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1. Introduction

One of the most important tools in the theory of quasiconformal map-
pings is the double inequality

(1.1) ]i~ M(I') < M(fI') < KM(T),

valid for every A-quasiconformal mapping f: G — G’ and for every path
family I" in G. The left hand inequality is not always true for K-quasi-
regular mappings. (For terminology, see [4].) However, by a result of
Poleckii [7, Theorem 1], the right hand inequality also holds in this more
general case. A related result for condensers was given in [4, 7.1]. Poleckii
[7, Theorem 2] also proved that the stronger inequality

>

, K .
(1.2) M < p M(I

is true in the following case: D is a normal domain of f, m = N(f, D) is
the multiplicity of f in D, I" is a family of injective paths in fD, and
I is the family of all paths 9 in D such that f oy € I"". A related result
for condensers was given by Martio [3, 5.1 and 5.13]. Martio and Poleckii
applied their inequalities to study the local behavior of a quasiregular
mapping.

The main purpose of this paper is to establish (1.2) in a more general
situation. In particular, the paths of I" need not lie in a compact part of
G. We also give the corresponding result for condensers. The inequality
is applied to study the behavior of a mapping at an isolated singularity.

Our terminology and notation is the same as in [4]. In particular, the
notation f:G — R™ includes the assumption that G is a domain in R™
and that f is continuous.

2. Preliminary results

2.1. Lemma. Suppose that f:G — R" is discrete and open, that E c @
s compact, and that y, € fE \ f(ByN E). Then there is a neighborhood V,
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of y, such that for every connected neighborhood 1" < Vy of iy, the following
conditions are satisfied:

() VNnfBNE) = 0.

(2) The components of [V which mect E  form « finile collection
Dy, ..., D

(3) f defines homeomorphisms fi: Di— 1.

Proof. This is essentially the same as [4, 7.15]. Thus let (... ., Uy
be disjoint neighborhoods of the points in £ N f(y,) such that Uic G
and such that f/U; is injective. Then
k

k
Vo= (N fU) N fE U U

i=1 =1

is the required neighborhood of .

2.2. We next consider the parametrization of a path ~v:I—G by
means of the arc length of its image f o« under a mapping f: G — R".
The interval I may be closed, half open or open. We shall use for paths
the notation and terminology of [9, pp. 1—8]. Thus [(x) is the length of
a rectifiable closed path « :[a, b] — R". s :[a, b]—[0,1(x)] is the length
function of «, and «°: [0, [(x)] — R" is the normal representation of «,
satisfying a® o s, = «. If «x is the restriction of a path f to a subinterval,
we say that « is a subpath of f and write v c f.

2.3. Lemma. Suppose that f:G — R" is a light mapping. Suppose also
that B :[a,b]— R" is a rectifiable closed path and that ~:1—G is a
path such that fox c f. Then there is a unique path ~*: s, I — (G such
that « = «* o (sz|l). Moreover, fo\* c p

Proof. The function s, : [a, b] —[0,1(3)] is continuous and increasing.
If sy(ty) = sp(ty) for t,,t, €1, then g is constant on [f;.f]. Since
fexc B and since f islight, also ~x is constant on [t ,#,]. Hence there
is a unique mapping «* of I* =s,I into & such that 1 = a* o (s;).
The continuity of «* follows easily from the continuity of ~. If €1,

then f(a*(sy(f))) = f(x(t)) = p(t) = [°(s;(t)). Hence for* = gOI%

2.4. Definition. Suppose that f:G — R" is a light mapping and that
x:I— @G is a closed path. We say that f is absolutely precontinuous on
x if B =fox is rectifiable and if the path ~*:[0. [(f)] -G, given
by 2.3, is absolutely continuous. If the path 1 is open or half open, we say
that f is absolutely precontinuous on « if it is absolutely precontinuous
on every closed subpath of «.

2.5. Remarks. (1) If f is a homeomorphism onto a domain (¢, then
f is absolutely precontinuous on «x if and only if f-1 is (locally) absolutely
continuous on fox.
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(2) We shall make use of the following elementary observation: In the
situation of Lemma 2.3, the path «* depends on the path p, but only
up to a translation of the parameter. More precisely, if fox c f; and
fexc Py, and if af ,af are the corresponding paths given by 2.3,
then af(f) = ~¥(t +{,) for some constant ¢;,. In particular, x* is (lo-
cally) absolutely continuous if and only if f is absolutely precontinuous
on v.

