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On the minimization of linear space automata

For an n-state generalized automaton (cf. [3]), the state space is 1,he

z-dimensional real vector space .8" of z-dimensional rou' vectors, aird
the transition matrices c&n be considered as linear mappings frorn Rtu
into itself. Instead of generalized automata, it, is natural to eonsider linear
space automata, where -8" is replaced bv an arbitrarv finite or infinite
climensiotral linear space 7 over the field -B of real numbers. and the
final vector is replaced b). a liirear futrction from T into B. Finite dimen-
sional linear spacc' automata aceept exactlv the same l:rnguages as finite
probabilistic automata.

X'or anv given linear space automatol u'ith a fixed ititial vector. u.e
consider the problem, how a minimal linear space ilutomatoir generating
the same v'ord function can be effectivel.y constructed. Another solution
to the same problem has been given by Carlyle and Paz [l], u,'ho showed.
that a word function is generated by a gerreralized automatorr if and only
if it is of finite rank; the rank (if finite) is the nurnber of states in the mini-
mal generalized automaton generating the rvord function. rn our method,,
we define an equivalence relation over the state space and corrstruct a new
automaton by using the linear space of equir-alence classes. A connection
between tlro minimal linear space automata geirerating the same rvord
function is established. The miuirnizatiou problem is considered also in
a more gerreral form, rvhere linear. -space autourata clo not have arry fixed
initial vector. X'or a giveir automaton l. the task is to construct an auto-
maton A, of minimal dimelsion sucir tliat, for. ariv initiai r-ector of A,
there exists an equivalent initial vector of Jr. and converselv. The case
where A and .4, have to be probabilistic autornata. has been coirsidered
by- Starke l2l.

1. Preliminaries. Let I : {rr,.. ., rr} be a finite alphabet and W(I)
the set of all words over .I, including the empty u.ord l. The length of
a u,ord P is denoted by lg(P). Let -E be the field of real numbers and
,8" the real linear space of z-tuples (ar , . . . , an) where a; e R. For
any linear space V, we use the notations dimZ and, Oy for the d.imen-
sion of Y and. the zero vector of V, respectively.
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Definition. A li,near space automaton (\.s.a) over the alphabet 1 is an

ordered quadruple

A : (Y, {M("r), . . ., M(x*)), n,f)

where 7 is a linear space (state space) over -8, M(rt) is a linear mapping
from 7 into V('i:1,...,k),ne V $niti,al,aector), and. / is alinear
function from V into R (final function).

If dimZ is finite, tlnen A is called a fi,ni,te d'i'mens'ional linear space

automaton. Let ilI(l) be the identity mapping in V. For each word
P : Ut. . . y" (yi e I), we define

II(P) : M(yr)''' t[(y") .

Thus, M(P) is a linear mapping in V. The image of any vector X e V
under the mapping LI(P) is denoted by XilI(P).

Let 11 be a realnumber. We saythat alinear space automaton A accepts

the language

L(A, rt) : {P € W(I) I f@M(P)) > rt}

with the cut-point rl.
An z-state generalized automaton can be rervritten as a liuear space

automaton when the state set is replaced by .B" and the final vector is

considered as the corresponding linear function.

Theorem 7. If A: (V,{M("r),...,M(r*)),n,f) is a fi,ni,te d,imen-

si,onal, llinear space automaton,, then the language L(A , q) is accepted, by a

fini,te pr obabili,stic automaton.

Proof. Let dimV:n, andlet U:{t-r,...,U*) beabasis of V.

Let fu@) be the matrix of )lI(r) rvith respect to the basis L'(a : I , . ,

k). Lzt n:atUra...!a^(J,, and define ):@r, .,rI,). Finall-v,

tet ? : Vturl,...,f(u^))'. Then .4 : (s",{x(..r),..., ii(*r)},i,i)
is an n-state generalized automaton rvith the state set ,S,. Clearl;r, for
any word P,

(1) f(nlur(P)7:ärtq7i.
Ifence, L(A, rl) : L(Å, 11) for any T, which implies the t'heorem (cf. l3l).

