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INTRODUCTION

C. SiEGEL [7] considered the functions

o (2

BO =142 te .. orny "7 T T B
satisfying the differential equation
2y +1
w” -+ - w 4+ w=0.

SiEGEL proved that if » is a rational number not equal to half an odd
integer and « # 0 is algebraic, then K,(x) and K(x) are algebraically
independent over the rational number field Q. He proved also some
generalizations of this result. In his proof SiEerL [7], [8] developed a
method by which it is possible to establish the transcendence and algebraic
independence of the values at algebraic points of certain entire functions,
called E-functions (for the definition of E-functions see p. 38).

A. B. SHIDLOVSKI [4], [5] generalized SIEGEL’s method and, in 1962,
he [6] proved a general theorem which states that if fi(2),...,fx(2) are
E-functions satisfying a system of linear differential equations with coef-
ficients that are rational functions of z, regular at the algebraic point
o« # 0, then the maximum number of function values fi(x), ... ,fn(x)
that are algebraically independent over the rational number field, is equal
to the maximum number of functions f;(2), . . .,fx(2) that are algebraically
independent over the field of rational functions of z (see § 11). SHIDLOVSKI
and his students have given many applications of this theorem (see [2]).

K. ManrLER [3] gave a further application of SHIDLOVSKI’s theorem.
He considered the functions

1{0)\* .
Ai(z):ﬂa K(2)|,_0,t=0,1,....

MAHLER proves that if « 5= 0 is algebraic, then the elements of every one
of the following four sets of six function values

{AO(O‘) > A(’)(“) , A;(x) or A{(“) s Ag(x) A;(O‘) » A3(x) or A;((X)}
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are algebraically independent over Q. He gives, too, some transcendental
expressions involving Euler’s constant y and the constant ¢(3). The
simplest involving y is

7Y ,(2)

272) 7

where Jy(z) and Y(z) denote Bessel functions of the first and the second
kinds of suffix 0.

In his paper MAHLER conjectures that these results could be generalized.
The present paper is such a generalization.

In § 1 we consider some preliminary properties of the functions A;(2)
and Bi(z) (see (1)) which are solutions of the following differential
equations,

1
” ’
wo—!—;wo—I—woz(),

”

wi i - w —|—;w§_1 =0, 1=12,.

Let Q(n), n = 0,1,..., denote the system of the first 2n -+ 2 equa-
tions of these equations, and let the functions wy(z), wy(2), . .., Wy,.1(2)
form a solution of Q(n).

In §2 we show that there are certain algebraic relations between the
functions w; and w,, ¢ =0,1,...,2n -+ 1.

Next, in § 3, we present theorem 1 by which we can, under certain
conditions, establish the algebraic independence of the 3n - 3 functions
Wy, W1 and wy, 1 =0,1,...,m, over the field of rational functions
of z. This theorem is a generalization of MAHLER’s theorem 1 ([3] p. 155).
As a corollary we obtain the algebraic independence of the functions A,

Ayiq and A4y, i=0,1,...mn.

For the proof of theorem 1 we construct, in § 4, certain functions t#(z),
t=20,1,...,n. By using the properties of these functions we can prove
lemma 1 which states that the functions w,;, wy; and ¢,¢=20,1, ... n,

are, under certain conditions, algebraically independent over the field of
rational functions of =z.

We split the proof of lemma 1, which is a fundamental step in the
proof of theorem 1, into a number of separate steps. At first, in § 5, we
consider some properties of the functions # needed in the proof. Thei,
in § 6, we give two lemmas by MAHLER and begin the proof of lemma 1.
The proper proof is given in §7, § 8 and §9. It follows the same main
features as the proof of MAHLER’s theorem 1 in [3].
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Then, in § 10, we prove theorem 1 and, at the same time, the corollary
of theorem 1.

In §11 we present SHIDLOVSKI's theorem. By this theorem we can
then, in § 12, establish the algebraic independence of the elements of every
one of 2"t! gets of 3n -+ 3 function values

{4o(») A(/)(O") » Ay(x) or Ai(“) s oy Ag(x) A;z(o‘) s A2i+1(“)
or A;i+1(0‘) oo Ag(x) A;n(o‘) , Aypia(x) or A£n+1(0‘)} >

where o # 0 is algebraic. When n = 1, we have MAHLER’s result (p. 7).

Finally, in § 13, we obtain some transcendental expressions involving
Euler’s constant y and the values ((3),..., {2n+ 1), n=12,...,
of Riemann Zeta function. These results generalize MAHLER’s theorem
3 in [3].

§ 1. Preliminaries

Let C be the field of complex numbers and C(z) the field of rational
functions of z over C. The ring of entire functions of z we denote by E.

Let z and » be two complex variables. Differentiation with respect to
these variables will be denoted by a dash and by the symbol 9/d», respec-
tively.

In this paper we shall mainly consider the functions ([3] p. 150)

1/8) 18\’
(1) Al(z) = ;:—' -a; 'Kr(z) !v:O B B,(Z) = 5 ?’V Ly(z) Ev:() >
i=0,1,...,
where
Ky =14 i (—24)"
S(2) = Al 1) F2)... (v +n)
and

1
L) = o (K Q) — ="K ().

Between the functions 4; and B; there are the relations (see [3] p. 151)

1 i1 7t

(2) Bi(z) = 9 (4;41(2) + (_1)i z i A ya(?)) s 1=0,1,...,
h=0

where Z = 2 log =.
The function K,(z) € E and is a meromorphic function of ». Further,
if J,(z) is the Bessel function of the first kind, then we have an equation
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(=/2)
= F(V 1 1) KV(Z) .

The functions K (z) and, if » is not an integer, L (z) satisfy the linear
differential equation ([3] p. 150)

2v 41

J,(2)

(3) w” + w4+ w=0.

2

Let now

(4) w = w(z,») :iwiv

i=0

be any integral of (3) which, for sufficiently small |»|, can be expanded into
a convergent power series of » with coefficients w; which are functions
of z. Then the coefficients w; = wi(z) satisfy the following infinite system
of differential equations ([3] p. 151),

1 !’
wy 4+ —wh+wy =0,

1 2
” ’ 4 N
wp - Zw Fwi A w, =0, i=1,2,....

In this paper we shall consider the finite subsystems

1
wo—}—;wo-i-wc,:o,

Qmn):y , 1 2,
) w; +—w +wi + -w_, =0,
2 2
i=1,2,...,2n L1,
n=20,1,..., of this infinite system. We present the solutions of @Q(n)
as row vectors
W = (wo,wy, ... W) .

Now, if |»| is small enough, we have, by (1), the convergent series
K,(2) = > Aiz)', L,(z) = > Bi(z)'.
i=0 i=0

Therefore, from the series in powers of » of the functions
K,y , Lz ,1=0,1,...,2n + 1,

we obtain immediately the following special solutions for @Q(n),
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Az) = (0,...,0,Ayz), A1), .- ., Ay i(2) ) s

i zeros
e

Bi(z) = (0, . TO , By(z) , By(2) s ..., By _i(2))
i=0,1,...,2n+ 1.
The Wronski determinant W(4,,B,) is ([3] p. 152)
W(A,, By = A,B; — 4By = 1/z.

Therefore the vectors A, and B, are linearly independent over C. From
the triangular form of the two square matrices

A, B,
A, B,
. and
~\A2n 1 ‘Binf 1/

it follows that the vectors A; and B;, 1 =0,1,...,2n -+ 1, are linearly
independent. From this we can deduce that every solution W of @Q(n)
has a unique representation

2n+1

(5) W = Z (an Ax + bn Bu),
K=o

where the coefficients «, and b, € C.

§ 2. The algebraic dependence of the functions w; and w;

Let W = (wg, wy, - . . Wy,.1) be any solution of @(n), such that
wy == 0. We prove now that every derivate u';jﬂ, j=0,1,...n,
can be presented as a rational function of the functions w,, wy, ... wy .,

and wp, wy, . . . wy; with coefficients in  C(z).

