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1. Introiluction

fn the study of the boundary correspondence under z-dimensional
quasiconformal mappings, the object of investigation has usually been

either homeomorphic boundary extension or prime end correspondence.
(See, for example, Väisälä [3], [4, §17], and Zofiö l5l, [6]') With the ex-
ception of some scattered results, no serious effort has been made to con-

sider conti,nuous bowdary extension. It is the purpose of the present paper
to try to eliminate this deficiency. We consid.er the possibility of extending
m-dimensional quasiconformal mappings continuously to the boundaries
in the case where the mappings a,re defined between two domains, one of
which, Do, satisfies the following smoothness condition: each boundary
point of Do has arbitrarily small neighborhoods 7 such that U n Do

can be mapped quasiconformally onto a ball.
We show in Section 3 that a quasiconformal mapping of a domain D

onto Do can be extended to a continuous mapping between the closures

if and only if D satisfies the following simple metria condition: any two
connected sets in D whose distance measured in the whole space is zero
have relative distance zero in D , i.e. they can be joined in D by &n &rc

whose diameter is arbitrarily small. In the other direction we show that a
quasiconformal mapping of Do onto a domain D can be extended to a con-

tinuous mapping between the closures if and only if D satisfies the follow-
ing simple topological condition: each boundary point of D has arbitrarily
small neighborhoods U such that U n D contains only a finite number
of components. We also consider the extension problem from the point
of view of the ertremal length.

The present paper is a continuation of [1] where some problems on

cluster sets and boundary extension of quasiconformal mappings of more
general domains were considered.
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2.I. Norl.rroN ÄND TEltr{rNoLoGv. We will use the same notation and
termirr()logy as in [I]. Unless otherwise stated, all point sets are assumed
to lie irr tlre compactified z-space R":-B"U {a\,n}2. Besides the
Euclidorrn metric, defined in -8" , we use the spherical metric q and the
lelatiyr. spherical metric qo in 8". The latter is needed only for domains
D arrci it is defined by setting for n1 ,fr2e D,

ep(h , r) : inf q(lyl\ ,

lrhere the infimum is taken over the spherical diameters of the loci of all

lraths ,r., in D joining nt to r,. The modulus of a path family / is
rlesigntrted hy M(/), and A(E.I: D) will denote the familv of all
paths l-hieh ioin the sets .O and .E' in D .

2.2" QuasrcoNl:oRMAL coLLAREDNpss. A domain D is said to be

Euasi,conforru«,lly collared, on the boundary if each point of äD has arbi-
traril): small neighborhoods U such t'hat A n D can be mapped quasi-
eonformally onto a ball.

We give some genera,l remarks on domains that possess this smooth-
ness property. Our first iemma shows that the above defirrition for quasi-
conformal collaredness on the boundary is equivalent to those definitions
ernployccl in [1] and in Väisålä [1. §17].

2.:1. Lemma . (]'iuen a ilontai,tt D , the follou'iug statements are equiactlent;

(1) D is quasiconforrnally collared, on the boundary.
(2) For each poi,nt b e,0D there is a neiglfiorltoocl U of b a,ncl a quasi-

conforntalmappi,ng f :U fi D->B'i- such tltat lim/(,u) :0 and lim
r-"b r+0f_r@):b. .t..D

(3) Eor euch poi,nt b e 0D there is a neigltborhoorl L.t of b and, a ho'
meomorphism f : LT fl D * Bn l) B"-t vrch tk'o,t f i,s quu,sicon-

formali,n UnD.

Ann. ;\cad. Sci. I'ennici:r-r

2. §moothness properties of bounderies

A. r. 51I

(1) are trir-iarl, x-hile an ra-clirnen-

4.7 iu [1] shou.s tirat (l ) implies (3).
Prr:of . The implications (3) + (2) +

sional airalogue of the proof of Theorem
As ä corollarv w'e obtain

2.4. Lemma. If I)
the boundfrr7, tlten An
fi0?n,pCI?Lent8.

?§

:-:
ct, tl,ovruain wh'iclt, is quasicon,forntall'y collared o?L

AD (r,?'t,{l, AD contai,.rLs only (r finite numbercf



Continuous boundary extension of qtrasiconfonnal nrapgrings ;

2.5. Lemma. A plane d,oma'i,n'is guas'iconformallg col,lared, on tlt'e bounil,-

ary i,f and, only if i,ts boundary consists of a fi,ni,te number of d,isjoi'nt Jord(;rt,

curues,

Proof.The sufficiency part, is obvious. For the necessity part, srrppose

that a domain D is quasiconformally collared on the boundary. Then D
is uniformly locally connected on the boundary. Since all components of
0D must, be non-degenerate, they are necessarily Jordan curves. I:elrlltlil
2.4 then completes the proof.

