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Introduetion

The subject matter of this paper consists of the study of certain groups
of conformal transformations of the unit disk [z| << 1 of the complex plane
and specially isomorphisms between them. These groups are usually called
discrete groups of conformal mappings of the unit disk, even if we have
adopted the general standpoint (cf. definition 2.1) that a discrete group may
contain indirectly conformal mappings and, in particular, reflections,
which is not always the case. If a group of this kind does not contain in-
directly conformal mappings, then it is usually called a Fuchsian group.

The starting point of the present investigation is a well-known result
of Nielsen in [5]. Nielsen considered groups F and F’ such that the unit
disk E is the universal covering space of the factor spaces E/F and E/[F’,
which were in addition assumed to be compact surfaces. He showed that
if ¢:F —F' is any isomorphism then it is induced by a homeomorphism
f:E —E such that f(T(2)) = ¢(T)(f(x)) for x €E and T € F. Later
this result has been proved for any discrete groups F and F’ of the unit
disk such that E/F and E/F’' are compact. (Cf. Zieschang [6] and Mac-
beath [3]). On the other hand, if the factor spaces are not compact, it is
casy to see that there are isomorphisms that are not induced by a home-
omorphism of the unit disk.

The aim of this investigation was to obtain a precise condition for an
isomorphism ¢ : F — F’ of two discrete groups to be induced by a home-
omorphism of the unit disk in case the factor spaces E/F and E/F' are
not compact. This has been done, with some limitations on the groups
F and F’, in theorem 3.6. According to this theorem ¢ is induced by
a homeomorphism of the unit disk if and only if it preserves a cartain re-
lation, called the relation of being crossed. Two hyperbolic el:maats 7
and 7, are said to be crossed if their axes, i.e. the circle ares in the unit
disk orthogonal to the unit circle connecting the fixed points of 7, and
T,, intersect. ¢ preserves the relation of being crossed if, when 7, and
T, are two hyperbolic elements of F. 7T, and 7T, are crossed if and only
if (1) and ¢(T,) are crossed.

There are certain by-products. First of all, if F is a discrete group of
the unit disk not containing reflections such that E/F is non-compact,
then F is a free product of cyclic groups. In case F contains reflections
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it is shown that F is a skew product of Z, and a free product of cyclic
groups. (Cf. corollary 2.8.1). In corollary 3.6.1 we show that if F and F’
are discrete groups containing reflections such that E/F and E/F’ are
compact, then any isomorphism F — F’ is induced by a homeomorphism.
This result has been known previously (cf. Macbeath [3]) but the proof
has involved some results of the theory of Teichmiiller spaces that we
dispense with. Finally, we show that if F and F’ are groups of the first
kind, i.e. their limit points are dense in the unit circle, then any homeo-
morphism of the unit ditk inducing an isomorphism F — F’ may be
extended to a homeomorphism of the closed unit disk |z] <1 of the com-
plex plane. (Cf. corollary 3.5.1).

1. Preliminary notions and the isometrie eircle

A. Preliminary notions about the conformal mappings of the unit cirele.
We are concerned in this work with discrete groups of conformal
mappings of the unit circle £ = {z € C: z] < 1} of the complex plane C.
Hence, to begin with, we shall establish a few basic notations and facts
about the conformal mappings of the unit disk. We shall use the word
sconformaly in a sense that includes both directly and indirectly conformal
mappings. Thus a conformal mapping may not preserve orientation.

We shall use the following notations:

E ={2€C: |z <1} the open unit disk
E'={z€C:|z] <1} the closed unit disk
St={z€C: |z =1} the unit circle

If T is a conformal mappirg of the open unit disk, it can be uniquely
extended to a conformal mapping of the Riemann sphere. We shall not
distinguish between 7' and its extension to the Riemann sphere. We
agree to call a conformal mapping 7 of the Riemann sphere a conformal
mapping of the unit disk if it leaves E invariant.

If T is a directly conformal mappirg of the unit disk, different from
the identity, there are three possibilities present:

(@) T is elliptic and leaves one point fixed in E. We denote this point
by Fix(T). In the cases of interest, the order of T (s finite, since otherwise
no group of conformal mappings containing T can be discrete.

() T 1is hyperbolic and has two fixed points on S, denoted P(T)
ond N(T) such that the following equations are true:

(1) lim 7Tz)=P(T).z€E

n— oo

lim 7T%2)=N(T).z€E.

n——aow
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The order of T 1is infinite. The closed arc of the circle orthogonal to S* con-
tained in E' and having P(T) and N(T) as the endpoints is denoted by

(2) Ax(T).

() T s parabolic. In this case T has one fixed point on St We de-
nole this point by P(T) or by N(T). The equations (1) are still valid. The
order of T s infinite and we denote

Ax(T) = {P(T)} = {N(T)} .

If T is an indirectly conformal mapping of the unit disk. there are
basically two alternatives:
(d) T s areflection in a circle O orthogonal to S*. We set

Ax(T) = O N EL.

T satisfies the relation T?* = id.

() T=1T8=8T" where T is a hyperbolic, directly conformal
mapping of the unit disk and S is a reflection on Ax(T"). In this case T
has two fized points in SY, denoted P(T) and N(T). in such a way that
equations (1) hold true. The arc of the circle orthogonal to S, denoted Ax(T),
is defined as in (2). The order of T 1is infinite.

The word hyperbolic is also used in the case (¢). Hence, an indirectly
conformal mapping of the unit disk that has no fixed points in F is ne-
cessarily hyperbolic, of the type (e).

B. The isometric circle. The concept of the isometric circle of a con-
formal mapping turns out to be quite central in our later developements.
Hence we establish here the properties of the isometric circle needed.

The isometric circle of a conformal mapping 7' is defined by the dif-
ferential equation (3):

(3) AT = dz) .

An isometric circle of a conformal mapping may not exist nor be uniquely
determined. However, if 7' is a conformal mapping of the unit disk, an
isometric circle always exists, but it may not be unique. It is uniquely
determined by (3) except for the following three cases:

(¢) T <s the identity.
() T is elliptic and Fix(T') s the origin.
(tit) T is a reflection such that Ax(T) passes through the origin.

In all these cases the equation (3) is true on any circle and thus, any
circle is an isometric circle for 7.

We shall need the following facts about the isometric cirele of a con-
formal mapping:
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1.1. Proposition. Let O, and O, be two circles orthogonal to the unit
circle and having an equal diameter. Then there is a unique directly con-
formal mapping of the unit disk T and an indirectly conformal mapping
of the unit disk S such that the isometric circle of S and T is O, and that
of 87t and T is O, and such that T(0;) = O, and S(0;) = O,. Be-
sides we have:

(@) If O;= 0,T is elliptic of order two and Fix(T) is the middle
point of the arc O, N E*.

() If {2} =0,N0,N E, then T is elliptic and Fix(T) = x.

(¢ If O,NO,NE =@, then T is hyperbolic or parabolic and N
is hyperbolic. The fized points of S and T are inside or on the circles O,
and O,

The conformal mappings S and T of proposition 1.1 are constructed
by combining suitable reflections of the Riemann sphere. We leave the
explicit construction to the reader.

The following proposition shows that it is always possible to construct
elliptic transformations of the unit disk of a given order whose isometric
circles satisfy some conditions given beforehand:

1.2 Proposition. Let I be a closed interval of S* and n > 2 a given
integer. Then there are two circles orthogonal to S, denoted O; and O,.
and a conformal mapping T of the unit disk such that

I=(0,U0,)n 8

when the closure of the interior of a circle K is denoted by K. The mapping
T is such that T is a rotation through the angle 2n|n and the isometric
circle of T is O; and that of T~ is O, and T(0;) = O,.

This proposition is also obvious. It may be remarked that the circles
0, and O, are uniquely determined.

The fundamental property of the isometric circle of a conformal mapping
T is that T is expansive inside it and contractive outside it. We use this
property in the form stated by the proposition 1.3. The proof is again
obvious and is left to the reader.

1.3 Proposition. Let T be a conformal mapping of the unit disk with
a unique isometric circle. Then if d > o s given, there is a real number
k, o<k << 1. such that

UT(I)) < k I(I)

when I s an interval of S' outside the isometric circle of T and the length
of an interval J of S* is denoted by U(J) and U(I) >d. If T is a rotation
through the angle 2z|n, then the constant k may be chosen so that
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(TI) ) < k1)

where 1 <1 <mn and I is also outside the isometric circle of T2

Propositions 1.1—1.3 summarize the facts we need about isometric
circles of conformal mappings. The reader wishing a more comprehensive
treatment is referred to Ford [2], where also proofs of some of the above
propositions can be found.

C. Miscellaneous. To conclude this chapter we prove a proposition
that allows us to infer, when F is a discrete group of conformal mappings
of the unit disk such that Fix(F) = {P(T):T € F, the order of T is
infinite} is dense in S, I and J arbitrary intervals of S, the existence
of an element 7' of F such that P(T) €1 and N(T)€J.

1.4. Proposition. Let S and T be two conformal mappings of the
unit disk, both having infinite order and no common fized points. Then if
U is a neighbourhood of P(T) in S* and V a neighbourhood of P(S) in
St then for some integer n > o P(T"S™™) €U and N(T"S—") € V.

Proof: Choose m so large that there are circles 4,4’.B,B’ external
to each others (or tangent externally to each others) such that P(T) € 4,
N(T)e A, P(S)€B, N(S)€B (denoting the closure of the interior of
a circle K by K), and such that T"(4’) = 4 and S*(B’) = B. Bezsides
we may suppose that AN S'c U and BN S c V. Then T"S—A) c A
and S"T'(B) ¢ B. This proves the proposition.

2. Discrete groups of conformal mappings and pointed surfaces

A. Discrete groups of simply connected Riemann surfaces. In this
section we consider a discrete group of a simply connected Riemann surface
X and the resulting canonical projection p:X — X/F = S. With the
help of the projection p we define a mapping 7 : § — N. This leads us
to the concept of a pointed surface in the beginning of the next section.

As is well known, every simply connected Riemann surface is con-
formally equivalent to one of the following Riemann surfaces:

S§%2 the Riemann sphere
C the complex plane
E  the open unit disk

Let X denote one of these surfaces and let F be a group of conformal
equivalences of X onto itself.

2.1. Definition. The group F is a discrete group of X if, given z € X,
there is a finite subgroup F. of F and a neighbourhood U of z such that
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UNTU) =g for T € F\F.
Tie)==z for TEF,.

The group F. that is obviously uniquely determined by these conditions is
called the stabilizer of z.

It is not difficult to see that the stabilizer of a point z € X must be
one of the following groups:

(@) F.= {idy}. The stabilizer F, is trivial.

(b) F. is the group gemerated by a rotation through the angle 27/n.
The stabilizer F, isthe rotation group of degree n.

(¢) F. is the group generated by a reflection T satisfying the relation
T2 — id. The stabilizer F, isthe reflection group.

(d) F. is a group of order 2n having as generators two reflections S
and T such that ST is a rotation through the angle 2x/n. The stabilizer F.
isthe dihedral group of degree n.

Note that in (d) F. is as an abstract group the group generated by
S and 7 and having the relations

St — 2= (ST =1.