Let
2j+1 4 2j .
6) L (W)y=z> (— 1)'w,~w;j+1_,» + > (— Diwawy;_;,j = 0,1,...m.
i=0 i=0
By means of the equations @Q(n) we get the following equations,
d 2j+1 o, % o, ,
;l; Li (W) = 'Zo(_ L) 'wiwy;q_; + Z.ZO(_‘ 1) {wiw2j+1—i -+

o
1 ’ “ ’ ’ 1 ’
+ wi | — ;w2j+1—i — Wy i1 — ;w?.j—i — 2\ Waj 1 Wy + Wi\ — zwo — Wy
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2j
3 (= g ey
A ; 7t i’ . ’
==z z (— 1) (wywy; oy ; — wiwy; ;) — 2 Z (— Dwiwy;
i=o i0 )
N ﬂ] ; 7
-+ 220(— Diwawy;, ;=0 .
Hence
d
—Li(W)=0, j=0,1,.... n
dz
So there must be complex numbers
Cj = CJ(W) s J =0,1.....n,

which are independent of the variable z but depend on the vector W,
such that

(7) L;(W)y=0C;, j=0,1.....n.

The equation L, (W) = C, is due to BeLoGRIVOV ([1] p. 56), and the
equation I, (W) = C; is in MAHLER’s paper ([3] p. 153).

If w, = 0, then it follows from (7) that we can express the functions
'w;j+1 ,j=0,1,...,n, as rational functions of the functions w,,, wy ;,
wy, 1 =0,1,...,5, where the coefficients of these rational functions
lie in C(z). Hence

’ ’ ’
(8) Wy 1 = Dypa(2,Wo Wy oo Wy Wy W0y e, W0y
J=0,1,...,n,

where the functions D, ; are rational functions of their variables.

Further, we show that the constants (; = (; (W) can be expressed
by an and by, the coefficients of (5).
By (5) we have

h
(9) wp = > (@Ay_; + 0By ), h=0,1....,2n} 1.
=0

The functions A, and zA4,, h=0,1,....2n — 1. are clements of E.
The functions By and 2B, h=0,1,... 2n -1, are, by (2), poly-
nomials in log z with coefficients in E. Therefore, it is obvious that
also L; (W),j =0,1,...,n, are polynomialsin log z with cocfficients in E.

If now P is any polynomial in log z with coefficients in E, we denote
by [P] that term of P which has no factor log z. Then it follows, by
(7), that the equations
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LiW)=[LW)].j=0,1,...,m,

must hold. The left-hand sides of these equations are independent of z

Therefore, we can obtain the values of L; (W) from the equations
(10) I; (W) = [L; (W)]eo, j=0,1,...,m.
Let us determine now
[wnlo os [whloo , h=10,1,...,2n 41,
It is obvious from the definition (1) of A;(z), that
Ay(0) =1, 4;(0) = 4,(0) = ... = 4,,.,(00=0.
Further, by (2), it follows that

1
[Bi(z)] =3 A &)+ (=4, (), i=0,1,...,2n+ 1,

and therefore
(Bix)]oo = 0,4 =0,1,...,2n+1.
From (2) and (9) it follows that

h

[wn] = Z (@id,_; + b{B,_;]) ,

h 1
[zw,] = ZZ 'Ah it _b( h— .11+(— 1) 'Allz—i+1))+

+ 20(._ = bid,_;, h=0,1,...,2n+1.
Hence
(11) [wnl o= an, [l o=0br, h=0,1,...,2n+1.
By (6),
ULy (W) = 3 (— V] [y ) + S (= Y[ by,

J=0,1,...,n.

Therefore, by (7), (10) and (11), we get the following equations,

(12) OJ (W) = L] (W) = i j'~1—i +_§0 (— 1)"0,,-0121-_,-,

J=0,1,...,n.
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For example, if W = A,, we have

(13) 00 (AO): 1 s 01 (AO) = ... = (V" (AO) = ().

§ 3. Theorem 1

In the preceding section we found that if W = (w, wy, ... w,,,,)
is a solution of @(n), such that w, = 0, then the functions u~;j+l, j=0,
1,...,n, can be presented as rational functions of the functions w,,
Wy oWy and We, Whs + - . ,w;j with coefficients in C(z). In theorem
1 we prove that these later functions are, under certain conditions, alge-
braically independent over C(z). This is essential for the later applications,
because we need this property in SHIDLOVSKI's theorem (see § 11).

Theorem 1. Let W = (wy, wy, . . . ,ws,.,) be any solution of @Q(n)
such that Ly, (W) %0 and, if n>2, L;(W)= ... =1L, {(W)=0.
Then the 3n -+ 3 functions

(14) Wy, Wor g s Wy t=0.,1..... ",

are algebraically independent over C(z).
From theorem 1 follows, by (13), the following corollary.

Corollary. The functions
(15) Azi,AZH,l,A;i, i=0,1,....0n=0.1,...),

are algebraically independent over C(z).

Theorem 1 is a generalization of the following theorem by MAHLER
([3] p. 155).

Let W = (wy, wy, Wy, ws) be any solution of Q(1) such that L, (W) = 0.
Then the six functions

Wo s Wy s Wy s Wy o Wo - s

are algebraically independent over C(z).

In his paper [3] MAHLER conjectures that this kind of generalization
is possible.

In the following sections we prove lemma 1 by which the proof of
theorem 1 can be established.

§ 4. A lemma on algebraic independence

Let W = (wy, wy, ... ,wy,,,) be again a solution of Q(n). We define
the functions ¢; =1¢(z), 1 =0,1,...,n, as follows,



Kero VAANANEN, On a conjecture of Mahler 15

’ ’ ’
ty = Wy , by = 2(Wowy — Wywy) + Wewy ,

) 10= z<Ji (— Diwavy_; — i (= 1)‘:“”‘7“”;1“")

i=0 i=j+1

j=2 . .
+ 2 Zo(_ Dwiwy;_;_; + (— 1)]_]wj—1wj ) =2,3,...,n.

The following lemma, which deals with the algebraic independence
of the functions wy, wy,, and &, ¢=0,1,...,n, is a fundamental
step in the proof of theorem 1.

Lemma 1. Let W = (wy, wy, . . . ;W) be any solution of Q(n) such
that Ly (W) # 0 and, if n =2, Ly (W) = ... = L,_, (W) = 0. Then the
Sfunctions
(17) Wy s Wyi oy 58, 0 =0,1,...,m,

are algebraically independent over C(z).
Before starting the proof of this lemma we consider some properties
of the functions ¢;,j = 0,1,...,n, which will be needed in this proof.

§ 5. Some properties of the functions t;

In the following we shall use the notation w(k) to denote the functions

Wq, Wy, - - - ;Wi in this order, and, respectively, w’(k) to denote the func-
tions wy, wy, . . . ,wy, and #(k) to denote the functions fo, ¢y, ... .
Generally, x(k) denotes xg, @y,...,2 in this order, and according to

this notation we shall write
flxg, 2y, ..o, a) = f(x(k)) .

Further, when we write that

fl®)) = 0
identically in «(k), this means that

flag, 2y, . .a8) = 0
identically in the indeterminates g, x;, . .. ,%.

From the definition (16) of the functions # we get, by (8),the equations
ty = wy 5 by = 2(wewy — w2wlll) + wowy ,

t; = 2(wowy; — wywy) + Fi(z, w(2j — 1), w'(j — 1)), j =2, 3,....n,
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where the functions F; are rational functions of their variables. From
these equations we get the recursive formulae
(18) lto = wy , by = 2(wewy — wyly) + wewy ,

lti = z(wow;j - w2jt0) + Gj(z ,w(2j —1), t’(.? —1)) 7j:233"" > s

where the functions G; are rational functions of their variables.
So we get, by (8) and (18), for the derivatives w, the following formulae

(19) {w;1=82, (Z,’LU(?-aj),t(j)),
w;j+l=S2j+1(z,w(2j+1):t(j))’ J=0,1,....n,

where the functions 8; are rational functions of their variables.
Further, by Q(n) and (18),

1
t(;:—;w(,—wo,t{zw[,w1~wow1,
' , d : : ,
tj=~2wow2j_1+;i—sz(z,w(23—1),t(j—1)),}:2,3,...,n.

Hence we get, by (7) and (19) the recursive formulae
’ 1 ’ 1 9

(20) toz—;to_wmtl:;(wo_co):

]t}:Tj(z,w(zj—l),t(j—1)), j=2,3,...,n,

where the functions 7; are rational functions of their variables.

If we choose W = A;, we have, by the definition (16) of ¢,
ty = Ay, ty = 2(dgd; — A,4p) + A4,

j-1 3
g = oS- v = 3 - i) +

i=j+1
j=2 ) .
—l— 2 z (-—- l)lAiA2j—l—i —|— (—— 1)1_1Aj_1Aj j =2 B 3 s e e, .
i=0
We denote these functions by ¢ (A),5 =0,1,... n.