2.6. Lemma. Suppose that f:G — R* is quasiregular. Let Iy be the
SJamily of all paths f in R" such that either p is non-rectifiable or there is
a path ~ in G such that fo~xc p and f is not absolutely precontinuous
on x. Then ML) = 0.

Proof. This lemma is a slight extension of an important result of Po-
leckii [7, Lemma 6]. The topological part of Poleckii’s proof has been simp-
lified by Rickman [8]. Choose an exhaustion (G;) of G. This means that
Gy,0,, ... is a sequence of domains such that G, G, , and G =
U{G: i €N}. Let [i be the family of all closed paths in G; on which
S is not absolutely precontinuous. By the aforementioned result of Poleckii,
M(fI) = 0. Furthermore, the family 77, of all non-rectifiable paths
is of modulus zero. Since [, is minorized by the union of I, and all

fI:, M(T) = 0.

3. Modulus and capacity inequalities

3.1. Theorem. Suppose that f:G — R" is a non-constant quasiregular
mapping, that 1" is a path family in G, that I is a path family in R",
and that m s a positive integer such that the following condition is satisfied :

There is a set Ey c G of measure zero such that for every path f:I1— R"
tn 17 there are paths xi, ..., ~, in I such that f<~xicf fordl i and
such that for every v € G\ E, and t € I . ~(t) = & for at most one 1 .

Then
(3.2) M) < {5’%@ T

3.3. Remarks. It is not required that [ = fI. We shall later apply
the theorem with K, = B;. If I = fI', the condition is trivially true
for m =1, and we obtain Poleckii’s inequality M(fI") < K, (f)M(I").
If D is a normal domain of f, if /7 is a family of paths in fD, and if
1" is the family of all paths ~ in D such that fox € I, then the con-
dition is satisfied for m = N(f, D) by Rickman [8]. Hence we obtain
Poleckii’s second inequality (1.2).
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3.4. Proof of Theorem 3.1. Let I be the family of Lemma 2.6. Setting
Iy = I'\I, we have M(I}) = M(I"). Hence it suffices to prove that

K(f)
m

M(I,) < M(I).
We may assume that E; is a Borel set. By [4, 8.2], we may also assume
that at all points « € G\JE,, f is differentiable and J(x,f) > 0. Thus

Bic E,. Let ¢ € F(I. Define o:G—R' by
o(®) = o(@)[U(f'(x)) for x€G\JE,.
o(x) = oo for v €E,.

Then o is a Borel function. Next define o : B" — R by

<

¢'(y) = m™ sup > ofx),
B x€B
where B runs through all subsets of f(y) such that card B <m . For
y €ECfG put o'(y) =0. Then ¢'(y) = o for y €[E,.

We shall prove that o' € F(I',). To show that o’ is a Borel function,
we choose an exhaustion of G with domains G:, G, c G, .1 - Denoting
by x4 the characteristic function of a set 4, we set
(3.5) 0= 01z, 0 = 075, 0ly) = misup 3 (2.

B x€B
As | — o, g(x) —o(®) and o;(y) — o'(y) for all = €(G and y € R".
Furthermore, o;(y) = 0 for y € CfG,, and o/(y) = o for y € f(G: N By).
Hence it suffices to show that every , € fG:\f(G: N By has a neighbor-
hood in which f is a Borel function. Apply Lemma 2.1 with B = G;,
and let ¥V be the corresponding neighborhood of y,. Setting g; = f;',
we have
0i(y) = m7tsup > oilg;(y)
J jer

for y €V, where J runs through all subsets of {1....,k} such that
card J <m . Since every o; og; is a Borel function, o,V is a Borel
function.

