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1. Introduetion

Quasiregular mappings can be regarded as an n-dimensional generaliza-
tion of the analytic functions in plane. For the theory of these mappings
we refer to [4—6]. Compared to the thorough and extensive studies made
on the boundary behavior of analytic functions (see [3; 7]) very little has
been written so far on the boundary behavior of quasiregular mappings for
dimensions % > 3. However, some results proved earlier deserve men-
tioning. In [5, 4.1] it was proved that a set of capacity zero is removable
for a quasiregular mapping provided that the mapping omits a set of
positive capacity. This is known as the theorem of af Hillstrom for ana-
lytic functions. In [6, 3.14—3.18] some relations for asymptotic values,
exceptional values, and the branch set were considered in the case of an
isolated essential singularity. A proof for an n-dimensional version of
Iversen’s theorem for an isolated singularity was also indicated [6,3.18].
It bas also been proved that an isolated boundary point is always remov-
able if the mapping is a local homeomorphism [1; 15; 16].

In the plane a quasiregular mapping can be represented as a composi-
tion of a quasiconformal (homeomorphic) mapping and an analytic func-
tion. Hence the problem for dimension n = 2 reduces to the study of
boundary behavior of analytic functions and quasiconformal mappings.
Since a quasiconformal mapping of a dise onto itself need not preserve
sets of measure zero on the boundary. several classical theorems for ana-
lytic functions of a disc, among others Fatou's theorem on the existence
of radial limits, fail to hold for quasiregular mappings in the case n = 2;
see for example [7, pp. 119—120; 11]. At present there seems to be no
reason why for example Fatou’s theorem should be true for quasiregular
mappings in dimensions n > 3.

In this paper we shall give further results which in general are new
only for dimensions n > 3 although some proofs simplify also the known
proofs for n = 2. We start by proving a relation for cluster sets and
boundary ecluster sets at a boundary point known as Iversen-Tsuji’s
theorem in the case n = 2. The next section is devoted to the study of
asymptotic values and we state two results proved for #n = 2 by Noshiro
[7] and Cartwright [2]. The rest of the paper deals with mappings of a ball.
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We prove the reflection principle and discuss the existence of radial, an-
gular, and asymptotic limits. We close by considering quasiregular map-
pings whose increase of the multiplicity is bounded by specific functions
when approaching the boundary. Two classical theorems in the theory
of analytic functions concerning radial limits are presented for these map-
pings, namely, the theorem of Fatou and the theorem of F. and M. Riesz.

2. Notation and preliminaries

2.1. We shall recall some of the notation and terminology of [4—6]
which will be the base also here. In addition, some further notions will
be introduced. The notation f:G —>R" or f:G —R" includes the as-
sumptions that (¢ is a domain in the euclidean n-space R" or in the
compactified n-space R" = R"U {0}, respectively, and that [ is
continuous. All topological operations are performed with respect to R
Throughout the paper we assume that »n >2. If | is a segment of
line and if ~: 4 — R" is a path, we let ~x denote the locus ~.1 of ~.
If y € R", we denote by y, thepath y,: [0, 1] — R" defined by y.(t) = ty.
The inner product of x,y € R" is denoted by (v y).

2.2, Cluster and asymptotic sets. For a mapping f: G —R" and a set
FcoG we set
Cif By =UCf.y)

YEF

where the cluster set of f at y is

Cif.y) = r(]f(Gﬂlv)

where U runs over all neighborhoods of y. We shall also employ the
boundary cluster set of f at y € 0G' with respect to F defined as

Or(f,y) = f;\ C(f. UNF™{y))

where U runs over all neighborhoods of y.
A point z € B" is an asymptotic value of f at a boundary point y € oG
if there exists a path y:[0, 1) — & with lim y(f) = y and lim f(y(¢)) = =.

t—1 t—1

The asymptotic set A(f,y) of f at y is the set of asymptotic values of
faty.

2.3. Capacities. In [4, 5.4] we defined the capacity of a condenser
(see also [5, p. 4]) and in [5, 2.12] the concept of a set of capacity zero.
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By capacity in these definitions and in this paper we always mean con-
formal capacity. In connection with studies of analytic functions in the
plane the potential theoretic capacity is most commonly used [3;7].
However, for n = 2 a set is of conformal capacity zero if and only if
it is of potential theoretic capacity zero. This fact and other relations
between these two concepts of capacities are proved in [12].

