Series A

I. MATHEMATICA
 509

MODULUS AND CAPACITY INEQUALITIES FOR QUASIREGULAR MAPPINGS

JUSSI VÄISÄLÄ

Academia Scientiarum Fennica
Copyright © 1972 by
ISBN 951-41-0036-0

Communicated 11 February 1972

1. Introduction

One of the most important tools in the theory of quasiconformal mappings is the double inequality

$$
\begin{equation*}
\frac{1}{K} M(\Gamma) \leq M(f \Gamma) \leq K M(\Gamma) \tag{1.1}
\end{equation*}
$$

valid for every K-quasiconformal mapping $f: G \rightarrow G^{\prime}$ and for every path family Γ in G. The left hand inequality is not always true for K-quasiregular mappings. (For terminology, see [4].) However, by a result of Poleckii [7, Theorem 1], the right hand inequality also holds in this more general case. A related result for condensers was given in [4, 7.1]. Poleckii [7, Theorem 2] also proved that the stronger inequality

$$
\begin{equation*}
M\left(\Gamma^{\prime}\right) \leq \frac{K}{m} M(\Gamma) \tag{1.2}
\end{equation*}
$$

is true in the following case: D is a normal domain of $f, m=N(f, D)$ is the multiplicity of f in D, Γ^{\prime} is a family of injective paths in $f D$, and Γ is the family of all paths γ in D such that $f \circ \gamma \in \Gamma^{\prime}$. A related result for condensers was given by Martio [3, 5.1 and 5.13]. Martio and Poleckii applied their inequalities to study the local behavior of a quasiregular mapping.

The main purpose of this paper is to establish (1.2) in a more general situation. In particular, the paths of Γ need not lie in a compact part of G. We also give the corresponding result for condensers. The inequality is applied to study the behavior of a mapping at an isolated singularity.

Our terminology and notation is the same as in [4]. In particular, the notation $f: G \rightarrow R^{n}$ includes the assumption that G is a domain in R^{n} and that f is continuous.

2. Preliminary results

2.1. Lemma. Suppose that $f: G \rightarrow R^{n}$ is discrete and open, that $E \subset G$ is compact, and that $y_{0} \in f E \backslash f\left(B_{f} \cap E\right)$. Then there is a neighborhood V_{0}
of y_{0} such that for every connected neighborhood $V \subset V_{0}$ of y_{0}, the following conditions are satisfied:
(1) $V \cap f\left(B_{f} \cap E\right)=\emptyset$.
(2) The components of $f^{-1} V$ which mect E form " finite collection D_{1}, \ldots, D_{k}.
(3) f defines homeomorphisms $f_{i}: D_{i} \rightarrow V$.

Proof. This is essentially the same as [4, 7.15]. Thus let U_{1}, \ldots, U_{k} be disjoint neighborhoods of the points in $E \cap f^{-1}\left(y_{0}\right)$ such that $\bar{\Gamma}_{i} \subset G$ and such that $f \bar{U}_{i}$ is injective. Then

$$
V_{0}=\left(\bigcap_{i=1}^{k} f U_{i}\right) \backslash f\left(E \backslash \bigcup_{i=1}^{k} U_{i}\right)
$$

is the required neighborhood of y_{0}.
2.2. We next consider the parametrization of a path $x: I \rightarrow G$ by means of the arc length of its image $f \circ \downarrow$ under a mapping $f: G \rightarrow R^{n}$. The interval I may be closed, half open or open. We shall use for paths the notation and terminology of $[9, \mathrm{pp} .1-8]$. Thus $l(x)$ is the length of a rectifiable closed path $\alpha:[a, b] \rightarrow R^{n}, s_{\alpha}:[a, b] \rightarrow[0, l(\alpha)]$ is the length function of α, and $\alpha^{0}:[0, l(\alpha)] \rightarrow R^{n}$ is the normal representation of α, satisfying $\alpha^{0} \circ s_{\alpha}=\alpha$. If α is the restriction of a path β to a subinterval, we say that α is a subpath of β and write $x \subset \beta$.
2.3. Lemma. Suppose that $f: G \rightarrow R^{n}$ is a light mapping. Suppose also that $\beta:[a, b] \rightarrow R^{n}$ is a rectifiable closed path and that $\downarrow: I \rightarrow G$ is a path such that $f \circ \alpha \subset \beta$. Then there is a unique path $1^{*}: s_{\beta} I \rightarrow G$ such that $\alpha=\alpha^{*} \circ\left(s_{\beta} \mid I\right)$. Moreover, $f \circ \lambda^{*} \subset \beta^{0}$.

