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On the minimization of linear space automata

For an n-state generalized automaton (cf. [3]), the state space is the
n-dimensional real vector space R" of n-dimensional row vectors, and
the transition matrices can be considered as licear mappings from R"
into itself. Instead of generalized automata, it is natural to consider linear
space automata, where R™ is replacad by an arbitrary finite or infinite
dimensional linear space ¥V over the field R of real numbers. and the
final vector is replaced by a linear function from ¥V into R. Finite dimen-
sional linear space automata accept exactly the same languages as finite
probabilistic automata.

For any given linear space automaton with a fixed initial vector, we
consider the problem, how a minimal linear space automaton generating
the same word function can be effectively constructed. Another solution
to the same problem has been given by Carlyle and Paz [1], who showed
that a word function is generated by a generalized automaton if and only
if it is of finite rank; the rank (if finite) is the number of states in the mini-
mal generalized automaton generating the word function. In our method,
we define an equivalence relation over the state space and construct a new
automaton by using the linear space of equivalence classes. A connection
between two minimal linear space automata generating the same word
fanction is established. The minimization problem is considered also in
a more general form, where linear space automata do not have any fixed
initial vector. For a given automaton 4. tlie task is to construct an auto-
maton A; of minimal dimension such that, for any initial vector of A4,
there exists an equivalent initial vector of ;. and conversely. The case
where 4 and A4; have to be probabilistic automata, has been coasidered
by Starke [2].

1. Preliminaries. Let I = {x;..... x} be a finite alphabet and W([)
the set of all words over I, including the empty word 2. The length of
a word P is denoted by Ig(P). Lot R be the field of real numbers and
R* the real linear space of n-tuples (a,,...,a,) where a; € R. For
any linear space V, we use the notations dim¥V and 0, for the dimen-
sion of V and the zero vector of ¥V, respectively.
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Definition. A linear space automaton (1.s.a) over the alphabet I is an
ordered quadruple

A=V, {M),..., M)}, 7,[)

where V is a linear space (state space) over R, M(x;) is a linear mapping
from V into V(e=1,...,k),n €V (initial vector), and f is a linear
function from V into R (final function).

If dimV is finite, then 4 is called a finite dimensional linear space
automaton. Let M(1) be the identity mapping in V. For each word
P =y, yn(y: €I), we define

M(P) = M(y,) -+ - M(y) .

Thus, M(P) is a linear mapping in V. The image of any vector X € V
under the mapping M(P) is denoted by XM(P).

Let 5 be a real number. We say that a linear space automaton A accepts
the language

L(4,n) ={P € W) | f(=x}(P)) > n}

with the cut-point 7.

An n-state generalized automaton can be rewritten as a linear space
automaton when the state set is replaced by R" and the final vector is
considered as the corresponding linear function.

Theorem 1. If A = (V,{M(x,), ..., M(x)}, = ,f) is a finite dimen-
sional linear space automaton, then the language L(A ,n) s accepted by a
[fimite probabilistic automaton.

Proof. Let dim V =n, and let U = {U,.....U,} be a basis of V.
Let M(x,») be the matrix of M(x;) with respect tothebasis U'(z =1,...,
k). Let n=aU; + -+ + a,U,, and define 7 = (a;.....a,. Finally,
let F=(f(Uy),...,f(UN". Then A = (Su{J(e)).....()}7,f)

is an n-state generalized automaton with the state set S,. Clearly, for
any word P,

A

(1) faMP)) =7 M(P)f.
Hence, L(4,7n) = L(ﬁ, n) for any #, which implies the theorem (cf. [3]).
2. Theorems concerning minimization. Two linear space automata

Ai = (Vi, {Mi(2y) , . .., Mi(xi)}, i, fi), 0 = 1,2, are called equivalent if,
for all P € W(I),
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Jilm M (P) ) = fo(moMy(P) ) .

If dim V; is finite and if dim V, = dim V; for every l.s.a 4, equivalent
to 4,, then we say that A, is in minimal form. From the equation (1)
we see that A4 and A4 are equivalent.

In what follows, we consider an arbitrary l.s.a 4 = (V,{M(z,), ...,
M(ar)}, 7, f) and construct from it another l.s.a A4; equivalent to A.

