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EXISTENCE OF BOUNDED DIRICHLET FINITE
BIHARMONIC FUNCTIONS

In 1950 Virtanen [6] proved that if the Laplace equation Åu:0 on
an open Riemann surface R possesses a nonconstant Dirichlet finite
solution then it also possesses a nonconstant bounded Dirichlet finite solu-
tion. Ifere the Dirichlet integral Da(u) of. u is {u lgradu(z) lzilrd,y. Let
P(z)d,rd,y be a nonnegative Höld.er-continuous second-ord.er differential
on .E . In 1952 Ozawa [4] remarked that the phenomenon just mentioned-
is valid for the equation (/ - P)u: 0 if the Dirichlet integral is re-
placed by the energy integral Ep(u) : D^(u) I I ou(z)'P(z)d,rd,y . R,ecently

Nakai [2] proved that even the genuine phenomenon is also valid for the
equation (/ - P)u: 0 .

We assume lhat ),(z)d,ril,y is a strictly positive C2 second-order dif-
ferential on .8. We consider the equation

(r) /(X(z)-L Åu(z)) : s

or more generally

(2) (/ - Q@) Q,p1-t (A - P(z))u(z)) : o

where Q@)d,rd,y is similar to P(z)d,rdy. The solutions of Åu : 0 or
(/ - P)u:0 are also solutions of (I) or (2) and therefore it may be in-
teresting to see whether t'he Virtanen phenomenon continues to be valid.
for the equations (1) and (2). The main result of this paper is that the Vir-
tanen phenomenon may not necessarily occur even for the simpler equation
(l), i.e. we will proye the following

Main theorem. There erists a parabol,ia plane regi,on R anil, a strictly
gtosi,ti,ae C* function ),. on R such that the equation /(tv-r /u) : 0 has
nonconstant Di,richlet fini,te solutions on R but none of them are bouniled,
on R.

The solutions of Å().-Uu) :0 are called bi,harmon'i,c on (R , 1) and
their relations to analybic functions are well-known. The equation
AQ,-LÅv): 0 is equivalent to the family of Poisson equations

Tho work was dono under tho 1971 summer employment by Grant DA-ARO-
D -3L-r24-7 r-G20, UCLA.
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(3) Åu(z) - - )'(z)h(z)

for harmonic functions ä on -8. Therefore (l) admits a rronconstant
Dirichlet finite solution if and only if (3) does for some å . For this reason

we will first give a complete condition for (3), or a slightly more general

equation, to possess a Dirichlet finite solution. After this preparation rve

will give an example proving our main theorem.

Existence theorems

1. Let p(z)d,rily be a Hölder-continuous second-order differential on
an open Riemann surface R such that p(z) > 0 and p(z)drd,y fr O .

We denote by E*(R) the class of lt, e H(R), h +0, such that the Poisson
equation

(1) Au(z) - - tt(z)h(z)

possesses a Dirichlet finite solution on r? . If R' s -E , thetr H,,(R) g H u(R').
We first give complete conditions for an heä(.B) to belong to H,,(R).
For this purpose let {O} be an exhaustion of "E by' regular subregions
O. We denote by Go@, () the Green kernel on J2. If .E Q.O6 @f.e.g.
Sario-Nakai [5]), then the Green kernel on .E will be denoted b.r G^(z , () .

or simply by G(2, 6) . W" also consider the class D("8) of funct'ions g
such that the Dirichlet integrals Da(g) can be defined and are finite. We
then have

Theorem l. Xor an heil@), h#0, thefollowi,ngthreecondi,t'iotts
are eguiualent by pairs:

@) h e H,(R);
(d) supr.c"r*) lÅh(z)q@)1,r(z)drdy,2 iD*(q) < co;

(z) sopo I o*o Gn@ , t)h(z)h(l)1t(z)1t(()drdydidq < o for one ancl hence

for eaery erhaustion {A\ of R.
For simplicity we use the notation (h , g),, for the integral

h(z)e@)1t(z)druly

and, Go(h,lt)& for the integral in (y). Clearll- (.,.)" is a sera'i-inner
product and the same is true for Go(,.)* because of tlie energyprinciple
for Green potentials (cf. e.g. Constantinescu-Cornea [1]).