2.4. Moduli of path families under quasiregular mappings. The main
tools in our proofs are two inequalities for the moduli of path families.
Let f:G@ — R" be a quasiregular mapping [4, 2.20]. The outer dilatation
inequality

(2.5) M(I) < N(f, A)Ko(f)M(f1)

was proved in [4, 3.2]. Here [’ is a family of pathsin a Borel set ACG,
M(I) its n-modulus, K,(f) the outer dilatation of f [4, 2.20], and N(f, 4)
is the supremum of the number (possibly ) of points in ANf(y) .
This inequality has a drawback as it contains the multiplicity which in
general tends to infinity as the path family approaches the boundary.
Because of this, (2.5) is used only in the proofs of two last theorems.

The second, the inner dilatation inequality

(2.6) M(fT) < K(f)M(T) .

which was proved by Poleckii [8], is of more use in general boundary prob-
lems. Here K (f) is the inner dilatation of f [4, 2.20] and I' a family
of paths in &.

3. A relation for cluster sets

3.1. Our first result is a theorem on the behavior of the norm of a qua-
simeromorphic mapping [5, 2.1] when approaching a boundary point from
the domain and along the boundary. First we need the following lemma
which is a path family version of [5, 2.14].

3.2. Lemma. Let DCR" be a bounded domain, let C be a compact
setin D, and let FCD\C be closed in D with cap F = 0. Let further
Iy (resp. 1) be the family of paths joining 0D (resp. 0DUF) and C
m D. Then M(Iy) = M([}) .

Proof. We apply [5, 2.14] to the condenser (D, C) and to the set F .
This gives cap (DNF , 0) = cap (D, C). The lemma follows from [14,
Theorem 3 8].
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3.3. Theorem. ILet f:G >R be a quasimeromorphic mapping, let
ECOG be a compact set of capacity zero, let y € EN(OG\E), and let
F(GNU) be bounded for some neighborhood U of y. Then

(3.4) lim sup f(x)! = lim sup (lim sup [f(x)]) .
= z Ez'jgz\E n

Proof. We denote by @ and b the left and right hand sides of the
inequality (3.4) respectively. The inequality @ >b is trivial. Suppose
>0 and let 0 <& < a—0b. We may assume y = 0. We choose ¢, €
(0, 1/2) such that B"(20,)CU and

lim sup f(o); <b — ¢

X->z

whenever z € B"(20,) N (0 E). For k=1.2,... set

o ok
Op 1y — 91/2 b

My — sup { f(a) « € B"(2o) NG} .

Let x € B*o,))NG and let B"(c.0)CB"9)NG  for some 06 > 0.
Since y€dG\E and since K is compact, there exists a point v'€B"(gy) N
(0G\E) such that B"(x".0)NE = O for some ¢ ,0 <0 < o — 2'|.
Since E is of capacity zero. there is a segment of line in CE with end-
points in Bz, ) and B"(x",d') [5. p.8]. Hence there exists a path
1:10,1]— B"(9,)NCE with [(0) = x and (1) = 2'. Let t€(0, 1] be
such that A =I[0,#)C and [({)€d(¢ . Denote by G the x-component
of B™(20,)NG .

Assume f(z) >b — ¢. We denote by I' the family of paths y:
[0,1] — B"(M)\B"(b — &) for which y(0)€Ef4 and y(1)€S"}(I;) . Let
I' be the family of maximal liftings with respect to the mapping f|¢;
of the paths in I" starting at some point in A4 [6, 3.12]. Then every path

in I' either is unrectifiable or belongs to the set I of rectifiable paths
in I' and ends in (8" Y(20,)NG)UE .

