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1. Introduction

Quasiregular mappings can be regarded as an z-dimensional generaliza-
tion of the analybic functions in plane. X'or the theory of these mappings
we refer to [a-6]. Compared to the thorough and extensive studies made
on the boundary behavior of analytic functions (see [3; 7]) very little has
been written so far on the boundary behavior of quasiregular mappings for
dimensions n ) 3. However, some results proved earlier deserve men-
tioning. In [5, 4.1] it'r,r.as proved that a set of capacity zero is removable
for a quasiregular mapping pror-idecl that the mapping omits a set of
positive capacitv. Tliis is knon'n as the theorern of af Hällström for ana-
lytic functions. rn [6, 3.14-3.18] some relations for asvmpbotic values,
exceptional values, and the branch set u,ere considered in the case of an
isolaöed essential singularity. A proof for an z-dimensional r-ersion of
Iversen's theorem for an isolated singularity u,as also indicated [6,9.I8].
rt lras also been proved that an isolatecl boundary point is always remorr-
able if the mapping is a local homeomorphism [1; 15: 16].

In the plane a quasiregular mapping can be represented as a composi-
tion of a quasiconformal (homeomorphic) mapping aud an analvtic func-
tion. Ifence the problem for dimension 11, : 2 reduces to the study of
boundary behavior of analytic functions and quasiconformal mappings.
Since a quasiconformal mapping of a disc onto itself need not preserve
sets of me&sure zero orl the boundan-. seyeral ciassical theorems for ana-
lytic functions of a disc, among others Fatou's theorem on the existence
of radial limits, fail to hold for quasiregular uappiirgs in the case n - 2;
see for example 17, pp. I19-I20: 1I]. At llresent ther.e seems to be no
reason why for example x'atou's theorern shoulcl be tlue for quasiregular
mappings in dimensions z ) 3.

fn this paper we shall give further results I'hich in general are rew
only for dimensions n ) 3 although some proofs simplifv also the known
proofs for n : 2. We start by proving a relation for cluster sets and
boundary cluster sets at a boundary point knorvn as Iversen-Tsuji,s
theorem in the case ??, : 2. The next section is devoted to the study of
asymptotic values and we state two results proved for n :2 by l{oshiro
[7] and Cartwright [2]. The rest of the paper deals with mappings of a ball.
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We prove the reflection principle and discuss the existence of radial, an-

gular, and asymptotic limits. we close b5r consider'ing quasiregular map-

pings whose increase of the multiplicit;r is bounded by specific functions
when approaching the boundarv. Two classical theorems in the theory
of analytic functions concerning radial limits are presented for these map-

pings, namely, the theorem of Fatou and the theorem of F. and M. Riesz.

2. l{otation anil preliminaries

2.1. We shall recall some of the notabion and terminology of ia-61
which will be the base also here. In addition, §ome further notions will
be inbroduced. The notation f : G --- A" or f : G'-->-8" includes the as-

sumptions that G is a domain in the euclidean ?0-spåce Ro or in the

compactified ft.-space R" : R" U { *} , respectivelSr, and that f is

continuous. Alt topological operations are performed v'ith respeet to E'.
Throughout the paper rn'e assume that tt ) 2. If J is a segment of
line and if .r : Å --> R" is a Path, \4:e let x cleuote the locus aJ of -1

If y e -Eo, we denote by y, the path T,i l0 ,Il -+ -8" clefined by 7'(t) : ty.

The inner product of r , y e R" is denotecl br' (t' A).

2.2. CLuster «nd asymptotic sets. For a mapping f : G --- F" and a set

ICAG we set

c$ , r) : Hc(f ,o)

where lhe cl,uster set of .f at Y is

c'tf .at: n/Gnll

where U runs over all neighboriioocis of y . \\'e shall also emplov the

bound,ary cluster set of f at y e äG rvith lespect to I d'efined as

Coff,y)- C(f . Unf '. [Y,t)

where U runs over all neighborhoods of y.

A point z e R" is an asymgttotic aalue of / at a llorinclarv poifi y e 0G

ifthereexistsapath 7:[0,1)-+G s'ith limT(l) :y ancl limf(f(t)):z.

