ANNALES ACADEMIAE SCIENTIARUM FENNICAE

Series A

I. MATHEMATICA

505

EXISTENCE OF BOUNDED DIRICHLET FINITE
BIHARMONIC FUNCTIONS

BY

MITSURU NAKAI and LEO SARIO

HELSINKI 1972
SUOMALAINEN TITEDEAKATEMIA

doi:10.5186/aasfm.1972.505


koskenoj
Typewritten text
doi:10.5186/aasfm.1972.505


Copyright © 1972 by
Academia Scientiarum Fennica

ISBN 951—41—-0032—8

Communicated 5 November 1971 by PENTTI LAASONEN

KESKUSKIRJAPAINO
HELSINKI 1972



EXISTENCE OF BOUNDED DIRICHLET FINITE
BIHARMONIC FUNCTIONS

In 1950 Virtanen [6] proved that if the Laplace equation Au = 0 on
an open Riemann surface R possesses a nonconstant Dirichlet finite
solution then it also possesses a nonconstant bounded Dirichlet finite solu-
tion. Here the Dirichlet integral Dg(u) of = is f r lgrad w(z) Pdady . Let
P(z)dxdy be a nonnegative Holder-continuous second-order differential
on R. In 1952 Ozawa [4] remarked that the phenomenon just mentioned
is valid for the equation (4 — P)u = 0 if the Dirichlet integral is re-
placed by the energy integral Eg(u) f (z)dady . Recently
Nakai [2] proved that even the genuine phenomenon is also valid for the
equation (4 — P)u=0.

We assume that A(z)dedy is a strictly positive C? second-order dif-
ferential on R . We consider the equation

(1) A(Az) 7 Aufz) = 0
or more generally
(2) (4 — Q) (Mz)7 (4 — P())u(z)) =0

where Q(z)dady is similar to P(z)daxdy . The solutions of Adu = 0 or
(4 — P)u = 0 are also solutions of (1) or (2) and therefore it may be in-
teresting to see whether the Virtanen phenomenon continues to be valid
for the equations (1) and (2). The main result of this paper is that the Vir-
tanen phenomenon may not necessarily occur even for the simpler equation
(1), i.e. we will prove the following

Main theorem. There exists a parabolic plane region R and a strictly
positive C® function A on R such that the equation A(A7* Au) = 0 has
nonconstant Dirichlet finite solutions on R but none of them are bounded
on R.

The solutions of A(A7'4u) = 0 are called biharmonic on (R, 1) and
their relations to analytic functions are well-known. The equation
A(A74Au) = 0 is equivalent to the family of Poisson equations
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(3) Au(z) = —Az)h(z)

for harmonic functions 2 on R . Therefore (1) admits a nonconstant
Dirichlet finite solution if and only if (3) does for some A . For this reason
we will first give a complete condition for (3), or a slightly more general
equation, to possess a Dirichlet finite solution. After this preparation we
will give an example proving our main theorem.

Existence theorems

1. Let pu(z)dady be a Holder-continuous second-order differential on
an open Riemann surface R such that wu(z) >0 and pu(2)dedy =0.
We denote by H ,(R) the class of » € H(R), h == 0, such that the Poisson
equation

(4) Au(z) = —p(2)h(z)

possesses a Dirichlet finite solutionon R . If R’ c R, then H (R)c H (R').
We first give complete conditions for an % € H(R) to belong to H (R) .
For this purpose let {2} be an exhaustion of R by regular subregions
2. We denote by Gy(z, () the Green kernel on Q2. If R ¢ O; (cf. e.g.
Sario-Nakai [5]), then the Green kernel on R will be denoted by Gg(z, {) .
or simply by G(z, ). We also consider the class D(R) of functions ¢
such that the Dirichlet integrals Dg(p) can be defined and are finite. We
then have

Theorem 1. For an h € H(R), h == 0, the following three conditions
are equivalent by pairs:

(x) h € H,(R);

(B) suPyecom |fRh(E)g()uz)dady * [Dlg) < =
(y) supg f.Qx.Q Go(z , O p(z)u(S)dxdydidy < o for one and hence

for every exhaustion {2} of R.
For simplicity we use the notation (%, ¢), for the integral

[ Heweuzdy
R

and Gy(h, k), for the integral in (y). Clearly (.,.), Is a semi-inner
product and the same is true for G,(.,.), because of the energy principle
for Green potentials (cf. e.g. Constantinescu-Cornea [1]).

