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1. Introdustion

One of the most important tools in the theorv of quasiconformal map-
pings is the double inequality

(1.1)

(1.2)

I
K tlv) < r/run < Krr(t-) ,

M(r') Mg)

valid for every ff-quasiconformal mapping f : G --> G' arrd for every path
family I in G. The left hand inequality is not always true for K-quasi-
regular mappings. (X''or terminologf, see [a].) However, by a result of
Poleckii [7, Theorem I], the right, hand inequality also holds in this more
general case. A related result for condensers was given in 14, 7.1f. Poleckii
[7, Theorem 2] also proved that the stronger inequality

Ii
m.,

is true in the following case: D is a normal domain of f,m: N(l,D) is
the multiplicity of f in D, -1" is a family of injective paths in fD, and.
J-isthefamilyofallpaths y in D suchthat f .ye f'. Arelatedresult,
for condensers was given by Martio [3, 5.1 and 5.13]. ]Iartio and Poleckii
applied their inequalities to study the local behavior of a quasiregular
mapping.

The main purpose of this paper is to establish (I.2) in a more general
situation. In particular, the paths of -I' need not lie in a compact part of
G. We also give the corresponding result for condensers. The inequality
is applied to study the behavior of a mapping at an isolated singularity.

Our terminology and notation is the same as in [a]. fn particular, the
notation f : G ->.8" includes the assumption that G is a domain in -B^
and that ;[ is continuous.

2. Preliminary results

2.1. Lemma. Buppose that f : G --> R" ,i,s d,iscrete and, oyten, that E c G
is compact, and, that Uo e fE \/(Brn E). Then there ,i,s a nei,ghborhood, Vo
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,f 'Uo sl.{clb that fo, €aery cotlnecterl neigltborhortd, I'
conrl?,t'iot1,s &re satisf iecl:

(1) Y n f{Brn q--- {ö.

( 2 ) T he conxpott ent,.q ,f f 
*' fi u'h'iclt m e et H

g lru 0f !/0, tk a JollolL,i ttg

Jorm (t JirLi,te- criieetiott,

D1,.,.rD*.
(3) f d,efi,nes ltomeomorphisms fi : Dt'--> l:.
Proof. This is essentially the same as f.4, 7.1ö]. Thrrs let Ll ,.,...,Lt*

be disjoint neighborhoods of the points iu .E O f-'@i such that I-'i cG
and snch that fjU; is injective. Then

k

1i ==. I

is the requirecl neighllorhr.rocl of '!/a,

k

\U
i.--1

LIi)

2.2. We next, consider the parametrization of a path r: I '-> (] by
means of the arc length of its image f o r under a mapping J: G --> R".
The interval .I may be closed, half opeu or opert. \\'e shall use for paths
the notation and terminology of [9, pp. 1-8].Thus l(r) is the length of
a rectifiable closed path a : la, bf '-- R", .so : [o. b] + l{), /(,r)] is the len-eth

function of a, and a0 : 10, l(c')'l -+ -8" is the normal representation of «,

satisfying &0 o so : a. If cr is the restriction of a path fi Lo a suhinterval,
we say thab a is a subpath of p and rryrite " c 0.

2.3. Lemrna. Supltose that f : G *> R" 'is a light muppi,rtg. Suppose ulso

that p:la,b)--->R" i,s a recti,fiable closeil p«tlt cmcl tltat "r: "f ->G is a

patlr, such that f o u c §. Then, there is cr, unique yt«tlt rx : ,srl --> G such

that x: ax " (sBl/). Moreot:er, ,f . "r* c d0.

Proof. The function s, : [n. , b] * l0 , 1(B)] is ccntiirtrous and increasing.
If sp(fr) : sB$z) for h,be I , then B is constant ott ltt,tt7. Since

f o o c p and since / is light, also :r is constant on ff, , lr]. Hence there
is a unique mapping a* of I* : sil into G sueh that a : r* " (spl/).

The continuity of ax follows easilv from the coutinnitl- of *. Tf t e I,
then /(a*(sr(r))): f(a(t)) - P(t): po(sB(f)). Henee .f o 1*' : 0''l*.

2.4. Defi,ni,tdon. Suppose that f : G --> -R" is a light rnapping and that
e: I ---> G is a closed path. We say that f is «bsolutely precotttinuous on

ct if p : f " a is rectifiable and if the path n* : [0 ,l(0)]- G, given
by 2.3, is absolutely continuous. If the path .r is open or half open, \Ye say

thal f is absolutely precontinuous on n if it is absolutely precontinuous
on eYery closed subpath of a.