Next let 8 be a member of I';. We must show that

(3.6) f@'ds >1.
8
Assume first that f:[a,b]— R" is a closed path. By the hypothesis,

there are paths o;,...,am in I' such that foa; c f and such that
card {ilx(t) = 2} <1 for all w € G\FE, and t €[a,b]. Set ¢ =I(f),
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y=p°, and let y;:I;— G be the path «* given by Lemma 2.3 for
o =& . Thus wi(t) = yi(ss(t)) and foyicy

For almost every ¢ € [0,c] we have |y'(f)] =1 by [9, 1.3.(5)]. Since
f 1is absolutely precontinuous on each «;, the paths y; are (locally)
absolutely continuous (Remark 2.5.(2)). Hence the derivative y;(f) exists
a.e. in I, It follows that for almost every ¢ € I;, either y;(¢) € E, or

L= [y’ = [ 0:®)yi )] = U o)) lyi ()] -

Since o(z) = o for =z €E,, the 1nequahty a(yi(t)) = o(i(t)) Iyi ()]
holds a.e. in I;. Consequently (cf. [9, 4.1]),

1< [eas= [eds= [ o) i < [ oty at,
% Vi I; I;

I<v<m. Set It)= o(y(t)) x5,(¢) for ¢€[0,c], and let J(t) =
{i|t€l}. For every t€[0,c], either v(t) €fE,, in which case
o'(y(t)) = o, orthe points y;i(t), 7 € J(t), are distinct pointsin f(p(t)) .
In both cases we have
e'(y(t) = m™ Z hi(t
i=1

which implies

f o'ds = f o' (y(8)) dt > m‘l_i fhi(t)dt =m Z o(yi(t)) dt > 1.
B 0 =t 0

l

If the path f is open or half open, we can apply the above proof to the
closed extension [9, 3.2] of . We have proved that o' € F(I}). Con-
sequently,

(3.7) M) < f o' dm .

To estimate the above integral, we again choose an exhaustion (G\)
of G and introduce the functions ¢;, 0; and o; asin (3.5). Fix 4, let
Yo €EfGN\S(GNBy), and let V be a connected neighborhood of ¥, satis-
fying the conditions of Lemma 2.1 for £ = G;. We have thus k¢ homeo-
morphisms ¢;: V—D;, fogi=id, and GNfV=U{GND,|
1<j<Fk}. Put Jo=1{1,...,k}, and define for each y €V a set
Jy)cJ, as follows: If k£ <m, then J)=J,. If k> m, then
card J(y) = m , and for all jE€J(y), j' €Jy\J(y), either a,(g;(y)) >
oi(g;(y)) or ai(g;(y) = 0-(9j'(y)) and j >J"- Then

0iy) = m™ Z

jeJ 3)
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for y€V. For JcJ,, the sets V;={y €V |J(y) =J} are disjoint
Borel sets. Using Holder’s inequelity, a transformation formula for Lebes-
gue integrals, and the quasiconformality of f|D;, we obtain

[ aram <w 3 [ oty anw)
€T
VJ vV

J
oi(x)"
— 1 G .

" J%Ja_{[ I(f' (x)" J(x, f)dm(z)

K,(f)

rdm .
- of dm

[Ty
Summing over all J c J, yields

K
f@ﬁ" dm < /) f o dm .
p m

Tl

Since ¢;(y) = 0 for y € CfG; and since fG:\ f(G:iN Bs) can be almost
covered by a countable number of disjoint sets I as above (for example,
with cubes), and since m(fBy) = 0, we obtain

K
fgﬁ" dm < ~—I(Q / of dm .
m

As 17— oo, this and (3.7) vield

K
M) < L) fg” dm .

m

Since ¢ € F(I') was arbitrary, this proves the theorem.

3.8. Examples. Let us consider the complex analytic function f: R? —
R?, f(z) = €. Let m be a positive integer, and let ¢ be the rectangle
0<Rez<1l, 0<Imz<2am. Then fQ is the annulus B2(e)\ B2
Let I' be the family of all horizontal segments of line joining the vertical
sides of @ . It is easy to see that the condition of Theorem 3.1 is satisfied
for I' and I" = fI'. Hence M([") < M([')/m . On the other hand, it
is well known that M(I") = 2x = M(I")/m. Hence the inequality (3.2)
is sharp in this case. This also follows from the inequality [4, 3.2] M (") <
N(f, Q) Kolf) M(fT) .

Next let I' be the family of all vertical segments joining the horizontal
sides of Q. Now we have M(fI') = 1/2am?® = M(I')/m . Hence (3.2)
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is also true in this case. However, the condition of Theorem 3.1 is not
satisfied. We shall give a result which applies to situations like this.