Next we present lemma 2.
Lemma 2. If W = ayA,+ ayAy + by Byoy. 1> 0, is a solution
of Qn), 0 =j=n and 21l + 1 > j, then
to = agly (Ao) ,
= agtj (Ag) + 5]-,21“0“21 {Z(AOA,' - AjAt;) + AOAj—I} ,j =L

J
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If W = a,A, + byBy is a solution of Q(n), 0 =j =n and 21> j, then
o = aglo(Ao)
i = dti (Ag) + Ojtbu, j=1.

(Here ¢ denotes Kronecker’s d-symbol.)
Proof. From (9) and (16) it follows immediately that

to = aoly (Bg) > 4 = agli (A, 1 =j <1,

for both solutions W = ayAy + ayAy + by 1By.; and W = A, +
- byBy. Thus lemma 2 is true if j <<l

If j=1=1 and W = a,A, + ayAy + by.1By. ;. then we have,
by (9) and (16), # = agt; (Ap). If j=1=1 and W = q,A, + byB,,
then it follows from (2), (9), (13) and (16) that

ti = agli (Ag) + aghoz(4gBy — Body) = agti (Ag) + gy -

Next, let j =n satisfy [ <j < 2l. Further, let §,, where p is a
rational integer, denote

. [1, if p is odd,
0, = . .
P 10, if p is even.

Then we obtain both vectors W = q,A, - 0,B, and W = g A, -
- ay Ay + by 1By, fom the vector

W = A, + 6,0, 1 A,_, - 1,B,

by choosing p = 2l or p = 2l + 1, respectively.
So ,for proving both cases of lemma 2 simultaneously, let

W = @Ay + 6, 1A, + b,B;
where p = 2] or p = 2] + 1. Then we have, by (9),

wy = @gdg,...,w,_ = a,d

P p=2
Wy = Ggd, 1 + O, 14,
uyp B a’OAP ’{— 611 P_.lAl _!_ bPBO 4
W1 = gd, .y + Optt, Ay + bpBy
Wy = agdy; + Opt, 1Ay oy + 0By,

So we get, by using the definition (16) of i,
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2j—p+1

b = a’gtj (Ao) + aPa’Oap-—l{ ( Z (— 1 2J—p+1 i

2j . , 2j—p )
- Z 1(_ l)lAi—p—%lA:Zj«i) + 2 ZO (_ I)LAiAZj-p—i}
1=p— 1=
2j—p 2j
+ aobp{z( S (= VAiBy , . — > (— 1)B,_,4;_ )
i=0 i=p

2j—p—1

+2 > «—1&&Bwﬂ_b}

2j—p

=a§tj(A0)+a0bp{z z(_‘ 1)(Asz —pi — (— l)BAzJ —p—i)

i=0
+2_<—n%mw44.

We now put 2j — p = m and use (2). So we get the following equations,

z m ) , m-—xJ»IZh
t] = agt_, (AO) + aobp {_2' ZO('—' 1)’{44; (Am—i+1 + (— 1)"!— z h' Am i—h+1

E=0
m—itl 971
+ (— 1" Z Z(h———l)' Am—i—h+1) (— 1)p4,,_ 1( 4., +

h=1

i+1 Z

nei 2
(— 1) z h' At h-{-l)} + Z (_ 1 (-A + (_— l)m‘l—thgoﬁAm—i—h)}
= agti(A,) + @obp {22 (— 1)i(4:4,,_ i1 — (— 1)P A, Ai) +

m—i+th ,
((_ 1)"4; Z ﬁAm—i—h-;-l
h=0 1t

IIMs

m—1 . z
+ Zo (— l)lAiAm—i} + aghp {E

i+th m m—i Zh
- (_ ]‘) m-—lh;ﬁAi-h—l—l)} + aO {Z Z (_ 1 ! AiAm—i—ll +

i=0 h=0
m—1 m—i z m . ,
+ 20 hz (— 1" ! _A Am-—x‘—h} = aﬁtj (Ag) + aghp {E ZO (— 1)(4id,_iia

- ( ) Am—tAt—i—l) +§ — 1 lAA }

i+1 , V/d
Z ( (_ l)mAm—iAi-h+l - (— ]‘)PAm 1A1—h7-1) Al

nMs

1
2
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1
= “Etj (AO) ”F b)A 6132{?0])!' (‘40‘4'1" -1 7 Am-:—lAO)

Z m ) , , m X
8y steby {— S A A A+ S l)lAiA,,l_i}

245 i=0

1 m i+l Zh ,
+ 5 (—" 1 P ZaObP{ z Z (Am l‘_ll h+1 Am lAl h+ l) ﬁ - (Am+lA0
, . m+1
- Am-l,—lAO)} - (I'(;lj (A()) + 6p —l(LObP {Z z (_ ]') A AmTl i +
i=0
m ) 1 m+1Zh m ,
+ zo (_ 1)'Ai‘4lrn :} 1 _) - 1 "a'()b Z h' z m— z i—h+1 7 Am—iAi—h+1)

= agtj (A,) + 0, 10bp i Z (— 1) AAle l—l—Z(—l Y44, ‘}

Il

aiti (A,), if p=20+4+1,
aglj (Ag) + tobpLin (Ag) , if p = 2.
2

We assumed that j > I. Hence m > 0. Therefore, by (13), Ln(A,) = 0.
z

From this it follows that lemma 2 is true when 21> j > [

If n=2=j>1 and W = qyA, + aA; + b,.,B;,,, then we can
deduce, in the same way as before, that the term with coefficient agb;,,
vanishes. Therefore,

j—1 . , 2j
tJ = a’gtj (AO) —i_ Aoy {Z( Z (_ 1)IAiAj—i - Z (— 1)Al ]A..] 1)

i=0 imj+1
j-2 )
+ 2 Z (— 1)4u j—1—i AOAj—l}
i=0

= atz)tj (Ap) + @y {Z(AOA; - ‘41"4(,)) + AOAj—l} :

So lemma 2 is proved.
Lemma 3. Let n =2, and let

W = avo + Out,_1A,_1 + baBn - Onlly,_2As, s
be a solution of Q(n). If ay, # 0, then

1
t, = E(z) + (—1) {“—0 (2(wow, — W) + W, _1) — b,,} b. log z,

where E(z) is an entire function of z. (Here, again, 0, =1, if n is odd,
6. =0, if n is even.)
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Proof. We have, by (9),

Wy =agdy. ..., w, 5, =ayd,
e
W,y = agd, | + o, 4,

Wy = g4, + dua, A, + b.B, .
(21)

Wy, o = gy, 5+ 0w, A, 0B, by, WA

Wy, = WAy, + Out, A, | DBy O, oA,

From this it follows, by (16), that

n--1 2n
m=Emr+%m%<z(wnu£;fw:(»nw”A;)

i=0 (ol
+ 2 Z_ (_ l)i‘4fBll-»l—~i %4 (‘" 1)” l‘h'{n 11))0}
i=0

(= 100, b (2(AgB] — Bydy) o A Byl

where F,(z) isan entire function of z. because the functions A4i(z) and
A/(z) €EE.

By (2) and (13),

2AyB; — By4;) 4 4By = — {2(do

B *11‘—1(/\) “n lo

(3

— logz.

(‘JO

Therefore, by using again (2), we obtain

n—1

tn = Ey(z) + tobn {Z > (= W(AB, ., — B, 1)

Cie0

Z — Y4B, ; + (— 1)""];~'1,,~,130l — Outt, by log =

| J
i _'n-z;th ,
Z (— 1)‘{1‘1;(— 1)"'( T I

=

tvl S

= H,(z) -+ uob,,{

i

n‘i:"‘l 2Zh ! A A . ln \,,1/71
+ 12‘1 Z(h— 1)1 n-~i~h;1) - (“‘ ]) h,/o .]1_ ;:l” Ph 1}

n— th
+z (_- 1)1A " o ’Z hr n—i ho ( I)”/l«‘Jn -IBO}
— O0na,_;ba log 2

2 n—ln—iil Z”

=E2(Z aO { Z Z (_-—]) “4"[111.: ho1 “11',‘”1“ i»h;l) %!_
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1 h
+ (=1 Z e A, 1Ay (= 1)"~1Anw1 (4y + Ay log Z)}

— Ont,_1bn log 2

zonom 1‘ 1 Zh
- E(Z) + (“"‘ ) a“b" {-; L : (‘4"411 i-hi1 7 A4i‘411~i——h;1) 71_'
=i-0 h=1 .