2.5. Remarlts. (l) If / is a homeomorphisrn onto a dornain G', then

./ is absolutely precontinuous on * if and onll- if 7-r 1* (locall5r) absolutely
continuous on f " 

q, .

Årrn. Acatl. Sci. l't'ttnicit'



(2) \Ve shall make use of the follov'ing elementary observation: In the
situation of Lemma 2.3, the path ** depends on the path p, but only
rrp to a translation of the parameter. More precisely, if f " o c B, and

J " n c §r, and if ,rf , *f are the corresponding paths given bv 2.3,
then af (f) : *f (t f fr) for sorne constant lo . In particular, a* is (lo-
cally) absolutelv continuous if and only if / is absolutely precontinuous
oII .1 .

2.ti. Lemma. Bupptose that f :(]--->R" is quasiregular. Let Io be the

fanfily of all paths fi in R" such that either p i,s non-recti,fiable or there is
apath « in G su,chtha,t /o*c§ and, f i,snotabsol,utelyprecontinuous
on t. Theru Mlfr'1 : o.

Proof. This lemma is a slight extension of an important result of Po-
leckii [7, Lemma 6]. The topological part of Poleckii's proof has been simp-
lified bv Rickrnan l8]. Choose an exhaustion (Gr) of G. This means that
Gr,Gr,... is a sequence of dornains such that G,cGr-, and G-
U {G, , ? € 

^'} 
. Let J-, be the famill' of all closed paths in Gi on lrhich

/ is not a,bsolutely precontinuous. Bv the aforementioned result of Poleckii,
Xlfff):0 . tr'urthermore, the famil.y 1,,,o, of all non-rectifiable paths
is cif moduhrs zero. Sinee ,lo is minorized b,v the union of J","" and all
f l-t , M(ro) : t', .

3. Modulus and capaeity inequalities

3.1. Theorem. Su,ppose that f : G --
nrcrpytiylg, tltut l' rs a p«tlz, Jn'mily iyr, G
rmrl that ,fit, 'is ct posi,tiue 'iruteger such that

There t,s rz .sef Ea cG of m€{tslme ?e?"o

'ill l" there il,r"e puths ,xl, . . . , 1,,, itt, f
su,c,h tltrtt fn, €'L)ery r' € G\rE, rin({, t e I .

?hen

R" t,s (L n,o?L-colt,stct'llt quas,iregu,lar

, thctt f ' ?',-s cr, putlt fctmily in R",
the, follou,irtg condition ,is sctt'isfied :
suclt thut fo, er*ery ltath § , I -+ R"
suchthat f oxic§ forall d anrl

(3.2)

3.3. Re'ntarlts. ft is not requirerl that f' : f f . 11-e -*hall later apply
the theorem with Z, : B.r . If I" : I f , the condition is triviallv true
for ?il : l, and we obtain Poleckii's inequt-r,litv ll(f f) < Krff)lVg).
If O is a normal domain of f , if J"' is a familv of paths in fD , and if
f is the family of all paths r in D such that f " * e J-', then the con-
dition is satisfiecl for rn : Ii(f , D) by Rickman [8]. Hence we obtain
Poleckii's seconcl inequalitv (I.2).

.I rrssr \-irsÄlr, Morltrlus and capacit_v inequalities
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3.4. Proof of Theorem 3.1. Let i-, b" the family of Lemma 2.6. Setting
Ir : .1"'\Io we have M(Tr) : lt(f'). Hence it suffices to pro'ue that

tuI(r,) =ry MV).

\['e may &ssume Nhat E, is a Borel set. By [4, 8.2], we may also assume

tlrat at all points r € G\.8'0, .f i* differentiable and J(n, f) > 0 . Thus

BycVs. Let q€.E'(.1-) . Define o:G--->n'fy

o(r) : p(u)ll(f '(x)) for I € G\Z' .

o(r):6 for te,''

Then o is a Borel function. Next define Q' i,l?"->.Er by

e'@) : za-r sup,) o(r) ,

where B runs through all subsets of f-'(A) such that card -B 1m . For
g eCfG put e'(3r) : 0. Then p'(g) : oo for A efUo.

