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1. Introduction

Let G, and G, be locally compact Hausdorff topological groups. In
this paper we characterize the isometric and bipositive isomorphisms
between the convolution algebras C.(G;) of real or complex valued con-
tinuous functions with compact support. It turns out that such isomor-
phisms are precisely those induced by a topological isomorphism between
the groups, followed by multiplication with a continuous multiplicative
function which is positive in the bipositive and has modulus one in the
isometric case (Theorem 4.1). Our method of proof is based on a charac-
terization of the bipositive and isometric linear isomorphisms between the
spaces C.(S;) for two locally compact Hausdorff spaces S, and 8,
(Theorem 3.1). Theorem 4.1 is a sharpening of a result of R. E. Edwards
{([2] Theorem 2) who showed that the existence of either type of isomorphism
implies that the groups @; are topologically isomorphic.

In the case of two compact or locally finite discrete groups G; with
normalized Haar measure the general form of a convolution algebra
isomorphism 7' : C(G,) — C,(G,) has been determined by G. V. Wood [7]
under the hypothesis that 7' is merely norm-decreasing. However, in
our more general situation this assumption is not even sufficient to
guarantee that the underlying groups are algebraically isomorphic. Indeed,
there are two non-isomorphic finite groups G; admitting a (by finite-
dimensionality topological) convolution algebra isomorphism 7' :
C(G;) — C(G,) (see [6] p. 306), and as Wood remarks in [7], p. 775,
the Haar measure of (, may be so adjusted that T divided by its norm
is a norm-decreasing isomorphism.

2. Notation

For a locally compact Hausdorff space S, let Ci(S, R) and C.(S, C)
(resp. Co(S, R) and Cy(S, C)) denote the spaces of the continuous real
and complex valued funections on S having compact support (resp. van-
ishing at infinity). The spaces are regarded as equipped with the uniform
norm: [f| = sup |f(x)| . The letter K is used to refer (consistently) to

€S
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both the real field R and the complex field C. We often write for short
0,y(S) , C.(S) instead of Cy(S, K), Ce(S, K). For a function f on S
we write f > 0 if f isteal valued and f(x) > 0 forall x € S. An operator
T : Co(Sy) — Co(Sy) or T :Cy(S;) — Cy(Sy) is bipositive if Tf >0 Iis
equivalent to f>0.

3. Isomorphisms of funetion spaces

In the isometric case the proof of the next theorem is essentially one
of the standard proofs of the well-known Banach-Stone theorem, usually
stated for compact spaces (see e.g. [5] pp. 334—335). For classical results
in the bipositive case see [3] aud [4].

Theorem 3.1. Let S; and S, be locally compact Hausdorff spaces and
T : Cy(S,) — Co(Sy) a vector space isomorphism.
(i) T isisometric if and only if there exist a homeomorphism « : Sy — S,

and a continuous K-valued function h on S, such that |h(y)] = 1 for all
y €S, and
(1) Tf(y) = h@)f(x(y)) . f € Cy(S1) . y €8,

(ii) 7T is bipositive if and only if there exist a homeomorphisin « : Sy — Sy
and a continuous everywhere positive function h on S, for which the formula
(1) above holds.

The theorem remains valid if Cy(S;) is replaced throughout by C.(S)) ,
j=1,2.

Proof. In each case the sufficiency of the existence of « and & with
the stated properties is obvious. To begin the proof of necessity let us
observe that, as a consequence of Urysohn’s lemma, a set GcS; is open
if and only if for any x € G there is a function f in Cy(S;) (resp.in Cc(S;))
with f(x) #0 and f(y) =0 for all y € §;\G. It follows that if 7':
0y(8;) — Cy(Sy) (resp. T': C(S;) — Cc(S,)) and «: S, — 8; are bijections
and %:8S,— K anowhere vanishing function such that formula (1) holds,
then « and x~! map open sets onto open sets, i.e. x is a homeomorphism.
Therefore kb, too, is continuous, being locally the quotient of two conti-
nuous functions. We are left with the task of constructing « and h.

Let us first consider the case of a bipositive isomorphism 7' : Cy(S; , C)
— Cy(Sy , €). The non-zero multiplicative linear forms on the commutative
O*-algebra Cy(S;, C) are precisely the pure states of Cy(S;, C) (see [1],
2.5.2). Let P; denote the convex cone of the positive linear forms on
0y(S; , C) . It follows easily from the definition ([1], 2.5.2) that a non-zero
functional ¢ € P; belongs to the ray {4y |1 € R, 1> 0} generated by
some pure state p if and only if ¢ — v € P; for y € P; implies that
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v = p for some real number u©,0 < pu < 1. This property is obviously
preserved by the algebraic transpose 7% of 7' since it maps P, bijectively
onto P;. In particular, for each pure state y of Cy(S,, C),T*y is a
positive multiple of a pure state of Cy(S;, C). Therefore, if we identify
§; via the natural evaluation map with the set of the non-zero multipli-
cative linear functionals on Cy(S;, C), we get a bijection «:8,—S; by
dividing T*y with a positive number A(y) for each y €8,, i.e.