2. Theorems concerning minimization. Trvo linear space automata
A; : (Vi,{M{rr),. . ., Mi(r*)},ntf;),i : 1,2, are called equiaalent if,
for all P eWg),
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fr(nrMr(P) ) : fr(nrMr(P) ) .

If dim 7, is finite and if dim V2 ) dim V, for every Ls.a 24., equivalent
to Ar, then we say that /, is in mi,ni,mal form. Brom the equation (1)

we see that A und, Å are equivalent.
In what follows, we consider an arbitrary l.s.a A: (V,{M(rr),...,

M(nh)|,n,f) and, construct from it another l.s.a ,4, equivalent to A.
Let Y1 be the set of all finite linear combinations of vectors nM(P),

P e Wg). Then 7, is a linear space. If X € Vr, then clearly, XMe) e Vr
for any word P e Wg). Consequently, (Yr, {M(rr), . . ., M(rn)|, n, f)
is a linear space automaton equivalent to A. B:u;t, in general, it is not in
minimal form. Now, we define an equivalence relation over V1 as follows.
Let X and I be arbitrary vectors in V1. Then, define

X:y if and only if f(XM(P)):f(y1W(P)) for all P?WQ).
Clearly, : is an equivalence relation. Furthermore, it is right inaariant,
i.e., if X: Y, then Xl[(P): YM(P) for any word P eWQ). X'or
each X € I/., we denote by [X] the equivalence class to rrhich X belongs.
The sum of two classes and the produet of a real number and a class are
defined as follows:

txl + [r] : LX+YI ,

alXl : laXl .

These operations are well-defined, since if ;g : X. and Y : Yr, then
X + Y : Xr + I, and aX : aXr. Ifere, we have used the fact that
/ is a linear function and every M(r) is a linear mapping in Vr.

It is easy to check that the equivalence classes form a linear space over
-E with respect to the above operations. The zero vector is the class [Or]
(or,: ov). For examPle,

We denote this linear space by Vr,l -. For each
fine an operation Mr(*) among the equivalence

lX)Mr(r) : IXM(r)) .

Mr(x) is well-defined, since if X: I, then X-tll(r): YM(r), because
: is right invariant. It is easy to verify that

(atxl f blYl) Mr(r): a(lXlMr(r) ) + b(lY)LIr(r)).

Consequently, Mr(r) is a linear mapping from V1l: into itself. For each
class [X], we define

letter re I. \\-enou,de-
classes:
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å(txl) - f(x).
Therr, f, is r,r,ell-defined" ancl it is a lincar ftlnctiotr from Vrl- into R.

By the a'bove considerations,

At : fi' rl,:=, { fuIr(r:l) : . . ., llr(;rr)}, lr7, fr)

is & lilrear space automatotr. Iit adclitioll.

lnlIIr(P) :: lttl(P)l

for any r,vorcl P € trVU). Ifence, we have, for all P e W'V),

fr{lnl Å['(P) ) - f(n Å'I (P) ) .

Herrce, we ha,ve r:stablishecl the fotr]orvirrg result.

Theorem 2. ,4 l"i,near spo,ce automaton A: (Y,{XI(xr),...,11('tp)),
n,f) i,s equiualent to the li,near s'paae automaton Ar: (Vrf :,{Mt(*r) , . . . ,

Mr(rn)j, lnl, fr) .

Remark. Let, X € trz, ho arbitlarr'. Then [X]-111(P) : l.f,J(P)l for
all P e WQ). 'Ihus, atr3' vet'ioi X e I,/L is equivalent ,to the \-ectol'

LXleVLl:, i.e., f(XM(P) ) :Å(tfll/'(P) ) for anr- rl'orcl P. Heuce,

if Vt:'[i, thetr, for aur- lectoL X of A, thet'e e'xists tril eqrrivaletrt
vector: af Ar, and corrver-"e1)- (cf. Tireolem T).