2
— 5 (A,,A — ALANZ - A4, | log z} ~= Outt, _1b. log 2

n:‘l Z" n 1_:»51 , ,
= E(z) + (~ l)"(l’obn {5121 71, Z (AiAuew “h—i T ‘4'i*411—— 1~h~i)

i

ot

+ z(AOA, - A"A(l)) 108 < ‘:“ ‘10‘411» 1 } " n 1 g z

n

= E@) + (— 1)agba ((dod, — da4y) + Ayd, ) logz — oua, b log z.
So we have
(22)  to = E@) -+ {(— D'ay(x(dod,, — Audg) + dgd, 1) — 0ut,_y} balogz,

where E(z) is an entire function of z.
Now, because = = 2, it follows from (21) that

2(wow,, — watwy) + Wy,

= 2(agdy (agAl + S, A7 + b.By) — agdy (aydy + 0ut, 1Ay + buBy) )

+ agdy (@pd, | -+ Ou, Ay)

= a3 {z(dyA4, — A Ay) - AgA, Y agby = Outg,
since, by (13),

2(A By — ByAy) = z(Ayd] — A4y + A7 = Ly (Ag) = 1.
Thus we obtain

(— 1)ay (2(Agd, — Ay = dgd, 1) — 0,

= (— 1) {a, (z(dod, — Audy) + Agd, ) + duat, 1}

1
= (— 1) { — (z(wgre), — Waaty) - wow, ) — b,l} .

ty

By (22), this gives lemma 3.
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§ 6. Two lemmas and the beginning of the proof of lemma 1

At first we present two lemmas by MauLER and then begin to prove
lemma 1.

Lemma 4. Let F be an extension field of C(z) which is closed under
differentiation. Let f be an element of some extension field F* of F such
that f is algebraic over F, while its derivative f' lies in F itself. Then
f is an element of F.

Proof. See [3] p. 155.

Lemma 5. Let W be any solution of Q1) such that Ly, (W) # 0.
Then the functions

Wy , Wy 5 Wy , Wy . Iy . 1

are algebraically independent over C(z).

Proof. From the proof of MAHLER’s lemma 5 (see [3] pp. 159—161)
it follows that the functions wy, wy, w,, ¢y, t; are algebraically independent
over C(z). By substituting the function w; by the function ¢, in the
proof of MAHLER’s theorem 1 ([3] pp. 161 —163) we sce that lemma 5 is true.

Next we begin the proof of lemma 1. which will be performed by in-
duction on n.
It follows from lemma 5 that lemma 1 holds when # = 0 and »n = 1.
We assume that this lemma is true when n = % — 1 = 1. This means
that if
W= (wy,wy,....wsy )

is any solution of Q(k — 1) such that the conditions
Ly(W)#0, L;(W) = ... = L, (W) = 0

are fulfilled, then the functions w(2k — 1) and #(k — 1) ave algebraically
independent over C(z).
By using this assumption we prove. in §7, § 8 and § 9, that if

W = (wy, wy,....uwy 1)
is any solution of Q(k) such that it satisfies the conditions
(23) Ly(W) # 0, Liy(W) = ... = L, (W) = 0,

then the fuanctions w(2k 1) and #k) are algebraically independent
over C(z).

We split this proof into three steps. The first two of these steps we
state as lemmas and then in the third step we conclude the proof of lemma
1. In all three steps W = (wy, uy, . .. 0y .,) denotes a solution of Q(k)
satisfying the conditions (23).
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§ 7. The first step of the proof of lemma 1

Lemma 6. The functions w(2k — 1) and t(k) are algebraically inde-
pendent over C(z).

Proof. Because W = (wg, Wy, . . .,Wy,.,) is a solution of Q(k) such
that the conditions (23)

Ly (W) = Co #0, Ly(W) = ... = L,_, (W) =0

are fulfilled, the vector (wg, wy,-..,wsy_ ;) is a solution of Q(k — 1)
satisfying the conditions

Lo (W) = Cy % 0, Li(W) = ... = L_, (W) = 0.

Hence, by induction hypothesis, the functions w(2k — 1) and ¢k — 1)
are algebraically independent over C(z).
Assume now that the assertion of lemma 6 is false. This means that
the functions w(2k — 1) and #(k) are algebraically dependent over C(z).
Let F,; be the extension field

F,=Ck,w@k—1),t(k—1))
of C(z).

Because the functions w(2k — 1) and ¢(k — 1), but not the functions
w(2k — 1) and t(k), are algebraically independent over C(z), the function
tr must be algebraic over F;.

By the relations (19) and (20) F; is closed under differentiation.
Further, by (20), t, lies also in F;. Hence, by lemma 4, % itself must
be an element of F;.

Therefore, there exists a rational function

R = R(z,x@2k — 1), uk—1)),

where x(2k — 1) and w(k — 1) denote the indeterminates xy, 2y, . . . ;%91
and wg, %y, . . . ,u_;, respectively, in C(z, 2(2k — 1), u(k — 1) ) such that
(24) ty = R(z, w2k — 1),t(k — 1))

identically in =.
We now put (as MAHLER [3] on p. 157)
R b 1 P ok~ oR oR
(Z;x( - )’u( - ))——azTaxoyo_{“ amly]_—{_--._*'

oR oR oR oR

+ %o 1 Yok T E;OUO + 52:1731 + ...+ auk_lvk—l )

where, according to (19) and (20),
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ot
[

Y = Sy (2, 2(20) , u(z) ),
Yoiy1 = Szi+1 (z,2(20 4+ 1), u(?)),
t=0,1,...,k—1,

(25) 1 \
Vo = — Uy — Xy, v;=— (25— Cp),
2 2

v = Tjz,2(2j — 1), u(j—1)),
j=2,3,. .., k—1.

Let, further,
w =S (72’0,@1,. ..,’LT)2k+1)

be any second solution of Q(k) for which
LiW)=Cy#0, LLW)= ... =L,_, (W) =0.

If we state, according to (16),

fy =y, by = 2@y, — Wyi0;) + Wolty

- izl o, U, o,
i =2 ( Z (— l)lwiﬁ&j_i — Z (— 1)'wiw2j—i) +

i=0 i=j+1
j-2 , .
+ 2> (= Vi@aby_y_; + (— 1) o, i, §=2,3,...,k,
=0

it follows that the equations (19) and (20) hold for the functions i (2k)
and #(k), where these notations mean the functions Wy, Wy, « . . 4Ty, and
tos Iy, - - - ,tk, Tespectively.

So it follows that if we set

2k — 1) = @2k — 1), wk — 1) =k — 1),

then we have

Rz, w2k — 1), {(k — 1)).

&~

(26) R*(z,w(2k —1),Hk — 1)) =
We have, also,

Rz, w(2k — 1), 4k — 1)) :(%R(z L w(k — 1), 1k — 1)).
Hence, by (20) and (24),
(27) Rz, w2k — 1), ik — 1)) = Ta(z, w@k — 1), {(k — 1))

identically in 2.
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The functions w(2k — 1) and #(k — 1) are, by induction hypothesis,
algebraically independent over C(z). Therefore, it follows from the equation
(27) that

(28) R¥(z, 22k — 1), u(k — 1)) = Tw(z , 2(2k — 1) ,u(k — 1))

identically in the indeterminates z ,x(2k — 1) and u(k — 1).
Now, by (20),

B o mek— 1), i —
7 = Wz, w2k — 1), t(k — 1)),
and so we have, by (28),
dlx n
T R¥@z ,w(2k — 1), t(k — 1)) .
From this it follows, by (26), that
i, d -
T :@R(Z,@(?k — 1),k —1))
identically in z. On integrating, we obtain the relation
(29) e = Rz, ®2k — 1), ik — 1)) + C (W),
where C' (W) depens on the special solution W of Q(k), but is inde-
pendent of =z.
We choose now
W = oAy + @ sAsi_s + by 1By,
where a,,ay_, and by_, are complex numbers satisfying
ty = \/50 # 0, @by + 200ty _y = 0,0y #0.
Hence, by (12),
LyW)=0Cy, L, W) = ... = L,_, (W) =0,

and so the equation (29) holds for this solution W.
Tt follows now from the choice of W and from lemma 2 that

Wy = @y, .o, Wy y = AoAg_s  Wop_o = oAy _5 + a4y,
(30) Zo = oty (Ay) Z1 = “3"'1 (Ag) -+ by = ol (Ay)
B = aghe (Ag) + Ottt {2(4oA; — AzA.;) + Aody} -

So these functions are entire functions of z, but
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Wop—y = @gAo 1 + (G5 + by_1)A; + by_14ylog z .