1 1
The case of a bipositive isomorphism 7': Cy(S;, R) — Cy(S,, R) is re-
duced to the above by considering Cy(S;, R) as a real linear subspace of
Co(S;, €) and extending 7' to an operator T. from Cy(S;,C) to
Cy(Sy, C) by setting To(f + ig) = Tf -+ iTyg .

Suppose next that 7 :Cy(S;, K) = Cy(S,, K) is an isometric iso-
morphism. We make use of the well-known fact that the extreme points
of the unit ball U; of the Banach space adjoint of Cy(S;, R) (resp.
Cy(S;, C)) are precisely the Dirac measures multiplied by a real (resp.
complex) number with modulus one. As the transpose of 7' maps the
extreme points of U, onto the extreme points of U,;, and the Dirac
measures on S; may be identified with the points of S;, we obtain as
above a bijection o :8,—8; and a function %:8,— K with [A(y)] =1
for all y €8,, such that (1) holds.

Since C.(S;) is norm dense in Cy(S;), the assertion concerning a
linear isometry from C(8;) onto C.(S,) may be proved by reducing it
to the previous case.

Finally, let us assume that 7' :C(S;, K) = C.(S,, K) is a bipositive
isomorphism. Then a separate argument is needed (see the remark bzlow).

We denote C.(S))* = {f€C.(S;, R) | f(x) >0 for all = €S3;},

and
F, = {f€C(8)* | fw)> 0} for z €8, j=1,2.

The closure of Py for f€ C.(S;)* is denoted supp(f) as usual. Let us
first show that

(2) N supp(Tf) #9, x€8,.
feFx
As every supp(Tf) is compact, it is enough to prove that M supp(Zf) # O

feF
for every finite subset F of F,. There exist a constant > 0, a neigh-

bourhood U of x such that f({) > 6 on U for each f€ F, and a func-
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tion ¢ € C,(S;)* with maximum value 6 and support contained in U.
The positivity of 7 then implies () supp(Tf) D supp(Tg) # J. Next

feF
we make use of (2) in proving the stronger statement
(3) A, =N Py =0, x€S,.

f€F,

Indeed, by (2) it is sufficient to find for each f€ F, a function g € F,
such that supp(7T'g) c Pgy. The function g may be constructed as follows.
Choose f, € O.(S;)* and f, € C(S,)™ so that fi(¥) > 0 and f, is positive
on supp(Tf). When the function f; — T-1f, is multiplied with a small
enough positive number, we obtain a function f3 € Ce(S;)" such that
0 < fo(@) < f(x) and Tf, is greater than a positive constant on supp(T).
Now define g = f — inf(f,f,), so that by the linearity and bipositivity
of T we have Tg = Tf — inf(Tf.Tf;). Then
supp(Tg) € {y € SolTf(y)= inf  Tf1)} € Py,

1€supp(Tf)
since the middle set is closed and in its complement Tg(y) = Tf(y) —
Tf(y) = 0. Clearly, ¢ €C.(Sy)* and g(x) > 0. Thus g has all the
desired properties, and (3) follows. Suppose now y € 4,. We show that
F, = T-1(F,). First of all, it is clear that F.c 7' (F,). Using this
after applying (3) to T-! and y, and then observing that M P;= {x}

feFx
we have, conversely, for any g € T (F,)
g+ N PcP.N(N PHciz}.
FET(E,) fEF,

iie. x€P, or g€F, Thus the sets F, and F, are by symmetry in
one-to-one correspondence via 7, and as F, determines x uniquely,
we get a bijection «:S,—S; with the property T7YF,) = F .,y €S,.
which implies

(4) PTf = al(P),.f€ C(Sy) -

The function A is now defined by choosing for each y €S, a function
fE€C(S)+ with f(x(y)) =1 and setting h(y) = Tf(y). It follows from
(4) that h(y) > 0 and this definition is independent of the choice of f,
for if fi(x(y)) = fo(x(y)) = 1, the non-negative functions f; —f" and
fo — f'> where f’ = inf(f, , f,), vanishat x(y), so Tf, — Tf" and Tf, — Tf"
vanish at y, ie. Tf,(y) = Tfy(y). Thus, in particular,

hfx@) =T ( f) ) f(x(y)) = Tf(®)

J(y))
for any f€ C.(S;)* with f(x(y)) > 0. If f€C(S;)" and f(x(y)) =0,
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the equation Tf(y) = h(y)f(x(y)) is also given by (4). As every f € C.(S;)
may be expressed as a linear combination of some elements of C.(S;)*+
the proof of this last part of the theorem is also complete.

b

Remark. Unlike the isometric case, the proof of the above result in-
volving a bipositive isomorphism 7' : C.(S;) — C.(S,) cannot be reduced
to the part of the theorem concerned with the spaces Cy(S;), since a bi-
positive isomorphism 7' : C.(S;) — Ce(S,) is not always the restriction
to C.(S;) of any bipositive isomorphism from Cy(S;) onto Cy(S,). For
example, it is quickly seen from the above theorem that any bipositive
isomorphism Ty:Cy(R, R) —Cy(R, R) extending the mapping
T:0(R,R)—C(R,R), Tf(x) = (1 + a?)f(x), should also have the
form Tyf(x) = (1 + a:z)f x), which is impossible, as e.g. the function
x> (1 + 9?)(1 —}— 22)71 =1 does not belong to Cy(R, R).