Proof. The function $s_{\beta}:[a, b] \rightarrow[0, l(\beta)]$ is continuous and increasing. If $s_{\beta}\left(t_{1}\right)=s_{\beta}\left(t_{2}\right)$ for $t_{1}, t_{2} \in I$, then β is constant on $\left[t_{1}, t_{2}\right]$. Since $f \circ \alpha \subset \beta$ and since f is light, also α is constant on $\left[t_{1}, t_{2}\right]$. Hence there is a unique mapping α^{*} of $I^{*}=s_{\beta} I$ into G such that $\alpha=\alpha^{*} \circ\left(s_{\beta} \mid I\right)$. The continuity of α^{*} follows easily from the continuity of α. If $t \in I$, then $f\left(\alpha^{*}\left(s_{\beta}(t)\right)\right)=f(\alpha(t))=\beta(t)=\beta^{0}\left(s_{\beta}(t)\right)$. Hence $f \circ I^{*}=\beta^{0} I^{*}$.
2.4. Definition. Suppose that $f: G \rightarrow R^{n}$ is a light mapping and that $\alpha: I \rightarrow G$ is a closed path. We say that f is absolutely precontinuous on α if $\beta=f \circ \alpha$ is rectifiable and if the path $\alpha^{*}:[0, l(\beta)] \rightarrow G$, given by 2.3 , is absolutely continuous. If the path 1 is open or half open, we say that f is absolutely precontinuous on α if it is absolutely precontinuous on every closed subpath of α.
2.5. Remarks. (1) If f is a homeomorphism onto a domain G^{\prime}, then f is absolutely precontinuous on α if and only if f^{-1} is (locally) absolutely continuous on $f \circ \alpha$.
(2) We shall make use of the following elementary observation: In the situation of Lemma 2.3, the path α^{*} depends on the path β, but only up to a translation of the parameter. More precisely, if $f \circ \alpha \subset \beta_{1}$ and $f \circ x \subset \beta_{2}$, and if $\alpha_{1}^{*}, \alpha_{2}^{*}$ are the corresponding paths given by 2.3 , then $\alpha_{1}^{*}(t)=\alpha_{2}^{*}\left(t+t_{0}\right)$ for some constant t_{0}. In particular, α^{*} is (locally) absolutely continuous if and only if f is absolutely precontinuous on x.
2.6. Lemma. Suppose that $f: G \rightarrow R^{n}$ is quasiregular. Let Γ_{0} be the family of all paths β in R^{n} such that either β is non-rectifiable or there is a path α in G such that $f \circ \times \subset \beta$ and f is not absolutely precontinuous on α. Then $M\left(\Gamma_{0}\right)=0$.

Proof. This lemma is a slight extension of an important result of Poleckii [7, Lemma 6]. The topological part of Poleckii's proof has been simplified by Rickman [8]. Choose an exhaustion $\left(G_{i}\right)$ of G. This means that G_{1}, G_{2}, \ldots is a sequence of domains such that $\bar{G}_{i} \subset G_{i+1}$ and $G=$ $\cup\left\{G_{i} i \in N\right\}$. Let Γ_{i} be the family of all closed paths in G_{i} on which f is not absolutely precontinuous. By the aforementioned result of Poleckii, $M\left(f \Gamma_{i}\right)=0$. Furthermore, the family $\Gamma_{\text {non }}$ of all non-rectifiable paths is of modulus zero. Since Γ_{0} is minorized by the union of $\Gamma_{\text {non }}$ and all $f \Gamma_{i}, M\left(\Gamma_{0}\right)=0$.

3. Modulus and capacity inequalities

3.1. Theorem. Suppose that $f: G \rightarrow R^{n}$ is a non-constant quasiregular mapping, that I is a path family in G, that Γ^{\prime} is a path family in R^{n}, and that m is a positive integer such that the following condition is satisfied:

There is a set $E_{0} \subset G$ of measure zero such that for every path $\beta: I \rightarrow R^{n}$ in Γ^{\prime} there are paths $\alpha_{1}, \ldots, x_{m}$ in Γ such that $f \circ x_{i} \subset \beta$ for all i and such that for every $x \in G \backslash E_{0}$ and $t \in I, \backslash_{i}(t)=x$ for at most one i.

Then

$$
\begin{equation*}
M\left(\Gamma^{\prime}\right) \leq \frac{K_{I}(f)}{m} M(\Gamma) \tag{3.2}
\end{equation*}
$$

3.3. Remarks. It is not required that $\Gamma^{\prime}=f \Gamma$. We shall later apply the theorem with $E_{0}=B_{f}$. If $\Gamma^{\prime}=f \Gamma$, the condition is trivially true for $m=1$, and we obtain Poleckii's inequality $M(f \Gamma) \leq K_{I}(f) M(\Gamma)$. If D is a normal domain of f, if Γ^{\prime} is a family of paths in $f D$, and if Γ is the family of all paths x in D such that $f \circ x \in \Gamma^{\prime}$, then the condition is satisfied for $m=N(f, D)$ by Rickman [8]. Hence we obtain Poleckii's second inequality (1.2).
3.4. Proof of Theorem 3.1. Let Γ_{0} be the family of Lemma 2.6. Setting $\Gamma_{1}=\Gamma^{\prime} \backslash \Gamma_{0}$ we have $M\left(\Gamma_{1}\right)=M\left(\Gamma^{\prime}\right)$. Hence it suffices to prove that

$$
M\left(\Gamma_{1}\right) \leq \frac{K_{I}(f)}{m} M(\Gamma)
$$

We may assume that E_{0} is a Borel set. By [4, 8.2], we may also assume that at all points $x \in G \backslash E_{0}, f$ is differentiable and $J(x, f)>0$. Thus $B_{f} \subset E_{0}$. Let $\varrho \in F(\Gamma)$. Define $\sigma: G \rightarrow \dot{R}^{1}$ by

$$
\begin{array}{lll}
\sigma(x)=\varrho(x) / l\left(f^{\prime}(x)\right) & \text { for } & x \in G \backslash E_{0} . \\
\sigma(x)=\infty & \text { for } & x \in E_{0} .
\end{array}
$$