Thus the left-hand side of (29) is an entire function of z and the right-
hand side of this equation has the explicit form

R(z, 7?(272 —2), %Aztl + (o + by_1)A; + by 14y log 2,
e —1)) 4+ C(W).
The solution Ay = (4y,4;,...,4y_,) of QFk — 1) satisfies, by
(13), the conditions
Lo(Ao) =1+#0, L1(Ao) = - = Lk—z(Ao):O-
So we can deduce, by induction hypothesis, that the functions

-A09A1>"':A2k~13t0(A0),t1(A0)7“':tk—l(AO)

are algebraically independent over C(z). From this it follows, by (30),
that the entire functions

’LZ‘(Z]C - 2) H A2k—l ’ {(k - 1) s
and so also the functions

@2k — 2), Ay, , ik — 1) and log =z

are algebraically independent over C(z).
Now, either R = 0 identically in z,2(2k — 1) and w(k — 1) or R
can be presented in the form

g Pibit ..+ Py
Qe+ Q7

where p and ¢ are non-negative integers, P, ... Py, Qo ... ,Qy are
polynomials in =z, (2k — 2) and wu(k — 1), such that the polynomials
P, and @, do not vanish identically in these variables. If R has the
later form, then we have, by (29),

(e — C(W) ) {Qq (z, @2k — 2) , ik — 1))@l _, + ... -
Qo(z, T2k — 2), 1 (k— 1))}

= Pp(z,w(2k — 2), ik — 1)) @5 _, + ... -
Py(z, @2k — 2) ik — 1) ).

Since # — C(W) € E and the functions @(2k — 2) and i(k — 1) together
with the functions Ay _, and log z are algebraically independent over
C(z), this equation implies that p = ¢ and
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P, (z,®(2k — 2),i(k — 1))

= W) =0 @@k —2), ik — 1)) -
Hence,
B i Pz, B2k — 2),1(k — 1))
Rz ,w2k — 1), 4k — 1)) = 0, . %@k — 2), ik — 1))

identically in z. By the algebraic independence of the functions @(2k — 1)
and (k — 1) it follows that this equation must hold identically in z,
w2k — 1) and #(k — 1). So the function R(z,z(2k — 1), u(k — 1))
does not depend implicitly on the variable a,_;.

Therefore, R = R(z, (2k — 2), uw(k — 1)), and so the equation (29)
has the form

(31) i, = R(z, @2k — 2),{(k — 1)) + C (W).

Now, if 2k —2=k-+1 (If k=2, then we can continue from
the equation (35).), we choose

W = agAg + by 2By,
where @, and b,,_, are complex numbers satisfying
ty = \/C_’O # 0, by_, # 0.
It follows now, by (12), that
Ly(W) = 0y, L, W) = ... = L,_, (W) =0.
By lemma 2
fo = aglo (Ag) s Ty = gty (Ag) 5+« by = gty (Ag) »
fi1 = g1 (Bg) + bz B = gt (Ay) -
These functions and the functions
Wy = gy, ..., W3 = GgAgy_;
are entire functions of z, but
Wyp_g = GgAop_s + bap_sAq + by _,Aglog z .

We can now see, as before, that the equation (31) can hold only if the
indeterminate x,,_, does not occur in the function R. Hence R =
R (z,2(2k — 3), u(k — 1)), and so the equation (31) must be of the form

(32) b = R(z, w(2k — 3) ,i(k — 1)) + C(W).
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Now, if 2k — 3 =k 4+ 1, we take alternatively
W = @Ay + s A5 5 4 by, 1By,

where
(33) g = \/C_'o 70, @by ) + 24485,y =0, by | # 0,
and
W = A, + by, »B,,_,,
where
(34) ay="Cy #0,b,_, #0,

s=k—1, k—2,..., until 25 —1=k+1 or 25s—2=7/-1.
By (33) and (34) these solutions satisfy the conditions

LO(W):COaLl(W):"':Lk~l(W):O'

Further, by lemma 2, the functions #(k) are entire functions of z for all
these solutions. In the same way as before (see p. 27) we can now deduce
that none of the indeterminates @y, ,, @y, ....2,. , can occur implicitly
in R.
Hence
R =Rz, xk), wk —1)).

So the equation (32) has the form

(35) b = R(z, w(k),{(k — 1)) + C(W) .

If % is odd, we choose
W= agAg + @, 1Ay i + ay_sAy_ 5 + biBi,

where ag, a;_y, ay_, and b. are complex numbers satisfving

]ao V0, £ 0, caobk+°a0ak1—0
(36) s
I“k 10k 4 240y, 5 + ai_; =0, by

From these equations it follows, by (12), that
(37) Ly (W) = Cos Iy (W) =...=1L_, (W) =
Because L, , (W) = 0, we have, by (6) and (19).

9

2(Wwowr — wawy) = Z — Dwaw,_, '—z Yawie,

k—1
=7riz,wk—1), t(—_)—)),

=
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where 7 is a rational function of its variables. It follows, by (37), that also

_fk—1
2T, — Wyity) = r(z, Tk — 1), t(—;—)) .

Therefore, by lemma 3, the left-hand side of (35) is
E@z) + {;{1; (r(z, Wk — 1), f<k~_2—l—) ) — Wolly_y) + bk} bilogz.
By lemma 2
fo = oty (Ay) 11 = @ity (Bg) s - - - s o = agti_y (By) »
T = ah_y (By) + oty {2(dgdfy — Ay Ag) + AgA, .}

Further, it follows from (18) that

2 2

- R Up_1 - _ _(k—3 -
b1 = agh_y (Ag) (i1 — Gz, @k — 2) T\ —5 ) + Tl s) -

ay £

P4

The functions Ag, Ay, ..., A and fo (Ag), fy (Ag), - - . L1 (Ay) are, by
induction hypothesis (see p. 26), algebraically independent over C(z).
Therefore, the entire functions

Wk — 1), Ar, {(k — 1)

and the logarithmic function, logz, are algebraically independent over C(z).
Thus, since the right-hand side of (35) is
’LZ’I bk - e
B (k= 1) e (e b ) - S wlog T = 1)) 4 C(W)
0 0

where R = R(z, a(k), u(k — 1)) is a rational function of its arguments,
the equation (35) cannot hold unless R is an entire linear function of the
argument a;. This means that

Rz, ak) , w(k — 1)) = Ry(z,a(k — 1), u(k — 1)) +
Ry(z bk — 1) ,u(k — 1) ),

where rational functions R; and R, do not depend on .
The equation (35) becomes now

kE—1

1
E(z) 4 {c; (r{z.w(k — 1), t(—z——)) — Wyl _y) + bk} b log 2z

0
=R, (z,@(k — 1),k — 1)) + By (z, @k — 1), 1k — 1)) (aods +
A (@y_y + b)A, -+ idglog z) + C(W)
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and requires that
By (z,w(k — 1), ik — 1)) bud, log 2
1 _ fk—1
=1 (r@z, ok —1),t\—5—]) — @i_;) + bifbilogz.
gy 2

From this it follows, because b, = 0, that

o’ll =

<

w

S

=

=

l

—
-

A
0

el
w! |
[

~——
-

|

=

-

|

Ryz,w(k — 1),ik — 1)) =

In this equation the functions @(k — 1) and #(k — 1) are, by in-
duction hypothesis, algebraically independent over C(z). So we have

1 E—1
Rz(z,x(k—1),u(k—1))=~r(z,x(k—1),u< )) — &,

Z 2
Vb

Zo

(38)

+

From the definitions of R, R, and 7 it follows that these functions
do not depend on the special choice of the constant b It is possible, on
the other hand, to satisfy the conditions (36) for infinitely many choices
of by £ 0. Hence we have a contradiction in (38).

Next we prove that the same kind of contradiction arises in the even case.
We choose

W = aioA() + kak 5

where
(39) ag="Cy #0,b, £0.
It follows, by (12), that W satisfies (37)

LyW)=0Co,L;(W) = ... = L,_, (W) =0.
The left-hand side of (35) is thus, by lemma 3 and (18),

1 k
E(z) + {“—o (Zf_— Gi(z, w(k — 1), i<§ - 1)) + Wity _y) — bk} b log =.