Suppose first that h € H,(R) and w is a solution of (4) with » € D(R) .
Since the Stokes formula yields (&, ¢), = (du,¢) = —Dg(u, ¢) for
@ € C7(R) and for ¢ € CyD(R) by approximation, the Schwarz inequality
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implies () . Conversely suppose that (B) is valid. Let ¥ be the Hilbert
space obtained by the completion of C§(R) with respect to the inner pro-
duct Dg(.,.). By (B), ¢ —(h,¢), is a bounded linear functional on
OF(R) considered as a subspace of FC D, and therefore it can be ex-
tended to  as a bounded linear functional ¢ —1I(¢). By the Riesz
theorem there exists a « € / such that (@) = Dg(u , ¢) for every ¢ € 7.
In particular (&, ¢), = Dg(u , ) for every ¢ € C°(R). Let

%) f Gz , OME)u(OdEdy .

Since A4 = —uh, Dy(u — 4 ,¢) = 0 for every ¢ € C7(2). By the Weyl
lemma, v — @ € H(2) and a fortiori % is a solution of (4) on Q. Here
the arbitrariness of £ implies that « is a solution of (4) on R, and
« € D(R) . Therefore h € H,(R), ie. the equivalence of (x) and (B)
is proved.

Once more suppose that A € H, (R) and u is a solution of (4) with
u € D(R). Let {Q} be the exhaustion of R consisting of every regular
subregion £ of R. By a simple application of the Green formula we
have w = Hy, + @,, where @, isasin (5)and Hp € H(Q) N C(Q) with
H{100Q2 = uw. Therefore D,(d,) < Dy(u) < Dg(u). Observe that

(6) Dg(ﬁg) = Gg(k s h)u s

which is known as the Evans relation; its proof is an easy consequence of
the Green formula. Hence we conclude that (y) follows. Conversely sup-
pose that (y) is valid for one exhaustion {2} of R. Because of (6),
{ii,} has a weak limit » in e.g. ¥, which can be scen, as in the proof of
the equivalence of (x) and (), to be a solution of (4) on R with « € D(R).
Therefore (x) and (y) are equivalent.

2. Let S be a Riemann surface and « be a part of the ideal boundary
such that (S,«) is a bordered surface with analytic boundary « # O,
compact or noncompact. We denote by S the double of S about « . Let
j be the involution of S, ie. a mapping of S such that z and j(z) are
symmetric about «. An % € H(§) is said to be antisymmetric if A(j(z)) =
—h(z) on S. Let u(z)dzdy be as inno. 1 and ¢ = j(z). If u({)dédny =
u(z)dxdy , then we say that u(z)dedy or u is symmetric. As a specializa-
tion of Theorem 1 we have .
Theorem 2. Let h be an antisymmetric harmonic function on S and
u)dxdy be a nonnegative symmetric Holder-continuous second-order dif-

ferential =0 on S Suppose that h > 0 on the support of u(z)dxdy in
8. Then h € H,(S) if and only if
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@ [ 6 e ydadydsin < oo
SxS

The significance of this theorem manifests itself when Se O¢ . Obss=rve
that S always carries the Green kerunel since it has an analytic border « .

For the proof of the theorem, let {2} be an exhaustion of 8 such that
§(Q) = 2, and set o = 2N 8. The key relation is
(8) Ga(z, §) — Goj(z) . §) = G (2, 0)

for z and ¢ in . In view of (8), the antisymmetry of #, and the sym-
metry of u, we deduce

(9) GQ(k 2 h)_u = 2Gm(k s h)y ‘
By Theorem 1, h € H ,(S) is equivalent to the boundedness of {Gp(% , k), }o >
and in turn to the boundedness of {G, (%, h),},. Since A(2)h({) =0 on

the support of u(z)u(l)dadydédy in S X S, the boundedness of
{G,(h ,h),}e is equivalent to (7). This completes the proof of Theorem 2.

3. By definition we excluded the constant function 0 from H (R)
and hence H,(R) cannot form a vector space. However we can at least
say that

(10) (RH,(R) + RH,(R)) — {0} c H (R),

i.e. H,(R)y{0} is a vector space. The proof is obvious. The following
relation will be used repeatedly:

(11) ﬂH JB) (11’)-

This is also a direct consequence of the definition of H (R).