Let now I' be the family of paths in  B*(20;) joining A and
S81(20;) U E . Then

(3.5) M)y = M(Ty) = M)

by 3.2 and we have

(3.6) M(D) < o,_y(log2)

by [13, 7.5]. On the other hand, every sphere S"'(u,s) meets both fA4
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and S"YM;) where u = M, f(x)/|f(x) and M; — f(x)] <s < M,—(b+e).
It follows by [13, Theorem 10.12] tha‘r

. My - (b +¢)
(3.7) ]‘/[(1‘) > Cn IOU ‘v_-—ﬁWI)
where ¢, > 0 is a constant which depends only on »n. By [6, 3.12] the
family " is minorized by fﬁ hence M(fI"y = M (I") . Combining this
with (2.6), (3.5), (3.6), and (3.7) we chtain an inequality

M, — fle)

Sl s g )
M, —(pre="="

where f <1 depends onlyv on »n and Af). This yields an estimate
My, <b-+-e-- 1M, — b+ e).
Proceeding successively we get
(3.8) My <b-+e-+ (1=3)1, — (b +e).

But a < M, for every k and we have thus « <b -+ ¢ by (3.8) which
is a contradiction in view of the choise of #. The theorem is proved.

As a corollary one obtains the following extension of the maximum
principle.

3.9. Corollary. Let f:G — R" be « quasiregular mapping of « bounded
domain G and let ECOG be a compact set of capacity zero. If lim sup !f(x)

< M for every point y € dGNE «and if for every z€E f(UﬂCr’) is
bounded for some neighborhood U of <. then f < M .

Proof. It follows from the assumptions that f(I'NG)  ix bounded for
some neighborhood T~ of &G . Hence f is bounded. Set F = oG\ K .
Gy = GUENF), and E, = ENF. Since E is of capacity zero and
since ¢ is bounded, F == O and ¢, is a domain with oG, — F . Fur-
thermore, 0G'\E = 8G,\E;. By [5, p.11] there exists an extension
of f to a quasiregular mapping f,: G4 — R" such that for « €&,

fu(@) == lm f(u) .

Hence f, is also bounded and for y € oG, E,

lim sup [fy(x)! = lim sup f(x) < M.

Xy X3
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If y € E,N0G, = E,N(0G;  E,) . then Theorem 3.3 applied to f,, E,;C0o6, .
and y gives
lim sup [fi(x) < M .
x>y

Therefore |f;] and hence |[f] are bounded by M .

Theorem 3.3 can also be stated in the following form by means of the
cluster set and the boundary cluster set. A proof based on 3.3 can be given
analoguously to the case n = 2. see [7. p. 17].

3.10. Theorem. Let f:G —R" be a quasimeromorphic mapping. let

ECoG be a compact set of capacity zero, and let y € EN(0G\E) . Then

3.11. Remark. Theorem 3.3 or its equivalent form 3.10 is known for
n = 2 as Iversen-Tsuji’s theorem. The given proof here simplifies the
known proofs for the case » = 2. see [7, pp. 17—19].

4. Asymptotic values.

4.1. In this section we shall prove some extensions of the n-dimensional
version of Iversen’s theorem [6. 3.18]. The study of asyvmptotic values
will be continued by Theorem 5.11 in the next section. The following
result was proved for meromorphic funections in the plane by Noshiro

[7, p. 14].

4.2. Theorem. Let f:G—R" be a quasimeromorphic mapping, let
ECoG be a compact set of capacity zero. and let y€ E . If z€ (C(f,y)
NCocr(f, y)NCAGNTU)  for some neighborhood U of y, there exists
a sequence Xy, %y, . .. of points in E converging to y such thatz € A(f, xx)
for E=1,2 ...

Proof. Let z€(C(f,y) Cuu(f.y)NCAGNT) for some neigh-
borhood U of y. We may assume y = z = 0. There exists a sequence
¥, Ty, ... of positive numbers tending to 0 such that B"(r)CU .

2@ F = C(f, (0G\E)NB"(ry)). and S"'(r)NE = O for k=1,2,....
This is possible because A,(E) = 0: see the proof of [6, 3.1]. Fix k.
There exists or > 0 such that B"(o)N(FUf(S"1(r)NG)) = G  for
otherwise there is a sequence u,,u,,... of points in S"}(r)NG con-
verging to a point of (G E)NS"™(ry) and with f(w)-—>z as {— o
which is impossible.
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Since z € C(f,y), there exists x € GNB"(ry) with f(x) € B"(ox) . By
[4, 2.6] and [4, 2.9] there exists a closed (n—1)-dimensional cap CC
S*1(f(x))Nf(GNB"(r)) such that f(x) € C', the x-component C of fiC
is contained in B™(rx), and such that f maps C' surjectively onto C .
Let I" be the family of paths y,,y €C, and let T be the family of
maximal liftings of the paths in /" terminating in C. Let 3 :(t.1]—R"
be a path in I'. We claim that there exists the limit
(4.3) lim y(u)