We shall prove that g' € .F'(fr) . To show that g' is a Borel function,
we choose an exhaustion of G with domains G,, G,cGi+t. Denoting
hy Xo the characteristic function of a set, ,{ , tve set

Q; : QNei, 6i == oXG;, Ai(y)- ',ttl-L sYp I o,(.r,)
B x e B

(3.5)

As ,i,->a, Qi@)*q(n) and pi@)---rS'@) for all ueG and yeR".
X'urthermore, a:@): 0 for g etfClr, and a:@): oo for y ef(Grn Bl.
flence it suffices to show that every yo €,fG,W(G,n Bi has a neighbor-
hood in which / is a Borel function. Apply Lemma 2.1 rvith E : Gi,
and let 7 be the correspond.ing neighborhoocl of yn. Setting gi:f.i',
we have

a:@ - rn-l sup Z o,(gi@))
J j eJ

where J rurls through all subsets of {1 : . , k} srlch that
. Since every 6; o gj is n Borel fnnction , {Ji iV is a Borel

for yev,
cardJ 1m
function.

Next let

( 3.6)

Assume first that §
th ere are paths &L ,

§ be a member of fr. lVe rnust shou- that

,[ o'a'
p

: la , bJ -> R" is a closed

., . rdm in f such that
for all tr € G\Eo and

path. B;r the hypothesis,

f o *, C p and such that,
telct,bl .Set c-U§),



Jussr YÅrsÄr,Ä, Modulus and capacity inequalities

y: §o, and let yr:Ir---> G be the path a* given by Lemma 2.3 for
d,: oq. Thus a;(t) : y{sB(t)) and / " yi Cy .

X'or almost every f € 10, cl we have ly'(t)l: I by [9, 1.3.(5)]. Since

/ is absolutely precontinuous on each a;, the paths yi are (locally)
absolutely continuous (Remark 2.5.(2)). Hence the derivative yi(t) exists
a.e. in 1;. It follows that for almost ever;z I € 1;, either Tr(D e Eo or

1

Since o(r) -
holds a.e. in Ii

1=f
ai

1<d1m,. Set

{i, lr€7i}.For

In both cases we

which implies

. Consequently (.f. [9, 4.1]),

Q ds : 
,{ 

Q ds : 
,{ 

a*t@) 1yig|m -,{ o(y,(t)) dt ,

ri

lyittll

eyery , € [0 , c7 , either y(t) e fUo, in which case

the points yi(t) , i, e J (t) , Are distinct points in f-r(y(t)) .

have

e'(y(t)) ) m-L ;i:1 h,(t) ,

0
{ e'a,

p

If the path p is open or
closed extension [9, 3.2]
sequentl),,

(3.i )

ri

half open, \r,e can apply the above proof to the
of §. 'We hal,e pro\.ed that Q' e ?(.^|r) . Con-

J\

: 
! Q'(v(t)) dt

To estimate the above integral, v'e again choose an exhaustion (Gr)
of G and introduce the funcbions g, , o; and g,1 as in (3.5). X'ix ,i, , let
U, e f4t\/(e, n By) , and let V be a connected neighborhood of yo satis-
fying the conditions of Lemma 2.lfor E : G;. We have thus k homeo-
morphisms gii V --> Di, f " gi : id, and G,nf-ty : U {d, n D1 

I

l<j<k|. Put /r:{1,...,k}, and define for each y€V a set
J(y) cJo as follows: If k {m, then J(y) : Jr. If lc > m, then
card J(y) : 'nL , and for all j e J@), 7' € Jo!(gr) , either 6t«ti@» >
olsj'@)) or o'(gt(v)) : ot@j,(v)) ar'd j ) j' . Then

p!(il: *-' 2 ot@i@))
j € "r(.y)
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for ye V. X'or Jc..Ir, the sets Vt:{yeVlJ(y):J} are clisjoint
Borel sets. Using Hölder's inequelity, a transformation formula for Lebes-
gue integrals, and the quasiconformality of JiDt, r,re obtain

I ni" d,m 1**' 
,Z I otufull" dm(a)

Y1 Y1

:m-r\ f ,g'*'
fr, ! t$6y r@ 

' f) d'm(x)

cj' J

_ K,(f) r<; 
,_J ,ai 

dm'

Summing over aII J c Jo yieids

I n:" u* =9* I e: a*
o t-'n

Since a:@ : 0 for y e Cf& and since ,fG,\/(6, n rr) can be almost
covered by a countable number of disjoint sets IZ as above (for example,
with cubes), and since m,(fB\): 0 , "w-e obtain

f ni" u,,, =LP I t d,n .