An example

4, We will construct an example to prove our main theorem. We de-
note by € the finite complex plane and by P the right half-plane. The
basic surface we are going to consider is the doubly-punctured plane:

C'=0C—{-33}.
This is a parabolic plane region. Set P’ =P — {3} . Observe that
A A
(12) C=P, C=P,

with respect to oP, the imaginary axis. The R in the main theorem
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will be €. In order to construct 4 on €' with the property described
in the main theorem, we will consider six auxiliary functions (differentials)
Mrs... M. We first consider a positive rotation-free C® function p,
on C such that p|{|z] <4} =1 and

(13) ) = (1+ )70 (0 <a <)

on {|z] > 5} in C and alsoin C'. The reason for this choice is clarified
by Nakai [3], though it is not needed for the present purpose. The ele-
mentary functions

cz) = (z+2)/2, s(z) = (z — 2)/2¢

will play important roles. First we assert:
Lemma 1. The functions ¢ and s belong to H,(C)c H, (C').
Since the proof is the same, we will only prove ¢ € H, (C). Take an

arbitrary ¢ € CF(R) and expand it into its Fourier series:
@(re®) = > (an(r) cos nO + by(r) sin nO) .
n=0

In the double integral (¢, ¢), we first integrate with respect to O :

y

<°wv>.ul=0( f ay(ryr(1 + r)=6 ) dr).
0

By the Schwarz inequality, |[(c,¢),* <K f Jay(rFr-tdr, where

K=0 ( f r5(1 -+ )20+ dr) < ©.

0

On the other hand, Dg(¢) > = f g a(r)?r=tdr, and a fortiori

(¢ @), P = KDc(p) -
Thus by Theorem 1 we conclude that ¢ € H, (C) .

5. Next take a rotation-free nonnegative C* function ¢ on € with
its support in the disk [z|] <3 such that ¢ =1 in a neighborhood of
z=0. Fix a decreasing sequence {e};° of positive numbers such that
27 & <o, and choose an increasing sequence {7,};° of positive numbers
such that 5, > 6, &y, — 1)>1, and (9. + 1)2 <9, + 1 forevery
n=1,2,.... We consider a function

(14) pa(2) = ; enp(z — 112

where ¢ is the imaginary unit. Then we have
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Lemma 2. The function c belongs to H,(C) c H,(C') but s does not
belong to H, (C') .

By Theorem 2 we only have to show that Gy(c,c),, < . By the
energy principle of Green potentials,

(@p(e ., 0))'" < 3, (Cpleanp(- — ima) , cenp( — imn))y)"*

The %™ term of the sum on the right is given by
!
. f log ;
|z

(lz—inp| <Y NP X ([E—in,|<)NP

€ ]l @(z — ) g(E — ina)dadydédny

uy

and by changing the variables from z and { to z — iy, and  — 5.,
we obtain for the above integral the form ¢2a? with

9

2 + 7 . 1/
2E@(2)p(Q)dadydédn | < o .

a = f log P

(sl<)nPx(Z<)nP
Therefore (Gp(c, c)m)l’2 <ayX,e, <o, and c€H, (C).
To show that s€H, (C'), we denote by @ the upper half-plane

and observe that €’ = Q with respect to 9Q — {—3,3}. Since s> 0
on Q, we have

GQ(S > 3),: = ZIGQ(SenQD( ©— a) , S&aP( " — )

The 2™ term of the sum on the right is given by

2 — ¢
& f log iz———_é't “yng(z — ina)@(S — ta)dadydédn
([‘_i’?n!<%)x(lc_innl<%)
+ 2“7n .
= &) f log [—-_—¢— (Y A+ M) (0 g (R)e(2)dedydédn
(sl <px(El<d)
1

=& [ tog g e — 1) (0 — Dep(Madydsdy

(zl<p)x(tl<d

1

> f log P - p(2)p(0)dedydédn = a > 0 .

(=< (el<})

Therefore Gy(s,s),, = 22 1a = oo, and by Theorem 2, s€H, Q) =
H,(C).
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6. Next take a C®, rotation-free about 3, nonnegative function us(z)
on €' vanishing identically on |z — 3| >4 in C’ such that

(15) ps(z) = (2 — 3| log |2 — 3[)7®

on 0<|z—3<1/4 in €. Let pyz) be the function on €’ which
is symmetric to uy(z) with respect to the imaginary axis.