Let V; be the set of all finite linear combinations of vectors M (P),
P € W(I). Then V, isalinear space. If X € V;, then clearly, X M(P) € V,
for any word P € W(I). Consequently, (Vy,{M(x),..., M)}, «,f)
is a linear space automaton equivalent to A. But, in general, it is not in
minimal form. Now, we define an equivalence relation over ¥, as follows.
Let X and Y be arbitrary vectors in V;. Then, define

X =Y if and only if f(XM(P))=f(YM(P)) for all P € W().
Clearly, = is an equivalence relation. Furthermore, it is right invariant,
ie., if X=1Y, then XM(P)= YM(P) for any word P € W(I). For
each X € V;, we denote by [X] the equivalence class to which X belongs.
The sum of two classes and the product of a real number and a class are
defined as follows:

[X] + [Y] = [X+7¥],
a[X] = [aX].
These operations are well-defined, since if X = X, and Y = Y,, then
X+ Y=X,+7Y, and aX =aX,. Here, we have used the fact that
f is a linear function and every M(x;) is a linear mapping in V.
It is easy to check that the equivalence classes form a linear space over
R with respect to the above operations. The zero vector is the class [0}]
(Oy, = Oy). For example,
(@)[X] = [(ab)X] = [a(bX)] = a[bX] = a(b[X])
(X + (=DA] = [X + (=1)X] = [0,] .
We denote this linear space by V;/=. For each letter x € I, we now de-
fine an operation M,(x) among the equivalence classes:
[X1Mi(x) = [XM(2)] .
M, (z) is well-defined, since if X = Y, then XM(x) = YM(x), because
= is right invariant. It is easy to verify that
(@[ X] 4 0[Y]) My(x) = a([X]M;(x) ) + b([Y]M;(2) ) -

Consequently, M,(x) is a linear mapping from V;/= into itself. For each
class [X], we define
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HIXTD) = f(X)

Then, f, is well-defined and it is a lincar function from V;/= into R.
By the above coasiderations,

Ay = (V= {My(x)) . ..., Mi(xx)}, [7]. f)
is a linear space automaton. In addition,
[71M,(P) = [xM(P)]
for any word P € W([). Hence, we have, for all P € TV(I),
Flla] My(PY) = flx M(P)) .

Hence, we have established the following result.

Theorem 2. A linear space automaton A = (V,{M(xy), ..., M(x)},
7, f) is equivalent to the linear space automaton Ay = (Vy/=, {My(x;) . .. ..
M, (x)}s [, f1) -

Remark. Lot X € V, be arbitrary. Then [X]M(P) = [XJ(P)] for
all P € W(I). Thus, any vector X €} is equivalent ‘to the vector
[X] € V=, ic.. f(XMP)) = fL[X]I(P)) for any word P. Hence,
if V,= V. then, for any vector X of A4, there exists an equivalent
vector of A;. and conversely (cf. Theorem 7).

Theorem 3. A lincar space automaton A = (V,{3M(xy) .. ... MH(w)},
w, f) is equivalent to a finite dimensional linear space automaton if and only
if dim Vy/== 1is finite.

Proof. By Theorem 2. the condition is sufficient. Assume that A s
equivalent to the lLs.a

B = (W,{N@),...,N@}, B, p)

where dim 11" isfinite. Let A; be asin Theorem 2. Assume that [X ], ...,

[X.] are linearly independent equivalence classes. Since every vector X
belongs to V,, it can be written as a finite linear combination of some

vectors aM(P). Consequently, there exist words P;..... P, such that,
for each 7=1....,u.
(2) Xi = zaijnﬂ[(Pj) .

j=1

Since A and B are equivalent, we have

(3) ¢(BN(P;P)) = f(zM (P;P) )
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for each j=1,...,» and for each word P € W(I). Using (2) and (3)
we find that

f(X:M(P)) = iaf,-ﬂnM (PiP))

j=1

= Z wip (PN (P;P) )

— $c,,m ) ) N(P)) .

Consequently, for every word P,

(4) p(YiN(P)) = f(XM(P)),

where we have denoted

Let us show that 1Y,,..., Y, are linearly independent vectors of W.
Assume that
Y, + -+ Y= 0Oy
This implies that, for every word P,
PE T N(P) &« + e, Y. N(P)) = 0.
In other words,
Ge(YINP)) + -+ Leg(Y N(P)) =0,
Using the equation (4), this can be written in the form
fie Xy — - =, X)) M(P)) =0,
But this means that
[eg Xy — -+ — e Xu] = [0)].
because P was an arbitrary word. Consequently,
o[Xq] + - = e Xu] = [0,].

This is possible only if ¢; = -+ = ¢, = 0, because the classes [X;] were
linearly independent. Thus, we get the result that Yy, ..., Y. are linearly
independent. This implies that, if dim V,/= is infinite, so is dim W,
because % can be chosen as large as we want. But this is a contradiction.
Our theorem is thus proved.
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Corollary. If dim V,/= is finite, then the language L(A ,7n) tis accepted
by a finite probabilistic automaton for any cut-point 1.

