1,1. Let P be acceptable. P = 0. If there erists a non-
negatiue P-solution wp on R such that

!\*b: u''

Jor euery ex,hausti,on {R"} , where the sequence {ai} of elli,pti,c measures of
R" 'i,s conuerg'i,ng uni,formly on euery comgtact set. we say that P is normal
anil w, i,s the elli,gtti,c m,easure ,f R .

Remark 6.1.2. If P 'i,s normal,, thenby remark 1.2.3 ei,ther w*> 0 or
u, : 0 . In the former case we say that P i,s hyperbolic ancl i,n the latter
parabol,i,c.

If P > 0 , it is always parabolic on parabolic surfaces arrd either
parabolic or hyperbolic on hyperbolic surfaces (Cf. tt2l). If P has also
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[egative values the existence and uniqueness of lim wi are not always

sure. This is partly illustrated by the following dJliö'' Let P be normal.

Then

(6.1.1) up: max{ulu is a P-solution and u * l}, if P > 0

and.

(6.I.2) wp:rrrin{ulu is a P-solution and u2l), if P < 0 .

Another deviation from non-negative densities is that eu, is not always
bounded. This is seen from the following.

Example 6.1.3. We choose

I t ll
R: {" l0 < lzl < 1}, A^: 

{z ' ; '-,:, '( I - ;}
and.

P(") : - 2 (3lzl log *i"i)-' .

P isacceptablebl. - (logåirl)"'. {.E"} isanexhaustionof -E and

wi@) : (a, * b,) (log $,zi)'it '- ,rnb, (log tl"l)'t' ,

where

ti- 1rl : ,,
AR

if forevery e) 0 thereexistsacompactlegion ff." suchthat lul {sf e

on .E - .8" and for any compact region ff u'e have lu(z)l > s - e at
least at one point z eR - E.

Theorem 6.1.4. Let P be normal and, u a bounrled, P-solution. Then

lal S (li- luD wr.
AR

o,: (,o* \-'r , bo:(,"**-(, - ;))-"'

Now arp exists and

we@) : !**lA: (log å)-'"' (tog å-t.l)'r' .

This is not bounde* to, 
,1r,I 

wp(z) : a2

These properties cause that the elliptic nle'asure is rrot in general as

useful as for non-rregative densities.
Let ue Co. We say that
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Proof : Let {,8"} be an exhaustion with lim wh: wp. Then in .8,

lzl < (sup lul) wb ,
oRo

and on -B

I"l < li* (sup lzl w;) < tiro lrop lul) n, < (lim lul) wp .
n-iq lRn n_>@ 1Ro AR

Corollary 6.1.5. Let P be normal, u a P-solution and c a posit,iae
constant. If lul { c, then lul { c w, .

x'rom t'he elliptic measure we always get an upper bound for bounded
solutions. This implies a.o. that if P is parabolic, the only bounded p-
solution is the constant zero. Another corollary lead.s to the non-existence
of wr,

corollary 6.1.6. r'et P be acceptable. lf there er,ists a bou,nd,ecl P-solution
u wi,th lim u(2") : 0 . «. .=F 0 , then P is not norm,wl.

z+0R

'rhis implies that even completely acceptable densities are not arways
normal.

Example 6.1.7. We choose

and

P(z) : ta il"1, - 4) (t - lzlzy-z .

P is acceptable by ,..,.r: (l - lzlz)r14,{R"} is an exhaustion of -B and.

G!],(2, tt): å- (r - tzlz),i4 ,"rl " - {,'l'=-.1- | + \/ -\- W 
1- t_n L y'2,, _ 1

Then Gp exists nltcl

I r + \/T:.:flrl:, {}) :- * (t irir)u4 iog 
L-, fa=E

Therefore P is completely acceptable. Hou'ever, br- corollary 6.1.6 P is

not normal for o'l is a P-solution with ir,rl < I trncl lim rtt(z) : g .

lzi+l

6.2. Banach spaces of solutions

Let SP be the set of all P-solutions defined on .B . \Ye defirre Banach
space BP ryith norrn llzll .
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BP : {u e SP I llzll : sup lzl < oo} .

If P is normal we can define another Banach space MP with norm llzll, .

Mp : [ {" 
. sp | ilzilp - sup 

t,1. *1, ir p hyperboric

t.
[ {0} wittr norm 0 , if P parabolic .