As i -> oo , this and (3.7) f ielit

?ILJ\

Since p e IQ) was arbitrary, this pro\res the theorem.

3.8. Eruamgtle,s. Let us consider the complex analvtic function f : R2-'->

R' , f(") : e'. Let' m be a positive integer, and let Q be the rectangle
0 ( Re z 1L , 0 { Im z 12 nm. Then /Q is the annulus B2(e)\-Ez.
Let ,l' be the family of all horizontal segments of line joining the vertical
sides of Q . If is easy to see that the condition of Theorem 3.1 is satisfied
for .l- and f':ff. Hence XIQ') <M(f)lm. On the other hand, it
is rvell known that' M(l') : 2 n - M(l)lm. Hence the ilequality (3.2)

is sharp in this case. This also follows from the inequality 11,3.21 MQ) <
N(f , Q) Koff) Mffr) .

Next let J- be the family of all vertical segments joining the horizontal
sides of A. l(ow we have ll(f/.): Ll2nm,z: XIQ)lm. Hence (3.2)
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is also true in this case. However, the condition of Theorem 3.1 is not
satisfied.. We shall give a result, which applies to situations like this.

If u:la,bl--> G is a closed path, u'e say that, f rt;ind,s u m ti,mes

around, itself if f o a : B is rectifiable and if the follon ing condition is
satisfied: Let Fo: l0 , cl'--> R" be the normal representation of p , leb

a*: [0 ,cf -->G be the pabh given by 2.3, and let lt : clm. Then

Po(t+jh) : Po(t) and a*(t{jh) * a*(t) u'henever 0 <, < t I ih < c

and 7€{1 ,...,1r1-l).

3.9. Theorem. Suppose that f : G ---> R" 'i,s a noru-constant quasiregular

mapping, that T i,s a path fami,ly 'i,n G , that nt is a posi,tdue'integer, and,

that f wi,nd,s eaery path of I m t'imes ctround, i,tself. Then

pl{fr) < LP Me')

Proof. The proof
only difference is the

(3.6)

is closelv similar to the proof of Theoretn 3.1. The
plroof of the ineqrlalitv

for p-f u*ef f .Norv

cls -- m, '{fio(t)) dt .

. ., a*(f+ (rt-l)ll) are distinctIf 0<t<h, then **(f) ,&*(t{-h),
points in f-t (po(r)) . Hence

p'(00(t)) ) m-L ) o(-rx(trjfr ))
j:0

for te Q,h). Asintheproof of 3.1 u'eobtain o(rx(/))>S("*(r)) la*'(r)i
for almost every ä € [0 , c] . Consequentl5.-,

{ r' (ts

1)

lrfn'
p

/{r
,1

l.)

m-L

j *:a {nor
This proves (3.6).

3.10. Remarlc. The situation of 3.9 arises in the theory of covering
mappings. Suppose bhaf f is a quasiregular covering mapping of G onto
G' such that the fundamental group nt(G'\ is isomorphic to the groap Z
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of integers. Suppose t}lok A is a path family in G' such that every member
of / is a rectifiable loop which represents a generator of nr(G') . Let m
beapositiveinteger suchthat * < N(l). Foreach y e A, y:la,bf-->G',
choose a point, ref-t(y(a)), and let a be bhe path in G obtained by
performing ria successive iiftings of T , lhe first one starting al u ,

Then / winds a rz t'imes around itself. To see this, we may assume that
y:10,h]--->G' is a normalrepresentation. Then a:l0,mh)-->G is a
path with the property f("(t*jh)):y(t) for 0<r<h and.
l<j<m-l .If u(tljh):a.(t) forsome ä and jlm-\, thepath
dt: orllt ,t+jh7 is a loop such that .f o o, .eptesents an element q in
nr(G') : Z srctr that iql : j. However, this is impossible, because the
induced homomorphism /a maps zr(G) onto N(f)Z if lt/(/) q oo , and
onto {0} if -0[(/) : oo 12, L5.4, p. 88].

Let I be bhe family of all liftings a . Bv 3.9, rve have

Mffr) =ry Me).

This inequality can be written in another form. fn facb, a function q be-
longs to ?fff) if and only if mg e IU). Hence lt(Å) : m"M(fl) ,

rvhich yields
MU) < m"-1K,(f)rt(T).