The factor space S = X/F is a bordered surface that is naturally endowed
with a conformal structure. Its boundary is empty if and only if there are
no reflections in F. Let p: X —S be the canonical projection. It is a
local conformal equivalence at a point z € X if and only if the stabilizer
F, of z is trivial. At other points of X the local behaviour of the mapping
p may be described as follows:

(i) If F. is the rotation group of degree m, then p is in in suilable
local coordinates of the form

z—2".

In this case we say that p is of degree n at z. This includes also the
case where F, is trivial, if we set n = 1 1in this case.

To study the local behaviour of p at points where p(z) lies on the
boundary of S, ie. F. is a reflection group or a dihedral group, we
define a special mappirg 7:C— C such that

tx+iy)=a+1y .x.y €ER.

(i5) If F, is the reflection group or dihedral group of degree mn, then,
in suitable local coordinates, p is of the form

z — (")

where n = 1 if Fx is the reflection group and n > 1 if F. is the dihedral
group of degree n. In this case we say p s of dihedral degree n.
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Above we have associated with each discrete group of conformal map-
pings of a simply connected Riemann surface X a bordered Riemann sur-
face S and a projection p:X — §. The local behaviour of p will be de-
fined by a mapping 7 :8 — N, where N is the set of the natural numbers
(zero exempted), such that

n(x) =k

if the degree or dihedral degree of p at a point z € p~x) is k. This is
easily seen to be independent of the choice of z. The set where n > 1
is a discrete subset of §.

Finally we make an observation to which we have an occasion to refer
in connexion of the proposition 2.4. The property (¢i¢) of the projection
p: X —>X/F =S8 suggests that the situation we are considering is a
generalization of the case where p is the covering projection of the uni-
versal covering surface of a surface S. This analogy, too, is clarified in
the proposition 2.4.

(¢99) If w €8 there is a neighbourhood U of x such that the components
of p™X(U) are Ui, it €1, and restriction of p to Ui, @ €I, is of the form

22" or
z — 1(2"®)

according to whether x lies on the boundary of S or is an interior point of S.
So we shall call the canonical projection p: X — S a covering pro-
jection, if this seems appropriate.

B. Pointed surfaces. The above considerations give rise to the fol-
lowing definition:

2.2 Definition. A4 pointed surface is & pair (S, n) where S is a bordered
surface with countable basis and n : S — N mapping such that the set ni =
{x € S:n(x) > 1}, colled the suppoirt of n. is discrete. In case S has
a conformal structure the pair (S, n) is called a pointed Riemann surface.

Particularly if (S, #n) is the pointed Riemann surface defined above
by the discrete group F of a simply connected Riemann surface X,
we denote

(*) (8, m) = (Sp, np) = (Sp> 72’p)

where p is the covering projection X — S.

We next state the inverse problem:

2.3 Problem. Given a pointed Riemann surface (S,n), s it possible
to represent it in the form (*) for suitable X and F'?

It is quite natural to define two pointed surfaces (S,%) and (§’, n')
homeomorphic if there exists a homeomorphism f:8— 8§’ such that
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n'(f(x)) = n(x). It is quite clear that the solution of the problem 2.3 de-
pends only on the homeomorphism class of the pointed Riemann surface
(8,n) with this definition of homeomorphisms of pointed surfaces. To
this end we prove proposition 2.4, but before we do this we define. cor-
responding to each pointed Riemann surface (8,n), a class of mappings
p:X—+S, where X is some Riemann surface (without boundary), that
generalizes the situation where p is the covering projection of the covering
surface X. Since proposition 2.4 is the only place where this class of map-
pings is used, this may seem unnecessary, but proposition 2.4 is most
naturally expressed in terms of these mappings. to be called covering pro-
jections p: X — (S, n).

Tet X be a connected Riemann surface (without boundary), (S.n) a
pointed Riemann surface. Then a mapping p: X — S is a covering pro-
jection p: X — (S.n) if it satisfies the following condition:

Given a point x €S, there is a neighbourhood U of «x such that the
components of p~YU) are U;. i €1I. and that the restriction of p to U;
is of the form

z—2N if x is an interior point of S
z— 1(%) if x is a boundary point of S

for i €1, and where ki divides n(z).

2.4. Proposition. Let X: be a Riemann surface, (Si, n:) « pointed
Riemann surface and p;: X;— (Si, m) @ covering projection, for © =1, 2,
and let f:(Sy, n,) = (Sy, my) be a homeomorphism of pointed surfaces. If
X, is simply connected and the degree or dikedral degree of p; s n(py(2))
for = €X,, then for any interior point x of Sy such that n(x) =1 and
for any pair of points

z €EpTHx) and z, € pil(f(x))
there is a unique mapping f': X, — X, such that the diagram
Xy I* X,
P1 v D2
Sy I* Sy
commutes and f'(z) = 2z,.

Proof: We construct first f' | X; when X = p7*(S:\in]), i=1,2.
Let z € X; then there is a path w:I—X; (I is the closed interval
[0,1]) such that «(l) =z and u(0) =z Since the boundary of &
may be non-empty. we cannot define f'(z) = »'(1) where u':I — X,
is a path such that
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(*) u'(0) = 2z, and pu = fpu

for the path «’ is not uniquely determined by these conditions. But if
we note that by the definition of a covering projection there is a division
0=1t<h<...<t.o=1 of I and open sets U;c X; and U, c X,
for ¢=1,...,n, such that w([t,_,,#])c U; and unique homecomor-
phism  fi: U;— U, such that p,fi = fo, 11Uy, filUNU,_, =
fiol U0 U_; and fi(z) = 2, ¢ < n, we may set the additional condition

(**) wlont]l=F; (|t 8], @+ <mn,
then u’ is uniquely determined by (**) and satisfies besides (*). We set
fR)=w(1).
We must show that this does not depend on the choice of the path w.

Since X, is simply connected it suffices to show that for paths of the form
u = vwv™! where v(0) =2, and w is a closed path such that

w(t) = gle2)

where g:E — U is a conformal equivalence from the open unit disk to
the neighbourhood U of a point 2z’ € X;\ X], the path «’ corresponding
to % is closed, i.e. %'(0) = w'(1) = z,. But this follows from the fact that
the degree or dihedral degree of p, at a point 2" € p7'(f(p,(z))) divides
the degree or dihedral degree of p, at 2’.

After that it is obvious how to extend the mapping f’ to the discrete
set X,\X; = pr(in]) .

Remark. The proposition 2.4 shows that p,: X, — (S}, n,) is. in a
sense, a universal object in the category whose objects arve covering pro-
jections p: X — (S}, n;). It can be shown that in the sense specified by
the proposition 2.4, every pointed Riemann surface has a universal object
p: X —(8,n), but. in general, the degree or dihedral degree of p at
points z € p7i(x) may differ from n(r).+ €S. We do not pursue this
subject further, for we are more interested in the corollaries of proposition
2.4 than in the proposition itself. Of these corollaries we prove first:

2.4.1 Corollary. Let X =X,, p=p,. S=28,. n=n, be as above.
Then the group F of conformal equivalences of X such that the triangle

X_J;X

PN 4P
S

commutes, 1s o discrete group of conformal mappings such that (Sp. ny) =
(S,n). If (S,n) = (S¢ ng) for some discrete group G of X. then
F=aq.
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Proof: It suffices to take X = X; = Xp, p = p; = p, and 8 =8, =8,
in proposition 2.4. After that the proof is rather obvious.

2.4.2 Corollary. The solution of the problem 2.3 depends only on the
homeomorphism class of the pointed Riemann surface (S, n).

Proof: Let (S: ni) be two pointed Riemann surfaces. 7 = 1,2, and
let f:(Sy, #y) — (Ss. my) be a homeomorphism of pointed surfaces. Suppose
that (S, ny) = (Sp, np) for some covering projection p:X — (S, )
where X is a simply connected Riemann surface and thus (S;, ny) =
(Sg, ng) by corollary 2.4.1 for some discrete group F of X. Then
fp : X — (8,, m,) is not as a rule a covering projection of (8. 7,) because
it does not behave in the required manner with respect to the conformal
structures. But it is not difficult to see that the conformal structure of X
may be redefined in such a way that fp is a covering projection. Then
the conclusion follows by corollary 2.4.1.

2.4.3 Corollary. Let X, and X, be two simply connected Riemann
surfaces and F; a discrete group of Xi, i =1.2. Let (Si n) = (SFi’ ng,)
for i=1,2, and let f:(Sy, 7)) — (Sp, mp) be homeomorphism of pointed
surfaces. Let fy, fy: X;— X, be two homeomorphisms such that the diagram

x L,

Pl P
s 9,8,

commutes (i =1,2) where p, and p, are the covering projections. Then
(1) fo=Sfy for some S €F,.
The mappings fi induce isomorphisms ¢;:Fy—F, such that

FlT(2)) = ¢ T)(fi(2)) for x € X;, T € Fy. and t =1, 2.
Then we have

¢o(T) = Sqy(T)S7

where S s the element of F, specified by (1) above.

This is again an obvious consequence of proposition 2.4.

It is clear that problem 2.3 does not always have a solution. Consider,
for example, the case where S = 8% is the one point compactification of
the complex plane C, n | C =1, n(cc) > 1. Then (S,#) cannot be re-
presented in the form (S, ny) for any discrete group of conformal map-
pings of a simply connected Riemann surface X.

The case where S is compact is well-known and leads to well-known
groups of conformal mappings. (See e.g. Zieschang-Vogt-Coldewey [7]).
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Therefore we restrict our attention to the case of pointed surfaces (S, n)
where S is non-compact and in this case show, disregarding the possible
conformal structure of (S, #n), that it may be represented in the form
(Sp, ny) where F is a discrete group of conformal mappings of the unit
disk. It will follow by corollary 2.4.2 that any pointed Riemann surface
(S, n), S mon-compact, has a representation in the form Sg ny) where
F is a dizcrete group of the unit disk or the complex plane C. The re-
maining sections of this chapter are devoted to this.

C. Discrete groups of conformal mappings of the unit disk. In this
section we consider only groups containing no reflections. We first study
some very simple discrete groups of the unit disk as well as their funda-
mental domains and introduce a principle of combining these groups into
more complex groups of the unit disk. Later we show that every non-
compact pointed surface without boundary can be represented in the form
(Sp, np) where F is a group obtained this way.

Let F be a cyclic group of conformal mappings of E. Since groups
containing reflections have been excluded from the discussion the structure
of F depends on the order of F. We treat separately the cases where the
order of F is finite or infinite and agree on the conventions and notations
to be used.

A. The order of F is finite. F is generated by a rotation T through the
angle 2z/n, n > 2, and has a fundamental domain Dy which is closed
in B and whose sides are non-Euclidean rays P and N, such that the
intersection of Py and Ny s the vertex @ = Fix(T) and such that

T(.Z\’TT) = PT'

We denote by Py the non-Euclidean line whose (ideal) endpoints on St are
the same as the (ideal) endpoints of Pr and Ny We denote by Dy the
component of E\Py for which DyN(EN\D;) =0 and by Cp the
other component of E\Pr.

If n =2, then Py = PyUN,; and we say that Py is the side of Dy.
In this case the fundamental domain has no vertices.