Then σ is a Borel function. Next define $\varrho^{\prime}: R^{n} \rightarrow \dot{R}^{1}$ by

$$
\varrho^{\prime}(y)=m^{-1} \sup _{B} \sum_{x \in B} \sigma(x),
$$

where B runs through all subsets of $f^{-1}(y)$ such that card $B \leq m$. For $y \in \mathbf{C} f G$ put $\varrho^{\prime}(y)=0$. Then $\varrho^{\prime}(y)=\infty$ for $y \in f E_{0}$.

We shall prove that $\varrho^{\prime} \in F\left(\Gamma_{1}\right)$. To show that ϱ^{\prime} is a Borel function, we choose an exhaustion of G with domains $G_{i}, \bar{G}_{i} \subset G_{i+1}$. Denoting by χ_{A} the characteristic function of a set A, we set

$$
\begin{equation*}
\varrho_{i}=\varrho \chi_{\bar{G}_{i}}, \sigma_{i}=\sigma \chi_{\bar{G}_{i}}, \grave{\varrho}_{i}^{\prime}(y)=m^{-1} \sup _{B} \sum_{x \in B} \sigma_{i}(x) . \tag{3.5}
\end{equation*}
$$

As $i \rightarrow \infty, \varrho_{i}(x) \rightarrow \varrho(x)$ and $\varrho_{i}^{\prime}(y) \rightarrow \varrho^{\prime}(y)$ for all $x \in G$ and $y \in R^{n}$. Furthermore, $\varrho_{i}^{\prime}(y)=0$ for $y \in \mathbf{C} f \bar{G}_{i}$, and $\varrho_{i}^{\prime}(y)=\infty$ for $y \in f\left(\bar{G}_{i} \cap B_{f}\right)$. Hence it suffices to show that every $y_{0} \in f \bar{G}_{i} \backslash f\left(\bar{G}_{i} \cap B_{f}\right)$ has a neighborhood in which f is a Borel function. Apply Lemma 2.1 with $E=\bar{G}_{i}$, and let V be the corresponding neighborhood of y_{0}. Setting $g_{j}=f_{j}^{-1}$, we have

$$
\varrho_{i}^{\prime}(y)=m^{-1} \sup _{J} \sum_{j \in J} \sigma_{i}\left(g_{j}(y)\right)
$$

for $y \in V$, where J runs through all subsets of $\{1, \ldots, k\}$ such that card $J \leq m$. Since every $\sigma_{i} \circ g_{j}$ is a Borel function, $\varrho_{i}^{\prime} V$ is a Borel function.

Next let β be a member of Γ_{1}. We must show that

$$
\begin{equation*}
\int_{\beta} \varrho^{\prime} d s \geq 1 \tag{3.6}
\end{equation*}
$$

Assume first that $\beta:[a, b] \rightarrow R^{n}$ is a closed path. By the hypothesis, there are paths $\alpha_{1}, \ldots, \alpha_{m}$ in Γ such that $f \circ \alpha_{i} \subset \beta$ and such that card $\left\{i \mid \alpha_{i}(t)=x\right\} \leq 1$ for all $x \in G \backslash E_{0}$ and $t \in[a, b]$. Set $c=l(\beta)$,
$\gamma=\beta^{0}$, and let $\gamma_{i}: I_{i} \rightarrow G$ be the path α^{*} given by Lemma 2.3 for $\alpha=\alpha_{i}$. Thus $\alpha_{i}(t)=\gamma_{i}\left(s_{\beta}(t)\right)$ and $f \circ \gamma_{i} \subset \gamma$.

For almost every $t \in[0, c]$ we have $\left|\gamma^{\prime}(t)\right|=1$ by [9, 1.3.(5)]. Since f is absolutely precontinuous on each α_{i}, the paths γ_{i} are (locally) absolutely continuous (Remark 2.5.(2)). Hence the derivative $\gamma_{i}^{\prime}(t)$ exists a.e. in I_{i}. It follows that for almost every $t \in I_{i}$, either $\gamma_{i}(t) \in E_{0}$ or

$$
\mathbf{l}=\left|\gamma^{\prime}(t)\right|=\left|f^{\prime}\left(\gamma_{i}(t)\right) \gamma_{i}^{\prime}(t)\right| \geq l\left(f^{\prime}\left(\gamma_{i}(t)\right)\right)\left|\gamma_{i}^{\prime}(t)\right|
$$