3.11. Mari,rnal li,ftings. \47e shall need some results concerning path
lifting for discrete open mappings. If f : G ---> -8" is a mapping, if p :

la,b) --> R" is a path and if ro e f-t(B(a)), we say that a path a : la , c) --> G

isamarimal,f-l,i,fting of p startingat ro if a(a):'&-0, f oocB andthere
does not exist, a path orr:la,cr) -+G such that -x q*, and f "orc§.
See [6, p. 12]. The following result is from Rickrnan [8]:

3.12. Lemma. Sugtpose tltat f :G--->R" is discrete anil opten, that p:
lo,,b)-->R" ,is a patk q,nd, that fi1,...,nh ure points in f-l(B@)). Set

h

m: >i(*i,f). ?hen there are mari,mal, f-liftings d!,...,i;^ of p such

thcil
(l) card {j l"i@) - y,} : i(h,f) fo, L <i <k.
(2) card {j l"i(t): r} 3d(r,f) for all, ue G qnd, t e la,b).
3.13, Cond,ensers. Ä condenser in Rn is a pair E : (A , C) where

A c R" is open and C c.4 is compact. See 14. p. 2+l.The capacity of a
condenser E : (4, C) is the number
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where ?, runs through all C'-functions with compact support in .4 such
lhat u(r) ) I for r e C . An alternative way to define the capacity of
-0 is the equality

(3. 11)

(3.15)

where J-, is the family of all paths joining C and 0A in 1 . This was
proved by Ziemer [f 0, 3.8] for bounded condensers, and t'he general ca,se c&n

be established by a simple limiting process. X'or our purposes, it is most
convenient, to let ,l', bethefamilyof allhalf openpaths yild,b)--->A
such that y@)e C and y(t)-04 as t--->b, cf. [9, I1.3]. If f :G--->R"
is an open mapping and if E : (A , C) is a condenser in G , then

lE : (fA,/C) is also a condenser. In [4, 7.]l it rvas pror-ed that,

cap fE < I{,(f) cap E

for non-constant quasiregular mappings f
inequality

]'Iartio [3, 5.1] proved the

K,(f) IY (f , A)"-'
cap E(3. 16)

Here IVI (f , C)

tt (f , c)"

is the minimal multiplicity of f on C , defined by

Mff , c) :,:*: 
.,,_å,n"u(* 

,f) .

Since I < ll[(f , C) < N(f , A) by [3, 3.6], the inequalities (3.r5) and
(3.I6) are consequences of the following result:

3.17. Theorem. Bupptose that f : G --> R" is ct ruon-constant quasiregular
mapgti,ng and, that E : (A, C) is a condenser i,n G . Then

K.(f\
cap fE = oöh cap E .

Proof. Set l-: Iu, l' : lfr,, and tn: XI(f , C) . Let 0:la,b)--->fA
be a path in f'. Then Cnf-L(B@)) contains points &11...tnk
such that 2{1,(*,,,ö II <j <lr}>*. By 3.I2, there are maximal
(/1.4)Jiftings oqila,cj)*G of p, I( j<m, such thab a1(a):s,,
for some tl and such that card {7 I "lt) 

: r} I I for r € G\By and
tela,b). n'urthermore, it follows from [6,3.12] that a1(t)--->04 &s

t --> ci. Hence a1e I for all y . The theorem follows from 3.1 and (3.1a).

3.18. Remailc. We sketch a proof of 3.17, which does not make use of
path families. Let § be the set of all pairs (r , fr) such thal r € 1 and
l <k <d(r,f), k e li . Let P : B ---> A be the projection P(r,lc) : r.



12 Ann. Acacl. §ci. I'ennicitr ,.\. r. 509

IJsing the notation of 14,p.25f, we define for everv u, e Ttr'|f,(E) a func-
tion a :fA---> At by

\l,here B runs through all subsets ; 
';-'(/-' 

(y)) slrch that
1{(f , C). Modif;ring the proofs of 14, 7.11 and [3, 5.1], \ve ean

tr € IT'a$E) and that
shorn, that

3.19. Remark. All the results of this section crrn be extended v'ithout
difficrrlties to quasimeromorphic mappings f :G -, -8" 1s, 2.11.