B. The order of F 1is infinite. In this case F is generated by a directly
or indirectly conformal mapping T and has a fundamental domain Dy,
closed in H, whose sides are two non-intersecting non-Euclidean lines Py
and Ny such that

T(N,) = Py.

In both cases 4 and B the complement of the fundamental domain
D; in E is denoted by

CT == E\DT.
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Now we may state the principle of combination for groups of the form
A or B. Let J be some index set, and suppose that for each ¢ € J a group
F: and its generator 7T as well as a fundamental domain D; = D,
are given. We suppose that the triples F;, T;, D;, 1 € J, are asin A4 or B.
We shall use the notations introduced above in A4 or B replacing the
double index T'; by 3, thus Pp, = P; etc.

2.5 Definition. Let F;, D;, C;,T;, i1 €J, be as above. If the inclusions
(1) cly C; cinty D; for i,5 €J, i # 7,

are valid in (1), then we say that the system F;, D;, T;, J forms a free com-
bination of cyclic groups.

We shall find it later important to be able to decide whether a given
system F;, D;, T, J forms a free combination of cyclic groups by con-
sidering inclusions of the form

(2) c(C)NStcel(D;)N St for ¢,j €J,5 #j.

This condition is at first appearance not equivalent with (1). It is clear
that the inclusions (2) are implied by (1). On the other hand the inclusions
(2) almost imply the inclusions (1). The only case when this is not true
is the case when J consists of two elements, say J = {1, 2}, T’; is elliptic
of order two for ¢ =1, 2,intgD; = C, and intgD, = C,;. Taking account
of this exceptional case we may express the definition 2.5 in the equivalent
form:

2.5’ Definition. Let F; D, T:,J be as above. Then they form a free
combination of cyclic groups if the inclusions (2) are satisfied and if in addition
it is proper when T; and T; are elliptic of order two.

Before stating the main theorem of this section we introduce the fol-
lowing notation. Let F be a group of conformal mappings of the unit disk.
Then we set

Fix(F) = {P(T) : T € F, T has infinite order},

which is a subset of S

2.6. Theorem. Let F;, D;,T;,J form a free combination of cyclic
groups and let F be the group generated by Fi, i €J. Then F 1s the free
product of the groups F;, © € J. Moreover, if one of the following conditions
s true

(¢) TFix(F) 1s dense in S,

(b) N; is an arc of the isometric circle of Ti, 1 €J,
then F s a discrete group of conformal mappings of the unit disk with a fun-
damental domain

D=0ND:.

i€J
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In the case (), the set Fix(F) is dense in S* if and only if clDNS' con-
tains no intervals of S

Proof: We first prove the followirg assertion where we call a non-
Euclidean line or ray a side of D if it is a side of D; for scme i € J and
a point a vertex of D if it is a vertex for scme Dy, 7 € J.

A Let T =1T,...T, bean element of F such that Ty € F; \{1},
1 <k<n, and ix # 4, for k=2,...,n If the order of Fy is in-
Jinite let C,fk be the comgponent of Oy that conlains Ti(intgDy), otherwise
let Ci'k = Cy. Then

(@) T(D) c d,C,
(0) T(D)ND = o if n>1 orif n=1 and the order of F, s in-
finite and T, is not a generator of F,,
= a verlex of D tf n=1 and the order of F, is finite
with T, = Tfl where 1 <k < (the order of F,)— 1,
= a side of D if n=1 and T,=7T, or T,=T;"
We prove 4 by induction on n. The ease n = 1 is clear. If A4 has
already been proved for 7" =1T,...T,. then

T'(D) € ¢elgC;, c intgD, .

From this follows the conclusion.

It is a consequence of A4 that F is the free product of the groups
Fi, i €1, and that D is a fundamental domain of the discrete group F
if we can show that
(1) D= U T(D)

TeF
is the whole open unit disk.

To prove this we set

D= {T(D): T €F}

and introduce the notion of a chain in D. A collection {D,:n > 0} is
called a chain of D if

(t) D,OD,. , is a common sids or « common vertex, n > 0,

(1) D,_y and D, are in different components of E(int D,), n > 1.
Besides we make the following assumption which is quite unessential but
will simplify notations:

(tit) Dy = D.

Then it is easy to see that there is a unique sequence of elements of F T,
T,, ... such that

(2) Dy=T,...T\D)

where each 7T, € F;, \{1} for some i, €J and satisfies

2
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(@) If Fi, 1is infinite cyclic, then T, is a generator of Fi,, and if
Uy = tn, then T,y 15 Thyn >1,
(b) If Fi, is finite, then %, ; F tn.

Correspondingly, given a sequence 7', € F;,\{1} and satisfying the
conditions (a) and (b) above, the domains Dy =D and D, =1T,...T.(D)
form a chain of D.

Given a chain {D,} of D we define a sequence K,, K,,... of non-
Euclidean lines by

(3) K.,= D, ,ND, if F;, is infinite cyclic (z > 1),
K,.=T,... T,,_I(P,-'n) if F;, is finite (if F, is finite K; = P;)
(n > 1).

Then it is easily verified, usirg the properties (i) and (ii) of a chain of D,
that the K,,n > 1, form a collection of disjoint non-Euclidean lines such
that K,,, and K, , are in the same component @, of E\K,. Hence
the lines K, m > n, are in the component @, of E\ K,. (Incidentally,
we now see that all the elements of a chain {D,} of D must be different.)
The intersection
(4) Q=Ncl@n

n=>1
is either a point of S' or of the form K N E' where K is a closed disk
whose boundary is orthcgonal to the unit circle. It is easy to see:

B. If {D.} is a chain of D, then the intersection of @ with D" in (1)
is empty.

Forlet D, =1T,...T.D), n >0, be a chainof D where the elements
T, €F are as above. Let C = T(D) be an arbitrary element of D where
T € F may be written in the form 7 = T;...T, where 7T. 1 <n <k,
satisfy (a) and (b) modified to the finite case. If T, =T, for n <m
and T,y # T,.1 where m <k, then CNecl@Q, = o for n > m. Other-
wise CNecl@Q, =90 for n >k + 1.

We associate with each point € EN\D’ a chain of D such that:

(¢) Dy = D.

(1¢) Let D, be the unique element of D such that D,N D, _, is a common

side or common vertex and that a and D,_, are in different components of
E\\(int D,). (This implies that D, ., and D,_; are in different components
of E\(int D,)).
Then z € Q where @ is defined as in (4) by means of the chain {D,}.
In this case @ cannot be a point since it contains a point of £. We now
derive a contradiction from this if one of the assumptions (a) or (b) of
theorem 2.6 is true. ‘
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Under the assumption (a) the set Fix(F) is dense in S. In particular
there is an element 7' € F such that P(T') € intg, @ NS* which is an open
interval of S. But this contradicts assertion B, since @ N D' = ¢ and
in every neighbourhood of P(7) there are transforms 7™(z) of an arbi-
trary point z of E.

The situation is somewhat more complicated under the assumption
(b) of theorem 2.6. We prove that given d > 0, there is an integer n,
such that

(5) diam (K,) < d for n > n,.

where K, is the sequence of open arcs of circles orthogonal to S' defined
by equation (3) and arrive in this way to a contradiction with the assump-
tion D’ % K. Let

D,=T,...T.(D)
where T, € F;,\{1} satisfy conditions (a) and (b). Then
K. =T,.. T, (K)=K,ifn=1).n>0,

n—1
where K| is a side of D or the non-Euclidean line P,.'n if F;, is finite.

It follows easily by A that T, ...7T,_(K;) is outside the isometric circle
of T, _, and thus we have the increasing sequence

diam(K,) = diam T, ... T,_,(K.) < diam T,...T,_(K.) < ... < diam(K_).

Since by A T,,...T,_y(K,) c Ci, we may draw the conclusion that the
diameter of K, does not exceed the diameter of the components C;,,
m << n. Thus if diam(K,) <d for all » > 0, then in the sequence 77,
T,, ... only a finite number of elements can occur, i.e. those elements
T, € F;, for which the diameter of components of C;, exceeds d. We
denote this finite set of elements of F;,\{1}, n > 1, by X.

We are now in a position to use proposition 1.3. In this connexion we
must remember that among the transformations of X there may be some
whose isometric circle is not unique, i.e. the elements of an elliptic cyeclic
subgroup whose fixed point is the origin. We denote this subgroup by F,
if it exists. Then, by proposition 1.3, there is a real k, 0 <k <1, such
that

diam(K,) < k/ diam (K)

where j is the number of elements in the sequence T,,...,7T,_, that
do not belong to F,. Since j— co when n— co a contradiction can be
derived from this if it is assumed that diam(K,) > d for all =.

It remains to prove that in case (b) the set Fix(¥) is densein S§' when-
ever ¢l DN S does not contain intervals of 8. Since, evidently, Fix(F')
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cannot be dense in S if ¢l DN S contains intervals of 8!, we must only
prove the converse assertion. In this case J contains at least two elements.
We have:

(. If the index set J contains two indexes, then for each component C
of C;, j€J. there is a transformation T € F of infinite order such that
P(T)eclC.

To prove C we choose another ¢ €J, ¢ # j. Let T € F; be an element
such that T(D;) c el C. Then

TT(C) c T(C) ¢ T(D;) c el C

and thus P(TT;) €clCNSL

Now let 2 be an arbitrary point of S It there is 7' € F such that
every neighbourhood of & contains components of E™ T(D) conclusion
follows by (. If this is not the case there is a chain {D,} of D such that:

(i) Dy = D,

ity D, is an element of D such that D,ND,_, is a common side or «
common rvertex and that D, and D,_, are in different components of
EX(int D, ) (n > 2) and that there is a component C of E\ D, such
that v €clC.D, \NC = 0.

It is quite evident that there is such a chain and that if Qi ¢ = 1.
is defined as above corresponding to the chain {D,} then » €@, for all
7 > 1. and thus

r€EQ=NeclQ.
i>1
We have shown that diam (¢l @;)— 0 as {-— <. Since every ; con-
tains transforms of D (e.g. D, for large enough 7) the conclusion follows
by C.

D. Standard representations for non-compaect pointed surfaces without
boundary. It is well-known that every compact surface can be obtained from
the closed unit disk E' by identifying suitably intervals of S We prove
here a similar representation theorem for non-compact pointed surfaces
without boundary.

Let (S.%) be a non-compact pointed surface without boundary. Let

E =EU(UI)

€K
where each I, ¢ € K, is an open or half-open interval of S§! such that
I{ n Ij =@ Oor

a common endpoint for ¢, j € K. ¢ # j.
Further, we set
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(1) V={Q:Qel;NI, i,j €K, i +~j}
and let 7: E'NS'-— E'N S be a homeomorphism such that

2) i2 = id, i(I;) = I; where i +j,i,j € K, and
iV = id.

Then if we identify & with ¢(x) for x € E'NS' we obtain a surface
denoted by S’; let k:E’ — 8" be the canonical surjection. If there is
a homeomorphism f:8" — S such that

(3) n| = fk(V))

we say that R = (B',4,f) = (B',4,k, 8, f) is a standard representation
of (8, n).