The asymptotic set A(f , a) of / at y is tlie set of trslmptotic values of

f^ra'

n
U

2.3. Cupac'it'ies. In
(see also [5, ]). 1]) and

11,
in

5.4] rve d,efined the capacitv of il, colld.erlser

[5, 2.12] the concept of a set of capacitv zero.
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By capacity in these definitions and in this paper we always mean con-
formal capacity. In connection with studies of analytic functions in the
plane the potential theoretic capacity is most commonly used [3 ; 7].
Ilowever, for n :2 a set is of conformal capacity zero if and only if
it is of potential theoretic capacity zero. This fact and other relations
between these two concepts of capacities are proyecl in [12].

2.4. Moduli, of path fami,l,i,es u,nd,er quasiregu,lar mappi,ngs. The main
tools in our proofs are two inequalities for the rnoduli of path famiiies.
Let, f : G ---> -8" be a quasiregular mapping la, 2.201. The outer diiatation
inequality

(2.5)

(2.6)

A,Ig) < ir(/ , A)Kaff)f,[(f t')

wes proved in 14, 3.21. Here -l- is a farnily of paths in a Borel seL AcG ,

M(J') its ru-modulus, Ko(/) tlie outer dilatation of f 14,2.201, and -l/(/, ,4)
is the supremum of the number (possibly rc) of points in Anf-'(y) .

This inequality has a drarvback as it contains the rnultiplicity rrhich in
general tends to infinity as the path familv approaches the boundary.
Because of this, (2.5) is used only in the proofs of t'n'o last theorems.

The second, the inner dilatation inequalitv

twffr) < K,(f)tw(r) ,

which was proved byPoleckii [8], is of more use in general boundary prob-
lems. Here K1ff) is the inner dilabation of f 14, 2.201 and J' a family
of paths in G .

3. A relation for cluster sets

3.1. Our first result is a theorem t,tr the behavior of the norm of a, qua-
simeromorphic mapping [5, 2.I] u,henapproaching a boundary point from
the domain and along the boundary. First we need the following lemma
which is a path family version of 15,2.141.

:3.2. Lemma. Let DcR" be tt bound,ed

set ,in D , c$nd let fcll\C be elosed i,n D
f', {resp. |z) bn tlte family oJ puths joi,n'in{l
'irt, D. Th,en M(fr)- lVI(Tr)

d,omu'in,, let O be a, cl?np&ct

A D Qesp. ADUF ) a,nd C

Proof. We apply L5, 2.141to the condenser (D , C) and to the set -f' .

llhis gives c.Lp (D\tr' , C) : cap (D , C) . The lemma follows from [14,
'Iheorem i),8].
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.)''
o. o.

ECAG

/(GnIl)

(3.4)

Theorem. Let f : f-| *-, R'n lte ff, qucLsimnro*orphdt ,nopp'ing. let

be, e, compact set o.f cctpar-.ity zeror let y e EnQG\f,) , ctnd let

be bound,ed for ,som,e tt,e'i,ghhorh,oocl, tT ,f y Then,

lim sup ,/(,r) i == lim sLrp (Iim sup l/(") l)
,c-->y 

, uraäi.r, 
r§-->ä

Proof . \Ve denote by o and & the left' and right hand sides of the
inequality (3.4) respectively. The inectrualitl- n' ) ä is trivial. Suppose

a>b andlet0(e(n-b' \vema'§asslrme a:0' \4rechoose g'€
(0 ,ll2) such that B"(2gr)c[' atrrl

whene\rer z e B"(2gr) n Qf:;''.. -E). For k - 1 ,2 ,

Mtl 2 r,117r1 :- )Itl

set

Qt" t't : QrlTh '

Jly'r, : sup {t/(r)i t rc e B"(2:!*) n G} .

Let * e B"@r)fiG and let B"(:t , ö)cB'(gr)flG for soll1e Ö > 0 '

Sirr"" 37eaG\.8 and since E is compact. there exi.qts a point .r'€B"(pr) fl
(aG\E') suchthat B"(*' .il)fiU: fr for some å',0 ( Ö'( qr -',n'1.
Since -E is of capacity zero, there is a segment of line in CE rvith end-

points in B"(w , ö) and B"(ft' , ö') [5, p. 8]. Hence tirere exists a pat]r

tr:[0,1]+B"(p.)OCä' with l(0) :r ancl l(1) :n'. Let ,€(0,11 be

such that A : ll0, f)c(J anrl l@ea4. I):note by G, the c-component

of B"(2s)l1G .