Theorem 4. If dim V,/= 1s finite, then the above constructed linear
space automaton A, is in minimal form.

Proof. Let B be as in the proof of Theorem 3. Choose w = dim V,/=
in this proof. Since dim W = u, we obtain the desired result.

Thus, we have seen that, if 4 is a finite dimensional l.s.a, then A4,
is equivalent to it and, furthermore, A4, is in minimal form. A4; can be
converted to a generalized automaton according to the proof of Theorem 1.

3. Construction of a minimal linear space automaton. In this section,
we shall show, how the l.s.a 4; considered above can be constructed
effectively from A. We assume that A4 is rewritten as a generalized auto-
maton

A=V, {Mx),...,Ma)},nf)

where V = R", each M(z;) is an nXn matrix, x is a row vector,
and f is written as a linear function. The basis of ¥, can be determined,
because it is well-known that it suffices to consider vectors =M (P) with
lg(P) =n — 1, only. Let Z; =aM(P,),...,Z = aM(P,) bz a basis,
thus obtained. Hence, 1g(P:) =<n — 1 (¢ =1,...,r). Vectors [Z],...,
[Z:] span the space V;/=. We want to form a basis of V,/= from these
vectors. In order to examine linear independence, write the equation

®) 4[Z,] + -+ alZ] = [(0. ..., 0)]
or, in another form,
[0, %, + - + aZ]=[0,...,0)].
This equation holds if and only if, for every word P € W(I),
(6) f((@Z+ -+ aZ)MP))=0.

Denote Z = a;Z;+ -+ + a.Z,. For any word P € IW(I), the vector
ZM(P) is a linear combination of vectors ZM(Q) with Ig(Q) <r — 1.
This implies that (6) holds if and only if it holds for every @ with 1g(Q) =<

r — 1. Let these @'s be @, ..., Qs Thus, (5) holds if and only if, for
each 1 =1,...,s,

(7) o f(ZM(@)) + - + & F(Z,M(Q:)) = 0.

Here, the numbers ay, . . ., a, are unknown, and the coefficients f(Z;M(Q:))

can be calculated.
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Let m be the largest number such that at least one determinant with
m rows, formed from the coefficient matrix,

fZM(@)) - - - fZMQ))

) FZM@Q)) - - fZMQ))

JZM@)) - - - fIZM(Q))

is different from zero. (If m = r, (7) has only the trivial solution a; = - - -
= a, = 0, so that the classes [Z] are linearly independent.) Let Z;,. ..,
Zi,, be the Z;-vectors that occur in the columns of this determinant.
Then [Z:],...,[Z,] form a basis of V;/=. Other [Z:]-classes can be
determined from the equations (7) in terms of the classes [Z;]. It may
happen that all coefficients of some a; equal zero in the equations (7).
This reveals the fact that [Z;] equals [(0,...,0)].

Remark. The matrix (8) is one of the matrices from which the rank
of the word function f(zM(P)) is determined (cf. [1]).

In order to determine the linear mappings M;(x:) ¢ =1,...,k), it
is sufficient to calculate [Zi]M,(x:) for each ¢ and ¢. This is done as
follows:

(Z(0) = [Z(0) = (Y0751 = Sz = > ailZs).

The coefficients a; can be calculated for each x € I. The matrix of
M,(x) with respect to the basis [Z:]. ..., [Zi,] is Jﬁl(x) = (a).
Next, we determine [7]:

(7] = S{2] = Saiz).

The row vector corresponding to [7] is 7, = (@, ... .an). The column
vector corresponding to f; is

A=z . fZi))T

In this manner, we obtain the minimal generalized automaton ffl =
(S, My(2), . .., My(2x), 71, f;) equivalent to the given generalized auto-
maton A.

Example. Let A be the three-state probabilistic automaton 4 =
(S5, {M(x)}, (0,0, 1), (1, 1, 0)") over {z} where
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12 12 0o

M) = [3/4 1/4 0
1/4 12 1

Here, V = R?® and the final function is determined by the condition
f((a,b,¢c)) =a + b for every (a,b,c) € R3 The basis of V; is

Zy =7 =(0,0,1),
Zy = aM(x) = (1/4,1/2,1/4),
Zy = aM(z?) = (9/16. 3/8. 1/16).

sothat ¥ = 3 and V; = V = IB3. The cquations (7) are (the denominators
have been eliminated)
day + Say = 0,
16a, + 20a, + 21la; = 0,

80a; -+ 84a, + 85a; = 0.

Here, m = 2 and, therefore, dim V,/:= = 2. A solution of the equations
s H 1/
is a; =1, a9 = — 5, a3 = 4. Thus.