We may note that the set of intervals I;, 7 € K, is uniquely determined
by the mapping i. The set V defined by (1) is also defined by

V={x€ENS:ix)=a}

and is called the set of vertices of the representation R.

The remainder of this section is devoted to proving the following pro-
position:

2.7 Proposition. Let (S, n) be a pointed surface without boundary such
that S s non-compact and connected. Then (S, n) has a standard represen-
tation (E',1,f). If (S,n) s not topologically equivalent with (E.1) then
we may suppose in addition:

(?) The set S'N\E does not contain intervals of St

(¢3) Let 'V be the set of vertices of (E', i, f) (i.e. the set of fixved points of
t). Then it can be supposed that (' 0 SYN\V is a union of open intervals such
that they are identified in pairs by i and any two intervals identified by 1@
have equal length.

The proof is based on the fact that every non-compact connected surface
with countable basis has a canonical exhaustion, i.e. there is a sequence
K, cK,c ... of compact bordered subsurfaces of S such that

(i) UK:i =S,
i=1

() K,cint K; | for i > 1,

(tit) Each component of cl(K,; +1\Kl.) is a connected subsurface of 8
having in common with K; exactly one boundary component.

(w) Hach component of cl(S\K:) is non-compact, i > 1.
It follows from these properties that each K; is connected. A proof of the
existence of such an exhaustion of S can be found in Ahlfors-Sario [1].
Besides the above conditions we can obviously demand
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(v) m|NK;cint K; for i >1.

A canonical exhaustion of S that satisfies the condition (v) is said to be a
canonical exhaustion of the pointed surface (S, n).

In what follows it is quite essential to have a convenient representation
for compact bordered pointed surfaces (K,m) such that 'm| does not
contain boundary points of K. The representation we use is quite similar
to the standard representation for open pointed surfaces without boundary
given above.

Let I, i € L, be closed arcs of circles orthogonal to 8!, lying in A%,
such that the endpoints of each I;, ¢ € L, are on Sl. We suppose that
this set is a disjoint set of circle arcs. Besides we suppose that a set I,
i € K, of closed intervals of S is given such that at least one endpoint
of I; is an endpoint of some I, k € L. The other endpoint is either an
endpoint for another I;, I € L or an endpoint for I;, j € K. Except for
the endpoints the sets I;, i € K, form a disjoint family. Further, we require
that

4=(Ul)V (Ul
i€k i€L
is a Jordan curve bounding a Jordan region E’ of E!'. We suppose that
E’ is closed, i.e. A C E'. The set Vo UI:, called the set of vertices of
i€k
the representation, is defined exactly as above by the equation (1). In
the same way, we suppose that a homeomorphism ¢:E'NS'— E' NSt
is given satisfving the equations (2) above. Then if the points « and i(x)
are identified, v+ € £’ NS, we obtain a bordered surface, denoted by S,
with the canonical projection k:E’— §’. Then if there is a homeomor-
phism f:8 — K such that m| =f(k(V)). we say that (E'.¢,f) is
a representation for (K.m). It may also be denoted by

R=(B,i.f)=(E.if 8.k

if it is desirable to choose a notation for the factor space 8’ and the ca-
nonical surjection k.

Let R; = (Ej, i, f;. S;, k;) be representations for two compact, bor-
dered surfaces (Kj, ), j = 1,2, such that K, is a subsurface of K, by
which we mean that K; c K, and that each boundary component of K,
is either a boundary component of K, or belongs to the interior of K,.
Further, suppose that E;c E; and that i, E;N S =4,. Then we
may regard S; as a subsurface of S, and if in addition

LiSi=h

we say that R, is an extension of R;, written R, C R,.
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We suppose that a canonical exhaustion K, c K,c... of a non-
compact, connected pointed surface (S,n) without boundary is given.
We exclude the trivial case where § is homeomorphic to the open unit
disk and # = 1. Then we may assume that the pointed surface (K,,n | K,)
is not topologically equivalent to the pair (£, 1) where 1 denotes the
function B! N having the constant value 1. Then, using the well-known
classification theorems for compact, bordered surfaces, (see e.g. Ahlfors-
Sario [1]), it is easy to see that (Kj, n | K;) has a standard representation
R, = (B3, iy, fi, 81, ky). We show that this can be extended to a represen-
tation R, of (K, n|K,). Let K be component of cl(K,\K;). Then
K is a compact bordered surface having at least two boundary components
of which exactly one, say B, is in common with K, i.e.

B=KNK,.

It is easy to see that the pointed surface (K,n | K) has a representation
R = (E',i,f,8 k) such that 4 = E;NE’ is an arc of a circle orthogonal
to 8! and that

B = f(k(4)).

Let A,0,, ..., O, be the disjoint set of circle arcs orthogonal to S* such
that

B=f(k(AU0,U...UO,)).

(We may suppose that 4 cfr'(k7'(B))). We choose the arcs of circles
O;. ..., 0, orthogonal to S' such that O; and E;\O; are in different
components of E'N\0;,7 < n. Let G; be the region of £ whose boundary
(in E) is 0,y0;,i <mn. Define

E" = EJUE'Uc(G,U..UG,).

Then it is easy to see that there is a representation R” = (£, ", f", 8", k")
of K;UK that is an extension of R;. (Note that if B + fik;(4)) it is
not an extension of R; K\ f"(k"(E’)) is homeomorphic to [0,1]x (0,1).)
Treating separately each component of cl(A,\ K,) we obtain a represen-
tation R, that is an extension of R,.

By now it is clear how to continue. We extend inductively the repre-
sentation R,_; of (K,_;,n|K,_ ;) to (K, n!K,) and obtain a sequence
R,Cc R,c ... of representations of (K, n | K;)c ... . It may be sup-
posed that at each stage of construction the orthogonal circle arcs bounding
E! are arbitrarily small when R, = (E.,i,,f,), e.g. we may demand that
if (' is a component of E'\ E, then

(4) diam C < 1/n.
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After that it is quite obvious how to define the desired standard repre-
sentation of (8, n). Set

Then, by (4), £ c E' and we may note that S'NE’ has the property:
(a) STNE’ does not contain intervals of 91
The mapping i: E'NS'— E'N S is defined by the formula:
i E,NSt=1,.
Similarly, the homeomorphism f:8"— 8 is defined by the formula:

f18, =1

The verification that (£, 4, f, 8’, k) is a standard representation of (S, n)
is trivial. Besides it satisfies the condition (i) of proposition 2.7. It is pos-
sible that it does not have the property (ii), but by investigating how the
representation of (K, n | K;) was extended to a representation of (A,
n | K;) we may observe that the intervals of (S*NE’)\V (where ¥V is
the set of vertices of the representation) may be indexed in such a way that
we have a sequence I, I,, ... of intervals of (E'N S\ V and that there
Is a sequence m; << n, << .. of integers such that

(b) If k,1>n; > k',1I" and the intervals I, and I, are identified by
i, then Iy and I, are in the same component of SN\(I, UI,).
(k, I, k', I €N).

Then if the standard representation (E’,1,f) does not have the property
(i), it can be reconstructed by (b) in such a way that it has both properties
i) and (ii).

E. The representation of non-compact pointed surfaces by means of
discrete groups of the unit disk. In this section we give an affirmative an-
swer to problem 2.3 in case of a non-compact pointed surface. The following
theorem is based essentially on theorem 2.6 and proposition 2.7. If the
boundary of 8 is non-empty, use is made also of corollary 2.4.1.

Before we state the next theorem we agree on some notations concerning
pointed surfaces with non-empty boundary. Let (S,%) be a connected
pointed surface whose boundary is non-empty. Tts double (S*, n*) is
defined as follows: Symbolically, we denote

§* =S| | s/as

where 9S is the boundary of §. This means that we take two copies of
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the surface S, form their disjoint union, and identify the corresponding
boundary points. Thus §* is a connected surface without boundary. There
is a canonical projection

p*:8* =8

and two inclusions 4;:8—8* j=1,2. Since i |0S =1, 5. the
boundary of S may be imbedded uniquely in S*. Thus we mayv agree
that 98 is a subset of S*. Besides the above mentioned mappings we
have still an involution of S*, denoted P, that might be called a reflection
about 0S5, such that

1y = Pi; .

After that we define a mapping »*:8% — N such that a*(w) =
n(p*(x) ). The support of n* is discrete and therefore we have a connected
pointed surface (S*, n*).

We may now state the main theorem of this section:

2.8 Theorem. Let (S,n) be a non-compact connected pointed surface.
Then up to a homeomorphism

(Sa n) = (SF:nF)

where F is some discrete group of conformal mappings of the unit disk.
Besides we have:

(¢) If the boundary of S isempty, F can be chosen to be a free combination
of cyclic groups and is thus a free product of cyclic groups.

(27) The set ¥ix(F) ={P(T):T €F. T has infinite order; inay be
supposed to be dense in S' provided S has no boundary and is not topologi-
cally equivalent with one of the following cases:

(@) (E, m) where 'm contains at most one point. Then F is a finite
cyclic group or F = {id}.

(b)Y A spehere punctured at two points or a projective plane punctured at
one point, with m: = g. F is an infinite cyclic group.

(¢) (£, m) where m. consists of tio points « and y such that m(x)
= m(y) = 2. F is the free product of tuwo groups isomorphic with Z,.

(tot) If F s a discrete group of conformal mappings of the unit disk,
then (Sg,np) (or (S¥ n¥) if Sp has boundary components) is topologically
equivalent to one of the pointed surfaces in (a), (b) or (¢) if and only if F does
not contain a free subgroup with two generators. If this is the case, Fix(F)
contains at most two points.

Proof: We first consider the case where the boundary of S is empty.
If (S,n) is topologically equivalent to (£,1) , then we can obviously
set F = {id}. In all other cases we can choose a standard representation
(E', 1, f) for (S,n) satisfyving conditions (i) and (ii) of proposition 2.7.
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If £'N S is an interval, we have the case (a) where |n! contains exactly
one point. Then, evidently, (S, %) is topologically equivalent to (S, n)
where F is a rotation group, thus a finite cyclic group. If E’' N S* consists
of two intervals and n =1, we have the case (b). Then (S, n) is topo-
logically equivalent to (Sp, np) where F is the infinite cyclic group
generated by a hyperbolic transformation 7' of the unit disk, that may be,
in the terminology we have adopted, either directly or indirectly conformal.

The case (c) deserves a special treatment. We choose two points ,y € £
and denote by 7', resp. by S, arotation of the unit disk through the angle
7 having the fixed point x, resp. y. We suppose that = = y, ie. § = T.
Then ST is a hyperbolic transformation whose axis passes through z and
y and is uniquely determined by these. It is easy to see that every element
of infinite order in the group F generated by S and T is of the form
(8T)", n €Z, n #~ 0. Every other element of F, different from 1, may be
written in the form (ST)"X(S7)~™ where X is S,7,TS8T or STS.
It is a rotation of order two such that its fixed point lies on the axis of
ST. The pointed surface (8, n) is homeomorphic to (S, ng).