Theorem 3. A l,ineat' space q,utonr«tott, A: (l', {J/(rr) ,..', -}1(.u*)},

n,f) is equi,ualent to a fini,te dimensi,otta,l lineur spuce cttLtontedon, i.f curl onl.y

i,f dim Vrl: is finite.
Proof . By Theorern 2, thc condition is sufTicient. Assume that ,4 is

equivalerit to the l.s.a

3 : (ll-,iil(rr), . . ., ly'(ro)\, §, V)

where cliru II' is finite. Let A, be as in Theorem 2' Assttrne tliat [fr] . . . . .

[X,] are liirearlv itrdepetrdent equivalence classes. Sitrce everv vectol -f,i

belongs to Yr, it can be .iyritten as a finite lineal combilation of some

vectors ilI(P). Consequently, there exist rvorcls P, , . . . . P, such that,
for each i: I ,...,Lc,

(2) Y,: io,,nMg) .
j:r

Since .4 and B are equivalent. 'we have

(3) q(fl{(Pf)):f(nilI(P1P))
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for each i:1,...,r and for each word P etyg). Using (2) and (3)
r.ve fincl that

f(xil(P) ) : 2a,if@tr(PiP) )j:r
f

: )u,iqgN(PjP))j:t

: p ( ( ia;1!t,(P)) rY(P) ) .

j:r

Consequentl5r, for every rvord P,

(4) v(YN(P)) : f(xil(P) ),
where rve have denoted

l,;: .la;1pj\-(p;) .

Let us slrory that 7'1,. .., \'u trre linetrrlv inclependent r-c,ctors of W.
Assume that

ctYr 1... lc*Y.: Ow.

This irnplies that, for every word P,

q(crYrN(P) + .. . + c"Y,){(P) ) : 0 .

In other words,

arp(YtN(P) ) + "' *c"ct(]',,.\(P) ) : o .

Using the equation (4), this carr be l-r'itten iii the folm

"f( 
(crf, - " ' -- c,,-I,) JI(P) ) : ti .

But this means that

[cr,I1 = "' = c,I,] : l()r) ,

because P was an arbitrary u.ord. Couseqneirtll-.

crtxll + .. . - c.[I,] : lor,1.

Tlris is possible only if c1 : , . , : cu : 0, because the classes [X;] were
linearly independent. Thus, we get the result that Yr, . . . , Yu are linearly
independent. This implies that, if dini Zr/: is infinite, so is dimW,
because u carr be chosen as large as rye ryant,. But this is a contradiction.
Our theorem is thus proved.
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Corollary. ff dim Vrl: i,sfinite,thenthelanguage L(A,q) is accepted,

by a finite probabi,li,sti,c automaton for any cut-ytoint 11.

Theorem 4. If dim7rl: is finite, then the aboue constructeil, linear
space automaton A, 'i,s 'in mi,ni,mal, form.

Proof. Let B be as in the proof of Theorem 3. Choose u. : dim Vtl:
in this proof. Since dim W 2 u, we obtain the desired result.

Thus, we have seen that, if / is a finite dimensional l.s.a, then ^4,
is equivalent to it and, furthermore, A, is in minimal form. A, can be
converted to a generalized automaton according to the proofofTheorem 1.

3. Construction of a minimal linear space automaton. In this section,
we shall show, how the l.s.a Ar considered above can be constructed
effectively from .4. We assume that A is rewritten as a generalized auto-
maton

A - (V , {M (*r), , M(*r)I, n,f)

where V : R", eae]l M(xi) is an nxn matrix, tt is a row vector,
and / is written as a linear function. The basis of V, can be determined,
because it is well-known that it suffices to consider vectors 2.11(P) rvith
lg(P) <h-1, only. Let Zr:nXI(Pt),...,2,:nM(P,) be a basis,
thus obtained. I{ence, lg(P;) < n- | (i:1,...,r). Vectors lZr),...,
lZ,l span the space Vrl-. lYe want to form a basis of V1l: from these
vectors. fn order to examine linear independence, lvrite the equation

or, in another form,

This equation

(6)

larZ, I " ' + e,Z,)- [(0, . . . ,0)]

holds if and only if, for every word P e If g),

f ( (orzr*

Denote Z : atZrl . .. ! a,2,. X'or any word P e IYQ), the vector
ZM(P) is a linear combination of vectors ZM(Q) ri,ith lg(Q) < r - l.
This implies that (6) holds if and only if it holds for everv Q *'ith lg(0) <
r - l. Let these Q's be Qr,..., Q". Thus, (5) holds if and only if, for
each'i,:1,...,§,

