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Introduction

The subject matter of this paper consists of the study of certain groups
of conformal transformations of the unit disk lrl < t of the complex plane
and specially isomorphisms bet'w'een them. These groups are usually cailed
discrete groups of conforrnal mappings of the unit disk, even if we have
adopted the general standpoint (cf. d.efinition 2.1) that a diserete group mäy
contain indirectly conformal mappings and, irr particular, reflections,
rvhich is not always the case. If a group of this kind does not crntain in-
directly conformal mappings, then it is usually called a n'uchsian group.

The starting point of the present invesiigation is a u'ell-knourr result
of l{ielserr in [5]. Nielserr cotrsidered g]'oups -t, and -t" such that the unit
disk E is the uni"rersal covering space of the factorspaces EIE and, EIX',
which ryere in addition assurned to be compact surfaces. He shorved that
if E : I --+ -F' is any isomorphism then it is induced. by a homeomorphism

f :E-->,8 suchLhab f(T(e:)):EV)ff@))for re E and Te F. Later
this result has been proved for any discrete groups -F and F' of the unit
disk such fhat EIE and Ell' are compact. (Cf. Ziescharrg [6] andMac-
beath [3]). On the other hand, if the factor spaces are not compact, it is
easy to see that there are isomorphisms that are not induced by a home-
omorphism of the unit disk.

The aim of this investigation was to obtain a precise con<Iition for: an
isomorphism q : I ---> E' of two discrete groups to be irrducecl b;. a home-
omorphism of the unit disk in case the factor spacss ElI and" EIF' are
not compact. This has been done, with some limitations on the groups
-[' and X', in theorem 3.6. According to tliis theoreru g i-s induc:d by
a homeomorphism of the unit disk if and orilf if it preselr.es a c:rtein re-
lation, called the relation of being crossed. Trro h1-perbolic el:mo,rts TL

and T, are said to be crossed if their axes, i.e. the cirele arcs i,r th: unit
disk orthogonal to the urrit circle connecting the fixed points of ?, and
?r, intersect. g preserves the relation of being crossed if, u-he:r ?, and
T, are two hyperbolic elements of E, ?, and T, are crossed if and only
if g(Tr) and E(Tr) are crossed.

There are certain by-products. First of all, if -E is a discrete group of
the unit disk not containing reflections such that Eln is non-compact,
then .ä, is a free product of cyclic groups. fn case -X' contains reflections
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it is shown that .F' is a skew product of Z, and a free product of cyclic
groups. (Cf. corollary 2.8.1). In corollary 3.6.1 we shorv that if I and. I'
are discrete groups conbaining reflections such that, EII and EfI' are
compact,, then any isomorphism n -> X' is induced by a homeomorphism.
This result has been known previously (cf. lVlacbeath [3]) but the proof
has involved some results of the theory of Teichmtiller spaces that we

dispense with. X'inally, we show that if -F and l' are groups of the first
kind, i.e. their limit points are d.ense in the unit, circle, then any homeo-
morphism of the unit disk inducing an isomorphism I --> F' may be

extended. to a homeomorphism of the closed unit disk izl < | of the com-
plex plane. (Cf. corollar;z 3.5.1).

1. Preliminary notions anil the isometric circle

A. Preliminary notions about the conformal mappings of the unit circle.
We are concernecl in this wolk rvith discrete groups of conformal
mappings of the unit circle D : {z € C: 1:l < I} of the complex plane C.

Hence, to begin with, we shall establish a ferv basic notations and facts
about the conformal mappings of the unit disk. We shall use the 'word

»conformal» in a sense that includes both directly and indirectly conformal
mappings, Thus a conformal mapping may not, preserve orientation.

We shall use the following notations:

E : {z € C: lzl < l} the open unit disk

EL : {z € C : lal < I} the closed unit disk

B1 : {z € C : lzi : l} the unit circle

If 7 is a conformal mappirg of the open unit disk, it can be uniquely
extended to a conformal mapping of the Riemann sphere. \Ye shall not
distirrguish between T and its extension to the R'iemann sphere. We
agree to call a conformal mapping T of the Riemanu sphere a conformal
mappi,ng of the uni,t d,i,sk if it, leaves .E invariant.

If f is a directly conformal mapping of tire unit clisk, different from
the identity, there are three possibilities preser:.t:

(a) T i,s elli,ltti,o and,leaaes one poi,nt fired in E. lYe denote th'is gtoi,nt

by Eix(T). In the cases of interest, the order of T is finite, since otherwise

no group of conformal, rnappi,ngs containi,ng T can, be d,iscrete.

(ö) f is hgperboli,c and, has two fired, poi,nts on §', denotecl P(f't
and, N(T) s'uch that the followi,ng equat'ions are true:

lX T"(z):P(r) ,seE

,Ii T"(*) *fr(?).zeE
(u
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?he order of T i,s infi,ni,te. The closed, a,ra of the ci.rcle orthogonal to SL con-
tained, i,n Et and, haui,ng P(T) and, N(T) as the end,poi,nts i,s denoted, by

(2) Ax(?).