In section 7 we are going to examine how these spaces change when P
varies. X'or that we need still one Banach space ,4P,,, rvith the norm llull,, .

ItutlAP-: lz€§PlP acceptableby co and ,,iu'|,:sup= < of .*l.R@)

X'or later use we present some simple relations between these spaces
and their norms.

Remark 6.2.1. The nornl,s d,eperd, on the behauiour near the id,eal bound,-
&rA as foll,ows:

llzll ä fi^ l"l , where the equali,ty holcls i,f P > 0.
AR

llzll" : ltr" ryL , i,f p is hyperbol,ic .
oR lDP '

|u|_:*y
Remark 6.2.2. Xrom the d,efini,tions follorc:
(1) If P is normal, then BP c ttrIP und, lla,tp 5 lizzil .

(2) If P > 0 , then BP : JIP anrl, :''u', p: liuil .

(3) If P is normal, ancl, iy,f r't )> 0 . th,en IIP c APo,.

(4) If P i,s acceptableanrl, itf o > r). supro ( co , then BP:AP",.

7. ISOMETRIC SOLUTIONS SPACE§

7.1. The linear mapping fpa

Our main tool in the examinatiorr of isometric relations v-ill be the
transformation Tpp which is a natural generalisatioir of the mapping ?f;.
introduced in 3.2.

Let P be acceptable, Q completelv trcceptable and. u a continuous
function. If
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at some point zo € -E , thetr it holds at, all points of -B by remark 5.1.5.

Definition 7.1.1. Let P be acceptable, A completel,y acce'ptable and,

'u e Co a funct'i,on for whiclt. (7.1.1) is true at soru,e point zo€R. Then the

l,i,near transformati,on, T rnu of u i,s well cle.fined, by

(7. r.1)

(7"1.2) T uru,(ro) : u(za) + * {^f €(z) - e@)) Go(2, zo)u(z) rtrdy

The following result rvill. ofteu be usecl irr the coniiiruation.
Lemma 7.7.2. Let P be acceptable, Q com,pletely cr,cceptable, u a P-

soluti,on and, {u"} a seque%ce of P-solu,tions each defined i,n R* so that

{.E"} is an erhaustion of R uncl lim lca: 1tr . If there er'i,sts a funct'io+a

a e,Co such that iuÅ < a fo, "ach"*i 
ona u fuffits (7.1.1) at some point

zo e R , then T rru is well d,efined, and

(r) l**1r"": Tpew,

(2) Trru ,i,s u Q-solution,.

Proof: By definition 7.I.I ?pQ'u is vell defined.

(l) X'or each ra antl zo € -E

l(P(z) - Q@)) Gi@, z) u,"(z)l < lP(") - Q@)l Gq(2, zil D(z)

and the majorant is integrable. We define Gäu, on the whole surface by
setting its value to be identically zero in -B - A, . Now we can use Lebes-
gue's theorem of dominated convergence (Cf. e.g. [5] p. 23a) atrd get

lim
n-+- X

This shor,vs that

,l:: ?'fiqtt"' --

(2 ) Recause (7. 1. I ) holds for a at

(P(*) - QP» Gq(2, zo) rt(z) d"tdy ,

{f
rln

{.{

* f.f iP(,)

T rnzr, .

ever,Y point zo , \1'e get an estirnate

lTiqu"(ro)i 
=! 

a(zo) + Q@); Gq(r, za) a(z) de:dy { co



Aeros LeurrNrN, On the solutions of /u: Pu for acceptable densities 27

'w-hich shows {Tinu") to be bounded in every compact set,. By lemma4.1.1
there exists a subsequence {Tf,ru"} which converges uniformly on every

compact set towards a @-solution oo . Then we have

rpe% l*rtrr"": I:y*ytn;: ap t

r,vhich shows Trru to be a Q-solution.
The lemma is now pror,,ed.

By this lemma and remark 3.2.2 the following properties of T* are

obvious.
Remark 7.1.3. Let P be acceptable, Q comptletely ucceptable, u anil u,

P-sol,utions for whiclt' (7.1.1) is true and, c a posi,ti,ae constant.

(1) If ],ul1cur, then lTroullcTpqur.
(2) If P q,nd, A are acaeptable by (D : then iul I c a impl,i,es

l,Treul 3cr,t.