To define the fifth function us(z), we take a strictly decreasing sequence
{r.}2 such that 7y=1 and lim,7r, = 0. Let w, € H(P — {2z — 3| =< })
N C(P) such that wn|{|z — 3| <7} =1and w,|o0P =0. Since {wa}{’
converges to 0 uniformly on each compact subset of P’, we can choose
{r.}® so that Dp(w,) < 4. We then regularize w. so as to obtain a
C® , rotation-free about 3, superharmonic function , such that w. = wa
on {lz—3|>r,_JU{lz— 3| <r,.}in P with

(16) Dp(wn) < 4™ (n=1,2,...).

Then define

(1) ) = — (3 do(e))jol) = 0.

At each point z € P’, the sum is a finite sum. Outside of [z — 3| <1
in P, us(z) = 0. Thus we can consider u; C* on C'. Let pg be the
function on €’ which is symmetric to u; with respect to the imaginary
axis.

Let @ be an antisymmetric function on €’ with respect to P such
that

(18) o(z) = %wn(z)

on P’. The sequence is convergent because of (16) and D (w) < oo.
Actually w(z) is a positive € superharmonic function on P’ such that

(19) lim ()= «©.
2EP’y3>3

It is readily seen that A4 and the sum can be interchanged in the calcula-
tion of Aw in (18) and therefore by (17) we obtain

(20) Ao(2) = —(us5(2) + p(2))e(2)

on C'. In particular ¢ € H, ,(C’). We now have
Lemma 3. The function ¢ belongs to H

st patpstue

By (11) we only have to show that c€H,, ()C. However
Gp(c, 6)xp, = Oplc, 0),, < f oxp & O\ us(2) a(8)dadydédn . In order to

show that Gp(c,¢) < 0, 1t is sufflclent by Theorem 2 to prove

(€.

us+ s
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a = supgec®) (1, ¢),[}/Dp(p) < . As in the proof of Lemma 1, we
deduce

1/2

“WM=0(cwwmwwm)

"

By the Schwarz inequality

12

ao(r)r’ldr) ( f r~1(log r)"*dr)

ao(r)r“ldr> .

Khwmﬂso(

:0<

On the other hand, Dy(p) > 27 f s @o(r)’r~'dr ., and a fortiori ¢ < .

), T~

7. Finally we define a strictly positive C* function 2 on C’ by

6
(21) Mz) = ; n(2) -

Lemma 4. Let U={|z—3|<1/4} and U'=U —{3}. If h€H,(U"),
then h € H(U) .

Let h, be the regular part ~ in V = {|z — 3| < 1/8}, ie. by €EH(V).
Since Gy(hy , hy),, < k*G(1,1), with k= supy|hy|, we can conclude that
hy€H, (V') with V'=7V — {3} if supsecz(V)/(1,¢), }Dy(p) < .
For n =2,4, and 6 this is trivial. For » = 1 and 3 it can be shown as
in the proof of Lemma 3. Observe that (1,¢),, = —(do, ¢/c); = Dy(w, gjc).
By the Schwarz inequality, [(1,¢), > < Dy(o) (O(D(g) + (1, ¢*))) -
Clearly (L, ¢?), < O(Dy(g)) and thus hy€H, (V) for n=1,...,6.
Therefore hy € H, (V). For this reason we may assume that A lacks the
regular part in the proof of the above lemma. Then, in terms of z — 3 = re'®,
h takes the form

(22) h(re®) = a logr + > r="(as cos nO + b, sin nO) .
n=1

We wish to show that & = 0. First suppose that a> -~ b} #% 0 for some
n. Let ¢, (N=@—t)@Et—r) for ' <r<t and 0 for r>1¢ or
' >r>0. Set ¢, () =0, (r) (@ cos nO@ - b, sin n@) . By Theo-
rem 1 there exists a constant K such that

t

](k ’ gol,t')/'.p = 0 (/ 7'—n9t,t' (7')2(7)”17')2 S KDU(%,:’) .