Since $\sigma(x)=\infty$ for $x \in E_{0}$, the inequality $\sigma\left(\gamma_{i}(t)\right) \geq \varrho\left(\gamma_{i}(t)\right)\left|\gamma_{i}^{\prime}(t)\right|$ holds a.e. in I_{i}. Consequently (cf. [9, 4.1]),

$$
1 \leq \int_{\alpha_{i}} \varrho d s=\int_{\gamma_{i}} \varrho d s=\int_{I_{i}} \varrho\left(\gamma_{i}(t)\right)\left|\gamma_{i}^{\prime}(t)\right| d t \leq \int_{I_{i}} \sigma\left(\gamma_{i}(t)\right) d t
$$

$1 \leq i \leq m$. Set $h_{i}(t)=\sigma\left(\gamma_{i}(t)\right) \chi_{I_{i}}(t)$ for $t \in[0, c]$, and let $J(t)=$ $\left\{i \mid t \in I_{i}\right\}$. For every $t \in[0, c]$, either $\gamma(t) \in f E_{0}$, in which case $\varrho^{\prime}(\gamma(t))=\infty$, or the points $\gamma_{i}(t), i \in J(t)$, are distinct points in $f^{-1}(\gamma(t))$. In both cases we have

$$
\varrho^{\prime}(\gamma(t)) \geq m^{-1} \sum_{i=1}^{m} h_{i}(t)
$$

which implies

$$
\int_{\beta} \varrho^{\prime} d s=\int_{0}^{c} \varrho^{\prime}(\gamma(t)) d t \geq m^{-1} \sum_{i=1}^{m} \int_{0}^{c} h_{i}(t) d t=m^{-1} \sum_{i=1}^{m} \int_{I_{i}} \sigma\left(\gamma_{i}(t)\right) d t \geq 1
$$

If the path β is open or half open, we can apply the above proof to the closed extension [9, 3.2] of β. We have proved that $\varrho^{\prime} \in F\left(\Gamma_{1}\right)$. Consequently,

$$
\begin{equation*}
M\left(\Gamma_{1}\right) \leq \int \underline{o}^{\prime n} d m \tag{3.7}
\end{equation*}
$$

To estimate the above integral, we again choose an exhaustion (G_{i}) of G and introduce the functions ϱ_{i}, σ_{i} and ϱ_{i}^{\prime} as in (3.5). Fix i, let $y_{0} \in f \bar{G}_{i} \backslash f\left(\bar{G}_{i} \cap B_{f}\right)$, and let V be a connected neighborhood of y_{0} satisfying the conditions of Lemma 2.1 for $E=\bar{G}_{i}$. We have thus k homeomorphisms $\quad g_{j}: V \rightarrow D_{j}, \quad f \circ g_{j}=\mathrm{id}, \quad$ and $\quad \bar{G}_{i} \cap f^{-1} V=U\left\{\bar{G}_{i} \cap D_{j} \mid\right.$ $1 \leq j \leq k\}$. Put $J_{0}=\{1, \ldots, k\}$, and define for each $y \in V$ a set $J(y) \subset J_{0}$ as follows: If $k \leq m$, then $J(y)=J_{0}$. If $k>m$, then card $J(y)=m$, and for all $j \in J(y), j^{\prime} \in J_{0} \backslash J(y)$, either $\sigma_{i}\left(g_{j}(y)\right)>$ $\sigma_{i}\left(g_{j^{\prime}}(y)\right)$ or $\sigma_{i}\left(g_{j}(y)\right)=\sigma_{i}\left(g_{j^{\prime}}(y)\right)$ and $j>j^{\prime}$. Then

$$
\varrho_{i}^{\prime}(y)=m^{-1} \sum_{j \in J(y)} \sigma_{i}\left(g_{j}(y)\right)
$$

for $y \in V$. For $J \subset J_{0}$, the sets $V_{J}=\{y \in V \mid J(y)=J\}$ are disjoint Borel sets. Using Hölder's inequelity, a transformation formula for Lebesgue integrals, and the quasiconformality of $f \mid D_{j}$, we obtain

$$
\begin{aligned}
\int_{V_{J}} \varrho_{i}^{\prime n} d m & \leq m^{-1} \sum_{j \in J} \int_{V_{J}} \sigma_{i}\left(g_{j}(y)\right)^{n} d m(y) \\
& =m^{-1} \sum_{j \in \in_{g_{j} V_{J}}} \frac{\varrho_{i}(x)^{n}}{l\left(f^{\prime}(x)\right)^{n}} J(x, f) d m(x) \\
& \leq \frac{K_{I}(f)}{m} \int_{f^{-1 / V_{J}}} \varrho_{i}^{n} d m
\end{aligned}
$$

Summing over all $J \subset J_{0}$ yields

$$
\int_{V} \varrho_{i}^{\prime n} d m \leq \frac{K_{I}(f)}{m} \int_{f^{-1 V}} \varrho_{i}^{n} d m
$$