4. Applications

-1.1. Let f : G --- -8" be a quasiregular mapping. An isolated boundary
point ö is said to be an i,soluted singuluri,ty of / . Furthermore, ö is a
remor.able singularity, a pole, or an essential singularity according as ,/
has a finite limit, an infinite limit, or no limit at å . See i5, p. 121.

4.2. Theorem. Sultpose that b is «n isolated si'rtgularity of a quasiregular
mappi,ng f : G ---> R". Suppose qlso that there are finite ,posittue constants
C,p,ö suchthctt

lf@)l < C';x,-e

for 01."-bl <d. Then b isnotanessentialsingularttyof f .

Proof. Assume that b is an essential singulalitv. Performing a preli-
rninary similarity transformation, we m&rr a-qsur11e that b : 0 , that
B"cG U{0}, and that C:ö: L Choose .8 > 0 sneh that "f§'-t c
B"(R) . From [5, 4.6)it fo]Iows that there is yn in j?n -*uch that lyol > -B

and N(yo,f ,8") - co. Set K:Kr(f), choose a positiveinteger m
suclr that m22Kp"*1, and choose distinct points !t'1 ,...7r,o in
B'' fif-'(yr). Applying 14, 2.97, we next, choose r > 0 such that Ur:
U(n,f , r) is a normal neighborhood of z; for l, { i {m, t}re closures
I'i are disjoint, and e,CB". Set d - dlrt, l--, U... U t-'-) , and let
a€(0,d,).Let Z bethering B'\E'(o,) . Since/isopen, lfVgf7V:
: ,fS"-' U /,S"-1(o) c B"(R) U E"1a-e1. Since Uu € fY , this implies /Zs
B"(a-P) .

Consider the hemisphere II : {e € S"-r ', @,, !/o) > 0}. Let f' be
the family of all paths 0 : lr , s-t) ---> R", defined by P(t) : Ao -l te ,



a mernber of f Since gY cB" (n--r! I

ronl [6, 3.i2] it follor,vs that e{t) --u 7li
r iir(r) i * 1 or l"(f) i --> (t, . The first
-1 -=: g for all § € f '. Hence l*(t)! -, a,

b-r. tire familv fL of all paths joininu
. Consequentl)',

{ d \,-,
- 

(0t1-, 
[fog ;)

Suppose tlr.at d. : lr , c) --, G is
Uo * ct--Pe e OfTl for all e e II . F
as t --> c " This lneans that eithe

case is impossible, because 
', 

il i n /,S"
as t -> c . I{ence I' is rninortzed
tlre spherss §n -'@) anr] ,\" -' (n )

Jussr YÅIs,ir,Ä, iVlociultrs and capacity ineqrraiities

e e H , and let 1' be the family of all maximal (flV)-liftings of the members
of 1", srarling at points of UrU ...U A^. Then 3.I and. 3.12 im1.ri1,

I{ (t'} _a frI (rr)

On the olJrer hand", Ir_n* [9, i .71ure have

I cr,-P \' -- n

Combining the ahor.e inequalities vield s

cr! Z rd@1zxltifu-" ,

u.here

{t -::

Ås a _-> 0, this gir.es & conbradiction.

4.3. Theorem. Brytgtose that b is atu isols,tecl, sittgu,larity of u, quasi,-

regulur ma,ppittg f :G--->R", and,let o: Kr(f)''(t-"). If 
1T l, -bl"tf@)l

: 0 , b is a remoaable si,ngula,ri,ty. The hypothesis ccntnot be replaced, by
the requirement that lx - bl" if@)i be boundecl in, cr, neighborhood, of b .

Proof, lVe may assume Lhat b: 0 . By 4.2, b cannot be an essential
singularity. Assume Lhat, b is a pole of / . Let g be a llöbius transforma-
tion of -8" such that lg(*)l: tllml for all r e R". Then ä: g "/ is
quasiregular in a neighborhood of 0, and I{^h) : Kr(f) . From 15, 3.21

it follou.s that, lh(r)l < Clrl in a neighborhood of 0 , where C is a
constant. Hence lrllf@)l > LIC , which contradicts the hypothesis.
Thus 0 is a removable singularity of /.

The mappin1 f@) : g(lrl-ru), where g is as above, has a pole at
the origin, I(r(f): a1-", and lrilf@)1 : t for all r €,E"\{0}.

1:J
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4.4. Remarlc. fn the special case n: 2 , K(f) : I , the theorems
4.2 and 4.3 are well known results for analytic functions [1, p. I24 and
p. 1281.
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