Assume if(r)', > b - e . 1t'e denote by "I' the family of paths y i

, ll - B"1rt-1r;:..-a'(b - .) for rvhich 7(0)€/,4 and 7(1)€8"-1(-il() . Let

be the famil;,' of uraximal lifting'* rvith respect to the mapping /iG,
the paths in J- starting at soure point in A 16,3.121. Then every path

i either is unrectifiable or beiongs to the set J-, of rectifiable pat'hs

i and ends in (§'-1(:l?l)nG')UE.

Let norv ,i U" the family of paths in B"\2sr) joining Ä and

§"-1(2gr)Ufr. Then

(3.5)

by 3.2 and we have

(3.6) IVIV) < ar,-,(log2)1-'

by [13, 7.5]. On the other hand, every sphere S"-t(u, s) meets both fA

[0r
of
in
in
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urrd 
""-r1,41r) 

where u: MJ@)lif@t anrl jlil, - if@l < s < ltr-(bte)
It follows by [13, Theorem 10.12] that

(3.7) tyr(t.)7cniog !E:'*i

rn'lrere c^)r 0 is a constant rvhich depen«ls onlv on n. By [6, 3.12] the
family ,l' is minorized by 7i, I',",r"" 1f671> It€). ComLrining this
rvith (2.6), (3.5), (3.6), anct (3.7) rye obtain an inequality

Proceeding srlccessir.eh. \\'e get

K r(f) . This yields a,r1 estimate

{II, {b + r)) .

(3.8) Mu 1ä * e -,1 (r-.3)&-1(lr. - (ö + e)) .

But, allI* for every fr and we have thus c. <b+ e by (3.S) which
is a contradiction in view of the choise of e . The theorem is proved.

Ås a corollary one obtains the fcrllowing extension of the rnaximum
principle.

3.9. Corollary. Let f : G --+ R" be u rluasiregular mappi,ng of a bounderl
rlono;in G and, let EC7G bett,contytact xtof capacity zero. If limsup l/(r),

< M for eaery gtoint y e 0G\'.8 rtttrl iJ for euerA , e n 1änq i.s

bou,nd,ed, for some nei,ghborltoorl, Ll of : . thpn .f < tU .

Proof .It, follol.s from the trssrrmptions that f(l'nq is boundrd fbr
some neighborhood. Tr of äCi . Hence / is 116r11111ecl. Set f' :;ä\7 .

GL:GU(E\/) , and Et: EAF . Since ä is of capacitv zero ancl
since G isbounded, I+ 0 rrnd G, isaclo'rnainx-ith 0Gr--1. I'ur-
thermore, aG\E: aGr\Zr. B-v [5, p. tl] there exists a,n exten-sion
of / to a quasiregular mappin1 hi Gr+ 1?" sucir that for .r € Gl

fr(r) : lim/(z) .

Hence /, is also bounded aud for ;r7 € OG1'\fl,

lim sup lÅ(r)l : lirrr sup :f(.v): < l[ .
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If y e ErnaGr: a.nlacr\/1) , then Theorem 3.3 applied to fr, Dtc)(]t,
and gr gives

limsuplfr(ru))<M.
n>!

Therefore lÅl and hence jf I are boundecl by LI .

Theorem 3.3 can also be stated in the following form b1,' means of the
cluster set and the boundary cluster set. A proof based. on 3.3 can be given
analoguously to the case ta: 2. see [7. p. t7].

3.10. Theorem. Let J :(J - R" be o cptasimerontorphic mapping, let

E=AG be a compact set o.f copa,citg zerct. «nd, let y e ,n(aG\r') Then
)C(f , g)c010",,,u(f , y) .

3.1L. Remarft. Theorem i].3 or its equivalent form 3.10 is known for
n : 2 as Iversen-Tsuji's theorem. The given proof here simplifies the
known proofs for the case n,: ), see [7, pp. 17-19],

4. Asymptotic values.

4.1. In this section x.e shall pro.l'e some extensions of the n-dimen-"ional
version of fversen's theorem [6. 3.18]. 'Ihe study of asl,mptotie values
will be continued b,v Theorem 5.lt in the next section. The follo*'ing
result lr.as pro'ved for rneromorphic functions in the plane b1' Noshiro

[7, p. 14].