If «:[a,b]— G is a closed path, we say that f winds « m times
around itself if f oo = f is rectifiable and if the following condition is
satisfied: Let £°:[0,c]—R" be the normal representation of f, let
x*:[0,c]— G be the path given by 2.3, and let % =c¢/m. Then
BOt-Hjh) = B%f) and a*(t-+jh) £ «*(t) whenever 0 <t <t jh<c
and jE€{l,...,m—1}.

3.9. Theorem. Suppose that f:G — R* is a non-constant quasiregular
mapping, that I' is a path family in G, that m 1is a positive integer, and
that f winds every path of I' m times around itself. Then

KA 4oy

m

M(fT) <

Proof. The proof is closely similar to the proof of Theorem 3.1. The
only difference is the proof of the inequality

(3.6) fg/ as >1

7

for f=fox€fI". Now

B 0
If 0<t<<h, then «*{),a*(-+h),..., v¥({t+(m—1)h) are distinct
points in f~1(f°(t)) . Hence
m—1
SPB) = m S o(xH(I-jh))
=0

for ¢ € (0, k). Asin the proof of 3.1 we obtain a(x*(t)) = o(x*(2)) | a*'(t)!
for almost every t €[0,c]. Consequently,
h
m—1
f@' ds > > o(x*(t-+jh)) NF(t) dt = fgds >1.
ji=o
B 0 o

This proves (3.6).

3.10. Remark. The situation of 3.9 arises in the theory of covering
mappings. Suppose that f is a quasiregular covering mapping of G onto
' such that the fundamental group =;(G’) is isomorphic to the group Z
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of integers. Suppose that 4 is a path family in G” such that every member
of A is a rectifiable loop which represents a generator of 7,(G"). Let m
be a positive integer such that m < N(f). Foreach y € 4, y: [a, b] G,
choose a point z € f~(y(a)), and let « be the path in G obtained by
performing m successive liftings of , the first one starting at z.
Then f winds « m times around itself. To see this, we may assume that
»:[0,h]—G" is a normal representation. Then «:[0,mh]—G is a
path with the property f(x(t + jh)) =) for 0<t<h and
1 <j<m—1. If x(t+jh) = «(t) for some ¢t and j <m—1, the path
oy = [t , t+jh] is a loop such that fowx; represents an element g in
m,(G') = Z such that |¢| =j. However, this is impossible, because the
induced homomorphism f, maps =,(G) onto N(f)Z if N(f) < oo, and
onto {0} if N(f) = oo [2, 15.4, p. 88].
Let I' be the family of all liftings «. By 3.9, we have

Ki(f)

m

M(fI') < M.
This inequality can be written in another form. In fact, a function p be-
longs to F(fI') if and only if mp € F(A4). Hence M(A)= m"M(fI"),
which yields

M(A) < ' K(f)M(T) .

3.11. Maximal liftings. We shall need some results concerning path
lifting for discrete open mappings. If f: G — R" is a mapping, if §:
[a,b) — R™ is a path and if 2, € f1(3(«)), we say that a path «:[a,c)—G
is a maximal f-lifting of [ starting at a, if a(a) = 2y, fo~xc f and there
does not exist a path «;:[a,¢;)— G such that xcx; and fox; cf.
See [6, p. 12]. The following result is from Rickman [8]:

3.12. Lemma. Suppose that f:G — R* is discrete and open, that p:
[a,b)— R" is a path and that x;,...,xx are points in fp(a)). Set
k
m = > i(x;,f). Then there are maximal f-liftings x;,...,xm of B such
i=1
that
(1) card {j | xj(a) = a} = i(xi, f) for 1 <i<k.
(2) card {j | x;(t) = a} <i(x,f) for all 2 €G and t€[a,bd).