Since $\varrho_{i}^{\prime}(y)=0$ for $y \in \mathbf{C} f \bar{G}_{i}$ and since $f \bar{G}_{i} \backslash f\left(\bar{G}_{i} \cap B_{f}\right)$ can be almost covered by a countable number of disjoint sets V as above (for example, with cubes), and since $m\left(f B_{f}\right)=0$, we obtain

$$
\int \varrho_{i}^{\prime n} d m \leq \frac{K_{I}(f)}{m} \int \varrho_{i}^{n} d m
$$

As $i \rightarrow \infty$, this and (3.7) yield

$$
M\left(\Gamma_{1}\right) \leq \frac{K_{I}(f)}{m} \int \varrho^{n} d m
$$

Since $\varrho \in F(\Gamma)$ was arbitrary, this proves the theorem.
3.8. Examples. Let us consider the complex analytic function $f: R^{2} \rightarrow$ $R^{2}, f(z)=e^{z}$. Let m be a positive integer, and let Q be the rectangle $0<\operatorname{Re} z<1,0 \leq \operatorname{Im} z<2 \pi m$. Then $f Q$ is the annulus $B^{2}(e) \backslash \bar{B}^{2}$. Let Γ be the family of all horizontal segments of line joining the vertical sides of Q. It is easy to see that the condition of Theorem 3.1 is satisfied for Γ and $\Gamma^{\prime}=f \Gamma$. Hence $M\left(\Gamma^{\prime}\right) \leq M(\Gamma) / m$. On the other hand, it is well known that $M\left(\Gamma^{\prime}\right)=2 \pi=M(\Gamma) / m$. Hence the inequality (3.2) is sharp in this case. This also follows from the inequality [4, 3.2] $M(\Gamma) \leq$ $N(f, Q) K_{o}(f) M(f \Gamma)$.

Next let Γ be the family of all vertical segments joining the horizontal sides of Q. Now we have $M(f \Gamma)=1 / 2 \pi m^{2}=M(\Gamma) / m$. Hence (3.2)
is also true in this case. However, the condition of Theorem 3.1 is not satisfied. We shall give a result which applies to situations like this.

If $\alpha:[a, b] \rightarrow G$ is a closed path, we say that f winds αm times around itself if $f \circ \alpha=\beta$ is rectifiable and if the following condition is satisfied: Let $\beta^{0}:[0, c] \rightarrow R^{n}$ be the normal representation of β, let $\alpha^{*}:[0, c] \rightarrow G$ be the path given by 2.3 , and let $h=c / m$. Then $\beta^{0}(t+j h)=\beta^{0}(t) \quad$ and $\quad \alpha^{*}(t+j h) \neq \alpha^{*}(t) \quad$ whenever $\quad 0 \leq t<t+j h<c$ and $j \in\{1, \ldots, m-1\}$.
3.9. Theorem. Suppose that $f: G \rightarrow R^{n}$ is a non-constant quasiregular mapping, that Γ is a path family in G, that m is a positive integer, and that f winds every path of Γm times around itself. Then

$$
M(f \Gamma) \leq \frac{K_{I}(f)}{m} M(\Gamma)
$$

Proof. The proof is closely similar to the proof of Theorem 3.1. The only difference is the proof of the inequality

$$
\begin{equation*}
\int_{\beta} \varrho^{\prime} a s \geq 1 \tag{3.6}
\end{equation*}
$$

for $\beta=f \circ \alpha \in f \Gamma$. Now

$$
\int_{\beta} \varrho^{\prime} d s=m \int_{0}^{h} \varrho^{\prime}\left(\beta^{0}(t)\right) d t
$$

If $0<t<h$, then $\alpha^{*}(t), \alpha^{*}(t+h), \ldots, \alpha^{*}(t+(m-1) h)$ are distinct points in $f^{-1}\left(\beta^{0}(t)\right)$. Hence

$$
\varrho^{\prime}\left(\beta^{0}(t)\right) \geq m^{-1} \sum_{j=0}^{m-1} \sigma\left(\varkappa^{*}(t+j h)\right)
$$

for $t \in(0, h)$. As in the proof of 3.1 we obtain $\left.\sigma\left(x^{*}(t)\right) \geq \underline{Q}\left(\alpha^{*}(t)\right) \mid \alpha^{*^{\prime}}(t)\right\}$ for almost every $t \in[0, c]$. Consequently,

$$
\int_{\beta} \varrho^{\prime} d s \geq \sum_{j=0}^{m-1} \int_{0}^{h} \varrho\left(\alpha^{*}(t+j h)\right)\left|*^{*}(t)\right| d t=\int_{\alpha} \varrho d s \geq 1
$$