u-—>t

and it lies in ENB*(ry). Since B"(ox)Nf(S" 1 (re)NG) = O . y | CB"(rs) .
If the limit (4.3) exists, it lies in 9GN B*(rx) because 0 € Cf(GNB"(ry)) .
There can be no limit (4.3) which lies in (3G \E)NB"(ri) because
B'(ox)NF = @ . If the limit (4.3) does not exist, there is a sequence
(u;) of points in (t,1) such that u,; > wyjq > y; », for j=1,2,...
and that a = lim 7 (uy;) = b == lim  (uyj=;) . Set A; = 7[wyj-y . uy5] . Then
A = lim sup Ajj is a connected set with « . b € 1 which lies in aGNB"(rx)
by [6, 3.12]. Since E is of capacity zero, there exists a sequence (v;) such

that  uy; > v > uyjr; and lim 7 (v;) € (3G~ E)NB"(ry). but this is
again impossible because Fﬂ]lg"?gk) = . Hence the limit (4.3) exists
and belongs to ENB*(r;). Lemma 3.2 gives J[(f) = 0 and by (2.6)
we have ﬂf(ff) — 0. But this means that almost every path feoy .
y € I', has the origin as one endpoint. This shows that 0 € A(f, x) for
some x, € ENB"(r.) . The theorem is proved.

As a corollary we obtain the following result which for meromorphic
functions in the plane is known as Cartwright’s theorem.

4.4. Corollary. Ler GCR" be a domain and let ECG be « set of
capacity zero and closed in G . Let f:G\E —R" Le a quasimeromorphic
mapping with nondegenerate C(f . y) for every y€E . If y,€E and if
2 € Cf((G\E)NU) for some neighborhood U of y, . there exists a sequence
%, Xy, ... of points in E converging to y, such that =€ A(f.xx) for
k=1,2...

Proof. Suppose ¥y, € E and z € Cf((¢ ~E)NL") for some neighbor-
hood U of y,. We may assume that y, = x . If cap Cf(B"(y,,7)\E)
> 0 for some r with 0 <7 <d(y,,d¢), fB"y,.r)\E can be ex-
tended to a quasimeromorphic mapping of B"(y,.r) by [5, Theorem 4.1]
and C(f, y,) is degenerate contrary to the assumption. Hence z € C(f, ¥,)
= R". The assertion follows from 4.2 because 9(G“E)\E = 0G and

Coc(f » 4o) = 0.
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5. Mappings of a ball

5.1. In this section we study quasiregular mappings of a ball. We start
by the reflection principle. After a brief discussion on radial and angular
limits we show that asymptotic limits exist in a dense set if the mapping
omits a set of positive capacity. We close the section by a study of quasi-
regular mappings with some conditons on the increase of the multiplicity
when approaching the boundary.

We state the reflection principle in the following form.

5.2. Theorem. (Reflection principle). Let G be a domain in the unit
ball B" and let AC 9GNS"1 be non-empty such that for every y€ A
there exists a neighborhood U for which UN3G = UNA . Let f:G — B"
be a quasiregular mapping with C(f, 0G)CfG and O(f, A)CS™1 |
Then there is a quasimeromorphic mapping ¢: GUAUxG — R"  such
that g G = f and K(g) = K(f) where « is the reflection in S™1.

Proof. We first show that the multiplicity N(f, &) is finite. Fix a
point w in fG. Since C(f, 0G)CofG, there exists a domain E, with
E,C¢¢ such that S (u)CE, Then (see [4,p.11])

N f o) <ulu, f,E) = > i, f)=u,f. E)
x€f7H(u)
for any domain EDE, with EC . If v is any point in fG, we can
by the assumption C(f, 0G)C9f¢ choose E such that u and » are
in the same component of fE\fdE and such that f-(»)CE. Then

Ne f. ) <ub . f . Ey=uu,.f,E)=uu,f, E).

Hence N(f.G) <u(u,f,E) < = .