3.13. Condensers. A condenser in R" is a pair E = (4,C) where
Ac R* is open and C c 4 is compact. See [4, p. 24]. The capacity of a
condenser E = (4, () is the number

cap E = inff Vu™dm,
u P
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where % runs through all C®-functions with compact support in A such
that u(z) >1 for x € C. An alternative way to define the capacity of
E is the equality

(3.14) cap B = M(I%),

where ['g is the family of all paths joining C and 04 in A . This was
proved by Ziemer [10, 3.8] for bounded condensers, and the general case can
be established by a simple limiting process. For our purposes, it is most
convenient to let I'; be the family of all balf open paths y:[a,b) — A4
such that y(e¢) € C and y(t)— 04 as t—0b, cf. [9, 11.3]. If f: (G — R"
is an open mapping and if E = (4,(C) is a condenser in G, then
fE = (fA, fC) is also a condenser. In [4, 7.1] it was proved that

(3.15) cap fE < K,(f) cap E

for non-constant quasiregular mappings f. Martio [3, 5.1] proved the
inequality
K (f)N(f, 4"

(3.16) cap fE < WU(F, Oy cap I .

Here M(f,C) is the minimal multiplicity of f on C', defined by
M(f,C)=inf > d(x,f).

y€fC x€f7(y)NC

Since 1 < M(f,C) < N(f,4) by [3, 3.6], the inequalities (3.15) and
(3.16) are consequences of the following result:

3.17. Theorem. Suppose that f:G — R is a non-constant quasireqular
mapping and that E = (A, C) is a condenser in G . Then

E(f)
Mu(f,C) P

Proof. Set I'= I'y, I" = Iy, and m = M(f,C). Let p:[a,b)—fA
be a path in [”. Then CNf-(f(a)) contains points @;,..., 2
such that > {i(x;,f) |1 <j <k} >=m. By 3.12, there are maximal
(f | A)-liftings o;:[a,¢)—G of p, 1 <j<m, such that «j(a) =
for some ¢ and such that card{j |x;(t) =2} <1 for » € G\ B; and
t €[a,b). Furthermore, it follows from [6, 3.12] that «;(t)— 04 as
t—c¢;. Hence «; € I' for all j. The theorem follows from 3.1 and (3.14).

cap fE < E.

3.18. Remark. We sketch a proof of 3.17, which does not make use of
path families. Let § be the set of all pairs (v, k) such that x € 4 and
1<k<i(x,f), k€EN. Let P:8— A be the projection P(x,k) = .
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Using the notation of [4, p. 25], we define for evervy u € T (#) a func-
tion v:fA — R' by

v(y) = M(f, 0)F max 3 u(P()) .

B z€B

where B runs through all subsets of P-1(f~Yy)) such that card B <
M(f,C). Modifying the proofs of [4, 7.1] and [3, 5.1], we can show that
v € Wo(fE) and that

o Ki(f) f —
'/‘;VU; dm < :W(f?) Nt dm .

3.19. Remark. All the results of this section can be extended without
difficulties to quasimeromorphic mappings f: ¢ — R" [5, 2.1].

4. Applications

4+.1. Let f:G — R" be a quasiregular mapping. An isolated boundary
point b is said to be an isolated singularity of f. Furthermore, b is a
removable singularity, a pole, or an essential singularity according as f
has a finite limit, an infinite limit, or no limit at & . See [5, p. 12].

4.2. Theorem. Suppose that b is an isolated singularity of a quasiregular
mapping f:G— R". Suppose also that there are finite positive constants
C,p,o such that

f@) < Car

Jor 0 <lx — bl <. Then b is not an essential singularity of f.

Proof. Assume that b is an essential singularity. Performing a preli-
minary similarity transformation, we may assume that 5 = 0, that
Brc GU{0}, and that C =0 = 1. Choose R > 0 such that fS"'c
B"(R). From [5, 4.6] it follows that there is ¥, in R" such that |y,| > R
and N(y,,f,B") = oo. Set K = K,/(f), choose a positive integer m
such that m > 2Kp"~', and choose distinct points a,....,a, in
B 0 fy,) . Applying [4, 2.9], we next choose 7 > 0 such that U; =
U(xi, f,r) is a normal neighborhood of a; for 1 <i << m, the closures
U: are disjoint, and U;c B". Set d =d(U,,U...UT,), and let
@« €(0,d). Let V be the ring B"\ B"(a). Since f is open, ofVc foV =
= fS"'U fS"Ya) ¢ B"(R) U B*(ar). Since y, €fV, this implies fVc
Ba~P) .