+.2. Theorem. Let f : (l - R" lie u tltLctsimerornorphic mapping, let
ECAG be a comltact set of capucity zero. ancl let ye E . If ze (Cff,y)
\Ca".,"(,f , fi)nCf$nU) fo, some neighborhood U ,f U , there erists
a,seque%ce fr1 ,fr2;... of poi,ntsin, E contergingto y suchthatze A(f ,r*)
.fo, Ä: I ,2,...

Proof . Let z e Qff, /)\Ca..r( f . yDnCf(CnU) for some neigh-
borhood U of y. Wemayassume U:z:0. Thereexistsasequence
11 1r2 t . of positive numbers tending to 0 such that B"(rk)cu .

z7,F: C(/,(ae\E)ni-Gri and S"-l(r*)fl,E: b for k:1 ,2,....
This is possible because Ar(81 : g 1 see the proof of [6, 3.1]. Fix k.
There exists Qå > 0 such that B"(q*)n(IUf(§"-1(rr;flG;) : A for
otherwise there is a sequence u1 ,'tL2 t . . of points in §"-1(r6;OG con-
verging to a point of 1aG\,8'10§"-1(rp) and u-ith f(ut) -- a as i --> oc

rvhich is impossible.
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Since z eCff,y), there exists ne GiB"(r1,) u'ith f@)eB"(ql,) ' By

14, 2.6) and [4, 2.9] there exists a closed (z-1)-dimensional capCc
S"-1(l/(z)l)n/GnB"Ok)) such that l@)eC, the o-component O ot 7-rg
is contained in B"(r*), and such that / maps Ö surjecbivelv onto C.

Let l' be the family of paths Ty , U € C , and let, l- be the family of

maximal lifbings of the paths in l' terminating in 0 . Let i : (1 , 1l -> -8"

be a path in f . We claim that there exists the limit

lim i(")(4.3)

and it lies in DfiB*(r*). Sir"ät'B'(qr)o/(§"-r Vk)nG) : 0 , liicB"(rr") .

If the limit (4.3) exists, it lies in OGiB"(rr) beeause 0 € C/(GnB"Vh)).
There can be no limit (4.3) which lies in (ac\,8)n,8"(rk) because

B"(gr,)O,F - A . If the limit (a.3) does not exist, there is a sequence

(u,) of points in (r, 1) such that l02i) u2jr1 ) uzj-z for j: I,2,...
and that o: lim i(ur) : b: lim i(uzi+r). Set J; : I'tlu21-r. ur;1 . Then

j*r- j- t

A :lim sup /; is a connected set rvith « ,b e Älvhich lies in 0Gfi8"(r6)
by [6, 3.12]. Since "E is of capacitv zero, there exists a sequence (ui) such

that u21) ai > uzj+L and l.im i (a) € (aG\E)n B"?*) , but this is
J+@

again impossible because l{18"(gn) : g . Hence the limit (4'3) exists

ard belongs to EfiB"(rn). Lemma 3.2 gives AÖl:0 and by (2.6)

we have lUIffq : o . But this means that almost er,'ery path f " i ,

i e i , has the origin &s one endpoint. This shows that 0 e Aff , r1") fot
solno ir6 e EiB"(rx). The theorem is proved.

As a corollary we obtain the follou'ing result lvhich for meromorphic
functions in the plane is known as Cartrvright's theorem.

4.4. Corollary. Ler, GcR" be « domairt, und let EcG be a set of
capacity zero and closeil itt G . Let ,f , Gt E - R" lLe u qu«simeromorphic

mappi,ng with nondegenerute C(f , y) for etery y e E . If yoe E and, if
z e C/((G\r')n U) for some neighborltood (.- of yo . there erists a sequetlce

ny1n2>... of poi,nts in E conaerging to llo such thttt :eA(f ,x6) for
l"__1 0tu- tra...