Let now ¢ :R"—R" be a Mobius transformation which maps B"
onto the half space H" = {x€R" », > 0}. Set p =foqglgG. We
next show that
(5.3) lim p(u 4 te,)

=0

exists for almost every point u in @A . It suffices to show this in a neigh-
borhood of every finite point of @A . Let therefore y € ¢4 be finite.
By assumption there is 4 > 0 such that C; = CNH" C¢G and F =
{u € Clup = 0;CpA where C is the cube {*€R" w — y; < 0,7 =
1,...,n}. Since ¢ is ACL, there exists a set F,CF with m, (F\F,)
= 0 such that ¢ is absolutely continuous on every closed subsegment of
Iy = {u +te, 0<t<6} whenever w€ F,;. On the other hand, by
[4, 2.14, 2.20, 2.26] we have
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Mrdma(x) < [J (2, p)dma <f\7(w v, C)dm.(w)

3 c,
< N(f, Gyma(yCy) < o .
It follows that

[iwp'(x)?dml(x) < ®
for all w in a set F, with m, (FF,) =0. If u€ F.NF,, the limit
(5.3) exists. This proves the assertion. We denote by 7T the subset of
@A consisting of points » where the limit (5.3) exists.
From the assumptions it follows that D = GUAUx@ is a domain.
We next define a mapping y:¢D — R" by setting

P(x) = p() if 2 €¢l,
() = lim p(r - te,) if z €T,

>0
p(x) = 0 if v€gdA\T,

P(r) = My(p(r) if @ €¢@nd),

where f is the reflection in {w € R" @, = 0}. The mapping ¢ is a (pos-
sibly discontinuous) ACL-mapping and the partial derivatives are locally
L™integrable by (5.4). It also satisfies

)" < Ko(f)d (2, ) ae.

By a result of ReSetnjak [9, Theorem 1] there exists a quasimeromorphic
mapping Whlch coincides with p a.e. in D and K(9) = K(y) = K(f).
Then also § is an extension of » and the required mapping is ¢ =
peolD.

5.5. Corollary. If f:B"-— B" is« quasiregular mapping with C(f , 8B")
CoB", there exists a quasimeromorphic mapping g: R*— R* such that
glB" = f and K(g) = K(f).

5.6. Remark. Theorem 5.2 has also heen proved by F.W. Gehring.

5.7. Radial and angular limits. One of the basic classical results in the
boundary behavior of analytic functions is Fatou’s theorem which states
that a bounded analytic function of a disc has radial limits at almost all
boundary points. This is no longer true for quasiregular mappings in the
case n = 2 [7, p. 119; 11]. Whether Fatou’s theorem holds for quasi-
regular mappings in the case n >3 is not known at present, it is even
not known whether such a mapping always must have at least one radial
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limit. In 5.14 we show that if the multiplicity does not increase too rapidly
when approaching the boundary. then the assertion in Fatou’s theorem
is true. Here we show in 5.8 that the existence of a radial limit implies
the existence of an angular limit.

If yeS*! and 0 < ¢ <<a/2. we set

Ky,q)={x€R" (yy—x) > y—x| cosgj.

5.8. Theorem Let f: B"— R be a quasimeromorphic mapping with
cap CfB" > 0 and let y € dB". Suppose that the radial limit b = lim f(ty)
t—>1

exists and assume 0 << ¢ < a/2. Then also the angular limit

(5.9) lim f(«)

YEKiv
exists and equals b .

Proof. Let ¢ < qo<a/2 and set K,= K(y,q@)B"(y,1). Sup-
pose that the limit (5.9) does not exist. Then there is a sequence (x;) of
points in K(y,q) converging to y with b, = lim f(x;) # 6. There
exists j such that K;= K(y.g@)NB"(y,2ly—x])CB" whenever
i >j. Let &; be the similarity mapping of A, onto K;. By [5, 3.17]
the family of mappings g¢; = f°h is equicontinuous. Hence by [10.
p. 664] there exists a subsequence of (g;) which converges to a quasi-
meromorphic mapping ¢. There exists a point z in K(y,¢)N
S*1(y , 1/2)CK, which is a limit of a subsequence of (ki (a;)). Then
g(z) = b, . But g maps the whole segment y . NA; on the point b
which implies that ¢ is constant. This contradiction proves the theorem.