Supposefirstthat heEp(R) and u isasolutionof (a)with ueD(R).
Since the Stokes formula yields (h , q)*: 1Au , g) : -D*(u , g) for

E e Cf @) and for E e C,D(R) by approximation, the Schwarz inequality

{
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implies (p) . Conversely suppose that (p) is valid. Let f be the llilbert
space obtained by the completion of Cf @) with respect to the inner pro-
duct Dp(.,.) . By (P), g-->(h,?), is a bounded linear functional on
Cf (A) considered as a subspace of 7 C D , and therefore it can be ex-
tended to :l as a bounded linear functional E * l(d. By the Riesz
theorem there exists a u e7 such that l($ : Dn(u, g) for every g e7 .

fn particular (h,g),,: Da(u,q) for every q €Cf(A) . Let

ilr(z) -
G(, , C)h(e)p(€)d€drt

Since zltT: *ph, Do(u-il,v):0 forevery g€Cf(J2) . BytheWeyl
lemma, u-tieH(Q) andafortiori u isa solutionof (4) on .f2.Here
the arbitrariness of O implies that u is a solution of (a) on -E , and
u e D(R) . Therefore h e H u@) , i.e. the equivalence of (") and (P)
is proved.

Once more suppose LhaL h e H r(R) and u is a solution of (4) with
u e D(R). Let {O} be the exhaustion of .tE consisting of euery regular
subregion Q of A. By a simple application of the Green formula we
]nave u: Hh * ilo, where 'r7o is as in (5) and Hh e H@) n C(O) with
Hfrl1Q : u . Therefore Dr(ilå I Dr(u) < Dn(u). Observe that

Da(ilo) - Go(h , h)p ,

which is knou'n as the Evans relation; its proof is an easy consequence of
the Green formula. Hence l'e conclude that (7) follows. Conversely sup-
pose that (y) is valid for one exhaustion {O} of .B . Because of (6),

{t7r} has a v'eak limit z in e.g. 7 , which can be seen, as in the proof of
the equivalence of (or) and (§) , to be a solution of (a) on -R with u e D(fu .

Therefore (a) and (7) are equivalent.

2. Let § be a ll,iemann surface and a be a part of the ideal boundary
such that (§ , o) is a bordered surface with analytic boundary a * fr ,

compact or noncompact. \\re denote by § tn" d,ouble of B about a . Let
j be the involution of ^§, i.e. a mapping of § such that z and j(z) are

symmetric about or . An å € If(§) is said to be antisvmmetric it h(j(z)) :
-h(z) o, §. Let, p(z)d,rd,g be as in no. I and C : j(z) . Tf. p(l)d§d,r1 :
p(z)d,rd,y, then we say that p(z)d,rd,y or p is symmetric. As a specializa-
tion of Theorem I we have

Theorem 2. Let h be an antisymmetri,c harmonic function on § and,

p(zld,rd,y be a nonnegatioe symmetri,c Höld,er-continuous seconil-order d,if-

ferenti,al {0 on §. Suy,l,orethat h}O onthesupgtortof p(z)d,rd,y i,n
B . Then, h e Hr(S) i,f and, only if

*{

(6)
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The significance of this theorem manifests itself when /S € Oc. Observe

that § always carries the Green kernel since it has an analytic border a .

X'or the proof of the theorem, let {O} be an exhaustion of § such that

i@) : Q , and set ar : d) fl § . The key relation is

(8) Go@ , C) - GoU@), 6) : G,,,(z , €)

for z and [, in a. In view of (s), the antisr-mmetrl' of ä , and the sym-

metry of p,, we deduce

(9) Gn(h , h),. : 2G,,,(h , h),, .

By Theorem I, h e H 16) is equivalent to the boundedness of {Gr(h , h)r)r,
and in turn to the boundedness of tc-(h,h)*)o. Since h(z)h(6) > 0 on

the support of p(z)p,(()d,rd'yd,§d'q in § x §, the boundedness of

{G-{h ,h)r}o is equivalent, to (7). This completes the proof of Theorem 2.