Proof . Suppose yo e E and z e Cf ((G r E)O t-) fot' some neighbor-
hood U of yo. We may assume that yo = T . If cap Cf(B"(yo, r;\41
>0 for some r with 0<r< d(yo,O?), lB"(yo,r;\.B can be ex-
tended to a quasimeromorphic mapping of B"(y, , r) by [5, Theorem 4.1]

and C(f , yo) is degenerate contrary to the assumption. Hence ze C$,yo)
: R". The assertion follows fuorr_ 4.2 because a(G\E)\r' : aG and
Car(f ,ao): a .
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5. Mappings ot a ball

5.1. In this section we study quasiregular mappings of a ball. We sbart
b;r the reflection principle. After a brief discussion on radial and angular
limits we show that asymptotic limits exist in a dense set if the mapping
omits a set of positive capacity. We close the section by a study of quasi-
regular mappings u'ith some conditons on the increase of the multiplicitr-
when approaching the boundary.

\4/e state the reflection principle in the follov'ing form.

5.2. Theorem. (lleflection pri,nci,ple). Let G be a do»tain, in, the unit
ball B" and, let AC AG1S"-L be nott-entpty su,clt that for eaery y e. A
there erists a n,ei,gk,borhoocl U for ultich U1AG:UnA. Let f :G--->8,,
be a quasi,regular mappittg with Cff , AG)cAfG and, C(f , A)cS"-t .

Then there i,s a r|uasitneromorphi,c ruapping g : GUAUaG ---> E" such,
that gi,G : f anrl li(g) - K(f) where a ,is the reflection i,n B"-t .

Proof. We first show that the multiplicity I{(f , G) is finite. X'ix a
p_oint tr io fG. Since C(f ,AqCAfG, there exists a domain Zo u'ith
Eoccl snch that f-t(u)cilo. Then (see [a, p. tt])

)iQt ,l ' G\ < p'(u ,f ,Ed :.r}.o)i(* ,f) : p(u,f , E)

for any domain E)Eo rvith .Ec G . If o is any point in lfG , rve can
b)' th" assnml tion C$ , AqcAfG choose -0 such that u and u are
in the same cornpor.rent of fE\\fAE and such that l-r@)cU. Then

N(u, J, G) < p(t;, f , E) - !(tc, f , E) : pt(u,, f , Eo) .

Hence N(f ,G){p(u,f ,Eo) ( cc.
Let norr rp: R" -= R" be a Jlölrius transformation *-hich rnaps B"

onto the half space H\: {xe R"', r,, } 0}, Set ,p - f o g-t gC}. We
next show that

(5.3) rrsrpt" a te")

exists for almost evcrv point zr in EA. It suffices to shou- this in a neigh-
borhood of e'i,ery finite poinb of gA. Let therefore A eCA be finite.
By assumption there is d > 0 such that Cr: AnH"_cgG and I :
{ue1lu":O}cEA v'here C is the cube {r€-8" r-i-Ail<ö,i:
L , . . ., z) . Since ry.' is ACL, there exists a set F.CF rrith m,_r(f\f'rl
: 0 sush that yr is absolutely continuous on er-er.y closed subsegment of
I":{u*te,i0<r<ä} u,henever u,eFr. On the other hand, bv
14, 2.L4. 2.20, 2.26f rve har.e

t0
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W +l *!U :rl,v' @)l,ctm^(r) < I,tt", y)dm,,(r) < IN(*, y, C)d,m^(w)

< nfff , G)m"(pC1) < co .

It follows that
frt'@)lilntr(r) < a

forall u ina set rT', with m*_r(F\.-F,r) :9. It ue ?tnflz, thelimit
(5.3) exists. This proyes the assertion. we denote by T the subset of
gA consisting of points n ryhere the limit (5.3) exists.

tr'rom the assumptions it follou,s that D : GUAUv,G is a domain"
We next define a mapping $ , nfD _* R" by setting

,p(*) -- lirn \;{.r:
t+{-!

ip(*) __ 0

,p(*):= x{V(ii(r:)))

where P is the reflection in i'r, € R" :rn

sibly discontirruous) AcIl-,-nrapping and
L"-integrable b;, (5.1). It also satisfies

i;p@f < Kr(f)J(n,$) a.e.

By a result of Re§etnjak [9, lfheorem l] there exists a quasimeromorphic
mapping fl, which coirrcicles u.ith {, a.e. in qD and KGr) : K(rp) : K(f) .