7.2. The spaces AP., and, 4Q,,,

We examine b;'using t'he transformation Tpg rvhen tire Banach space§

AP,,, and. AQ,, are isornet'ric.
Theorem 7.2.1, Let P anil' Q becompletely acceptableby a. If

(7.2.r) [[ Wel-Q@)la2(z)d,t:d,y{ o,

then AP", and, AQ- are 'isometric.

Proof: \4/e begin b). shorving that (7.1.1) irolds for 0). Let zoe R
and K be a regular region with zu €1(. B"v lernma 5.1.4 there exists a
constant zra suchthak Gn@,2)Smot(z).zeH- K. Thus

rr
J I lP(z) - QG),Gq(2, zo)o;(:) dilY {

{ [ V Al - Q(z)lårp, 
"01 

a\z) d,xd,y + * J J V (z) - Q(z)i ot.(z) d,rd,y < a "

K n-r
If u e AP,,,, bhen lul ! llull,.r» . Trou is now well defined and by

remark 7.1.3

iTpoul { llull",at .

Therefore Tr6u e AQ* and

liTroull,, ( llzll., .
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This makes Tpa a linear mapping from AP* to AQ- w}rricln does not
increase norms.

By changing the roles of P and @ we see t}'at Tpe is a linear mapping
from AQ- to ,4P- which does not increase norms.

Next we show that if u e 4P",, then

TqrTpqu: u .

In fact, let, u e AP-. Then by lemma 7.1.2

Hrlr" : r pou

and Tiqu is a Q-solution in .8, with

lfboul < llull,,a .

3y using lemma 7.1.2 once more we now get

:::rä,riqu: rqp?equ .

On the other hand by remark 3.2.2

l1grö,rfrqu: u,.

By changirrg the roles of P and Q again'we get that if u e AQ-, then

TppTqpa : a .

These facts make T* an isomorphism from 4P,,, onto AQ,, and Tqe
its inverse mapping. Because they do not increase norms, thel' must be
isometries. This proves the theorem.

7.3. The spaces MP and, MQ

We now use theorem 7.2.L in a special case in order to get a couditiou
for the isometry of MP and MQ.

Theorem 7.3.7. Let P and, A be completely u,cceptrr,ble by o so that
inf a; ) 0 and,

fr(7.2.t) lllP(")-Q@)la2(z)d"yd,y<n.JJ

If P i,s normal, tnå q , too, i,s and, MP 'i,s i,sometri,c with lllQ.
Proof : Let P be norrnal. We first shou' that P and A are both

hyperbolic or bot'h parabolic.
If {-8"} is an exhaustion with lim wi: LUp, tbert
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tof ( (inf ro)*1«r

and the upper bound fulfils (7.I.I). Because wfi: Tirwfr, there exists
by lemma 7.1.2

lr::*ä: jg riaofi : rpeup .

Therefore A is normal ancl

toq: Tppwp.

By changing the roles of P and Q we get that also

wp: Tqpwq.

This causes lli'at P can be hyperbolic if and only if Q is, and that P
is parabolic exactly lrhen Q is.

Then'lre consider the isometry.If P and 0 are parabolic the case
is trivial because

trP : {oi: r[Q .

Let us then suppose that P and Q are both h;rperbolic. We have now
MP c 4P,,,, MQ c 4Q,,,. and 4P,,, is isometric with AQ,,,. If u e MP,
then

tu|, { lPttl*w,
atrd

iTroui s= iitiii, Treur: llulipuo.

Therefore Trque MQ and

llTpoullp S iirll, .

In the same ryay: If u e MQ , then Tqru € )IP and

lT,?eu|,:te < liut]o .

This makes Tnq an isomorphism from JIP otto MQ and Tpp its
inverse mapping. Because the.r. do not itrcrease liorms, they have to be
isometries.

Remark 7.3.2. The integral cond,ition (7.2.1) in theorems 7.2.1 und 7.3.1
can be substituted, by u utea,ker a'ne:

(7.3.1) 
[ { fA-Q@l (G,(2,zo) a GrQ,z,))a(z)d,rd,y < a

R

at some poi,nts zo , z, e R .
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7.4. The spaces BP anil BQ

If we use another special case of theorem 7.2.L, we have a condition
of the isometry of the spaces BP and BQ . However, it has to be noticed
that, the isometry does not in general hold. for the norm llzil but for llull., .