5.10. Asymptotic limits. We shall now prove that a quasimeromorphic
mapping of a ball omitting a set of positive capacity has asymptotic limits
in a dense set on the boundary.

5.11. Theorem. Let f:B"— R" be « quasimeromorphic mapping with
cap CfB" > 0. Then for every y in a dense set Y in 0B" there exists
a path v :[0,1]— B" with »[0,1)CB" and y(1)=y such thal
lim f(p(t)) exists.

t—1

Proof. Let z be a point of 8B" and let &> 0. It suffices to show
that there exists a path y: [0,1]— B" with »[0,1)SB" and y(1)
€ 0B"N B"(z , &) such that lim f(y(t)) exists. If the radial limit lim f(tz)

t->1 t—1
axists, there is nothing to prove. Suppose that f has no radial limit at z.
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Then there is a sequence $§; <8, << ... of positive numbers such that
lims; =1 and lm f(y.(sy)) = v # hm f(r(82x41)) = v . There exists k,

i->oC k—>c

such that for &k >1Fkyl—s, < ¢ and the spherical diameter of Fj =
S:l 8ok s 895..1]) is at least a fixed positive number. Let [ be the family of
rectifiable paths [:[0,1]—R" with [(0) € F; and [(1) € CfB". Then
by [5, 3.11] and [14, Theorem 3.8] there is a positive number « such that

(5.12) M(IW) =~
for k> k,. Let I be the family of maximal liftings [6, 3. 11] of the
paths in [} starting at some pomt in ySs . Sapr] and let I be the

family of rectifiable paths in L r. Every path in Iy % is of the form
[: [0, u) — B", and the limits lim [(t) € @B" and lim Sf((¢)) exist. Suppose

t->u t—>u

now that every I €I ends outside B"(: ,¢). Then we have the estimate

{ 1-n
~ N €
(5.13) J_[( FA) = J[(FA) <, (]Og i - ‘g“) .
— Sax

On the other hand, we have M(/y) < M(fI}) and by (2.6) M(fl¥) <
K (f)yM(I) . Combining these with (5.12) and (5.13) we get a contradic-
tion as k— oo. We have proved the existence of a path y with the
required properties.

5.14. Mappings with bounds on the increase of the multiplicity. We shall
in the rest of the paper consider the class F(c. p) of quasiregular map-
pings f:B"-—> B" with the property that for 0 <r <1 N(f, B'(r)) <
¢(l1—r)? where ¢ << oo and p.,0 <p << rn—1. are constants. We shall
first prove Fatou’s theorem for these mappings.

5.15. Theorem. Let f:B"—B" be a quasiregular mapping in the
class F(c,p) with ¢ < oc and 0 < p << n—1. Then f has radial limits
a.e. in 0B".

Proof. Let x € (0,1) be such that 2¢-""" < y»  For y€oB" and
for any positive integer k we let y,, be the path y,[1—27% 1—27%1],
where we recall that y,(f) =ty , and define the closed set

={y €oB" d(f yy. ) ="}
We let I be the family of paths y ..y € 4. If
o) =a~* for x€B",

o(x) = 0 elsewhere,
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then
Jeds =1
for every y €fIl% . Hence
M(fl) < Q.

On the other hand.

l—?.‘_k_l 1—n
(5.16)  M(I}) = »m,,,,l(A,,.)(log_ —) > m,  (Ay) 2879

1—27*
Since f€ F(c,p). we get by [4,3.2]
M) < Ko (f)N(f. B'(1—2"F")M(fI%) < Ko(f)e2* P Q0" .

Combining this with (5.16) we get

< QK (f)efrl(1—f) >0 as g oo

where B =2r"0=Ux=" .- 1 If g >1 is any integer and

‘]/GC UAk,

k=q
the radial limit

lim f(ty)

t—>1

exists by the definition of 4, and the fact that « << 1. The theorem
is proved.

Our second result for mappings in the class F(c, p) is known as the
theorem of F. and M. Riesz for analytic mappings.