This proves (3.6).
3.10. Remark. The situation of 3.9 arises in the theory of covering mappings. Suppose that f is a quasiregular covering mapping of G onto G^{\prime} such that the fundamental group $\pi_{1}\left(G^{\prime}\right)$ is isomorphic to the group Z
of integers. Suppose that Δ is a path family in G^{\prime} such that every member of Δ is a rectifiable loop which represents a generator of $\pi_{1}\left(G^{\prime}\right)$. Let m be a positive integer such that $m \leq N(f)$. For each $\gamma \in \Delta, \gamma:[a, b] \rightarrow G^{\prime}$, choose a point $x \in f^{-1}(\gamma(a))$, and let α be the path in G obtained by performing m successive liftings of γ, the first one starting at x. Then f winds αm times around itself. To see this, we may assume that $\gamma:[0, h] \rightarrow G^{\prime}$ is a normal representation. Then $\alpha:[0, m h] \rightarrow G$ is a path with the property $f(\alpha(t+j h))=\gamma(t)$ for $0 \leq t \leq h \quad$ and $1 \leq j \leq m-1$. If $\alpha(t+j h)=\alpha(t)$ for some t and $j \leq m-1$, the path $\alpha_{1}=\alpha \mid[t, t+j h]$ is a loop such that $f \circ \alpha_{1}$ represents an element q in $\pi_{1}\left(G^{\prime}\right)=Z$ such that $|q|=j$. However, this is impossible, because the induced homomorphism f_{*} maps $\pi_{1}(G)$ onto $N(f) Z$ if $N(f)<\infty$, and onto $\{0\}$ if $N(f)=\infty$ [2, 15.4, p. 88].

Let Γ be the family of all liftings α. By 3.9 , we have

$$
M(f I) \leq \frac{K_{I}(f)}{m} M(\Gamma)
$$

This inequality can be written in another form. In fact, a function ϱ belongs to $F(f \Gamma)$ if and only if $m \varrho \in F(\Delta)$. Hence $M(\Delta)=m^{n} M(f \Gamma)$, which yields

$$
M(\Delta) \leq m^{n-1} K_{I}(f) M(\Gamma)
$$

3.11. Maximal liftings. We shall need some results concerning path lifting for discrete open mappings. If $f: G \rightarrow R^{n}$ is a mapping, if β : $[a, b) \rightarrow R^{n}$ is a path and if $x_{0} \in f^{-1}(\beta(a))$, we say that a path $\alpha:[a, c) \rightarrow G$ is a maximal f-lifting of β starting at x_{0} if $\alpha(a)=x_{0}, f \circ x \subset \beta$ and there does not exist a path $\alpha_{1}:\left[a, c_{1}\right) \rightarrow G$ such that $x \subset \alpha_{1}$ and $f \circ \alpha_{1} \subset \beta$. See [6, p. 12]. The following result is from Rickman [8]:
3.12. Lemma. Suppose that $f: G \rightarrow R^{n}$ is discrete and open, that β : $[a, b) \rightarrow R^{n}$ is a path and that x_{1}, \ldots, x_{k} are points in $f^{-1}(\beta(a))$. Set $m=\sum_{j=1}^{k} i\left(x_{j}, f\right)$. Then there are maximal f-liftings $\alpha_{1}, \ldots, \alpha_{m}$ of β such that
(1) $\operatorname{card}\left\{j \mid x_{j}(a)=x_{i}\right\}=i\left(x_{i}, f\right)$ for $\quad 1 \leq i \leq k$.
(2) $\operatorname{card}\left\{j \mid \alpha_{j}(t)=x\right\} \leq i(x, f)$ for all $x \in G$ and $t \in[a, b)$.
3.13. Condensers. A condenser in R^{n} is a pair $E=(A, C)$ where $A \subset R^{n}$ is open and $C \subset A$ is compact. See [4, p. 24]. The capacity of a condenser $E=(A, C)$ is the number

$$
\operatorname{cap} E=\inf _{u} \int_{A}|\nabla u|^{n} d m
$$

where u runs through all C^{∞}-functions with compact support in A such that $u(x) \geq 1$ for $x \in C$. An alternative way to define the capacity of E is the equality

$$
\begin{equation*}
\operatorname{cap} E=M\left(\Gamma_{E}\right) \tag{3.14}
\end{equation*}
$$

where Γ_{E} is the family of all paths joining C and ∂A in A. This was proved by Ziemer [10, 3.8] for bounded condensers, and the general case can be established by a simple limiting process. For our purposes, it is most convenient to let Γ_{E} be the family of all balf open paths $\gamma:[a, b) \rightarrow A$ such that $\gamma(a) \in C$ and $\gamma(t) \rightarrow \partial A$ as $t \rightarrow b$, cf. [9, 11.3]. If $f: G \rightarrow R^{n}$ is an open mapping and if $E=(A, C)$ is a condenser in G, then $f E=(f A, f C)$ is also a condenser. In $[4,7.1]$ it was proved that

$$
\begin{equation*}
\operatorname{cap} f E \leq K_{I}(f) \operatorname{cap} E \tag{3.15}
\end{equation*}
$$

for non-constant quasiregular mappings f. Martio [3, 5.1] proved the inequality

$$
\begin{equation*}
\operatorname{cap} f E \leq \frac{K_{I}(f) N(f, A)^{n-1}}{M(f, C)^{n}} \operatorname{cap} E \tag{3.16}
\end{equation*}
$$