3. By definition we excluded the constant
and hence H*(R) cannot form a vector space.

say that

{10) (Rä,,(A) + Rä,,(A)) - {o} c

function 0 from H,,(R)
Hou-eYer \\-e calt at least

Hr,(A) ,

is obvious. The followingi.e. Ht(A) U{o} is

relation \;\,'ill be used

(11)

(12)

with respect' to aP

a Yector space. The proof
repeatedly:

ä H,,(R) c H, (A)
j:I 'r 

rlr,,j
This is also a direct consequence of the definition of H,,(R)

An example

4. We will construct an example to proYe our rnain theorem. We de-

note by C the finite complex plane and by P the rigirt half-plane. The

basic surface we are going to consider is the doublS--punctured plane:

C'-C-{-3,3}.
plane region. Set P' - P [3] . Observe that

C-f , C':0',
, the imaginary axis. The R in the main theorem

Ann. Acad. Sci. Fennicat
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will be C' . In order to construct 7, on C' with the property described
in the main theorem, we will consider six auxiliary functions (differentials)
p1 ,...,Fa. We first consid.erapositiverotation-free C* function p,
on C such that p1l{lzl < a\: I and

(13)

on {lzl > 5} in C and also in C'. The reason for this choice is clarified
by Nakai [3], though it is not need.ed for the present purpose. The ele-
mentary functions

c(z) : (z | 2)12, s(z) : (z - Z)lzi,

will play important, roles. X'irst, we assert:
Lemma l. Thefuncti,ons a and, s belong to H,,,(C) qH,,(C').
Since the proof is the same, we will only prove c e H r,(C) . Take an

arbitrary g eCff@) and expand it into its Fourier series:

v?r'e) : ) @^O) cos n@ * b^(r) sin n@) .

In the double integral (" ,"iir, we first integrate with respec t, to @ :

(c , v)0,,: o (

By the Schwarz inequalit;,, 
I

On the other hand,

Thus by Theorem I

ar(r)rz(L * r)-(s+&) dr)

(t , p) ,,,1, < K {; ar(r)z r-L dr , where

I
K-o( i

I

Dc@) ) n Ir a{r), r-L dr ,

I (c , g)*, 1' < KDc(p)

\rre conclude that, c e Hr,,(C)

and a fortiori

5. Next take a rotation-free nonnegative C' function g on C with
its support in the disk l"l < t such that g - t in a neighborhood of
z : 0. Bix a decreasing sequence {e"}fl of positive numbers such that
If "" 

( @ , and choose an increasing sequence {4"}fl of positive numbers
such that h) 6, e^(T. - l)> I, and (r,"* l)2(r6+t 1 I forevery
lL : 1,2,... . We consider a function

(I4) pz@):Zu-v@ - in^)

where c is the imaginary o.it. Åi we have
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Lemma 2. The fmrcti,on c belongs to Hu,(C)sHr,(C') but s does not
bel,ong to Hu,(C').

By Theorem 2 we only have to show that G*(" , c)r,1 @ . By the
energy principle of Green potentials,

(G*(c , ")*,)'t' < f (**(r, *V(. - iq*) , ce^q(- - i,q))SlP .

The n'h term of the sum "" ,n" right is given b;,

e?- I
(1,-i?rl<r) n P x (ll-r,/"1<I) n P

and by changing the variables from z and C to z - 'i,r1" and g - ir1",
we obtain for the above integral the form e?.az wibh

t ry I rl
log i-l ' *€v@ - irt,)v(a - ir7*)d,rd,yd€ct?tv lry / ,

le 5 t

z + El YP

(l,l<t)oPx(l6i<t)nP

Therefore (Gp(a,")n,)'l'<a)?:r€, ( @, and ce Hr"(C).
To show that st,Hr,(C'), we denote by e the upper half-plane

and observe that C' : 6 with respect to aq - {-3,3}. Since s } 0

on Q, we have

Go(s, s), > j co{rr,q('-'i,r1.),se,p('- irl"Dr.

The n'h term of the sum on the right is given by
t-

sl { rost= ' yrt7@ irilV(i iq,)cl"rdyd§drt

(lr- irt"',<å) , (lf - h"l<*)

' (y + 4") (rt + T)V@)v$)d.rdyd€drt
(,1<å)x(61<+)

2 uI I ,r* å 
. ?t* - L) (,t. - \e@)p(l)drityd§d,tt

(kl<$) x (lrl<$)

fI

(,1<ä)xilcl<å)

Therefore Go(s, s)r, > Iå, a,: @, and. by Theorem 2, s $Er,(6) :
H r, (C',) .
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6. Next take a C* , rotation-free about 3, nonnegative function pr(z)

on C' vanishing identically on lz - 312 å io C' such that

ps(z) _= (lz - 3 | log lz - 3 l) -'(15)

on 0 ( l" - 3l < ll4 in C' . Leb po@) be the function on C' which
is symmetric to pr(z) with respect to the imaginary axis.