5.17. Theorem. L¢t f:B"-—~ B* be a quasireqular mapping in the
class F(c,p) with ¢ < = and 0 <p<<n—1. Then there exists no
measurable set ACoB* with m,_,(d) > 0 such that the radial limat

lim f(ty) equals a constant b forall y € 4.
t—>1

Proof. Suppose that there is such a set A, There exists 4,1/2 <4< 1,
such that z = ey, f(z) =2 =b.— €4, and m,_,(£) > 0 for scme
@ € (0, w/2) where £ = ANC and

= x€R" (r —e)> |x]cose}.
Let [:(—1,4]— B" be the path defined by I(t) = te;. Then [I' = fel
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is a path joining the points 2z’ and b. Let #,€[0, ) be a point such
that I'[t,, A]CB"(z' ,s) where s = [z'—b!/2.

Let z: B"\J0} — S"' be the radial projection. We choose a number
0 such that 0 << d < 1/2 and 6" '"? < 1/3. For any o € (0, s) and any
integer k£ >0 we set

Dk, 0) = F,UCUS"" ()

and E(k,9) =aD(k,o), where F,=f'B'b,0) and ri=1—
o(1—2). Let I'(0, o) be the family of paths in B*(4) which join L =
[ty , 2] and D(0, p). Then

(5.18) M(I(0, 0)) = »(n, d(L))m,_1(E( , o)),

where x(n, d(L)) > 0 is a constant which depends only on »n and d(L) .
On the other hand,

s\t-n
(5.19) M(fI0, 0) <o, (log ~) :
0
By [4, 3.2]
(5.20) M(I'(0, 0)) < Ko(NIN(f, B ML . 0)) .
Combining (5.18) — (5.20) we may choose o9,€ (0.5s) such that

7n'n~—l(E(O 2 QO)) < 77211-1(E)f”4 .

For y € S"7" and k > 1 we define the path y_, = y, | 71, 7] (see 2.1).

We will now choose a sequence o, 0,.... of positive numbers with
0o = 01 > 0o > ... Inductively as follows. Suppose that ¢, , is chosen,
k>1. For 0€(0,0,_;) we set

I, o) = {mueE y B, )}.

Then

(5.21) MLk, o)) = m,_, (E(k ; 9)\kil_’Jl B, 9:-)) (log lk_)“"

Tk_1
> m,_ ( o)\ u B e») s

By the definition of the sets E(k, 0) every path in fI'(k, o) joins the
sets B"b,9) and CB"(b, 0,_,), hence

O —n
(5.22) M(fI'(k ,0) < o,_ 1(100« “Q 1)1 .
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Since f is in the class F(c,p). we have by [4, 3.2]
(5.23) M(I(k ) < Ko(f)e(—r)M(fT(k , 0)) -

Combining (5.21) — (5.23) we obtain
k—1

(5.24) My 1 (E(k o U E@, Qi)>
i=0

0 —n
< w, Ko(f)e(l—2)ropoln 170 6D (log ~"‘—‘3>1 .
)

We choose o = gr such that the right hand side of (5.24) equals
mn—l(E)/2k+2'
It follows that

Or_1 i 2 (k--1) (n—1)
(5.25) - gexp<x(§ Jk=1,2,...,

Ok

<

where x is a positive constant which does not depend on k. From (5.25)
we get

92\ Vi -1) ~1
(5.26) lim g > o, [exp (a/(l— (—?;) ))} >0.
k>

On the other hand,
'nn-l ( U E(k b 9’*)) S ”‘Ln——l(E)/z
k=0
by (5.24) and by the choice of ox, k= 0,1,2, ... Hence we may choose

yeEE UEk. o).
k=0
By the definition of the sets E(k, gx) we have f(ry) € Bb, or) . But

Ok
b — lim f(ty) which contradicts (5.26). The theorem ix proved.
t-—>1

5.27. Remark. It follows from [6, 2.3] that for a quasiregular mapping
f:B*—B".,n >3, which is a local homeomorphism we have
N(f, B"(1 — 6(1—1))\B"(r)) < c(l—7)' =", where 0 <4 <1 and ¢ < .
The proofs of 5.15 and 5.17 can be carried through by the use of this
type of estimate with 1—n replaced by —p,0 <p <n—1. This
makes the question whether the statements in 5.15 and 5.17 hold for
local homeomorphisms in the case » > 3 rather interesting.

University of Helsinki
Helsinki, Finland
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