[Z1] — 3[Z,) + 4[Z3) = [(0,0.0)] .

As a basis of V;/= we can choose. for instance, [Z;] and [Z,]. Then
[Z,)M () = [Z,],
[Zo)M () = [Z] = — 51Z,) + §(Z,).
Hence.
A [0 1] . Lo .
ABES i!fl’,i 5ja] 1= (10 fi = (0347

Consequently, the minimal generalized automaton cquivalent to A is
fil = (8, {11}1(47")}: 7A‘1:f1)-

Sirce ¥V, = R3, we know that also the vectors Z; = (1,0, 0), Z, =
(0, 1, 0), Z; = (0, 0, 1) form a basis of F;. For these vectors, the
corresponding calculations are easier, and it is seen that [Z,] and [Z;]
form a basis of V;/=. For the resulting minimal generalized automaton,

- 0] . ; :
J_[l(.l) = {3/4 1/4] LTy = (0, 1),f1 = (1 U) .

4, On different minimal forms. We prove first the following theorem.
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Theorem 5. For any linear space automaton A over the one-letter alpha-
bet {x}, there exists an equivalent generalized automaton in minimal form

such that the initial vector is (1.0, ...,0), and the transition matrix is of
the form
0o 1 o 0
0 0 1 0
9)
o o o - - - 1
_al C&Q a‘3 ‘ ‘ N m ~

Proof. We may assume that 4 is a generalized automaton (B",
{M(x)}, @, f) which is already in minimal form. If [z] = [(0,...,0)],
we choose the 1 X 1 matrix (0). Assume that [z] s [(0,...,0)]. Since

A is in minimal form, it follows that Z, ==, Z, = mM(:c), i Lim =
aM(z™') form a basis of R™ and the classes [Z] (i = 1,...,m) form
a basis of R™/=. Now we have, for each ¢+ =1...., ,m— l

[ZM,(v) = [Z; 4],

(10) [Zn) My (x) = [7M(2™)] = [ZaZ] = Z(L,[Z]

Note that the numbers a@; are the coefficients of the characteristic poly-
nomial of M(z):a, + @A+ + a,A""" — A". From the equations
(10) we see that the matrix j\fl(a:) equals the matrix (9). The row vector
corresponding to [#] is (1,0,...,0). Thus, the theorem holds true.

If, for our minimal A4, the row sumsin JM(2) equal 1, then a; 4+ -+ +
@m = 1 in the matrix (9), because M (z) satisfies its characteristic equation
and the row sums in every M(a') equal 1.

For a given linear space automaton. the minimal generalized automaton
is not unique. Even in the above method. the result depends on the choice
of the basis. In what follows, we establish a counection between different
minimal automata equivalent to a given l=.a.

We say that two generalized automata

A= (R, {Mxy), ... M)} f)
B = (R, {N(xy). ..., A '1.) B, %)

are similar, if there exists a nonsingular »n < » matrix C such that, for
each 7=1,...,k,

B = aC, N(w:) = C1M(:)C, ¢ = C-If

(f and ¢ are written as column vectors).
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It is easy to see that, for different bases, the above method gives mini-
mal forms which are similar. More generally, we have (see also [1])

Theorem 6. Two generalized automata A and B in minimal form are
equivalent if and only if they are similar.

Proof. The condition is sufficient, since, clearly, N(P) = C-1M(P)C
whenever P € W(I). We use the symbol ¥V instead of R". The space
V, and the relation = for 4 and B are denoted, respectively, by
Vi(4), =, and V(B), =g. Since 4 and B are in minimal form, it
follows that V(4)=V(B)=7V and dim V/=,=dim V/=; = n.
Let

{Zi=aM@P)|i=1,...,n}

be a basis of V. Then the classes [Zi], (¢ =1,...,n) form a basis of
V|=4 It is easy to show that
{lUg | Ui = pN(Pi),i = 1,...,n}

is a basis of V/=j,. Let a €I be arbitrary. Then

[Z1.M,(@) = [ZM@) = > aslZ1,
j=1

[Uday(@) = [V )y = S bl U

where ¢ =1,...,n. This implies that Ml(x) = (a;) and Z\?l(x) = (by).
Consider the set of equations (7) for the vectors Z, ..., Z., Z;M(x),
where ¢ is arbitrarily fixed. The numbers a; (j=1,...,n) form a
solution of the set, i.e.,

(1) aaf(ZM(Q) )+ -+ + anf(ZaM(Q5) ) — f(Z:iM (2)M(Q5) ) = 0

where j=1,...,s. In the same way, the numbers b; (j=1,...,n)
satisfy the equations