Consider the hemisphere H = {¢ € S"™' (¢ 'y,) > 0}. Let I be
the family of all paths f:[r,a?)— R", defined by p(t) =y, + te,
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e € H, andlet I' be the family of all maximal (f|V)-liftings of the members
of I, starting at points of TU,U...UU,. Then 3.1 and 3.12 imply

M K M(I’
M(IY) < - (D).

Suppose that «:[r,c¢)— G is a member of ['. Since ¢gVgcB'(a™?).
Yo + afe € CfV for all ¢ € H. From [6, 3.12] it follows that «(f) — oV
as t—c. This means that either x(f)]—1 or [|x(f)]—a«. The first
case is impossible, because Eﬂfb’""l = O forall § € I". Hence |x(t)| —>«
as t—c. Hence [' is minorized by the family /7 of all paths joining
the spheres 8"~ '(d) and S" (@) . Consequently,

d 1—n
MYy < M) =0, <log E) .
On the other hand, Ly [9, 7.7] we have

; P\ "
J[(]"):%mnkl(log . ) .

Combining the above inequalities yields

al > 7,d(m/2K)1r("_l) ,

(m )15("—1) .
2K DR

As a— 0, this gives a contradiction.

where

q

i

4.3. Theorem. Suppose that b is an isolated singularity of a quasi-

regular mapping f:G —R*, and let x = K,(f)""=". If lim |x — b|* |f(x)]
x—>b

=0, b is a removable singularity. The hypothesis cannot be replaced by
the requirement that |x — b|* |f(x)| be bounded in « neighborhood of b .

Proof. We may assume that b = 0. By 4.2, b cannot be an essential
singularity. Assume that b is a pole of f. Let g be a Mobius transforma-
tion of R" such that lg(x)] = 1/jz| for all z € R*. Then h =g of is
quasiregular in a neighborhood of 0, and K (k) = K/(f). From [5, 3.2]
it follows that |k(z)] < Clz|* in a neighborhood of 0, where C is a
constant. Hence |a|*|f(x)] > 1/C, which contradicts the hypothesis.
- Thus 0 is a removable singularity of f.

The mapping f(x) = g(jx|* ), where g is as above, has a pole at
the origin, K,;(f) = a'", and [|2*f(x)] = 1 for all 2 € R*\{0}.
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4.4. Remark. In the special case n =2, K(f) =1, the theorems

4.2 and 4.3 are well known results for analytic functions [1, p. 124 and

p. 128].
References

1. Arrrors, L. V.: Complex analysis, 2nd ed. - McGraw-Hill, 1966.

2. Hu, S.-T.: Homotopy theory. - Academic Press, 1959.

3. Magtio, O.: A capacity inequality for quasiregular mappings. - Ann. Acad. Sci.
Fenn. A T 474 (1970), 1—18.

4. Mawrrti0, O., RICKMAN, S., and J. VArsirLi: Definitions for quasiregular mappings.
- Ann. Acad. Sci. Fenn. A T 448 (1969), 1—40.

5. —»— Distortion and singularities of quasiregular mappings. - Ann. Acad. Sci.
Fenn. A T 465 (1970), 1—13.

6. —»— Topological and metric properties of quasiregular mappings. - Ann. Acad.

10.

Sci. Fenn. A T 488 (1971), 1—31.

. Poreckir, E. A. (ITomenxuii, E. A.): Merox Momy:eil /1A HeroMeoMOP(QHBIX KBa3H-

KOHPOPMHHIX oTOOpaskenuii. - Mat. Sbornik 83 (1970), 261 —272.

. RickmaN, S.: Path lifting for discrete open mappings. - To appear.
. VArsiti, J.: Lectures on n-dimensional quasiconformal mappings. - Springer-

Verlag, 1971.
ZieMer, W. P.: Extremal length and p-capacity. - Michigan Math. J. 16 (1969),
43—51.

University of Helsinki
Helsinki, Finland

Printed May 1972



	IMG_20150809_0001
	IMG_20150809_0002
	IMG_20150809_0003
	IMG_20150809_0004
	IMG_20150809_0005
	IMG_20150809_0006
	IMG_20150809_0007
	IMG_20150809_0008
	IMG_20150809_0009
	IMG_20150809_0010
	IMG_20150809_0011
	IMG_20150809_0012
	IMG_20150809_0013
	IMG_20150809_0014