After that we treat the general case, i.e. the case of an open connected
pointed surface without boundary that is not equivalent to the surfaces
in (a), (b) or (c). In this case E'N S' contains at least two open intervals.
We denote these by Ik, k € K. The index set K may be represented as
a disjoint union

K = K,UK,UK,

such that 4(Ix) = I, for k€K, and where [ € K,. For k € K; we have
t(Ix) = Ir. We choose some k € K;. Let O; be the circle orthogonal to
S! that passes through the endpoints of I;. Similarly for & € K,. Then
by proposition 1.1 there is a directly or indirectly conformal mapping Tk
of the wmit disk such that the isometric circle of 7% is O and that of
Ty' is O; where i(Iy) = I, and such that Tx(Ox) = 0. Let Ty be
indirectly conformal if 7 preserves orientation on I, otherwise directly
conformal. Let then & be an index of Kj; Let nx = n(f(k(xx))) where
k is the canonical surjection of the representation (E’,7,f) = (E',1,f,
S, k) and ax is the vertice of this representation contained in I Let
I, be the interval I of the proposition 1.2 and let O} be the circle 0;
in the same proposition, ¢ = 1, 2. Finally, let 7T be the transformation
T of proposition 1.2. It may happen that the circles O} are lines passing
through the origin. Then, in the following, by the region of E outside the
circles O; and O; we mean the component of E\(O; U 0}) whose inter-
section with other circles O, [€ KUK, and O] and O} 1€ K, is
non-empty.

Let D; be the closed domain of K whose boundaries are the ares
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O:NE and ONE, for k€K, and ¢(Ix) = I,. For k € K;, let Dy be
the closure of the region outside the circles O and O;.

We claim that the system 7%, Dy, K; U K3 is a free combination of
cyclic groups and that the group F generated by T, k€ K;UK; is a

discrete group of the unit disk whose fundamental domain is D = (| Dx.
keK, UK,
These are immediate consequences of the definition 2.5" and proposition

2.6. Besides it can be seen that Fix(F) is dense in S! since ¢l DN S!
does not contain intervals of S This is again a consequence of proposition
2.6. Finally, it is easily seen that (S, ny) is topologically equivalent to
(S, n).

Thus it is seen that the assertions (i) and (ii) are true in the case § has
no boundary components. As for (iii), it follows by corollary 2.4.3 that the
topological character of the pointed surface (Sg, ny) determines the group
F up to an isomorphism. Thus in cases where (Sg.7np) is of the type (a),
(b) or (c) the elements of infinite order (if they exist) form a subgroup that
is infinite cyclic, and, hence in these cases Fix(F) contains at most two
points, and cannot contain a free subgroup with two generators. If (S, ng)
is not of the type (a), (b) or (c) then it is seen that either

(1) F is a free product of more than two cyclic groups, or
(2) F is a free product of two cyclic groups, not both of them
isomorphic to Z, .

It follows that F contains a free subgroup with two generators. Thus we
have proved theorem 2.8 in case the boundary of § is empty.

It remains to consider the case where the boundary of the pointed sur-
face (9, 7n) is non-empty. We have defined earlier the double surface
(S*, n*) of (S,n) without boundary. We defined also the surjection
p*:8* -8 and the involution P:S8* —S* We have seen above that
there is a discrete group of the unit disk F* such that (8% n*) is topo-
logically equivalent to (Sg., nps). We denote the canonical projection
E — 8% = Sg. by p’. Then we have the combined projection

(*) p=p*':E—S.

We have now reached the point where the conclusion may be drawn by
corollary 2.4.1. In order to be able to use this corollary, we choose some
conformal structure on S (this can be done using a trick employed in
Ahlfors-Sario [1] theorem 5E p. 127). This induces a conformal structure
on S* such that p* is a local conformal equivalence except at the points
of 88, where it is dihedral of degree one. This induced conformal structure
may be different from that of S* regarded as the factor space Sp. of E.
Thus the mapping p: E — (S,n) is not, as a rule, a covering projection,
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but it is easy to see that the conformal structure of  may be redefined so
that p is a covering projection of the pointed Riemann surface (S, n).
Then by corollary 2.4.1 the conformal equivalences f of E for which the
triangle

57 B
PN ovP
S

commutes, form a discrete group F of the unit disk such that (Sg. ng)
= (S,n). We must still show that the conformal structure of E after
the redefinition remains conformally equivalent with the conformal struc-
ture of the open umit disk. If F'* ¢ F' contains a free subgroup with two
generators, denoted by H, then E/H is homeomorphic to either a torus
punctured in one point or a sphere punctured in three points (we may as-
sume that H does not contain indirectly conformal elements). This means
that the conformal structure of E is equivalent to that of the open unit
disk after the redefinition. In cases where (S*, #*) is one of the pointed
surfaces in (a), (b) or (c), by considering the cases that may occur, we may
choose the conformal structure so that the conformal structure of £ in-
duced by p is the original conformal structure. Thus we have proved that
every non-compact pointed surface may be represented by means of a dis-
crete group of the unit disk.

To conclude the proof of theorem 2.8 we must examine the algebraic
structure of F. It has a subgroup F* of which we know that it is a free
product of cyclic groups. Now, consider the commuting diagram

J2 P’
G P
%k

p*.  p?
S

where we choose P* to be a reflection of F. It is easy to see, using pro-
position 2.4, that every element S € F may be written uniquely in the form
TX where T € F* and X = P* or = id, i.e. is an element of the sub-
group generated by P* that is isomorphic to Z,. Thus as a set, the group
F' can be identified with the cartesian product F* X Z,, but its composition
is not that of the cartesian product. We have

(SX)(TY) = (SXTX)XY,S,T € F* and X, Y € Z, = {P*, id} .

Thus we may define a left action of Z, on F by (X,8)— XSX = S,
Then the group structure of F is given by
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(S, X) (T, ¥) = (ST, XY).

We say that this is the skew product structure defined by the action of Z,
on F*

To prove the assertion (iii) it suffices to remark that if (S*, n*) is
topologically equivalent to one of the surfaces in (a), (b) or (c), then every
element 7' of F having infinite order satisfies the condition 7 € F*
and is thus in the infinite cyclic subgroup of the elements of F* having
infinite order. On the other hand, if (S*, »*) is not topologically equivalent
to one of the surfaces in (a), (b) or (c¢) then F* and, a fortiori, F' contains
a free subgroup with two generators. This concludes the proof of the theo-
rem.

We have also proved the following corollary:

2..8.1 Corollary. Let F be a discrete group of a simply connected Rie-
mann surface such that (Sp, np) is a non-compact pointed surface. If Sy
has no boundary, F is a free product of cyclic groups. If the boundary of Sg
1s non-empty, there is @ well-defined subgroup F* of F such that (S ps, 1)
= (S5, n¥). If P* is a reflection of F and Zy the subgroup of F generated
by P*, then F is isomorphic to the skew product F* X Z, where the action
of Zy on F* is defined by (X,S)— XSX, S€F* X €Z, This result
is also valid if Sp is compact.

3. Isomorphisms between discrete groups of the unit disk

A. Preliminary definitions and propositions. Let F be some discrete
group of conformal mappings of the unit disk. We have already defined

(3.1) Fix(F) = {P(T): T € F, T has infinite order}
which is a subset of S. Similarly we set
(3.2 Ax(F) = {Ax(T): T € F. T has infinite order}

where it might be observed that we have excluded the axes of reflections
of F.

3.1 Proposition. ZLet S, T € F have infinite order. Then S and T
have no common fixed points, unless some power of them is in an infinite
cyclic subgroup of F.

Proof: The case in which S and 7T have all their fixed points in
common is treated by performirg a suitable transformation in such a way
that the fixed points are transformed to 0 and oo of the Riemann sphere
(or to oo if both 8§ and 7' are parabolic). Therefore we may assume that
T is hyperbolic and has a fixed point that is not a fixed point of S.
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Under these circumstances define S’ = ST'S-1. Then
(1) dy=d(x, T(2) ) = ds = d(y, 8'(y) ), v € Ax(T), y € Ax(S')

where d is the hyperbolic metric of E, and both §" and 7' are hyper-
bolic and have one (and only one) common fixed point. Define

T,=1T8T",
then
(2) dr, = d(z, Tn(z) ) = dp for « € Ax(T%)

Because Ax(T',) converges to Ax(T), we have by (1) and (2)
lim T',(z) = T'(z) for z € Ax(T) .

But this is impossible since F is discrete and none of the mappings 7,
is equal to 7.

Let f be a homeomorphism (Sg, ng) — (Sp, np) where F and F’
are discrete groups of conformal mappings of simply connected Riemann
surfaces X and X'. In corollary 2.4.3 it was shown that f induces a
family of homeomorphisms X — X’ differing from each other by some
S €F'. At the same time f induces a family of isomorphisms F — F".
The study of such isomorphisms is precisely the subject-matter of this
chapter when X = X' = E. Therefore we define:

3.2 Definition. Let F and F' be two discrete groups of conformal
mappings of the unit disk and ¢ : F — F' an isomorphism. We say that ¢
is geometric if there is a homeomorphism f:E — E' such that

fT@)) = o(T)(f(&) ) for TE€F, 2z €E.

In that case we say that ¢ s induced by f.

Our aim is to give necessary and sufficient conditions for an isomor-
phism of discrete groups of the unit disk to be geometric. In this connexion
the following definition is of fundamental importance:

3.3 Definition. Let F be a group of conformal mappings of E and
S,T € F elements of infinite order. Then we say that S and T are crossed
if Ax(T)NAx(S) #o2.

It turns out that an isomorphism between discrete groups of E is geo-
metric, with few exceptions, if and only if it preserves the relation of
being crossed. We first prove:

3.4 Lemma. Let F and F' be two discrete groups of conformal mappings
of the unit disk and ¢ : F — F' a geometric tsomorphism. Then ¢ preserves
the relation of being crossed.

Proof: It suffices to show that if ¢(S) and ¢(T) are crossed for some
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S,T € F, then also § and T are crossed. Moreover, we may assume that
neither ¢(S) nor ¢(7') is parabolic or that some power of them is in an
infinite cyclic subgroup of F’, i.e. they have a common fixed point. (We
suppose that their order is infinite). Let C'; be a closed circle arc in E!
whose endpoints are P(7") and N(7') (in case T is parabolic let O} be
a circle in £', different from 8!, tangent to S' at P(T)). Define simi-
larly Cs. There is a homeomorphism f; : R— CrNE such that

fr(x+n) = T"f(x) for n €Z and « €R.

The homeomorphism fg: R—CgNE is constructed in the same way.
Let R= RU{o, —o0}. Then we can extend fr to a continuous map
fr:R—Cr by setting fr(— o) = N(T), fr(0) = P(T). In the same
manner we extend fs to fs. Let h:E —E be some homeomorphism
inducing ¢. Then we define gy and g5: R — E' by setting

gr | R = hf,
gr(— 0) = N(@(T) ) , gr( ) = P(p(T) )

and analogously for g5. Then from the assumptions we have made re-
garding ¢(T) and ¢(S) it follows that gr(R) and g5(R) are Jordan
arcs whose intersection is a point of K. Consequently, C; and Cg must
be circle arcs whose intersection is a point of E. This proves that S and
T are crossed.