Then also tp is an extensinn of rp ancl the requirecl mapping is g :
,lt " EID .

5.5. Corollary. If f : B" --- _8" i.s « qawiregukr,r. tttctpping with Cff , AB")
c1B" , there erists ct tlttttsirtt,:ronrorlitic tncr,ppittg g : R" -, R" such that
slB" : f and I{(s) : K(l) .

5.6. Remarlc. Tlreorem ;1.-r lrtrs rrlso lreen proved by F. Iv. Gehring.

5.7. Rad,i,al and, anylular lintits. one of the basic classical resurts in the
boundar;r behavior of analytic functions is Fatou's theorem which states
that a bound"ed anal5ztic function of rr disc has radial iimits at almost all
boundary points. This is no longer true for quasiregular mappings in bhe
case n :2 [7, p. 119; I1]. lVhether Fatou's theorem holds for q,asi-
regular mappings in the case ?i. ) 3 is not kno.wrr at present, it is even
rrot knou'n u'hether such a mapping alu'avs must have at least one radial

if 'tepG,

i- te*') if ne f ,

if 'n e pA\?,
if ;r € V@G) ,

the partial derivatives are locallv
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limit. In 5.14 we show that if the multiplicity does not increase too rapidlv
when approaching the boundary, then the assertion in Fatou's theorem
is true. Here we show in 5.8 that the existence of a radial limit implie..

the existence of an angular limit.
If y€S"-t and 0 { C 1ni2. we set

K(y ,V) --::: {, € A"i (,A\A-:t)) }" lgl -*l cos g}

5.8. Theorem
cap CfB"> 0 n%d

ex'ists and assuwle

(5.e )

exists cLnd, equrLls

Let f , B" --> R* lte {t, quilsinleromorph'ic 'm(tppi?Lg ttsit/t,

let y e 08" " Su,ppo.sr: f,h«,t, thr: r*d'ia,l lim'it b : 
1,: f 

(ty\

Iim/(.r,i
Jf"? !'
.t ( K1 r.,; r

Proof . Let cp I Vo < nl2 and set Kn : l{(A , qr)iB"(y ,l) . Srp-
pose that the limit (5.9) does not exist. Then there is a sequence (r;) of
points in K(y,q) eonverging t'o y u'ith q:ljmf(n;)*b. There

exists j such that K, :- K(y , qo)fiB"(A , 2)y -r;l)CB" whenever

i > j . Let hi be the similarity mapping of 1ro onto K; . Bv 15, 3.171

the family of mappings gi:f "hi is equicontinuous. I{ence by [10.
p. 66a] there exists a subsequence of (gr) which converges to a quasi-

meromorphic mapping S . There exists a point z in R(y , dl1
S"-t(y ,ll2)cKo rvhich is a limit of a' subsequence of (år-l(e;)) . Then
g(z) : h. But g maps the lvhole segment T, frKo on the point b

which implies that g is constant. 'I'his contradiction pro\-es the theorem.

5.10. Asymgttotic l,imits. \\'e shall rlo\\- lrroYe that a quasimeromorphic
mapping of a ball omitting a set of positire capacitv has asvmptotic limit-q

in a dense set on the boundarr'.

5.1I. Theorem, Let f :8"->8" be a qucLsitterotnorphic maptping with
cap C/B' > 0 . Then for euery A 'i,n a de'nse se.t )' itt, 08" there er'ists

a path y tl0,l)---> 8". wi,th 7'[0, l)cB" «ncl y(l): y su,ch that

lirnf(y(t)) erists.
t+l

Proof. Let z be a point of AB" and let e ) 0 . It suffices to shou'

that, there exists a path y : [0 , 1] + -8" with yl} ,l)cB" and y(l)
€. AB"n B"@ , e) such that lim/(/(r)) exists. If the radial limit lim/(fe)

exists, there is nothing to prove. Suppose that f has no radial limit at z '

Ann. ÅcarJ. f{ci. }-ennicir'
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Then there is a sequence .s1 < ss ( . . . of positive numbers such that
lim s; : 1 and limf(y,(sr.)) : u + lim f(7,,(sr1,ur)) : a . There exists lto