Theorem 7.4.1. Let P and, Q be completely acceptable by a . If
inf ar)0, sup(,r<oc

A,nd

(?.4. I )

then BP and, BQ are'isometr'i,c wi,th regard, tct the o-norm.
Proof: Inthiscase BP: APo, and" BQ: AQ. and o fulfils (7.2.1).

The statement then follows from theorem 7.2.1.
If we especially choose «; : 1 , then P and A are non-negative,

llzll : llzll- and we get Nakai's result (Cf. [10]).
Corollary7.4.2. Let P and A be non-negatiu densities and, V.4.1)

oalid. Then BP and, BQ are 'isometric.
Remark 7.4.3. The condi,tion (7.4.1) can be re.placed, by u weaker one:

a,t sonle points zs 2 21 € .^B .

7.5. Densities equaling outside a eompact region

X'inally we consider the possibilit;' that P trncl Q are equal outside a

cornpact region. Because we have not the rnaximurn prineiple, this is not
as restrictive a cond-ition as for non-negative cletrsities.

Theorem7.5.l. Let P and, A be com,pletely rccepta,ble q,nd P-Q
outsid,e a compact region K . Then tlte followitt,r1 ate true:

(1) SP and, BQ are 'i,somorphi,c.

(2) If P i,s normal,then Q isnormaland IIP isisometricwith MQ.
(3) Il BP conta,i,rus a positi,ae solut,ion, then BQ . too, contai,ns a positi,ue

solution and, BP is i,som,orphi,c u;i,th BQ .

Proof : fn this case mappirrgs Trr: SP -> ^SQ trnd Tqe: SQ -+ §P
are well defined.

(1) Tf ue SP , then

{^[ vQ) - Qk)id;rctY ": rc ,

{7.4.2) { { VQ) - Q@l (G*(z,zo} -i- Go@,e,)) d,rdy 1co
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l::'bo": rPQu'

Because

Wbou(zil 3 lu(zo)l . *, I I V@ - Q@)lGp(2, zo) lu(z)l d,rd,v

K

and the upper bound fulfils (7.f.I),'we get by lemma 7.1.2

u : lim föp fhau : Top T peu .

If u € §Q , we get in the same way that

, : lg TinTica - TpaTrntt .

Therefore §P and B@ are isomorphic by Tpe.
(2) If P is normal, we get from lernma 7.1.2 by the compactness of

K lhat Q is also normal and

wq: Tpqwp t up: Tqewg,

Now we get the statement as in theorem 7.3.1.

(3) Because BP contains a positive solution up. the integral

(z.b.I) 
[ | VA - Q@l G,(z,zo) drrly

is by the symmetry L *, and lemma 5.1.4 (2) uniformly bounded. If
lrow rz e BP, then by part (1) Tequ e BQ and Tpe(Tequ): er . Therefore

I rr
lTrou(zo)l { lu(zo)l + .}o lTroul * J_J P(.) - ()(:\. Gr(z,zo) drdy ,

nhich implies that Tr6u,e BQ.
Especially Tpeup is a positive Q-solution.
By changing the roles of P and Q rre then get tliat if a € BQ , then

Tp*u e BP .

By part (1) in the proof BP and BQ are isornorphic.
The proof is norv cornplete.

8.1. Introduction

Let, HB be the space of bounded harmonic functrons with the norm

ilåll : sup läl . Nakai has shown (Cf. [10] p. 271and also corollary 7.4.2)
n
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is al so a lle-

that if P
and if

(9.1.1)

is a notl-Iregat,ive hyperbolic d"ensity on a hyperbolic surface

at some point, ro € .H
According to him

cessarJr conditiorr.
Our aim is to present a different condition for the isometry of BP and

HB and. by using it, to show that (S.I.f ) is not a necessary condition.
Through the rvhole section P rvill be notr-negative and -B hyperbolic.

8.2. The least harmonic majorant

?t)p{f'pou)p S 1.

If h' is another hal'monic ulajorant of Lcp , tJren oll AR"

fTrru"o---= I,uP < h'

which means that i:r Rn TboQ* p < h' . Therefore

f ."{ 
P b) Go(z' z,) ctxctY { co

, t}:"en BP axld HB are isometric.
it is &n open question rnhether (8.1.1)

If P > 0 , then u, is the greatest P-solution to be smaller than one.
Now we on the contrary consider the existence of the smallest harmonic
function to be greater t}rarr wp.