To define the fifth function pu@), we take a strictly decreasing sequence

{r,}fl such that ro: I and lim.r.: 0. Let, w"e H(P - {1, - 3l < r"})
nC(F) such that wÅ{lz-3l <r.\:l and ru,1äP:0. Since {rz"}f
converges to 0 uniformly on each compact subset of P' , we ca,n choose

{r,}fl so that D*(w,) < 4-" . We then regularize ?rD so as to obtain a

C* , rotat'ion-free about 3, superharmonic function co' such that a4: '11so

on {1, - 3l ) r*-r} U{1, - 3l ( r,+r}in F with

(16)

Then define

(r 7)

D,,(c,l") <4-n (n- 1,2,...)

Ps@) _ Ac,s*(z)) lc(r) > 0

At each point z € P' , the sum is a finite sum. Outside of lz - 3l < I
in P' , pt@) :0 . Thus we can consider pu C- on C' . Let p6 be the
function on C' which is symmetric to ps with respect to the imaginary
axis.

Let a be an antisymmetric function on C' with respect to äP such

that

o\z) : }rot"(z)

TheSequenCeisconvergentbecauseof(16)and.Dc,(,)<
a(z) is a positive C* superharmonic function on P' such that

lim rtt(z) - co
3 Qp' , z+3

readily seen that A and the sum can be interchanged in the calcula-
of lo in (lS) and therefore by (17) rve obtain

(18)

on P'.
Actually

(1e)

It is
tion

(20) Au(z): -}ru@) + pa@))c(z)

on C'. In particular c eHr"*r"(C'). We now have

Lemma 3. The functi,on c belangs to Hp,+p,*p.+r. (C').
By (lI) we only have to show that ce E*,au,(')C. However

Gr,(c , c)r,,r,: Gp(c , a)*, 3 I r*, G*(, , C)pr(z)pr(C)d,rd,yd,§d'q . In order to
showthat G*(c,c)*,ar. ( @, it is sufficient by Theorem 2 to prove
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deduce

(1 ,v),,,- o

As in the proof of Lemma 1, we

(r log ,)-'rrtr\.
I

r12

({ a'?)

By the Schwarz inequality 
@ Lrz

l(1 ,E),"t, =rU *«,y-,0)(l -,r,rn-o)
00

@

:r(l*,rrt,-,a,).
0

On the other hand, Dp(q) > z" li ao@)zr-tdr. and a fortiori a I @ .

7. X'inally we define a strictly positive Co function .2. on C' by

(21) ).(z) : *. p,(") .

Lemma 4. Let U:{la-BI< ,ily' *-u (I':(J-{B}. If heH,.(U'),
then h, e HV) .

Let h, betheregularpafi h in V: tlr- 3l < l/8), i.e. hoeHV).
Since Gr(äo ,ho)u^3lczGy(l ,l),,, rvith k:sapvlhol , w" canconcludethat
hoeHr,(V') with V' : V - {3} if supeecf,(I/)l(t ,v),,^lrlDr(g) < oo.
For n:2,4, and 6thisistrivial.Fot n: I and3itcanbeshownas
inthe proof of Lemma 3. Observe that (l , g)u": -(/o , glc)t: Dr(at , glc) .

By the Schwarz inequality, l(l ,V\*,12 l Dr(co) (O(Dr(,p) + (1 ,p,)r)) .

Clearly (l ,Ez)r< O(Dr(d) and thus hoeHr,,(V) for n - l,...,6.
Therefore hoe$i (7). X'or this reason we ma). assume tbat h lacks the
regular part in the proof of the above lemma. Then, in terms of z - 3 : raio,
å takes the form

(22) h(rete) : a log, + 2 r-n(an cos n@ | b" sin no) .

We wish to show thar, h- O . ,*-, suppose fhal a?^ + b'- +0 for some
n. Let Qt,t,@):(r-t')(t-r) for t'1r (f and0 for rlt or
t')r)0. Set p,,, (re'e): Qt,t, @) (a"cosn@ lb*sinn@). By Theo-
rem I there exists a constant .I{ such that

l(h , q,,),.1, : , ({ r-nQ,.,,1r1t1r1rar)'z I KDu(q,,,,) .