Here $M(f, C)$ is the minimal multiplicity of f on C, defined by

$$
M(f, C)=\inf _{y \in f C} \sum_{x \in f^{-1}(y) \cap C} i(x, f)
$$

Since $1 \leq M(f, C) \leq N(f, A)$ by [3, 3.6], the inequalities (3.15) and (3.16) are consequences of the following result:
3.17. Theorem. Suppose that $f: G \rightarrow R^{n}$ is a non-constant quasiregular mapping and that $E=(A, C)$ is a condenser in G. Then

$$
\operatorname{cap} f E \leq \frac{K_{I}(f)}{M(f, C)} \operatorname{cap} E
$$

Proof. Set $\Gamma=\Gamma_{E}, \Gamma^{\prime}=\Gamma_{f E}$, and $m=M(f, C)$. Let $\beta:[a, b) \rightarrow f A$ be a path in Γ^{\prime}. Then $C \cap f^{-1}(\beta(a))$ contains points x_{1}, \ldots, x_{k} such that $\sum\left\{i\left(x_{j}, f\right) \mid 1 \leq j \leq k\right\} \geq m$. By 3.12, there are maximal $(f \mid A)$-liftings $\alpha_{j}:\left[a, c_{j}\right) \rightarrow G$ of $\beta, 1 \leq j \leq m$, such that $\alpha_{j}(a)=x_{i}$ for some i and such that $\operatorname{card}\left\{j \mid \alpha_{j}(t)=x\right\} \leq 1$ for $x \in G \backslash B_{f}$ and $t \in[a, b)$. Furthermore, it follows from $[6,3.12]$ that $\alpha_{j}(t) \rightarrow \partial A$ as $t \rightarrow c_{j}$. Hence $\alpha_{j} \in \Gamma$ for all j. The theorem follows from 3.1 and (3.14).
3.18. Remark. We sketch a proof of 3.17 , which does not make use of path families. Let S be the set of all pairs (x, k) such that $x \in A$ and $1 \leq k \leq i(x, f), k \in N$. Let $P: S \rightarrow A$ be the projection $P(x, k)=x$.

Using the notation of [4, p. 25], we define for every $u \in W_{0}^{\infty}(E)$ a function $v: f A \rightarrow R^{1}$ by

$$
v(y)=M(f, C)^{-1} \max _{B} \sum_{z \in B} u(P(z)),
$$

where B runs through all subsets of $P^{-1}\left(f^{-1}(y)\right)$ such that card $B \leq$ $M(f, C)$. Modifying the proofs of $[4,7.1]$ and $[3,5.1]$, we can show that $v \in W_{0}(f E)$ and that

$$
\int|\nabla v|^{n} d m \leq \frac{K_{I}(f)}{M(f, C)} \int|\nabla u|^{n} d m
$$

3.19. Remark. All the results of this section can be extended without difficulties to quasimeromorphic mappings $f: G \rightarrow \bar{R}^{n}[5,2.1]$.

4. Applications

4.1. Let $f: G \rightarrow R^{n}$ be a quasiregular mapping. An isolated boundary point b is said to be an isolated singularity of f. Furthermore, b is a removable singularity, a pole, or an essential singularity according as f has a finite limit, an infinite limit, or no limit at b. See [5, p. 12].
4.2. Theorem. Suppose that b is an isolated singularity of a quasiregular mapping $f: G \rightarrow R^{n}$. Suppose also that there are finite positive constants C, p, δ such that

$$
|f(x)| \leq C x^{-p}
$$

for $0<|x-b|<\delta$. Then b is not an essential singularity of f.
Proof. Assume that b is an essential singularity. Performing a preliminary similarity transformation, we may assume that $b=0$, that $\bar{B}^{n} \subset G \cup\{0\}$, and that $C=\delta=1$. Choose $R>0$ such that $f S^{n-1} \subset$ $B^{n}(R)$. From [5, 4.6] it follows that there is y_{0} in R^{n} such that $\left|y_{0}\right|>R$ and $N\left(y_{0}, f, B^{n}\right)=\infty$. Set $K=K_{I}(f)$, choose a positive integer m such that $m>2 K p^{n-1}$, and choose distinct points x_{1}, \ldots, x_{m} in $B^{n} \cap f^{-1}\left(y_{0}\right)$. Applying [4, 2.9], we next choose $r>0$ such that $U_{i}=$ $U\left(x_{i}, f, r\right)$ is a normal neighborhood of x_{i} for $1 \leq i \leq m$, the closures \bar{C}_{i} are disjoint, and $\bar{U}_{i} \subset B^{n}$. Set $d=d\left(0, \bar{C}_{1} \cup \ldots \cup \bar{C}_{m}\right)$, and let $a \in(0, d)$. Let V be the ring $B^{n} \backslash \bar{B}^{n}(a)$. Since f is open, $\partial f V \subset f \partial V=$ $=f S^{n-1} \cup f S^{n-1}(a) \subset B^{n}(R) \cup \bar{B}^{n}\left(a^{-p}\right)$. Since $y_{0} \in f V$, this implies $f V \subset$ $B^{n}\left(a^{-p}\right)$.