B. The case in which Fix(F) is dense in S'. We assume that F and F’
are two discrete groups for which Fix(F) and Fix(F’) are dense in S,
and that an isomorphism ¢:F — F’ preserving the relation of being
crossed is given. In that case an element 7' of F is parabolic if and only
if @(T") € F' is parabolic. This is seen using proposition 1.4. Then a map-
ping ¢ : Fix(F) — Fix(F’) is defined by

(1) ¢ (P(T)) = P(¢(T)) -

This is obviously a bijection. The following proposition shows that it can
be extended to a homeomorphism ¢*: S' — S, if ¢ preserves the relation
of being crossed.

3.5 Proposition. Let F,F',¢ and ¢ be as above. Then there is a
unique extension of ¢’ to a homeomorphism ¢* : St — S

Proof: In proving the above proposition we make use of the notion
of a nested sequence T, T,, ... of elements of F. We say that a sequence
T,,T,, ... of hyperbolic elements of F is a nested sequence if there is a
properly decreasing sequence I; D I, D ... of closed intervals of the circle
S§', such that the endpoints of I; are P(T;) and N(T:), <> 1.
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Using proposition 1.4 it is seen that a sequence T, T, . . . of elements of
F iz a nested sequence if and only if ¢(7Y), ¢(T). . . . is a nested sequence
of elements of F’. Let 2 be an arbitrary point of S Then there is a
nested sequence 7T, T, ... of elements of F such that, if I, I, ... is
the correspondirg sequence of intervals,
fa} = N 1.
i>1

Then the intersection of intervals corresponding to the nested sequence
o(Ty). ¢(Ty), . .. consists of one point y. We define

PH) =y

It is eaxily seen that ¢* is uniquely determined and is the desired exten-
sion of ¢’. We mayv note that ¢* has the property

(3.5.1) e*(T(r)) = ¢(T)¢*w)) for + € ST and T € F .

This is the fundamental property of ¢* and it will be needed later.

We prove a corollary to proposition 3.5 for which we have no use,
but which is, nonetheless, interesting in itself.

3.5.1 Corollary. Let F,F’', ¢ and ¢* be as in proposition 3.5 and f
some homeomorphism inducing ¢. Then the bijection E' — E' defined by
[ and ¢* is a homeomorphism.

Proof: The mapping f': E'— E* defined by

f(x) = f(o) for x € E
= ¢*(x) for » € 81

is obviously a bijection and to show that it is a homeomorphism it suffices
to prove its continuity at points of S Let .« be a point of S Let 77,
T,, ... be a nested sequence of elements of F and ;. I,.... the sequence
of intervals corresponding to it satisfying

e} = N L.

i>1

Let U; be the component of A'NAx(7,) to which « belongs. Then
Ui, > 1, form a basis of neighbourhoods for 2 in FE!. and it is not
difficult to see that f'(U;), ¢ > 1, is a basis of neighbourhoods for f'(z).

C. The main theorem. We have now at our disposal all that is needed
to prove the main theorem of this chapter. We suppose that two discrete
groups F and F’ of conformal mappirgs of the unit disk and an iso-
morphism ¢ : F — F’ are given. We prove, with some restrictions, that
¢ is induced by a homeomorphism if and only if it preserves the relation
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of being crossed. We suppose that the factor space E/F is non-compact,
except if the boundary of § is non-empty in which case we assume that
boundary components are compact. There are two reasons for this: If
9S = o, our method of proof applies only when § is non-compact, whereas
the case 98 # ¢ is reduced to this by omitting the boundary. The other
reason is that for the case S is compact and 08 = g proofs of combina-
tory nature are available (see e.g. Zieschang-Vogt-Coldewey [7] or Zie-
schang [6]) but if S ¢ @ only proofs making use of quasiconformal
theory and Teichmiiller spaces are known (cf. Macbeath [3]). The compact
case is basically different from the non-compact case in the respece that
every isomorphism is induced by a homeomorphism (and thus preserves
the relation of being crossed, as we later show in lemma 3.6.2).

3.6 Theorem. ZLet F and F' be two discrete groups of conformal map-
pings of the unit disk such that F contains a free subgroup with two generators
and S = E|F is non-compact or that the boundary of S 1is non-empty. The
boundary components of S are assumed compact. Let ¢:F —F' be an
1somorphism. Then ¢ is geometric if and only if it preserves the relation of
being crossed.

Remark 1. The theorem is presumably true even without the assump-
tion of compactness of the boundary components, but I have not been
able to prove it in this case.

Remark 2. If S does not contain a free subgroup with two generators
rather strong limitations are imposed on the topological character of the
pointed surface (Sp, np) (cf. theorem 2.8.).

Proof: We agree to call in this proof a discrete group of conformal
mappings of the unit disk simply a discrete group. By lemma 3.4 it suffices
to show that if ¢ preserves the relation of being crossed it is geometric.
We divide the proof in several parts:

1. Some general results

We first prove some results of general character for later use.

A. If a discrete group G has a compact fundamental domain. then the
set Fix(G) is dense in S

In proving this we make use of the following result: If a discrete group
G has compact fundamental domain, then it contains a subgroup G’
of finite index that is a surface group, i.e. E is a covering surface of E/G'.
(This result is proved e.g. in Zieschang-Vogt-Coldewey [7] Satz IV.17).
Then G’ has also a compact fundamental domain and evidently ' = {1}.
Let S # 1 be an element of G'. Then S is a hyperbolic transformation
of the unit disk. Let « be an arbitrary point of S' and let U be an open
neighbourhood of 2 in E! whose boundary in A! is a closed are of a
circle orthogonal to the unit circle. Then there is an element 7' of G’

3
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such that T(Ax(S))NU =9, and consequently, 7'ST-! has a fixed
point in U N S This proves A.

B. If the isomorphism ¢ preserves the relation of being crossed, then ¢
carries reflections bijectively onto reflections.

To prove B we choose a reflection § € F. Since F contains a free
subgroup with two generators, we deduce using proposition 1.4 (and pos-
sibly proposition 3.1) that there is a hyperbolic 7' € F such that Ax(7T)N
Ax(S) # o or, equivalently, that T and ST'S are crossed. Besides we
may assume that ST'S == Tt Then @(T) and ¢(STS) are crossed, and
since @(T) £ ¢(STS) and ¢(8) is of order two, this is possible only
if ¢(S) is a reflection. Similarly, it can be shown that if S’ € F’ is a re-
flection then ¢@=1(8’) is a reflection.

2. The case where F contains no reflections

If F contains no reflections, then B shows that F’ cannot contain
reflections, either. Besides. we can suppose using lemma 8.4 and theorem
2.8, that Fix(F) is dense in S Similarly, we can assume that Fix(F’)
is dense in §1. This is seen as in the case of F if E/F’ is non-compact or
by result A if it is compact. Besides by the above arguments we can assume
that F is a free combination of cyclic groups formed by F;, D;, T, 1 € K.
In addition notations P;, N; and (; are used as in section C of chapter 2.
Then according to definition 2.5" we have the inclusions

(1) l(C)N St c (D) NS for i,j €K, i #j

and the inclusion is proper if F; and F; are cyclic groups of order two.
Since both Fix(F) and Fix(F’') are dense in S! and ¢ preserves
the relation of being crossed there is a homeomorphism ¢* : 81— S! satis-
fying (2)
(2) ¢*(P(T) ) = P(g(T) ) for T € F the order of T infinite,
e*(T(x) ) = ¢(T) (p*() ) for 2 € St and T € F

by proposition 3.5. We use ¢* to construct F’ as a free combination of
cyclic groups.

Let ¢ be an element of K such that F; is infinite. Then the funda-
mental domain D; of F; is a closed region of E whose boundary con-
sists of two non-Euclidean lines P; and N;. F; has a generator T
such that T(N;) = P; and P(T:) and N(T:) €cl (i The non-Euclidean
line P; has two (ideal) endpoints x and y. Then there is a well-defined
non-Euclidean line whose (ideal) endpoints are ¢*(x) and ¢*(y). It is
denoted by P; and the non-Euclidean line N, is defined similarly. If
T, = (T, TiN;)=P; and P(T;), N(T}) € ¢*(cl (;NSY). This means

1
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that the closed region of E, denoted by D;, whose boundary consists
of the lines P, and N, is a fundamental domain for F; = ¢(F}).

If the order of F; is finite we proceed quite similarly. It is a con-
sequence of the equations (2) that if 7% is a generator of F; that is a
rotation through the angle 27/n then T; = ¢(T') is also a rotation through
the angle 2m/n. Then 7T; satisfies the condition P;= T(N;) where
P; and N; are the sides of the fundamental domain D; of Fi We
associate with the non-Euclidean ray P; another non-Euclidean ray P;
as follows: P; has an (ideal) endpoint 2 in S'. The other endpoint of
P; is the fixed point of 7: Let P; be the non-Euclidean ray whose
(ideal) endpoint is ¢*(x) and the other endpoint the fixed point of T.. We
define similarly N;. Let D; be the closed region of £ whose boundary
is P,UN! and such that ¢*clC;NSY) celD,.j+#1i,j€K. Since the
index set K contains at least two elements, D, is defined uniquely by
this requirement. It is clear that D] is a fundamental domain for F; =
o(F).

We claim that F’ is formed by the system F;, D, T; K as a free
combination of cyclic groups. Let C; = E\D; for ¢ € K. Applying ¢*
to the inclusions (1) we obtain

/NS ¢ dDNS for i.jEK,i#]j

and the inclusion is proper if F; and F; are cyclic groups of order two.
Then according to the definition 2.5, F;, D;, T;, K forms a free combina-
tion of cyclic groups. Since Fix(F') is dense in S%, D" = N D; is a funda-
mental domain for F; by proposition 2.6. ek

Obviously there is a homeomorphism % from the fundamental domain
D =N D: of F tothe fundamental domain D" = D; of F’' such

i€k ieK
that A(Ti(x)) = Ti(h(x)) for ¢ € K and x €N, Then we can define a
homeomorphism f: E—E inducing ¢ by setting f(T'(x)) = ¢(T)(k(x))
for w+ € D and T € F. Clearly, this is the desired homeomorphlsm.

3. The case with non-empty boundary

We now proceed to the case in which the boundary is non-empty while
still assuming that boundary components are compact. This means that
there are reflections in the groups F and F’. We generalize the definition
of being crossed also to the case in which S and T are reflections: We say
that two distinct reflections are crossed if their axes intersect. The principal
difference between the above definition and the definition of being crossed
for elements of infinite order is that a reflection is not crossed with itself.
The following assertion is trivial:
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C. Two distinct reflections in a discrete group are crossed if and only
if their product is of finite order.

Let R, S and T be reflections. We say that S separates R and T if
Ax(R) and Ax(T) lie in different components of EY™N\ Ax(S).

D. Let R, 8 and T be reflections of F. Then R’ = ¢(R), T' = ¢(T)
are separeted by S = @(S) if and only if S separates R and T.

We may assume that the axes of R, S and T do not intersect. Then
D follows immediately if we observe that R and 7 are not separated
by S if and only if there is a hyperbolic transformation P in F such
that the axis of P intersects the axes of R and 7 but not that of S.
This is seen using proposition 1.4 and observing that the components of
S™NAx(R) and S™\ Ax(T) that do not intersect with Ax(S) contain points
of Fix(F). Similarly, if S” separates R’ and 7", S separates R and 7.