¢
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Here the fact that A(re®) = A(r) is important. By letting ¢ —0, we
obtain

t

([ P r)l(r)dr)2 < O(Dy(py)

where @(re®®) = r(t — r) (@, cos n® + b, sin n@) . Since py < 1,

t

(f P2t — 1) (rlog r)-2d7>2 < O(Dy(p)) -

The first integral is O(t~"*%) and Dy(g,) = O(*) . Hence Ot "**) < O(t?)
or O@¢™") < O(l), a contradiction since ™" — oo (! —0).

Next assume @ # 0 and take g¢(re®®) = alog(max(r,t)). Chouse the
rotation-free (with respect to 3) ¢m € €5 (U’) such that supyle, — ¢| +
Dy(p,, — ¢)'* — 0. Since

(B s gu)i? = O (f log 7+ @n(r) - /'-(")rdr)2 < KDy(p,)

and u; < A, we deduce on letting m — oo

1/4 1/4
2
0 (/ (log 7)? - (r log r)-%dr) <0 (f r2- rdr)

or O(logt)? < O(logt) . This means that O(log t|) < O(1) as ¢— o,
a contradiction.

Lemma 5. The class H,(C') consists of x¢c (x € R — {0}).

Let h€H,C). Since h€H,(U’) and h€H,(—U’), Lemma 4
yields that # € H(C). Therefore h takes the form

h(re®) = > 1™ (@ cos nO + b, sin nO) .

0

7R

Consider the functions
{(r—(n,,—i—l))((n,.—i-l)”-—r), r €.+ 1, (s + 1?3
0: 7”6[0,00)—[”7n+1;(77n+1)2],

where {7.} is the sequence in no. 5. Assume that a, + b}, # 0 for some
m > 1 and consider the functions

@a(1€®) = 0u(r) (@m cos MO + by, sin mO) .
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By Theorem 1, |(h,@,), > = |k, ¢,),[* < KD (pa) for a constant K
and for every n=1,2,.... Observe that (&, ., = O(nm+1-a)
and D¢ (ps) = O(;) . Therefore O(7"*7*) < O(yy) or O(n=0+) <
O(1) . Since 7, — o (n—> ), we must have m < 14+x < 2, a con-
tradiction. Therefore A = a -+ «c + fs. By Lemmas 1, 2 and 3, ¢ € H,(C)
and hence o« -+ fs € H,(C') unless a+ fs=0. If f#£0, we can
find a constant y > 1 such that a + fs is of constant sign, say > 0,
in Q+y. Since H,@Q+y)=H,.,@Q+7),

GQ_H,(a + fs.a -+ fs), > GQ+y(a + Bs,a 4+ Bs),, .

The right-hand side is seen to be oo by the proof of Lemma 2, a con-
tradiction. Hence f=0. If a0, say a> 0, then Gy(a,a), > ©
as regular regions 2 exhaust € since G, — o (2 —C’), again a
contradiction. Therefore @ + fs=0 and we deduce that h = «c.

8. We compile the results in nos. 4—7 and state:
Theorem 3. The Poisson equation Auw = —Ah (h € H(C')) has a Dirichlet
finite solution on €' if and only if h = ac (x € R — {0}). Every Dirichlet

finite solution w of Au = —A(xc) on C' s unbounded.

The first statement is nothing but Lemma 5. To prove the second
statement, we may assume «x = 1. Let u(z) = —u(j(z)) where j is the
involution on P’. Since Mj(®) = Az) and ¢(j(z)) = —c(z), du = —ic.

Therefore A(w — %) =0 and % — %€ D(C'). By C€0;c Oyp (cf.
e.g. Sario-Nakai [5]) % —u =2x€R, ie. u(z)+u(j(z) =2x. In
particular u(z) =« if 2 € 0P . Let {0} be an exhaustion of ¢’ and
o =0NP . Asin the proof of Theorem 1,

w = HY -+ (27)-1 f G, AC)d&dn

on . Since u =« on (dw)N (dP) and {Hy} converges to a Dirichlet
finite harmonic function k¥ on P’, k=«x. By the Lebesgue-Fatou
theorem,

U=t o / Gp(+ > De(OA()dédn > o + - fG (5 De(Q)us(D)dédn
== f Gp(-, O)Adw(C)dédny =« + o .
>

By (19), lim,ep,,, s u(2) = oo, and u is unbounded.
This completes the proof of Theorem 3 and hence of our main theorem.
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