Ic-+ cc /c-> oo

such that for k ) ko l-sru ( e and the spherical diameber of F6:
f(y,L"ro, szr.i-r]) isatleastafixedpositivenumber. Let J'r be the family of
rectifiable paths I : [0 , l] -+ E' with /(0) € 1r, ancl lG) e CfB". Then
by [5, 3.11] and ll4, Theorem 3.81 there is a positive number a such that

It (I'r,) ) I

7 ko. Let i* be the familr- of lrlaximal liftings [6, 3.11] of the

in lr, starting a,t some poTt in T,lszx,.§:r,+r-l and. let i* be the

o{ rectifiable paths in f* Everl path in f* is of the form

u) * B" , and the limits lim f(rt e AB" a,nd lirn ft$)) exist. Srppose
t+u t+u

nou, that 
"r."ry 

i e i,, ends outside B"(2, e) " Then u,e have the estimate

(5.12)

for k

paths

family
i, [o ,

(5. 13 )

On the other hand, we have M(lr) < lttfi» and by (2.6) n[(fn) <
Xr171Uq*7. Combining these with (5.12) and (5.13) rve get a contrad.ic-
tion as k -> q. We have proved the existence of a palh y lvith the
required properties.

S.t+. Mapgtings wi,th bound,s on the inueu.se of the ru,ultiplicity. We shall
in the rest of the paper consider the class F(c,p) of quasiregular map-
pings / : Bo -->8" with the propertv that for (i < r { I If(/, B"(r)) <
c(l-r)-e where c{@ and p,0(p<tl-l . areeonstants.'Weshall
first prove Fatou's theorem for these rla,ppings.

5.15. Theorem. Let f : B" ---> B" be « quasiregular mappi,ng in the

class l(c,pt) ttith c<@ und 0{p<.rr,-l . Then, f hasrad,iallimi,ts
a.e. in AB" .

Proof.Let x€(0,1) besuchthat2P-"("-1i <r", tr'or yeOB" and
for any positive integer lt welet Ty,r, be the path Ttlll-2*h ,l-2-r-'f ,

where we recall that yr(t) : tU , and define the closed set

Au : {A e AB") cl(f )yr,n ) 2 
^o} 

.

We let f* be the family of paths Tys,, ! e A*. If
q(r) : a-k for r € B" .

a@) : o elsewhere,



L4 A. r. 507

then

for every ye fh. Hence

MfffA 1!)n*-hn .

On the other hand,

/ t -2'k-'\,-,(5.16) M(I*) - 'tn,. y{Jr.t Ilog t--u I > m^-, (A*) 2k(n-t) .

\ - L-J /

Since / e I@,p) . rve get bp' 14,3.21

M(T*) < Ko(flN(f . B"1t-2-*-L»lt(f 1'k) < Ko$)c2$+t)Pd)nd.-kn .

Combining this rrith (5.16) rve get

/t \ o

m^ ,l U ^-l*l l Q,Ko$)czt)12e-("-\e-tu)h
\e- s / i=c

<2pQ"Ko(f)c?rl\-p)--+0 as Q+ @,

where § -- zr-("-')nt-" < 1 If q 21 is an-v integer and

yeci)Ao,
lr: s

the radial limit
ti^f(ty)

exists by the definition of A* and t'he fact that, a I I. The theorem
is proved.

Our second result for rnappings in the class I(c , p) is knorvn a,s the
theorem of F. ancl lI. Riesz for analvtic mappings.

5.17. Theorem. Let .f : IJ" -'- B" be o quosiregtil«r tn«,pgting itt, the

class E(c ,p) u;ith c < T- rtntl tt < p { rr,-1. Tlten there en'i,sts no

measurable set A1AB" trith »i^-,(-{) > 0 such that the racl,i,al li,m'i,t

lim f(ty) equals ctconstrtrtt L .for «ll y e A.
,+1

Proof . Suppose that the're is such tr set A. Thele exists )" , Ll2 < A < | ,

suchthat z:iq, ft")-.-:'=!b,-er€J. tr,nd m,^-r(t) >0 for some

? € (0, zi2) .n-here il : lOCranrl

( : l.r: €,R,, (,i:, - er) ) lrl cos E) .