(5)

(7) erf (zrtl(Q) ) + * a,F(Z,M(Q) ) - 0

Here, the numbers frL,

can be calculated.
, a, are unknowr, and the coefficients f (ZiM(Q,))
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lr,r,u(e,)

l,,r,u('")

(8)
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Let m be the largest number such that at least one determinant with
??3 rows, formed from the coefficient matrix,

) ' ' f(z,M(Qr)

) . . f(z,Lyl(Qr)

f (z,tl (0,)

is different from zero. (It m : r, (7) has only the trivial solution a1: ' ' '
: ar :0, so that the classes fZ;l are linearly independent.) Let 2r,,. . . ,
Z4 be lhe Zi-yectots that occur in the columns of this determinant.
Tlnen lZ;,f ,...,fZr*f form a basis of Vrl-. Other [Z;]-classes can be

determined from the equations (7) in terms of the classes lZ1]. It may
happen that all coefficients of some o; eeual zero in the equations (7).

This reveals the fact that lZ;l equals [(0, . . . , 0)] .

Remark. The matrix (8) is one of the matrices from which the rank
of the word function f(nM(P) ) is determined (cf. [t]).

fn order to determine the linear mappings Mr(rt) (i: I, ...,k),
is sufficient to calculate fZafMr(r;) for each t and d. This is done
follows:

ir
AS

The coefficients rhi can be calculated for each x e I. The matrix
Mr(r) withrespect to the basis [Zi,], ...,12,^) is fu1r1 : @,i).
Next, we determine [z]:

j:1

vector corresponding to f, is

fr: (f(2,,), ',f(Z',,) )'
fn this manner, we obtain the minimal generalized

(§-, fur@r), .. . ,fur@n), hr,ir) equivalent to the given
maton A.

o*). Tire column

-- t> bqzfl:- )u,,lr,l - ia,ilz,i1
J:l J:l j:l

}b,lzi)
J:l

of

automaton Ar -
generalized auto-

Example. Let A be the three-state probabilistic automaton A :
(Sr,{M(r)}, (0, 0, l), 1t, t, 0;t; olrer {*) where
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Here, V _-- -83

f((n,b,c) )_- a,

As a basis of

lrt (x)

anC the

+b for

z1 :-

Zu2-

ze:

[r,'z Ll2 (] 
Il,,l

l,,l
Lr/* 1, i2 ri 4 

J

final function is deterininecl
everv (u,, b, e) € /13. The basis

nf,I (r) : (L I 4, 1 
,2, 

l,i 4),

ntrI(*) - (ell6. 318, t l6),

by the conditiotr
of Vr is

have been elirninated)
(the denomfurators

lct,r{ 5fio 
- 

0,

L6a, + 20a, ]- 21ou - 0,

804, -l- 84an n- 85cr, - 0.

Lzr) slzr) + aLzr) - [(r), (J, 0)] .

Vrl : lve can choose, {'r:r ins{,ance, lZrl arncl lZr). Tiren

l7t)frtr(x) == lZr),

Flrlrcr..

ärJtomatou cqnivtrle.ltt to A isConsequentlv, thc mitiinial
Å, : (sr, {fur(r)}, frr, ir).

Sirrce Vr: Rs, we knou. tltat al.so the l,ectcrs Zr: (I.(-t,t)), Zz:
(0, 1, 0), Zs : (0, 0, l) form a basis of Vr. Fot' these vectors, the
corresponding calculations are easier, arrd it is seen that lZr) and LZrT
form a basis of Vr,l-. X'or tire resulting minimal gerreralized automaton,

t,at :l]rc ,i-] o, : (0, r),.4 : (r.o) .