Next we choose a component E, of p~1(S\0S) where p:E — S
is the canonical projection. The boundary of E, in E consists of axes
of reflections of F, with the endpoints excluded, or closed segments of
axes of reflections of F.

We denote by 7(#,) the set of reflections in F whose axes intersect
the boundary of E, thus

r(By) ={S €F:S is a reflection and Ax(S)Necl; E, = o} .

The set r(#,) satisfies the condition:

E. Each element T of r(E,) is either crossed with no other reflection of
F or it is crossed with exactly two reflections R and S in r(E). In the former
case Ax(T)Neclg B, is Ax(T)NE; in the latter it is the closed segment of
Ax(T') whose endpoints are the points where Ax(T) intersects the axes of
R and S. Besides these endpoints this segment does not contain other fized
points of rotations.

Let T be an element of r(#,). Then E, is contained in one compo-
nent of BN\ Ax(T). Therefore Ax(T)Necl E, is a disjoint union of closed
segments of Ax(T)NE oris Ax(T)NE. Itis Ax(T)NE if p(Ax(T)NE)
is contained in a boundary component of the pointed surface (S,n) =
(Sp,mp) that does not contain points of n; this is equivalent to the
statement that 7' is not crossed with other reflections of #. If T is
crossed with other elements of F then each component of Ax(7)Necl.E,
is a closed segment of Ax(7") whose endpoints are fixed points of rotations
of F. Let Ay bea component of Ax(7)NclgE,. andlet 47 be asubseg-
ment of A; that does not contain fixed points of rotations of F other
than its endpoints @; and ,. Then there are elements S; and S, of
r(By) such that Ax(S)NAr={x}, i =1,2. Then Ax(7)\(C,UC,) =
Ap\{xy, ,} when C; is the component of ENAx(S;) for which E,NC;
=g, 1=1,2,
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Let T be a reflection of 7(#;). Then we set
Ar = Ax(T)NclzE, .

This is by D either the non-Euclidean line Ax(7) N E or a closed segment
of Ax(T) whose endpoints are the fixed points of rotations RT and ST
where R and S are the two elements of 7(#,) with which 7' is crossed.
Analogously we define for T = ¢(T') € ¢(r(E,))

Ay = AX(T)NE if Ar=Ax(T)NE
= the closed segment of Ax(T') whose endpoints are the fixved points
of rotations R'T' and S'T' when R = ¢ YR') and S = ¢7(5’)
are the reflections of r(E,) crossed with T.

Then we claim:
F. The set E, is the unique open convex subset of E whose boundary
in E is
A=Ud;, TerkE,.
Similarly there is a unique open convex subset Ey of E whose boundary is
A = Udy, T €g(r(By) .

The subgroup F, of F that leaves E, invariant consists of those elements
S of F for which the mapping S+> STS™ is a bijection of r(E,) onto
r(E,).

Let Fy= @(F,). Then F, is the subgroup F' that leaves E, in-
variant. As above its elements are those elements S’ of F’' for which the map-
ping T+ S'T'S' is a bijection of @(r(E,)) onto ¢(r(£,)).

To show that E, is the unique open convex domain whose boundary
is A ‘we observe that if r(E,) does not consist of three reflections crossed
with each other then for each T € () there is an element S €r(H,)
such that § and 7' arenot crossed. If 7(F,) contains at least four elements
this is seen by E. If r(E,) consists of three or two reflections not crossed
with each other, then, evidently, this condition is satisfied. The case that
r(E,) consists of only one element or two elements crossed with each other
is impossible, since F contains a free subgroup with two generators. Fi-
nally, if 7(#,) consists of three reflections crossed with each other, then
E, is the set of interior points of the hyperbolic triangle bounded by the
axes of these reflections.

Next we prove that F, has the properties as asserted in F. Clearly,
each element T of F, leaves the boundary of E, fixed; hence the map-
ping S+ T8T-, S €r(H,), is a bijection of r(H,) onto itself. If T is
an element of F and the mapping S T'ST-, SE€r(H,), is a bijection
of 7(E,) onto itself, then 7 leaves the boundary of E, fixed and by
the argument of the preceding paragraph 7T leaves E, invariant.
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It remains to prove the assertions concerning #, and Fg. If there
is an open convex set K, whose boundary is A’, then E; must be
unique. This is seen as in the case of E,. To prove that there is an open
convex set whose boundary is A4’ it suffices by £ to show that there are
no elements R’, S’ and T of ¢(r(#,)) such that S’ separates R’ and
T'. Then by D, if R= ¢ YR'),S = ¢ }(S') and T = ¢7XT1"), S would
separate R and 7T which is impossible as S, R, T € r(H,).

The assertions concerning F; are proved like the assertions concerning
F,.

Since E, is convex by assertion F, it is simply connected. Then we
have by corollary 2.4.1:

G. If F, is regarded as a group of conformal mappings of the simply
connected Riemann surface E,, then (Sg,np) may be identified wiih
the pointed surface (SN\ .08, n | S\ 08S).

In particular, since S\3S does not have boundary, an element of F|,
regarded as a mapping of E, cannot be a reflection. We can draw from
this the conclusion that an element of F, regarded as a mapping of £
is not a reflection.

We denote the closure of E, in E by E, and that of E, by K.
We claim:

H. There is a homeomorphism f: E,— By such that

(3) fT@)) = ¢(T) (f(z) ) for x € By and T € Fy

and such that f|Ar is a homeomorphism Ap— A,',(T) for T €r(E,)
where Ap and Ay are asin F.

We consider first the types of boundary components in E that E,
may have. First of all, B, may be compact. Then E; is a hyperbolic
polygon whose boundary is a finite union U Ay, where T, ....7Tx T}

i=1
are the reflections of r(E,) such that each reflection is crossed with the
preceding one and. 7 is an integer > 3. Then we may say that the bound-
ary of E, (and the corresponding boundary component) is closed.

If E, is not compact two types of boundary components may occur.
Each component of the boundary of £ in E is either of the form A; =
Ax(TYN E for a reflection 7' of r(E,) or it it a chain of segments of the

form U ATi where in the sequence ... 7,7, T, ... of elements

of r(E,) each reflection is crossed with the preceding one and 7: # 7}
for ¢ # j. In the former case, Ax(7') isalso the axis of a hyperbolic transfor-
mation of F by the compactness of the boundary component p(Ax(T)N E)
of 8. It is called a simple awis. By the same argument, in the latter case
there is a hyperbolic transformation 7' of F such that T,,, = TT,T!



Pekka Tukria, On discrete groups of the unit disk and their isomorphisms 39

for some p €Z and all »n € Z. In this case the boundary component is
called a chain of segments.

We first consider the following special cases which correspond to cases
(a), (b) and (c) of (ii) in theorem 2.8, as we shall see.

(a) F, 1is either finite cyclic or trivial.

(b) F, is infinite cyclic.

(¢) ¥, isa free product of two cyclic groups of order two.

(a) Iy s finite cyclic or trivial. In this case the discussion in the first
two paragraphs following assertion H shows that then B, must be com-
pact. The set »(#,) consists of n reflections T;, 1 <¢ <<mn, where n >3
and in the sequence 7, ..., T, T; each reflection is crossed with the
preceding one. Let T be a generator of the group F, that is a rotation
through the angle 2z/k where k is the order of the group F,. 7T leaves
the boundary of £, fixed and hence E| is also fixed under 7'. It follows
(using e.g. the Brouwer fixed point theorem) that 7' has a fixed point
in K,

Let T;=¢ (T),1 <i<mn Then each element in the sequence
Ty, ...,T., Ty is crossed with the preceding one. The segments A'T;,
1 <i<mn, form the boundary of the poiygon K. Since T’ = ¢(T)
leaves the boundary of E; invariant, it is seen as above that 7" must
be a rotation that has a fixed point in E;. In addition 7" is a rotation
through the angle 2x/k. This follows from the fact that £ divides =
and if m = n/k, then 7T,., =TT T, and so T, ,=TTT" (if
m=mn, weset T,,, =T, and T, , =T)).

Now that we have clarified the situation it is easy to see that there is
such a homeomorphism as asserted in H.

(b) F, is infinite cyclic. We may regard F, as a group of conformal
mappirgs of K, Then we may identify the pointed surfaces (Sg,np)
and (S\2S,n | S\\38). From theorem 2.8 we have that ng, =1 and
S\08 is topologically equivalent to either a sphere punctured at two
points or to a projective plane punctured at one point. Let 7' be the gen-
erator of F, In the former case S is either non-compact and has one
boundary component (and one point of ideal boundary) or it is compact
and has two boundary components. If S is non-compact it is easy to see
that F, has one boundary component, which must be, since we assume
that F contains a free subgroup with two generators, a chain of segments.
This chain of segments has as accumulation points the fixed points P(7')
and N(T) of T. If S is compact it is seen as above that E, has two
boundary components of which at least one is a chain of segments. Both
boundary components have P(T) and N(T') as their accumulation points
and both are invariant under ¥, If S\3S is a projective plane punc-
tured at one point, then § is compact and has one boundary component.
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It is easy to see that in this case X, has two boundary components that
are chains of segments having P(T) and N(T) as their accumulation
points and such that 7' interchanges them.

Since the structure of 7(#,) with respect to the relation of being crossed
and the action of F, defined by S+ 7'ST1, S €r(l,), T €F, is pre-
served under the bijections 7(Hy) — @(r(E,) and F,— F; induced
by ¢, it is easily verified that the desired homeomorphism f exists.

(¢) F, is the free product of two cyclic groups of order two. We refer
the reader to the treatment of case (ii)c in theorem 2.8. Since ¥, does not
contain reflections, F, has as generators two rotations § and 7T of
order two. The transformation R = ST is a hyperbolic transformation
whose axis passes through the fixed points of § and 7. Every element
of F, is either a rotation of order two or is in the subgroup generated by
R. Let the fixed point of T be P and that of RTR™ be @ = R(P).
Let A be the closed arc of the axis of R whose endpoints are P and @
and let B and C be two non-Euclidean rays whose endpoints are P and
@, orthogonal to the axis of R, such that R(B) = C. Then one of the
two closed regions of E whose boundary is AU BUC is a fundamental
domain for Fj, regarded as a discrete group of E. We denote it by D.
If we consider F, as a discrete group of E;, we may observe that
Ax(R)N E c E, and E, has two boundary components C; and C, having
P(R) and N(R) as accumulation points in E' and such that R carries
C; to C;, ©=1,2, and each rotation of F, interchanges C; and OC,.
Both () and C, are chains of segments. A fundamental domain of F,
as a discrete group of E, is E,N D. All this follows from what has been
said above and from the fact that the pointed surface (S,n) has one
boundary component with n(zx) = 1 for all interior points « €S except-
ing two interior points y and z for which n(y) = n(z) = 2. Now the
existence of the desired homeomorphism f is easily verified.