2.6. Rprran-. Å bounded domain D u'hose bound'ary consists of
finitely manJr (m-I)-manifolds satisfying the follor,ving geometric condi-

tion is quasiconformally collared on the boundary ([1, 1.19]): 1"or each

point b€OD thereexistsaneighborhood U of ä andavectol e such

that, given any two points br,breu n 0D , the acute angle which thc'

segment å.b, makes 'lvith e is never less than some dv ) 0 . Thus, for
example, bounded convex domains, pol-vherlrons, domains hounded b1-

finitely many, disjoint, differentiable (n - l)-manifolds, etc. are quasi-

conformally collared on the boundary. In particular. eYery ball is quasi-

conformally collared on the boundarSr.

2.7. Orrrnn BouNDARY PRoPERTTES. We next define a trumber of con-

cepts weaker than the quasiconformal collaredness allov-ing us to t-reasure

the regularity of the boundary of a more genelal domain. These concepts

will be employed in the next section when studying the contirruous bound-

ary extension of quasiconformal mappings.

2.8. DnrrwrrroN. Let D be a domain.
(1) D isflat onthe boundary if q"(n,X*) :0 r,r'herrever -F arid .F*

are non-degenerate connected subsets of D t'ith g(-t, , -F*) : I .

(2) D 'is quasi,conformally flat on the bourrdary if lt(Å(I,.E,* : D) ) :
a whenever E and .F'* are non-degenerate cor-rnected subsets of D
with q(.F ,/*) : 0 .

(3) D is quasi,conformallg connected, on the boundarY if for each point
b e AD there is a decreasing sequence of neighborhoods U* af Ö such

that tlr"f\ D is connected and lim tI(/(A,[ir(1 D: D)):0 {br some

(and hence for each (cf. [Z])) continuum A in D .

(4) D is fi'ni,tely connecteil, on the boundary if each boundar-v point
of D has arbitraril5r small neighborhoods [/ such t]Lat Ll n D currsist's

of a finite number of components.
(5) Each bourrdary point of D is accessible frtnn all sid,es fvorn D if,

given a sequence (rr) of points in D accurnultr,ting aL 0D, there exists
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a closed Jordan arc lying in D except for one
a subsequence of (r*) .

(6) D is a uniform domai,n if for each r 7
that I{(Å(I ,I*:D))>ä whenever F and
of D'vrith q(E))r and q(F*)Zr.

end point and containing

0 thereis a ö>0 such

-F,* are connected suhsets

2.9. Rnruem. The concept, of quasiconformal flatness, due to Väisälä,
and the finite connectedness property have been previously employed
in [f] and in Väisälä [4, §17] for the study of the boundary behavior of
quasiconformal mappings. Uniform domains are considered in [2]. As
far as the writer is aware, the remaining three properties of 2.8 have not,
been previously published.

2.10. Lemma. A doma,i,n whi,ch i,s quasi,conformally collarecl, on the bound-
ary has properties (t)-(6) as il,efi,ned, in 2.8.

Proof. In view of Lemma 2.3, t}re assertions concerning properties (1),
(3), (4), and (5) are obvious. Property (2) has been proved by Väisälä
[4, §17], while property (6) has been established in [2].

3. Extension theorems

3.1. Theorem. Let Do be a d,omai,n whi,ah i,s quasiconformally coll,ared,

on the bound,ary anil let f : D --> Do be a quasi,conformal, mappi,ng. Then
the foll,owing statements are equ,i,aalent:

(l) / can be ertended to a continuous maytp,ing f : D - Do.
(2) D is flat on the bound,ary.
(3) D i,s quasiconformallg flat on the bound,ary.
(4) D ,i,s quasi,conformallg connecteil, on, the boundary.

Proof . To prove that (I) implies (4), fix a point b e AD and choose
sequences (7*) and (I4rr) of neighborhoods of ä and /1b; , respectively, so
that W*O Do is connected, fl W*: {/(å)} , and f!*n D) c Iryo .

Setting Ur: V*Uf-t(Wkn Do) we obtain the desired sequence of
neighborhoods of ä.

Conversely, to show that (a) implies (1), fix a point b e AD and choose
a continuum A c D and a decreasing sequence of neighborhoods U*
of å so tha1, Un O D is connected and

hm M@(A , U*f't D: D) ) : 0 .

By the quasiconformality of f ,
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rim tI(/(fA ,f(U*i D):fD) ) : 0 .

Since /D : Do is a uniform domain,

lim q(f(U*OD) ):s.
Thus the cluster set of f af b reduces to a single point, i.e. / has a limit
at b"

To complete the proof we show that (l) + (3) + (2) + (1). The

implication (1) + (3) follows from the fact that Do is quasiconformally

flat on t'he boundary, while (3) implies (2) because M(/@, -F* : D)) < o
whenever -?' and l* are non-degenerate connected subsets of D with
eo(F,trn) >0.