Leb l: (-1, ).1->8" be the path definedby l'1t1 :tsr. Then l' : f "l
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is a path joining the points z' and b . Let f,, € [0 , ,a) be a point such
that l'[f, , ]'")cB"(z' , s) where s : lz'-bl,l2 .

Let n: E"\{0}---§o-r be the radial project,iou. \\re choose a number
dsuchthat 0<ä<l/2 and ä"-1-p<1i3. I'orany g€(0,s)andany
integer fr>O weset'

D(k, d: Fou c U §"--1(161

and E(k,d:nD(h,Q), where It,:f-rB"lb,d and rr,:l-
dh(I-,1) . Let l-(0 , s) be the family of paths in B'1,1.; which join Z :
llto, 17 and D(0 , p) . Then

lV(J-(0 , g)) > x(n, ,d(L))rn,n-,(fr((- , g)) ,

where x(n , d,(L)) ) 0 is a constanb which depends only on n ar.d d,(L)
On tire other hand ,

(5. 18)

(5.1e) Mfff(0 , q)) I (0r,-, (,"* ;)'
B;," [a, 3.2]

(5.20) M€(0, a)) < Koff)I{(f , 8"1ii11tt11110, s)) .

Combining (5.18) - (5.20) rve may choose 96 € (0 . s) such that

m,_r(E(0, po)) { m,"_r1B)iL.

\-or ye§"-1 and fr)I wedefinethepath T:,k:TriLrr,-r,rr] (see2.l) .

\4re will now choose €l, sequence Qt, gz, . . . of positive numbers with
Qo ) Qr ) gz ) . . . inductively as foliorr's. Suppose that Qr,-r is chosen,
k>1. tr'or Q€(0,pr-,) rye set

t(t; , 2) -= {rr,n y e E&, s)\n0'E(, , p,)}.
t" i--o )

-ltr,U, il (i', g;)

," E (i, *,,) ö(k-

;, everJ,r pa,th
hence

nrn-,(u(k ,,Q)) --

Tlien

(5.21) M (L',(lr

By
SEtS

s)\

E(k

-r) ,

7 rrun-r(o(k ,

\

the definition of the sets
B"(b, g) and CB"(b , Qr,

in f f (k, s) joins the

tuIffr(fr,s)) 1@,,-, (,"* ?)'-"(5"22)



Since / is in the class .F(c , p) , we have by la, 3.2)

(5.23) M(t(k, a)) < Ko$)c(L-rd-PMffl(k , d) .

Combining (5.2L) - (5.23) we obtain

(5.24) -^ ,?fr, sl...Urt-, *,,)

I a 
" - rK o(f)c ( I -,i;-r5-r5(' 

r -r) t--'l (f oS t;)' - "

We choose Q : Q," such that the right hand side of (5'24) equals

m^-r(E)f2h+2.
It follows that

(5.2b) ? =""r(,(;)--"'-"), k : t,2,. .,

where or is a positive constanb which does not depend on k . X'rom (5.25)

we get

(b26) ,**, > eo["*p(-/('- (j)'u"-"))]-'=,
On the other hand,

r\nrl. Acatl. Sci. Fennicre A. I. ö07

*--,(§,nw , e;)) 1m,,--,(E)12

by @.2\ and by the choic-' of gr , k : 0 , l , ') , . . . Hence \Ye ma,y choose

y€z"röttt*,r;.
fr:0

By the definition of the sets -E(å, g*) u'e hart' f(rxy) € 8"1b, g*) ' But
b:limf(ty) which contradicts (5.26). The theoren is proved.

5.27. Remarfu. It follows from t6, 2.3] that for tr quasiregular mapping

f : B" ---> B" , n )> 3 , 'w'hich is :r local homeomorllhism we have

Nff , 8"0,- ä(t-r))\8"(r)) < c(L-r)l-". rvbere i) < ä < I and c I cD-

The proofs of 5.15 a,nd 5.1? can be carried through b.n- tl',e use of this
type of estimate lvith l--n replacetl b1' -p,() Ip <n-1 . This
makes the question whether the stalemenls iu 5'15 and 5.17 hold for
local homeomorphisms in the cå,se vL ) 3 ratller interesting.

Universitv of Helsinki
Helsinki, Finland
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