Lemma 8.2.1. If P > 0 and R is hyperbolic, then there erists the least
harmonic majorant lt* of the elliptic nleq,sure w, with h, 3 l . Moreouer

Itn : Tro*, anil w, : Tophp.

Proof: If P is parabolic, then wr:0 and hp:- 0.
If P is hyperbolic, the sequence {P(a) Gf,(z,z) wr(z)} is non-negatir.e

and non-deereasing. Because

i If o,-,
," J J Plz) Gff(z,z) wr(z) d,rd,y : Tiou'r(zo\ - wr(z) 1r

Rn

we have (Cf. e.g. [5] ir. 186)

(8.2.r) * I I P(z)Go@, z,) w,(z) ct.,ccty { t
R

and by lemma 7.1.2 Tpoltp is harrnonic. Iir -r?, to, { Tiou, ( 1 rvhich
implies
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T powp: 
l1T 

Tffout, ! h;

and Trow, is the least, harmonic majorant of wr. ?powp- hp.
On the other hand harmonic functions h^: Tbowp form a non-

decreasirrg sequence wherefore also the sequence {P (z) Gi@, zr) h"(z)}
is non-decreasing. Moreover

I rf
* J J P(z) Gi@, z) h,(z) clrd,y : h^(zo) - wr(z) I L

Ro

and therefore

I rf(8.2.2) ," J J P(z)Gr(z,z)hr(z)d,rrl,u 5r
R

and

wp(zo): lim T[rlt.(zr) : Toph'p(zå .

8.3. The spaces BP anil HB,

Let, P ) 0 be hyperbolic. We define an auxiliary Banach space f/8,
n ith the norm llhllo,

t llll I
HBp : thlh harmonie and tlhl,o, :suyr | < .o l.' L n' hP )

Because h, { | , HB, C HB and 'lve cau also use irr ä8, the rrorm

lläll : sup låi .

Clearly lläll < lläller. Later ou it aplrears tirat they are in fact equal.
The meaning of HBp appeals from the follorving result.
Theorem 8.3.1. Let P > 0 be a lt.tl,perbolia density on u hyperbolic

surfa,ce R. Then Trs ,is anisontetryfrom BP onto HB* and, To, ,i,ts

,i,naerse muppi,ng with regard, to both norms af EBr.
Proof : We start by showing thaL Trn is a mappirg from BP to HBp

alad Ts, a mapping from HBp to BP.
If u e BP , then lul S llull ?{,p and by folrnula (8.2.1) and lemma 7.1.2

Trsu is harmonic. Moreover

lTpoul S ilzll Tpowp: llullhp,

that is, Troue HB, and

3



34 Ann. Acad. Sci" I'ennicre A. r. 515

(8.3.1) llrrdull { llTroullsp < llzil .

If h, e HB* , then lhl < llhllopho and by formula (8.2.2) and lemma

7.L.2 foph e BP . X'urthermore

lf orhl l llhllorTorhr: llhllorw, < llhllo, .

Therefore f opll e BP and

(8.3.2) llro,hll < llällr" .

Next rve prove thab T ps is an isomorphism with the inverse mapping 7e".
Tnt tr, e BP. Then Ti6u is harmonic in E" and

!:r1"" : r,ou.

Because {Thowr} is non-decreasing

lrharl < tiuilhp.

By this and (8.2.2) we carl use lemma 7.1.2 again to get,

" 
::*Tf,pTiou : ToeTpou .

Let then lt, e HBp. Now n-e cannot use the preceding method, because

Tbrh does not always have a majorant fulfilling (7.1.I), but' u'e have

to prove it otherrvise.
We define G! : 0 in R - R*. tr'irstly rve estimate the difference

Torh - ?brh .

iro,h - rå,ttl _* *\ { f , (Gn G'il tr, d,rd,y
,R

L f r
i,lh:|o, c J J P (G, - Gilhrdily

- llhlloP(Tb,;, - To,h,) .

By using this we secondly estitnate the differcuce TboToph-h.

lrbo ToPh - hl : lTho(ToPh - TbPh)1,

< llhilorTbo(Tbrh, - T6rltp)

: llh\op(llp - Tho T ouhr) .

Because Torlt, € BP , ure have

:::rh" 
T sph : r po T oph e HB p

and when ra goes to infinity lt'e have b;' lemma 8.2.1
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lTPoToPh - hl < llhllo, (h, - TroTorhrl : s

that is
TpsTsph : h .