2 2

The right-hand side of (35) has the explicit form R(z, ayd,, ...,
oAy _1, aoAr + bid; + bid, log z, ik — 1) ) - C(W), where, by lemma 2,
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Ty = oo (Ao) » j = a2t (Ag) + Sunbe,j =1,2, ...,k —1.

Here, by induction hypothesis (see p. 26), the functions Ay, 4,,...,4x
and £, (Ap), ¢ (Ay)s - - . sl,_1 (A,) are algebraically independent over C(z).
Hence also the entire functions

@k — 1), 4w, t(k — 1)

and the logarithmic function, log z, are algebraically independent over
C(z). From this it follows that the equation (35) cannot hold unless R is
an entire linear function of the argument ax. This means that

Rz, xk),uk — 1)) = Rz, a(k — 1) ,u(k — 1)) +
+ Ry(z, 2k — 1), u(k — 1) )as,

where rational functions R; and R, do not depend on a.
Therefore, the equation (35) has the form

K@) + {a%) (‘%— G;(z , w(k — 1), f(g — 1)) - Ty ) — bk} by log z
= Ry(z,w(k —1),8k — 1)) + Ryz, w(k — 1), ik — 1)) X
(agAy + brA, + bid, log z) 4+ C(W) .
This implies that
Ry(z, w(k — 1),k — 1)) bid, log 2
1 |k

= {&; (t%— G%(z ,wk — 1), t(é — l)) + Wyiy_1) — bk} bilog z .
Because b % 0, it follows that

R 2

VO

Wy

Rz(z,w(k—1),i(k—1))=ﬁ—l(ik—ak(z,w(k_ 1),5(10—1>))+wk_1

Since, by induction hypothesis, the functions @(k — 1) and #(k — 1)
are algebraically independent over €(z), B, has the explicit form

1 k
Rz(z,x(k——1),u(k—-1)):;;(u£—Gk(z,x(k—1),u(;—1))) + 2,

- “
2

V0

Lo
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From the definitions of the functions R, R, and @, it follows that
these functions do not depend on the special choice of the constant b.
By (39), it is possible to choose bi = 0 arbitrarily. So we have a con-
tradiction which proves lemma 6.

§ 8. The second step of the proof of lemma 1

Lemma 7. The functions w(2k) and (k) are algebraically independent
over C(z).

Proof. Assume, against lemma 7, that the functions w(2k) and #(k)
are algebraically dependent over C(z). Further, let F, be the extension
field

F, = C(z, w2k — 1), t(k))

of C(z). The functions w(2k — 1) and #(k) are, by lemma 6, algebraically
independent over C(z). Therefore, w,, and hence also

q = wy [ w,
are algebraic over F,.
By the relations (19) and (20) F, is closed under differentiation.
Further, by (18),

1 1
(40) q = o (tgwy, — wyawy) =

(e — Gi(z, w2k — 1), t(k — 1)))

2,

where @ is a rational function of its arguments. Hence ¢’ lies in F,.
This implies. by lemma 4, that ¢ itself is an element of F,.
Hence there exists a rational function

R =R(z,x2k—1),uk))
in C(z, (2k — 1), w(k) ) such that
(41) g = R(z,w2k —1),1k))

identically in =.
We put again

Iy o L oR OR oR ‘ . OR N
(2, 2(2k — 1), u(k) ) = oz + axo?/o + oz, Yo+ oo T 3.62k_1y2k_1 |
oR oR .
P v e+,
o, % T uy L T T Ouk
where ¥, ¥, and w, ¢ =0,1,...,k — 1, denote the expressions

(25) and
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ve = Th(z ,2(2k — 1), u(k — 1))
according to (20).
Let
W = (@, %y, -« s Bap)
be any second solution of @Q(k) satisfying
Lo(W)=Co#0, Ly(W) = ... = L,_, (W) =0.

Then the equations (19) and (20) hold for the functions @(2k) and i(k).
If we now choose

w(2k — 1) = B2k — 1) , u(k) = (k) ,
we have, by the definition of R*,

(42) R¥(z, w(2k — 1) ,1(k) ) = %R(z , @2k — 1), (k) ) .

This equation holds, of course, for the solution W, too. Therefore,
by using the equations (40) and (41) we get the equation

R¥(z , w2k — 1), t(k) ) = —L(tk — Gilz,w@k — 1), ik —1))).

2
2wy,

Here the functions w(2k — 1) and #(k) are, by lemma 6, algebraically
independent over C(z). So this equation implies that

(43) R*(z,x(2k — 1), w(k)) = lq

(ur, — Gi(z, 22k — 1) ,u(k —1)))

identically in z, z(2k — 1) and wu(k).
We put, in analogy to g¢,
g = Wy [ Ty -
Then we evidently have, in analogy to (40),

1 _ -
q’:;@;{;(tk—Gk(z,@(Qk——1):t(k_1)))>

0
whence, by (42) and (43),
iq_4a R o(2k — 1), i(k
dz“_dz (“?u( - )’t())
When we integrate this equation with respect to z, we obtain the relation

(44) § = Rz, @2k — 1), ¥(k)) + C(W),
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where C(W) denotes a quantity that depends on W, but is independent
of the variable =z.

The proof of lemma 7 will now be concluded by deducing a contra-
diction from this equation (44).

We choose, therefore, the special solution W as follows

W= @Ay + 0y By ,

where a, and by are complex numbers satisfying
g =V Cy #£0, by, #0.

This choice, by (12), satisfies the conditions

Ly(W)=0Cy, Ly(W) = ... = L,_,(W)=0
and so also the equation (44) holds for this solution.

The functions @, = aydy, @) = agd,, . ..,y | = aydy_, and, by
lemma 2, the functions #(k), too, are entire functions of z. Hence the
right-hand side of (44) is a meromorphic function of z, while the left-hand
side of this equation,

Ay by (A4

* ”‘(;1—: + log z)
where by, # 0, has a logarithmic singularity at z = 0. This contradiction
proves that lemma 7 is true.

0 )

§ 9. The end of the proof of lemma 1

We now conclude the proof of lemma 1 by proving that the functions
w(2k + 1) and (k) are algebraically independent over C(z).

Let us assume that these functions are algebraically dependent over
C(z) and denote by F; the extension field

F, = C(z , w(2k) , t(k) )

of C(z). Then it follows, by our hypothesis and lemma 7, that Wy
and so also the quotient

q = Wy i1 | Wy
are algebraic over F,.

By the relations (19) and (20) F, is closed under differentiation.
Further, because Lx (W) = Ci, we have, by (6) and (19),



Keiro VAANANEN, On a conjecture of Mahler 35

Z(u‘ouék-,—l - w(’)w2k+l) = r(z, w(2k), t(k)) ,
where r is a rational function of its variables. From this it follows that
1 7 7

(45) q = -1;)% (Wap . 1 Wy — Wy W) = ;E(z)r(z , w(2k) , (k) ),

and this implies that ¢’ lies in F;. On applying once more lemma 4, it
follows then that ¢ is an element of Fs.
So there exists a rational function

R = R(z , x(2k) , w(k))
in C(z, (2k), u(k) ) such that

(46) q = R(z, w(2k) , i(k) )
identically in z.
Put again
R o1 L oR . oR oR oR ,
(“7:'1‘( )7’“( )): az e axoyo_‘_ axlyl—}_"'_l_akayﬁk_:—
oR oR oR
- g ° - quy,t T w7

where 9y, ¥y and v, ¢=0,1,...,k — 1, denote the expressions
(25) and

Yo = Sulz . 2(2k) , u(k) ), ve = Th(z, v(2k — 1), u(k — 1))

according to (19) and (20).
We now proceed as in the proofs of lemmas 6 and 7. Let

w:(@05ﬁ1>"~:7’z‘2k-¢-1)

be an arbitrary second solution of Q(k) satisfying

(7))  La(W)=0Cy=0,L; (W) = ... = L,_, (W) =0, Ly(W) = Cs.