4. On difterent minimal forms. We prove first the follov.ing theorem.

()

-Ll1
ll .^

I t-:--
5l4l " "'r

genel"alizeri

r.0
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TheOrem 5. For any l,inear space automaton A ouer the one-letter ulpha-

bet {r}, there eri,sts an equi,ualent general'ized, automaton i,n minirnal form
such that the i,ni,ti,al uector'is (1,0,...,0), und, tlte transi,tion m,atrir is of
the form

I
Io
lo,

10"0
(il 0

(e)

(10)

;,;
C6Z G,B

I
4,,,

Proof. We may assume that A is a generalized automatorr (R*,

{M(r)),n,f) 'w'hich is already in minimal forrn. If [r]: [(0,..',0)],
u,e choose the I X I matrix (0). Assume thai ln) *l(0,...,0)1. Since

A is in minimal form, it follorvs that ZL:n,Zz:nM(r),..-,2*:
nM(r*-r) form a basis of -E- and the, ciasses lZÅ (i, - 1,. ..,m) form
a basis of R-1:. Nou x.e have, for eac:li i - 1.. ..,ffi - l,

Note that the rrumbers 0; äto the coefficients of the characteristic poly-
nomial of M(r):a,{ arL +''' + a*A -r - iY. }'rom the equations

(10) lve see that the matrix fur1*1 .qtuls the matrix (9). The row vector
corresponding to [z] is (1, 0, . . . , 0). Thus, the theorern hold.s true.

If, for our miuimal A, the row sulns iir ill(t) equal 1, then ar + ''' +
aa : I in the matrix (9), because ,4/(a) satisfies its characteristic equation
and the row sums in every M(r;) eqtral 1.

X'or a given linear space automatou. the mitriilal geuelalized automaton
is not unique. Bven in the above ruethocl. the resrilt clepends on the choice

of the basis. fn rvhat follos's, rr-e e-"tal:lish a connectiou betrveen different
minimal aurtomata equivalent to a giveir l.*.a.

We say that, tv'o generalized alltornati't

, JI(rp)i, -,f)
, §("t'o)\, §, gr)

ate similar, if there exists a nonsingular tL I iii matrix C such that, for
each 'i,:L,...,k,

§ : nC,N(r;) : c*|tur(ri)C, v : C-Lf

(/ and g are written as column vectors).
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ft is easy to see that, for different bases, the above method gives mini-
mal forms which are similar. More generally, we have (see also [I])

Theorem 6. Two general,i,zed, automata A and, B ,i,n minim,al form are
equiaalent i,f and, only i,f they are si,mi,l,ar.

Proof. The condition is sufficient, since, clearly, 1[(P) : C-LM(P)C
whenever P eWQ). We use the symbol 7 instead of R". The space
VL and the relation : for A and B are denoted, respectively, by
Yr(A), :, and VIB), :r. Since ^4 and B are in minimal form, it
follows that Vt(A): VL@): Y and dim Vl:n: dim Vl:s: n.
Let

be a basis of Y . Then the classes lZ,lo $ _-= 1,

V I - o. It is easy to show that

is a basis of V l-r. Let n e I be arbitrary. Then

j:L

J:l

Consider the set of equations (7)
where i is arbitrarily fixed. The
solution of the set, i.e.,

(11) a,rf(Zrlt(q )+ .

satisfy the equations

(12) bin(UrN(Q) ) +

, %) form a basis of

?L}

for the vectors Zr, . . . , Zn, ZiM (r),
numbers aij (j : 1, . . . , n) form a

. + ai"f(z"ltt(q ) - f(zJ{(r)1vl(Qi) )- 0

where j:1,..., s. On the other hand, the coefficients irr (I1) and (12)
are the same, because L and B ate equivalent. Consequently, we have

(a,i): (bt), i.e., .titr("): lfrt*1. Since Z;tI(r):)a;121 a:nd. U;N(r):
)b4U1 we conclude that

(13)

wheretherowsof C and D are,respectively,2r,...,2" and U1,...,Un.