Consider the hemisphere $H=\left\{e \in S^{n-1} \mid\left(e y_{0}\right)>0\right\}$. Let Γ^{\prime} be the family of all paths $\beta:\left[r, a^{-p}\right) \rightarrow R^{n}$, defined by $\beta(t)=y_{0}+t e$,
$e \in H$, and let Γ be the family of all maximal $(f \mid V)$-liftings of the members of I^{\prime}, starting at points of $\bar{U}_{1} \cup \ldots \cup \bar{U}_{m}$. Then 3.1 and 3.12 imply

$$
M\left(\Gamma^{\prime}\right) \leq \frac{K}{m} M(I)
$$

Suppose that $\alpha:[r, c) \rightarrow G$ is a member of Γ. Since $g V \subset B^{n}\left(a^{-P}\right)$. $y_{0}+a^{-p} e \in \mathbf{C} f V$ for all $e \in H$. From [6, 3.12] it follows that $\alpha(t) \rightarrow \partial V$ as $t \rightarrow c$. This means that either $|\alpha(t)| \rightarrow 1$ or $|\alpha(t)| \rightarrow a$. The first case is impossible, because $\overline{\beta \beta} \cap f S^{n-1}=\emptyset$ for all $\beta \in \Gamma^{\prime}$. Hence $|\alpha(t)| \rightarrow a$ as $t \rightarrow c$. Hence Γ is minorized by the family Γ_{1} of all paths joining the spheres $S^{n-1}(d)$ and $S^{n-1}(a)$. Consequently,

$$
M(\Gamma) \leq M\left(\Gamma_{1}\right)=\omega_{n-1}\left(\log \frac{d}{a}\right)^{1-n}
$$

On the other hand, by [9, 7.7] we have

$$
M\left(\Gamma^{\prime}\right)=\frac{1}{2}\left(\omega_{n-1}\left(\log \frac{a^{-p}}{r}\right)^{--n}\right.
$$

Combining the above inequalities yields

$$
a^{q} \geq r d^{(m / 2 K)^{1 /(n-1)}}
$$

where

$$
q=\left(\frac{m}{2 K}\right)^{1 /(n-1)}-p>0
$$

As $a \rightarrow 0$, this gives a contradiction.
4.3. Theorem. Suppose that b is an isolated singularity of a quasiregular mapping $f: G \rightarrow R^{n}$, and let $\alpha=K_{I}(f)^{1,(1-n)}$. If $\lim _{x \rightarrow b}|x-b|^{\alpha}|f(x)|$ $=0, b$ is a removable singularity. The hypothesis cannot be replaced by the requirement that $|x-b|^{\alpha}|f(x)|$ be bounded in a neighborhood of b.

Proof. We may assume that $b=0$. By 4.2, b cannot be an essential singularity. Assume that b is a pole of f. Let g be a Möbius transformation of \bar{R}^{n} such that $|g(x)|=1 /|x|$ for all $x \in \bar{R}^{n}$. Then $h=g \circ f$ is quasiregular in a neighborhood of 0 , and $K_{I}(h)=K_{I}(f)$. From [5, 3.2] it follows that $|h(x)| \leq C|x|^{\alpha}$ in a neighborhood of 0 , where C is a constant. Hence $|x|^{\alpha}|f(x)| \geq 1 / C$, which contradicts the hypothesis. Thus 0 is a removable singularity of f.

The mapping $f(x)=g\left(|x|^{\alpha-1} x\right)$, where g is as above, has a pole at the origin, $K_{I}(f)=\alpha^{1-n}$, and $|x|^{\alpha}|f(x)|=1$ for all $x \in R^{n} \backslash\{0\}$.
4.4. Remark. In the special case $n=2, K(f)=1$, the theorems 4.2 and 4.3 are well known results for analytic functions [1, p. 124 and p. 128].

References

1. Ahlfors, L. V.: Complex analysis, 2nd ed. - McGraw-Hill, 1966.
2. Hu, S.-T.: Homotopy theory. - Academic Press, 1959.
3. Martio, O.: A capacity inequality for quasiregular mappings. - Ann. Acad. Sci. Fenn. A I 474 (1970), 1-18.
4. Martio, O., Rickman, S., and J. Väisälä: Definitions for quasiregular mappings. - Ann. Acad. Sci. Fenn. A I 448 (1969), 1-40.
5. -»- Distortion and singularities of quasiregular mappings. - Ann. Acad. Sci. Fenn. A I 465 (1970), 1-13.
6. -»- Topological and metric properties of quasiregular mappings. - Ann. Acad. Sci. Fenn. A I 488 (1971), 1-31.
7. РоцескіІ, Е. А. (Полецкий, Е. А.): Метод модулей для негомеоморфных квазиконформных отображений. - Mat. Sbornik 83 (1970), 261-272.
8. Rickman, S.: Path lifting for discrete open mappings. - To appear.
9. Vätsätä, J.: Lectures on n-dimensional quasiconformal mappings. - SpringerVerlag, 1971.
10. Ziemer, W. P.: Extremal length and p-capacity. - Michigan Math. J. 16 (1969), 43-51.

University of Helsinki
Helsinki, Finland