After these special cases we consider the general case. The group F,
may be regarded as a discrete group of E, and then (S\38,7 | S\\9S)
may be identified with (Sg,ny). We wish to show that if F, is not
one of the special groups (a), (b) or (c) considered above, then F, contains
a free subgroup with two generators. But this will follow immediately from
theorem 2.8 if we remember that the above special cases correspond to the
cases (a), (b) and (c) of theorem 2.8 and in all other cases a discrete group
not containing reflections contains a free subgroup with two generators.
But F, does not contain reflections and so we may draw the desired
conclusion. Our aim is to show that part 2 of this proof can be used to prove
the existence of a homeomorphism f’: E,— E, satisfying the condition
(8) of assertion H. We regard F, as a discrete group of E, and F,
as a discrete group of E,. We could now use part 2 of this proof if E,
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and K, were the unit disk. But the important thing is that they are
conformally equivalent with the unit disk. We choose a conformal
equivalence A :E,— K and transform the group F, using % to the
discrete group F, = {hTh™':T € F,} of the unit disk. The mapping
T+ hTh™' is an isomorphism ¢;:F,—F;. We define similarly the
discrete group F; of the unit disk and isomorphism ¢ : Fy+> F;. Let
o=@ | F. Then ¢p,¢r': F;— F; is an isomorphism. If we can show
that it preserves the relation of being crossed, the desired homeomorphism
f' 1 E,— E, exists by part 2 of this proof.

To prove that ¢gepr" preserves the relation of being crossed it
suffices to show that ¢, and ¢; preserve this relation when F, and F,
are regarded as discrete groups of the unit disk. The proof resembles closely
that of lemma 3.4 and is therefore omitted.

We have now shown that there exists a homeomorphism f’: E,— E,
satisfying equation (3) of H. By means of it we construct a homeomor-
phism f:E,— E; where f has the properties as asserted in H. The
set EyF, may be identified with S. Let the boundary components of
S be C;, ¢ €J. Then there is a family of disjoint sets K; ¢ S and homeo-
morphisms f;:S* > I — K; such that fi(S* < {0}) = C; for ¢ €J (we
denote by I the interval [0,1]). Moreover, we can suppose that if a € S,
t€J, and K, = fi(S"™\{a}) x I), and p,:E,—S is the canonical
surjection, then p,, restricted to a component U of p;'(K;), is a homeo-
morphism U — K. To each boundary component C of K, there corre-
sponds a unique component K. of py'( U K:) such that K.NC = C.

ieJ
Let F. be the infinite cyclic subgroup of F, carrving € to itself and let
T¢ be a generator of F.. Then there is a homeomorphism f.: R x [ —
K such that fe(x +n,t) = T¢f(x. 1) for n€Z, 2 €R and t €. Itis
clear that in K. only the points 7{(v). » € Z. are equivalent to x € K
under the group F;. We assume that ' = f(R > [0}).

Each boundary component € of E; is a union of segments A, and
the union of the corresponding segments A;(T) is 2 boundary component
C" of E,. Then the infinite cyelic subgroup Fr. of Fj carrying €’
to C' is generated by 7'¢ = ¢(T¢). Furthermore, it is clear that the
boundary of f'(fo(RX (0, 1]) has two components in E; of which one must
be (" since otherwise f'(fc¢(RX(0,1))) would be that component of
EONS(fo(R x {1})) that has infinite number of boundary components and
in f'(fe(RX (0, 1)) only points of T'&(x), n € Z, are equivalent with
under F;. After that it is seen that there is a homeomorphism
fe: Ko—> K¢ = clgf'(KN\C) such that the restrictions of f¢ and f’ to
fo(R x {1}) are equal and that f.! A, isa homeomorphism A, —> A;(T
for each A; c C and that

fo(Te(x)) = Té(fe(x)) for n €Z and z € K.
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Let B = T(C) be another boundary component of E, equivalent to C
under F, Then we define

fa(@) = ¢(I)(fe(T(x) ) ) for « € Kp.

Since the fp and f’ coincide on fz(R X {1}) we see that f’' can be
modified in the sets Ky, B = T(C), T € F,, in such a way that we obtain
a homeomorphism f¢: E,U( U T(C))—E,U( U T'(C")) satisfying
TEF, T e ¥,

the equation (3) of H and the condition that f( ! Ai is a homeomorphism
Ap— Ay whenaver f¢ is defined on Ar.

It is clear that we can by the above procedure obtain a homeomorphism
f satisfying the conditions of assertion H.

We proceed by defining inductively a sequence of sets Fp,c I', n > 1.
Let

(4) F,={ST:S€rk,).TEF,
and further, if F,_, has already been defined.
4) Fo.={ST:T€F,_;,S=S8T'S"where S €F,_,and T’ €r(E)}.

It is clear that

(5) F=UF..

n=1
Since each F., » > 1, is in the subgroup of F generated by F, and
r(H,) we see that F, and r(H,) generate F. Since ¢:F — F' is an
isomorphism we obtain the result that F, = ¢(¥,) and ¢(r(H,) gen-
erate I,

We are going to show that we can identify the set Ej'Fy with 8" =
E/F’'. In proving this we need:

I. If T is a reflection of F', then E,NAX(T) =o0.

We first suppose that »(E;) does not consist of three reflections crossed
with each other, i.e. E, is not a hyperbolic triangle. We remark that to
show that E, is a hyperbolic triangle it suffices to find three reflections
R, S, T of F whose axes bound a hyperbolic triangle 1. For then either
A is a component of p~1(S\9S) or there is a reflection R’ of F such
that Ax(R’) Nint A # ¢. But then the axes of R’ and.say S and T,
would bound a hyperbolic triangle A4’ that is a proper subset of . After
a finite number of steps we would have a hyperbolic triangle A" bounded
by the axes of reflections R”,S8”,T" of F that is a component of
p(S\2S) and is a subset of A.

We assume that 7" is a reflection of F’' for which Ax(7")NE # o.
We suppose besides that the axis of 7" intersects a boundary component
of E;, which must be a chain of segments. Then there are two possibil-
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ities: First there would be two reflections R’ and 8’ of ¢(r(#,)) sepa-
rated by 7. But this is impossible by D since then there would be two
reflections § and R of 7(E,) separated by ¢ }(7”). If this is not the
case, we would find three reflections of F’ whose axes bound a hyperbolic
triangle. This is impossible since E, is not a hyperbolic triangle.

If the axis of 7" does not intersect the boundary of E, there are
again two possibilities: First there may be two reflections of ¢(r(#,))
separated by 7". This is shown to be impossible as above. Or then all the
axes of the reflections of g(r(E,)) are in the same component of EX\Ax(T").
This means that if R’ and S’ are two reflections of ¢(r(#,)), then S’
does not separate R’ and 7”. Using D we can conclude that if R, S €
r(Ey), then S does not separate B and 7 = ¢(7"). Since for any re-
flection R € r(H,), there is another S € #(¥,) such that the axes of §
and R do not intersect, we would have that for any S €r(&,), Ax(T)
and E, are in the same component of E™ Ax(S), and, consequently
Ax(TYNE c £, which is impossible.

Above we have assumed that E, is not a hyperbolic triangle. If E,
is a hyperbolic triargle, then S and S’ are compact and, by A, Fix(F)
and Fix(F’) are dense in S By proposition 3.5 we would have the homeo-
morphism @*: 81— 8§t satisfying  @*(T'(@)) = ¢(T)(¢*(x)) for x €8t
and T €F. If R, S€r(E,), R+A8, the angle of E, whose sides are
segments of the axes of B and § is 2zn/k where k is the order of the
group generated by § and 7. Usirg the homeomorphism ¢* we can
now deduce that the angle of the triargle E; whose sides are segments of
axes of ¢(R) and ¢(S) is 2z/k. Thus the triangles K, and E; would
have equal angles and so they would be congruent in the sense of hyperbolic
geometry (cf. e.g. Meschkowski [3]), i.e. there would be a conformal mapping
T of the unit disk such that E,= T(E;) and hence F,= TF, T
Since the group F generated by r(#,) and F, does not contain reflections
whose axes intersect E,, the group generated by ¢(#(E,) and Fy, i.c.
F’, does not contain reflections whose axes intersect E.

It is an immediate consequence of I that E; is a compounent of
P 1S \3S8") where p’:E—S" is the canonical projection. Hence, we
may identify E /F, with E'/F’ =§’. The homeomorphism f con-
structed in H now defines a homeomorphism g : (S, ng) — (8, np) of
pointed surfaces. Let z be a point of E, such that ng(p(z)) = 1. Then
by proposition 2.4 there is a unique homeomorphism h:FE — F lifting
g such that h(z) = f(z). The homeomorphism % induces an isomorphism
¢ : F—F'. We must only prove that ¢’ equals ¢. Clearly h | E,=f
and from this it follows by H that ¢ | F,=¢ | F, and ¢ |r(H,) =
¢'| r(E,). Since r(E,) and F, generate F, it follows that ¢ equals ¢'.
Thus the theorem is completely demonstrated.
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3.6.1 Corollary. Let F and F' be two discrete groups of conformal
mappings of the unit disk with compact fundamental domains and such that
F contains reflections. Then any isomorphism ¢ :F — F' is induced by
« homeomorphism.

Proof: Using A it is seen that Fix(F') is dense in S' and, consequently,
F contains a free subgroup with two generators. Then theorem 3.6 is
applicable if we can prove that the relation of being crossed is preserved
with every isomorphism. But this is seen easily using and idea of Nielsen
in [5]. Since the proof depends only on the compactness of fundamental
domains and not on the assumption that F contains reflections, we give
it in the form of a lemma.

3.6.2 Lemma. Let F and F' be two discrete groups of conformal
mappings of the unit disk with compact fundamental domains. Then any
isomorphism ¢ : F — F' preserves the relation of being crossed.

Proof: It suffices to show that if § and 7' are two hyperbolic trans-
formations of F then 8" = ¢(S) and 7" = ¢(7') are not crossed if §
and 7' are not crossed. To prove this we choose a fundamental domain
D for F. Then the finite set

A={T€F :T(D)ND is a common side}

is a set of generators for F. Weset 4 = {T;:4¢ € I} where I issome finite
index set such that I N Z = @, for reasons apparent later. Let 7, = ¢(T"),
1 €I, and
M = max d(T;(0), 0)

i€l
where d is the hyperbolic metric. Then there is 2/° > 0 such that if
d(T(0), 0) > M' then d(e(T)0),0)>2M for T €F. Now it is easy
to see that there are two mappings n — 7% and n— S, from Z to F
such that if X is S or 7' we have

(i) X;'X, €4 forall n€Z

(ii) For every pair m, n of integers d(T.(0), S.(0)) > M’

. 8
(iii) There is nyx >0 such that X, . = = XX, forall n€Z.

We define S, = ¢(8,) and 7T, = ¢(T,) for n €Z. S and 7’ are two
hyperbolic transformations and by proposition 3.1 we have that Ax(7")
# Ax(8’). Then Ax(7")N Ax(S’) = g for otherwise there would be by (i)
and (iii) two integers m,m € Z such that d(7.(0), S, (0)) < 2M. But
this contradicts (ii).
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Corrigendum

The proof of the assertion D in theorem 3.6 on p. 36 is incorrect. The
last sentence in the paragraph following assertion D should be replaced
by the following sentence: This is seen using proposition 1.4 and the fact
that either the axis of a reflection of P’ of F is the axis of a hyperbolic
transformation of F or every neighbourhood of an endpoint of the axis
of P’ contains axes of reflections of F.
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