From this it follows that the equations (19) and (20) hold for this solution.
On choosing now

a(2k) = w(2k) , u(k) = (k) ,
we get, by the definition of R*,

(48) R*(z ., @w(2k) , {(k) ) = 5~ R(z, ©(2k) , {(k)) .
Also,



[\
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d
RB*(z , w(2k) , t(k) ) = ﬁR(z , w(2k) , tk)) .
This implies, by (45) and (46), that

R* (2, w(2k) , t(k) ) = 21 "z, w(2k) , H(k) ) .

d

Because the functions w(2k) and #(k) are, by lemma 7, algebraically

independent over C(z), this equation requires that
1
(49) R*(z, 2(2k) , w(k) ) = - r(z , x(2k) , u(k))
0

identically in the indeterminates z, x(2k) and w(k).
If we put, in analogy to g¢,

g = Wy 1 | Ty,
(4

then, by (47), the equation (45) holds for the solution W. This means that

whence, by (48) and (49),

i‘lg— = i Rz, @(2k) , (k) ) .

dz  dz
When we now integrate with respect to z, we find that
(50) q = R(z,w(2k) T (k)) + O(W),

where C(W) again denotes a quantity that depends on W, but is in-
dependent of 2.

Next we choose
W = a,Ay + ay Ay, + by By, .
where ay, @y, and by, are complex numbers satisfying
Gy = \/5; # 0, agby 1 + 2agty, = Cr , by | = 0.
This choice implies, by (12), that
LyW)=0Cy, Ly W)= ... = L,_, (W) =0, Li (W) = Cs.

Hence the equation (50) holds for this solution.
Because the functions
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@y = gy, Ty = QA 5+« s Ty = GoAy_y , By = Gy, + andy

fo = aoto (Ao) ; Iy = aty (Ag) s -« s e = gt (Ay)
are entire functions of z, the right-hand side of (50) is a meromorphic
function of z. On the other hand, the left-hand side of this equation,

A, . a, by, A b,
7— 2k 1 X ok~ Dapn 4y L 2kt 1
4, Qg 4, 2

has a logarithmic singularity at the point z = 0. This contradiction
proves that the functions

w2k + 1), t(k)

are algebraically independent over C(z).
S0 lemma 1 is true when # = k. From this we can deduce, by induction,
that lemma 1 is generally true.

§ 10. The proof of theorem 1

We can now at last prove theorem 1 itself.
Let W = (w,, wy, . . . ,Wy,.,) be a solution of Q(n) such that

Ly (W)=Cy#0, Ly(W) = ... =L, (W) =0.

From lemma 1 it follows that the functions w(2n 4 1) and {(n) ave
algebraically independent over C€(z). To prove theorem 1 we show now
that this implies the algebraic independence of the functions w(2n +- 1)
and w'(n) over C(z).

We prove this by induction on &, the number of the functions w'(k — 1).

From the algebraic independence of the functions w(2n + 1) and i(n)
it follows that the functions w(2n 4+ 1) and w, are algebraically in-
dependent.

Assume now that the functions w(2n 4+ 1) and w'(k —1),1 =k =n,
are algebraically independent.

Let the functions w(2n 4 1) and w’(k) be algebraically dependent.
Then there is a polynomial P = P(z, x(2n -+ 1), y(k)) which is not
identically zero in z, #(2n + 1) and y(k), such that

(51) Pz, w?2n + 1), w'(k)) =0

identically in z.
By induction hypothesis,

P=Puy + ...+ P,,m=1,
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where P, ...,P, are polynomials in the indeterminates =z, 2(2n - 1)
and y(k — 1), and P, does not vanish identically in these indeterminates.
From the equation (51) it follows, by (18), that

o \™
R.(z,w2n + 1),k —1 (—-) 4.+
62) o 1), 0k — 1) -
Bz, w?2n + 1),k —1)) =0,
where R,,...,R, are rational functions of their variables. Particularly,

(53) Pz, w2n + 1), w'(k — 1)) = Rn (z,w2n + 1), t(k — 1))

identically in z.
The algebraic independence of the functions w(2n -+ 1) and t(n)
implies, by (52), that

(54) Ro(z,2(2n + 1) ,u(k — 1)) = 0

identically in the indeterminates z, z(2n + 1) and w(k — 1).
From the equations (53) and (54) it follows that

Po(z,w@2n + 1), w'(k — 1)) =0

identically in z. This is impossible, since the functions w(2n - 1) and
w'(k — 1) are, by induction hypothesis, algebraically independent.

Therefore, the functions w(2n 4 1) and w'(k) are algebraically
independent. This proves theorem 1.

§ 11. Shidlovski’s theorem

In the following section we apply SHIDLOVSKI's theorem, which he,
generalizing SIEGEL’s work [7], [8], presented in [6] (pp. 898 —899). This
theorem deals with the transcendency and algebraic independence of the
values of E-functions, which SiEGEL defines in the following way ([8]
p. 33, [5] p. 339).

An entire function

© ol

fe&) =2

Cn —'
5 Nl

18 called an E-function, if it satisfies the following three conditions:

1) all coefficients c. belong to the same algebraic number field of finite
degree over the rational number field Q;

2) for every &> 0 we have m = O(n");
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3) there exists a sequence {q.} of natural numbers such that the numbers
ek, k=0, 1,. .. n, arealgebraic integers, and ¢, = O(n™") for every &> 0.

Shidlovski’s theorem. Let w; = fi(2), ..., Wn = fu(z) be finitely
many E-functions satisfying a system of differential equations

m
’ .
wi:qx'o‘}‘zqijwj,@:l""fm’
=

where the coefficients ¢, 1= 1,...,m, j=0, 1,...,m, are rational
functions in C(z), say with the least common denominator d(z). Let « be
any algebraic number such that

ad(x) # 0.

Assume that Ny, but no more, of the functions fi(z), . . ..fu(z) are algebrai-
cally independent over C(z), the field of rational functions of z, and that
Ny, but no more, of the numbers fy(x), . .. ,fu(x) are algebraically independent
over Q, the field of rational numbers. Then

T 7
N, = N,.

§ 12. On the transcendence and algebraic independence of the numbers
A (0) and Aj(a)

MAHLER proves ([3] pp. 163—165) that the functions A:(z),7 = 0,1, ...,
are F-functions. Since the ring of £-functions is closed under differentiation
([8] p. 33), the derivatives A (z), ¢ =0,1,..., too, are E-functions.
Further, the system of 4n + 4 functions

Ai(z) , Aj(z), i =0,1,...,2n -1,

is, by Q(n), a solution of the following system @, of differential equations,

1
w(;:WO,Wgz—;Wo—wo,
Qn: ’ ’ 1 2
w,=Wi, Wi=——-Wi—wi——W,_,,
2 z
1=1,2,...,2n+1.

The coefficients of these equations are rational functions in C(z) and
in each system (for every value of n = 0,1,...) the least common deno-
minator of the coefficients is the same function

dz) = z.
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It follows that we can use SHIDLOVSKI's theorem, when we now begin
to investigate the algebraic independence of the function values

Al(¢‘)$A:(O‘)>Z:071572n+1

We prove the following theorem which is a generalization of MAHLER’s
theorem 2 ([3] p. 167).

Theorem 2. Let « be any algebraic number distinct from zero. Then
the elements of each of the following 2" sets of 3n -- 3 function values

{Ay(x), Ag(x) , Ay(x)  or AX) s Agle) s Agl) Ay q()
(55) or A;i»rl()") s Ao(x), A;n(“) s Aypa(x) or A;n-,Ll(‘X)}
(n=0,1,...),

are algebraically independent over the rational number field Q. In particular,
4n 4+ 4 function values

Ai(x), Aj(x), 1 =0,1,...,2n + 1,

1

are transcendental numbers.

Proof. From MAHLER’s theorem 2 it follows that our theorem is true
when 7 =0 or = = 1. Therefore, in particular, the numbers Ay(a)
and A, (x) are transcendental and so distinct from zero.

From the equations (8) it follows that all functions Aéjil(z), j=0,
1,...,n, can be expressed rationally by the functions A(z), 4y 1(2).
A;j(z), j=20,1,...,m, where the coefficients of these expressions lie
in C(z). The later functions are, by the corollary of theorem 1, algebraically
independent over C(z). From this it follows that the integer N; in SHID-
LOVSKI’s theorem has for the system . the value N, = 3n + 3. There-
fore, by SHIDLOVSKI's theorem, also N, = 3n + 3.

Let us assume now, in contradiction to theorem 2, that the numbers
of at least one of the sets (55) of 3n + 3 function values are algebraically
dependent over Q.

By (13) we have

MAg()41(0) — Ay@)dy(3) ) + A3a) = 1,
53 (1AM 0) + 3 (= D)y ) =0,

j=1,2,...,n.