L2
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As in connection with (11) and (12),if is verified that the components
of fr, and ä, are obtained from the same set of equations of the form
(7). Hence fre: ås, which implies nC-L : §D*1. Thus, § : nC-rD.
Since frr(z) : frr(r), the equations (13) give -l/(z) : (C-LD)-rM(r)C-rD
whenever r e I. Finally, Cl: DV, which gives p: (C-tD)-f. Con-
sequently, A and B are similar.

5. Minimization of linear space automata having no fixeil initial vector.
In this section, we consider finite dimensional linear space automata A
having no fixed initial vector. If an initial vector z is chosen for A,
then the resulting l.s.a is denoted by (A, z). Two linear space automata
A and. B are called strongly equi,aalent, if, for every vector n of A, there
exists a vector P of B such that (4, n) and (8, P) are equivalent,
and conversely. We say that ,4 is in minimal form, if the dimension of
its state space does not exceed the dimension of the state space of any
l.s.a strongly equivalent to A.

Consider an arbitrary l.s.a A: (Y,{M(rcr),..., M(a")},f), where /
is the final function. The equivalence relation :, the mappings Mr(r;)
(,i, : l, . . . ,l§) and the function f, are defined as before. The only dif-
ference is that : is defined over the whole space V, instead of VL.

In this manner, rrye obtain the linear space automaton

A, : (Y l:, {Mr(*r), . . ., Mr@il}, f)
for which t'he following theorem holds.

Theorem 7. The l,inear space automaton AL is strongly equiual,ent to
the l'inear space ctutomaton A. Iurthermore, A, is in mi,nimal form.

Proof. A and A1 are stronglS- equivalent. since. for any X €
(4, X) and (Ar,lXl) are equir-alent. In order to shot that -4, is
minimal form, denote first ru: dim 7,i- and let B: (Iy,{tr[(rr),...,
N(a")), q) be any l.s.a stronglv equivalent to Ar. Then B is strongly
equivalent to A, too. Let [Xr], . . . , [I,] ba lineallr- independent vectors
of Vl:, andlet 2r,. . ., Z. beabasis of '[. Hence.foreach,i, : l, . . .,%,

13

V,
in

(14)

(4, Zi) and" (8, U) are

zj

'n), there exists a vector LI j € W such that
equivalent, i.e . ,

)n,,
J:1

(15) f (ziYI(P) ) - v(u iIi(P) )

for any \,\,'ord. P eWg).
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We show that the vectors

(16) Y,:ia,1L1 (i: 1. ...,u)
j:r

are linearlv indepondent vectors of W. Hence, assume that

hYr*,.,{c,Y*-Ov.
Then, for every ,rord P e WQ),

(17) crq(YrN(P) )+"' 1c"p(v,,Ir(P) ):().
On the other hand, using ther equations (14)-(16), it is rerified that
q(YN(P)):f(XJ[(P)) (i: l. . . ., ?,). Therefore, (17) gets the form

crf(XrM(P) )'''' -- c,,/(-X,rl1(P) ) : 0.

which gives

,f( (.rIr -r- ' ' ' 'i- c"X,,) M(P) ) : O

for every lr-ord P e If(I). Consequeritll',

[orX,*"'-c"X"]:lorl
fn other rvords, we have

cr[Ir] ' ''' - c,,[^Y,,]: LOrl,

which is possible orrly if ct: "' : cu:0. This implies that Y1,..., Yu

are linearly independetit. Thus. clim II'2.tc: dim7l:. The proof is
now complete.

If in our previous example the initial vectols are omittecl from L and

Är, then the resulting linear space automata are -strouglv equivalent,
because Vt: V.

Note that 7/: does not contain any equivalent vectors. Namely, if
fr(lxlMLe) ) :/,(iyl M'.(P) ) for all P eWQ), then, by the definitions,

f(XIVI(P)):f(YM(P) ) l.hich says that txl: lIl. Using the termino-
logy of Starke [2], this means that ,4, is stronglv reduced (stark reduziert,).

Thus, our theorem savs that ever,1- Ls.a (probabilistic automaton) .4 has

a strongly reduced l.s.a (g.'treraliz:d automatou) wiriclt is equivalent to
,4. As Starke [2] has shot-n, this does not hold. if "1 and .4, have to be

probabilistic automata.
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