In order to show tlr.e isometry we finally prorre Llr'at Tp6 and 7o, do
not increase norms.

If h, e HB", then

lTbrhl < sup lhl = llhll
Ån

and

lro,hl: j:: lrb,hl < if,ll .

Therefore

llro,hll < lläll .

This together rvith (8.3.1) and (8.3.2) shov's that,

(8.3.3,1 iizli : llT'o%11: llT'oullo' '
ilhll: llroPhll : llällo..

The proof is thus complete.
Remark 8,3.2. The form,ulas (8.3.3) i,mply that i'f h e HBp, then

llhll: llhllo,'

This equality implies an auxiliary result.
Lemma 8.3.3. ry h e EBp , then lhl < lihl hp .

As a by-product of theorem 8.3.1 rve finallv can give & new condition
for the isometry of BP and BQ r,r'hen clensities trre norr-rregative.

Corollary 8.3,4, Let P and, Q be non-negcrti""e hyperbolic d,ensiti,es on

a Ri,emann surface. Il h, : lre , that is. if tlteir elliptic nxeasures ltaue u
contn'ton least harmoni,c majorant, then BP «ncl BQ ure 'isometri,c.

8.4. The isometry ol BP and IIB

'We can now exactly sa;,- rvhen the mapping Tpo rnakes BP and HB
isometric.

Theorem 8.4.1. Let P be a non-negatiue hyperboli'c density on a, hyper-
boli,a surface R. Tro 'i,s an isometry from BP onto HB if and, only if hr,
the least hurmon'i,c majorant of wp, 'is identically one.

Proof: We show that hr: I if and oniy if .HB: EBp.
If hr: I , then trivially HB : HBp.
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Tt HB - HBr, then I eHBp and by lemmas 8.2.1 and 8.3.3

t<hP<t.

The statement, now follows from theorem 8.3.1.
In order to make the strength of this theorem more clear we give t.,vo

sufficient conditions for h, to be identically one.

Lemma 8.4.2. Let P be a non-negatiue hyperboli,c d,ensi,ty on a Riemantt,

swface R. If inf h, > 0 , then h* : I .

R

Proof: Because inf h, €IlBp also I €ä8, and I <hp<l.
Lemma 8.4.3. Let P be a non-negati,ue hyperbolia densi,ty on a hyper-

bolic surface R. If

(8.1.1) [ [ ,O Go(z,z) rtrud,y < ,-a

tot

at some poi,nt zo e R , then h, : I .

Proof: By lemmas 7.1.2 and 8.2.I

I :lirlr Tbow'i : lrou:r, -' /t, .

Notice that lemma 8.4.3 is just Nakai's result and u'e have shou.n it,
to be a special case of theorem 8.4.1. We now demonstlate u'ith arr exarnple
that theorem 8.4.1 is really strolger than lemma 8.4.3.

Example 8.4.4. We choose

and.

P(z) : 11zl-2.

{,8"} is an exhaustion of .B and the ellipiic measure of -8, is

w$(z):lrl+n-.r I
n2 lzl'

Thus

we@): lzl .

In this case ä": I and BP is isometric v-ith HB b1' theorem 8.4.1.
Ifowever, Nakai's condition (8.1.1) is not valid. I.r fact, let us consider
a point zo e R. Becausr->

ri3;Go@, zo) > 0
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there exists a positive constant ä such that

Gu(z,zn)=ö, \,irhen 'iz'i<+l=oi .

ff nor,v s is a positive constant with r < å ',zoi and if r,ve clenote

thern

I I P@ Gs(2, z,) drdy 2 r,å, I { P@) d,td,y

.R Eu

- rim 2zå roq ]'o.l : * .
-:'$-'Lw'vb2e-*'

Thus we have also shown that Nakai's condition (8.1.1) is not necessary
for the isometry of BP and HB.

X'inally we show with another example that Trs does uot always make
BP and. äB isometric because äp is not always identically one.

Example 8.4.5. We choose

r. 1 r\
R : t"l I < lzl <2\, a": 

{ 
zlr * i .',r,., - ;l

i].ncl

P(*) - 2 (lri ius irl) ' .

?hetr {fi"} is an exhaustion and

i, + r*s,,,,) ,
\

rrrhere

Therefore

alrd

LTniversitv of Helsinki
I{elsinki, Finland

los i: I

Ir,r(z) - ,"*; .
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