Hence, because « # 0, Ag(x) # 0 and Ag(x) # 0, we have the following
recursive relations,
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A Ag(x) Lt \
1(0‘) = Ao((x) ‘Al((x) i {XAO(OC) (]' - AO(“) ) ’
A _ “.4_0_(2‘_)_‘4' E—) A2
1(0(') - A(l)(OC) 1( - AA(;((X) ( - 0(0‘) ) s
4y L) 1.
2j+1(0€) - AO(“) 2,*1(06) e ,\’Ao( ) 2]'_:—1( ) s
AO((X) ’ * * . c
A2j+1(oc zmAszOé) —;mR QHI( ), )=1,2,...,n,

where R*; ., is a rational function with rational numerical coefficients

in variables (*), which are the numbers of one of the sets
(56) {oe, Ao(x) A(l)(“) s Ay(x) or A;(“) s e s Azj_z(“) > ‘4:;j—2(0‘) >
Azj—l(“) or A;j-—l(“) s Azj(o‘) > A;j(o")} .

There are 2/ sets of these numbers and, respectively, 2/ functions RB*,;.;.
Therefore each of the function values 4,; ,(x) and 4;; ; (x),j=0,1,...,n,
can be expressed rationally in terms of the other one and the numbers of
any of 27 sets (56).

Herce, our assumption implies, against SHIDLOVSKI's theorem, that
YN, < 3n -+ 3. This contradiction proves the truth of theorem 2.

§ 13. The transcendence and algebraic independence of some expressions
involving Euler’s constant ) and the constants S (i)

In analogy to Ai(z) and Bi(z), we define further functions Ci(z)
by the formulae ([3] p. 167)

1/0)\¢
(57) Ci(z) = _<8_1r) J @) mo,2=0,1,...,

%!

where J,(z) denotes the Bessel function of the first kind. Particularly,
we have

Co(z) = Jo(2) , C4(2) =
where Y ,(z) denotes the Bessel function of the second kind.

Let now ¢ = log (2/2). Let, further,

51 =7



1)
—
w
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denote Euler’s constant. The values of Riemann Zeta function will be
denoted by

si=Cl@)=>n",1=2,3,...
n=1
Moreover, we put
i I
(58) Ci:Zyi~j-_'7'L_O’1a 5
j=0 J:

where the coefficients y; are connected with s; by the recursive formulae

(59) Yo=1, (l + 1) Vil — Z (—' 1)"i3j4.~17/i—j ,1=20,1,

j=0

From the equations (58) and (59) it follows for ¢ =1 that

i CJ’ i Ci*f
iCi:‘i ”i_“._‘:i TN
jgo/ 7! j=20% (@ — )
g G
—jgo ])yj ( ' +Z.7 ‘)’] —j)’
‘-z 1—j i Ci_l—j
= z)}j('& ,‘I‘Z(]+1VJ 1( l_J)
-1 g1 j _
= {8, + Z .7)!12:0(— 1)si1yik
Cl 1—j
= o5 1+Z —1) sk”Zy, 1)
i—k—1 ;"_k_l“j
e S _ 1
s,1+kzo ) Sk i1 Z 71(2__]0_1___])
i1
=G+ z (— Dfsiialiont
k=0
=3S; 1+Z —1] ISJC_J
j=
So we have the recursive formulae
(60) C() = ]' ’ icl = CC{..—] + z (_' 1)].—18]:,_] ) i = 1 5 2 N

j=1
If we set
r=C+y=log (22) +y,
we have, by (60),
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(61) Co =1 5 ‘:1 - Z:igi = XCi—l + z (_ ]‘)j_ISjCi—j ) 1t =2 3 3 )
=2

From this it follows that {; is a polynomial of degree ¢ in y with coef-
ficients that are polynomials in the values {(2), {(3),...,{(:) of Riemann
zeta function with rational numerical coefficients.

1
Further, we have y = PR Therefore, by (61),

[ -
W |

56:07;.;: C()'

Now, let us assume that

1
L=, 1=i=k.

Then we obtain, by (61), the following equations,

] , 1 k1
(/G—i—l)é'k+1— ,“k_LXSk‘l‘Z "1] ISJCA 1—j
z =
1 1 E . E+1
:;sk+ (28— 1+Z (— 1) 78l = - Ck -

Hence, we have
’ ’ 1 N
COZOJCi:;Ci—17’L:172""'

It can be shown (see [3] p. 168) that between the functions Ai(z)
and C(i(z) there is the relation

(62) C'(z) :Z C:—]A](z)5 7:207 1’~"z
where the coefficients ¢; can be determined by (60) or (61).
Further it follows that

(63) Ciz) =4 ()C(”)——ZC.,,(z+ C. 1), =1,2,...,

(for the explicit formulaes, when ¢ = 0, 1, 2 or 3, see [3] p. 169).
By using the equations (62) and (63) we get the expressions

i

Aiz) = > (— Wigi(2)Coj2) 6 =0,1,...,

j=o
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i 1
(z) = Co(z g C;_ ,( ) — . 4; 4(2),

J
1 =1,2,...,

where yo(2) =1, yi(2) =y =1log (2/2) +y and (), j=2,3,...1,
are polynomials of degree j in y;(z), with coefficients that are poly-
nomials in the values {(2), {(3),...,(j) of Riemann Zeta function with
rational numerical coefficients.

Now, by theorem 2, we get some results concerning the transcendence
and algebraic independence of the values of the expressions A,(z) and
Ai(),i=10,1,...,2n + 1. Here we can omit the terms A4, ,(x)/x from
the expressions of A4;(x), because « is assumed distinct from zero and
the numbers A4i(x) can be expressed rationally by the elements of any
set (55). Let Aj(x) be the expressions obtained from A/(x) in this
way. So we have

(64) ]Ai(“) = Ci(x) — 110;_1(x) + 2120 a(x) — — ...+ (— 1)'-21'00(«“‘) s
[AF () = Cl(%) — 1107 1(x) + 20 o(x) — — .. = (= 1)zCo(n)

where yj= yi(x), j=1,2,... 4

From theorem 2 it follows now the following generalization of MAHLER’s
[3] theorem 3 conjectured by MAHLER.

Theorem 3. Let « be any algebraic number distinct from zero. Let
11 = log (x/2) + y, where vy is Euler’s constant. Let, further, the numbers

Ai{w), AF(x), i=0,1,...,20 =1 (n="0.1....).

be defined by (64). Then the elements of each of the following 2" ' sets of
3n 4+ 3 numbers

(Ag(x) , AF (@), Ayx) or AF@) . Ay(n) . A
Ay a(o) or A5 () 5+ ooy Aou(x) 5 A5 (x) Ay 1 (3) or A5 ()]
are algebraically independent over the rational number field Q. In particular,
all 4n + 4 numbers
Aiw) , AF (), e =0.,1,.... 20 — 1,

are transcendental.

The coefficients y; in (64) are polynomials of degree j in y, =
log (x/2) + y, with coefficients that are polynomials in the values of £(2),
£(3),...,8(j) of Riemann Zeta function with rational numerical coef-
ficients. For example,
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1 1
=500+ @) =g (11 + 3@ + 2003)),
fa= 3 (1 6 L@)70 + 8 IB) 7 + 6 L(4) + 3 2(2) ).

Because of the fact

f-(-)') ( )] 1 (Zit_)iB i —=1.2
s—] ( ) 2]'7.7_ B ’

where B,; are Bernoulli numbers, the transcendence of {(2), {(4),...,
¢@2n), n=1,2,..., is due to LixpDEMANN. We have now got transcen-
dental expressions A4;(x) and A¥(x) involving Euler’s constant y and
the values £(3), £(5),...,(2n + 1), n=1,2,..., of Riemann Zeta
function. For example, the expressions

1
A1(2) = _2 Yo(2) — pJo(2) ,
7 1 2
A,(2) = Cy(2) — _27/Y0(2) + 5(72 -+ E) Jo(2) ,
)
44(2) = Cy(2) — yCo(2) + 5 Q+) Yo(2) -

1
(7/ + —n‘y + 2*(3)> Jo(2)

1 a?
A42) = O4(2) — 90y(2) + Q+Q Co(2) —

4

w!

G+vﬁ+m0 ¥o(2) +

,-[4
</ + 2?2 + 8L(3)y + ) Jo(2)

*‘l'—*

are transcendental.

University of Qulu
Qulu, Finland
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