In order to prove the implication (2) + (l) , suppo§e, contrary
to the assertion, that there exist points Ö € AD,bleADo,b2€lDs,bt
*bz, and sequences (br*),(br) of points in D with bi*+b,f(b*)
*bi,.i,: L ,2. Choose a continuum A in D and for i,: L ,2 choose

a neighborhood (Jr of ä; so that [JiO Do is connected and äi nfA:
b : e rt O, . Let I; : f-t(Ui n Dr) . Since Xr is connected and
since b € -F1n Fr, there exists, by hypothesis, a sequence of paths yb

in D joining tr1 to I, so that lim q(lZrl) : 0 . Obviousl)'

M@@,lyri :D) )+0
because q.(A ,lyhl) ) go for some qo > 0 and for all /c sufficiently large.

But /D : Do is a uniform domain and therefore

M (A (fA , fly*l : fo) ) -l' o ,

which contradicts the quasiconformality of I . The proof is complete.

3.2. Theorem. Let Do be a doma'i,n

o?t tlte boundary anil let f , Do + D be

the follou:i,ng statements a,re equiualent:

which os quas'i,conformally collared

a quasi,conformal mappi,ng. Then

( 1) f car?, be ertendeil to ct, continuolns mapping
(2) D i,s finitely conrtected, ona the bou,nd(trA.

(3) frach boundary poi,nt ,f D is acce,s,sible front
(4) D is a uni,form domain.

Proaf. To prove that (1) implies (4), fix r ) 0 .

a connected set in D with q(E) ) r . Since Do

domain"

f , Do--* D .

all si,des frorn D .

Since f is uniformly
) ro whenever I is

- f^D is a uniform

M(Å(E ,E*: D) ) > M(Å(f-'r ,f-'/.*:f-LD)) I K(f) > öolK(f)
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whenever X and Xr* are connected sets in D rvith q(I) > r arrd
q(E*) > r , where K(f) < co is the maximal dilatation of / in D, and
d, ) 0 is a constant corresponding to the domain Do and. the number
ro in the definition of a uniform domain. This shows that D is a uniform
domain.

Conversely, (4) implies (l) bf, virtrre of the argument given for the
implication (4) = (1) in Theorem 3.1.

Since Do ir quasicorrformally flat on the boundary, (2) implies (1)

by Väisälä [4, §17], while (1) implies (3) bocause Do has the topological
property described in (3), and (3) implies (2) because if U is a neighbor-
hood. of a boundary point ö of D such that V n D contains infinitely
many components for each neighborhood V c U of b , t'here exists
a sequence (bn) converging to ö so that the points ör bolong to dif-
ferent components of U O D, which contrad.icts (3). The proof is eom-
plete.

As a corollary of Theorems 3.I and 3.2 we obtain

3.3. Theorem. Let D, be a d,cmiln which i,s qutsictnfttntlly ccllurel,
on the bound,ary and let D be a seconL d,crnc,irb. Therl each or nt qwsictn-
formal mappi,ng of D onto Do (respectiaely of Do onto D) can, be ertenCsd,

to a conti,nuous mappi,ng between the closures.

X'or plane domains we have:

3.4. Theorem. Let Do be a plu,ne domain boundeil by a finite num,bet'

of d,i,sjoi,nt Jord,an curaes and, let f : D--->Do be a quas'iconformal mapping.
Then f can be ertend,ed, to a cont'i,nuous ma,ppins i, D * Do if and only
i,f D has one (each) of the properties (l) - (3) as definecl, in 2.8. Tlte inuerse
mappi,ng f-L can be ertend,ed, to a corutittuo?Ls mapping !-t: Do-n D ,f
and, only i,f D has one (each) of the properties (4) - (6) os de,fine,l rlii 2.8.

Proof. The assertions follou'from Lemma 2.ö arrcl Theorems 3.I arrd 3.2.

3.5. RnlrenKs. (1) Theorem 3.1 -vields the follou-ing extremal length
result: Let Do b" a domain u.hich is quasiconformalll, collared on the
boundar-v, let, D be quasiconformall_v equivalent to Dr, and let -F and
-E* benon-degenerateconnectedsetsin D. Then -'iI1(l(F.X*:D) ): ep

if and only if lo(I , .ä'*) = 0 .

(2) Lzt D be a planc domlin u'ith finitely marry bourrclalr- corn-
ponents. Then the properties (1) - (3) in 2.8 are equivalent. Sirnilarly,
the properties (a) - (6) are equivalent.
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(3) One obta,ins several different characterizations of Jordan domains

in the plane from Theorems 3.I and 3.2. As an example we giYe the follo'r,v-

ing metric-topological charact'erization: A simply connected plane domain

u,'ith a non-degenerate boundary is a Jordan domain if and onl;r if i1 i.
flat, ancl finitely connected on the boundary.
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