(12)  buyp(UN(@)) + -+ + bing(LaN(Q)) ) — ¢(UN(@)N(Q;) ) = 0

where j = 1,...,s. On the other hand, the coefficients in (11) and (12)
are the same, because 4 and B are equivalent. Consequently, we have

(aij) = (by), i.e., Ml(x) = Zifl(x). Since ZM(x) = Ya;Z; and U:N(z) =
>b5U;, we conclude that
(13) M (z) = CM(z)0-, 7 = 7,0,
Ny@) = DN@)D, f = D ,
where the rows of C and D are, respectively, Z;, ..., Z, and U,,. .., U,.
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As in connection with (11) and (12), it is verified that the components
of 7, and 7, are obtained from the same set of equations of the form
(7). Hence 7z, = 7z, which implies 70! = gD-1. Thus, p = 2C-1D.
Since JM,(x) = N,(x), the equations (13) give N(z) = (C-LD)-M(x)C-1D
whenever x € I. Finally, Cf = D¢, which gives ¢ = (C-1D)7'f. Con-
sequently, 4 and B are similar.

5. Minimization of linear space automata having no fixed initial veetor.
In this section, we consider finite dimensional linear space automata 4
having no fixed initial vector. If an initial vector = is chosen for A4,
then the resulting l.s.a is denoted by (4, ). Two linear space automata
A and B are called strongly equivalent, if, for every vector & of A, there
exists a vector f of B such that (4,xn) and (B, p) are equivalent,
and conversely. We say that 4 is in menimal form, if the dimension of
its state space does not exceed the dimension of the state space of any
l.s.a strongly equivalent to A.

Consider an arbitrary ls.a 4 = (V,{M(x,), ..., M(x)},f), where f
is the final function. The equivalence relation =, the mappings M,(z;)
(¢=1,...,k) and the function f; are defined as before. The only dif-
ference is that = is defined over the whole space V, instead of V,.
In this manner, we obtain the linear space automaton

A] - (V/E’ {Ml(xl): R J”l(xk)}»fl)
for which the following theorem holds.

Theorem 7. The linear space automaton A, is strongly equivalent to
the linear space automaton A. Furthermore, A, is in minimal form.

Proof. A and A4; are strongly equivalent. since, for any X € V,
(4, X) and (4,,[X]) are equivalent. In order to show that A, is in
minimal form, denote first v = dim V/ = and let B = (W, {N(z,), ...,
N(xx)}, @) be any ls.a strongly equivalent to A4;,. Then B is strongly
equivalent to A4, too. Let [X;].....[X.] be linearly independent vectors
of V/=, andlet Z,, ..., Z, beabasisof J. Hence,foreach ¢ =1, ... u,

(14) X = zarij Zj .
j=1
For each Z;(j=1,...,n), there exists a vector U; € W such that
(4,7Z;) and (B, U;) are equivalent, i.e.,
(1) fZM(P)) = ¢(UiN(P))
for any word P € W(I).
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We show that the vectors

(16) Yi:ZaijL’j (L: 1,...,%)
j=1

J

are linearly independent vectors of W. Hence, assume that
Y+ Y= 0.
Then, for every word P € W(I),

(17) a@(YiN(P)) + -+ cp(YuN(P) ) = 0.

On the other hand, using the equations (14)—(16), it is verified that

(Y. NP)) = f(X;M(P)) (i =1.....u). Therefore, (17) gets the form
(X, H(P)) - — e f(XI(P)) = 0.

which gives
f( (CIXI ottt C‘uXu) J[(P) ) =

for every word P € II'(1). Consequently,

e X + - = e Xu] = [0y]
In other words, we have

G[X,] = — [N = [0

which is possible ouly if ¢; = «++ = ¢, = 0. This implies that Y;,..., Y.
are lincarly independent. Thus. dim W = w = dim V/=. The proof is
now complete.

If in our previous example the initial vectors are omitted from 4 and
ﬁl, then the resulting linear space automata are strongly equivalent,
because V; = V.

Note that V/= does not contain any equivalent vectors. Namely, if
FAUXIM(P)) = fi([Y] My (P)) for all P € W(I), then, by the definitions,
fI(XM(P)) = f(YM(P)) which says that [X] = [Y]. Using the termino-
logy of Starke [2]. this means that 4, is strongly reduced (stark reduziert).
Thus, our theorem says that every l.s.a (probabilistic automaton) A has
a strongly reduced l.s.a (generalized automaton) which is equivalent to
A. As Starke [2] has shown, this does not hold. if 4 and 4; have to be
probabilistic automata.

Department of Mathematics
University of Oulu, Finland
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