4. Isomorphisms of convolution algebras

For a locally compact Hausdorff topological group @. let us regard
C/{G, K) as an algebra under the convolution product

(fg) (2 / Jfwgly~x)d

integration being with respect to a fixed left Haar measure denoted dy.
We prepare the theorem of this section with two lemmas.

Lemma 4.1. Let Gy and G, be locally compact Hausdorff topological
groups, T :C.(Gy) — C(Gy) a convolution algebra isomorphism and o :
Gy — Gy a bijection such that, for any f€ C(F), Tf(y) = 0 is equivalent

o flx(y)) = 0. Then « is a group isomorphism.

Proof. Suppose that o«(xy) == r(x)~(y) for some &,y € G,. Then there
exist neighbourhoods U3 «(x) and T 31(y) such that «(xy) € UV.
Since « is continuous by an argument used at the beginning of the proof
of Theorem 3.1, a=Y(U) is a neighbourhood of z and ~}(V) one of y.
There exist non-negative real functions f,g € C.(G,) with f(x) > 0,
g(y) > 0 such that f vanishes outside ~U) and ¢ outside x(V).
By hypothesis, T“lf(t =0 for t €GN\ U and T7() = 0 for t € G\ V.
Therefore, (T-Yf) = fT Y() T tg(z"t)dz = Oforall t € G\UV

the integrand bemg zero both in U and G \U. In particular,
(1) =) = (x(xy)) =
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On the other hand, by continuity we can find a symmetric neighbourhood
W of the neutral element e € G, such that f(t) > 6 for ¢t €xW,g(t) > o
for t € Wy, where ¢ is a positive constant. Thus

(f = g)(xy) = /f(z)g(z—lwy)dz == /f(xz)g(z‘ly)dz 2/ 0%dz > 0.
G, G, w

The hypothesis then implies

(T7f) = (T7g)(x(@y) = TS = g9)x(2y)) # 0,

and this contradiction with (1) proves the lemma.

Lemma 4.2. Suppose h is a continuous K-valued function on the lo-
cally compact Hausdorff topological group G. The mapping T : C.(G, K)
— 0@, K), Tf(x) = h(x)f(x) for x €G, is a convolution algebra homo-
morphism if and only if h(xy) == k(x)h(y) for all z,y €G.

Proof. If h is multiplicative, a straightforward calculation shows that
T preserves convolution. To prove the converse, choose for each compact
neighbourhood U of the neutral element e a continuous non-negative

real function fy such that fy vanishes outside U and f fo(@)dx = 1.
G

We denote f(t) = f(u=') for a function f€ C.(G) and define ¢ =
f& = f& for each couple (x,y) of elements of G. Then

[ =1,
G

g%? is non-negative and vanishes outside V = xUyU, and V is even-
tually contained in any neighbourhood of zy, when the set U of the
compact neighbourhoods of e is given the natural order opposite to in-
clusion. It follows easily that

h(ry) = lim / h(t)g&? (t)dt .
U

e
Similarly,

h(u) = lim / h(t)fo@)dt , v €G .
v¢
Therefore, if T preserves convolution, Fubini’s theorem yields

h(zy) — lim / he)g (1t — lim f T(f5  £3) ()t —
U U
G G
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= lim / (T'f5) = (TfH(E)dt = lim /“/ h(2) f(2)h(z72) f(z7)d=dt =
U U
& ¢ ¢

= Iim/ h(2)f{(z)dz - lim / R fEt)dt = h(x)h(y) .
U U

Theorem 4.1. Let Gy and G, be locally compact Hausdorff spaces and
T:0.(G,, K) — C(Gy, K) @ bipositive (resp. isometric) vector space iso-
morphism Then there exist a homeomorphism o : Gy — G4 and a continuous
everywhere positive function h on G, (resp. a continuous function h: Gy — K
with |k(y)| = 1,y €G,) such that

Tfly) = k@) f(x)) . f €CA(G,, K) ,y €G,.

Suppose, in add’tion, that G, and G, are topological groups. Then T is
a convolution algebra isomorphism if and only if « is a group isomorphism
and h(xy) = h(x)h(y) for all z, y € G,.

Proof. The first assertion is contained in Theorem 3.1, and the second
is an immediate consequence of the above lemmas.

University of Helsinki
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