Mmsunu l{lxer and Lno Sanro, -Existence of bounded dirichlet, 11

Here the fact that tr"(rete) : ).(r) is important. By letting N' --> 0 , we
obtain

where g,(reio) - r(t - r) (a, cos n@ + ö, sin %@). Since ps I 1 ,

The first integral is O1r-"+z; and, Du(p,):O(t4). Hence O1t-"+2, <O(tz)
or O(t-") < O(l) , a contradiction since t-" ---> co (f --+ 0) .

Next assume a * 0 and take g(rete) : alog(max(r,t) ). Chouse the
rotation-free (with respect to 3) E^e Cf, (U') such that supulg- - ql +
Du(q*- E)'t'--0. Since

rl4

l(h, rp^),,l': o ( I,rr* v^?)' t(Drd)' l KDu(e*)

and ps I 1. , wededuce ol ,"rrrr* nL --> @

114 114

"U (rogr)2. (rrog r)-,rdr) =, ( I *,.,0)

or O(logt)z < O(log f) . This means that O(llog ,i) < O(l) as t ---> @ ,
a contradiction.

Lemma 5. The class H,.(C') consists of xc (x €R - {0}) .

Let heE)(C'). Since heE,.(U') and heH,.(-U'), Lemma 4
yields that h € ä(C) . Therefore ä takes the form

h(reto) :7r^(a, cos n@ + b"sin n@) .

Consider the functions 
u:o

[ (r - (,1"* l)) ((rt"*l)'-r), r€1r1"*1,(v]" * t)'z1;
8"(r) : I[0, r€[0, q)-lrt"1-t,(4"*1)21 ,

where {ry"} is the sequence in no. 5. Assume that a?^ + b'^ + 0 for some

m, ) | and consid"er the functions

E,(retel : Q,(r) (o. cos rn@ + b* sin m@) .
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By Theorem l, l(h , V)r,l' : l(h , g)tlz < KD., (E) for a constant K
and for every ?t,:1,2,,,., Observe that (lr,E)*,: O(rl2(n+L-d))
and Dr,(Ei:o(rf"). Therefore o(r1h+z-2", < o(qi) or o(r]i-$+a)1 <
O(l) .Since \n--->@(n->a), wemusthave m1lla42, acon-
tradiction. Therefore h : a * uc * fs . ByLemmas l, 2 and3, o € E^(C')
and hence a*§s1HL(C') unless af ps:0. If §+0, we can
find aconstant y)l suchthat a*§s isofconstant sign, say )0,
in Q * Z. Since äx(e + T) : Hr,+r,(Q * Z) ,

Gq+r(a * 0s,a * §s)t> Gr+r(a * fs, a * §s)*,.

The right-hand side is seen to be oo by the proof of Lemma 2, a cot-
tradiction. Eence fr:0. If a*0, say &;0, then Go(a,a)^-> a
as regular regions A exhaust C' since Go ---> oo (Q -> C'), again a
contradiction. Therefore a,+ ps:0 and we deduce that h:ac.

8. We compile the results in nos. 4-7 and. state:
Theorem 3. The Po,i,sson equation Åu: -Lh (h e H$')) has a Diri,chlet

fi,ni,te soluti,on on C' i,f and, only i,t h : ac (a € R - {0}) . Euery Di,richlet

fi,ni,te solution u of /u: -)'(ac) on C' ,i,s unbound,ed,.
The first statement is nothing but Lemma 5. To prove the second

statement, we may assume u : | . Let ä121 : -u(j(z)) rvhere y is the
involution or, 0'. Since L(j(")): )"(z) and c(7(z)) : -c(z), /ir,: -),c.Therefore /(u-ä1:O and u-tt,eD(C') . By CeOccOso ("f.
e.g. Sario-Nakai t5l) u-tt,:2or.eP., i.e. u(z)*u(j(z)):2a. fn
particular u(z) : a if z € aP . Let {O} be an exhaustion of C' and.
u: d) O P' . As in the proof of Theorem l,

LL-H? + (Zn)-t

on a) . Since r!, - 64 on (0*) n (aP)
finite harmonic function k or1 P'
theorem,

Go.(., C)c(C) l(C)d€d,rl

and {H':) converges to a Dirichlet
, k : &. By the Lebesgue-Fatou

,{

*I
P,

*I
P,

1,t, _- g, + Gp(, e)c(C)ps(C)d€drt

G*(, C)A*(ild€dq - d, { at

By (I9), lirn,sp,,,*s u(z) : o , and z is unbounded.
This completes the proof of Theorem 3 and hence of our main theorem.

*I
P,
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