(c) T is paraboli,c. In thi,s case T has one fired, poi,nt on Br. We d,e-

note th'i,s ytoi,nt by P(T) or by N(f). The equations (I) are still aali,il. The
order of T is i,nfini,te and we d,emote

Ax(?) : {P(7)}: {Ir(?)}.
If ? is an indirectly conformal mapping of the unit, disk, there are

basically two alternatives:
(d) T is a reflecti,on ,i,n a ci,rcle O orthogonal to Sr. lVe sr:,t

Ax(?):onEt.
T satisfies the relation, Tz : id.

(e) T : T'S : ST' where T' i,s a hyperboli,c, directly cortfornual
nruppi,tr,g of tlte unit d'isk antl § is a reflection on Ax(T'). Itt, this case T
Itas two fired, points ,in SL, d,enotecl P(T) and f,t(f), in such u, uu,y that
equati,ons (l) hold, true. The arc of the circle orthogonal to SL, denoted Ax(T),
is defi,ned, as i,n (2). The ord,er of T i,s infi,ttite.

The word hgrerbolic is also used in the case (e). Herrce, an indirectll'
conformal mapping of the unit disk that has no fixed points in -E is ne-
cessarily hyperbolic, of the tyae (e).

B. The isometric circle. The concept of the isometric circle of a con-
formal mapping turns out to be quite cerrtral in our later developements.
Ifence we establish here the properties of the isometric circle needed.

The isometric circle of a conformal mapping 7 is defined by the dif-
ferential equation (3):

(3) ld,Ti: 
"dzl 

.

A.rr isometric circle of a conformal rnappirrg rnav not exist rror be uniquely
determined. However, if ? is a conformal mappirrg of the unit disk, an
isometric circle always exists, but it maSr not be unique. ft is uniquel5r
determined lry (3) except for the follos.ing three cases:

(r) T i,s the id,enti,ty.

(i,i) T ds elli,pti,c and, Fix(T) i,s the ori,gin.
(ii,i) T i,s a reflecti,on such that Ax(?) pa,sses through the ori,gi,n,.

In all these cases the equation (3) is true on any circle and thus, any
circle is an isometric circle for T.

We shall need. the following facts about the isometric circle of a con-
formal mapping:
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1.1. Proposition. Let O, and, O, be two c'i,rcles orthogonal, to the unit
ci,rcle and, haai,ng an equal, d,'i,ameter. Then there 'is a uni,que d,i,rectly cort,'

formal matppi,ng of the uni,t ili,sk T and, an i,nd,i,rectl,y conformal, maltpi,ng
of the uni,t d,i,slc S such that the i,som,etri,c ci,rcle of S and, T is Ot and, thq't

of S-t ancl, T-L is O2, and, su,ch that T(Or): Oz a"ruil, /S(O1) : Or. Be-

si,iles use haae:

(a) If Or: Oz, T i,s elliptia of ord'er two and, X'ix(?) i,s the midcl,le

poi,nt of the arc OLn E.
(b) If {*}: Ot(12zn E, then T is ellipti,c and, Eix(T): r.
(c) If Orn Ozn E : @, then T is hyperbolic or parabolic and, r§

i,s hyperbolic. The fi,reil, points of S and, T are insid,e or on the circles O,

ancl Or.

The conformal mappings § and 7 of proposition l.l are constructecl
by combining suitable reflections of the Riemann sphere. We lea'i,e the
explicit construction to the reader.

The following proposition shows that it is always possible to constluct
elliptic transformations of the unit disk of a given order whose isometric
circles satisfy some conditions given beforehand:

1.2 Proposition. Let I be a olosed, i,nterual, of Sr and' tt' ) 2 ct, giuen

'integer. Then there are two ci,rcles orthogonal fo §1, denoted, O, and Oz,

and a conformal mappi,ng T of the u,nit d,i,sk such tha,t

I : (örU d2) n §1

when the closure of the i,nteri,or of a circle K i,s denoted, ba R. The muppi,ng
T is such tha,t T 'i,s a rotation through the angle Znln and, the 'isametri,c

circle of T is O, and that of T- 'is 02, and, ?(Or) : Or.

This proposition is also obvious. It may be remarked that the circles
Ot and, O, are uniquely determined.

The fundamental property of the isometric circle of a conformal mappirrg
f is that 7 is expansive inside it and corrtractive outside it. We use this
property in the fbrm stated b1- the proposition 1.3. The proof is again
obviotts and is left to the reader.

1.3 Proposition. Let f be (1, co?tformel

{1, ttnique 'isom,etr'ic c'ircle. Tlten ,f d > o is
lnu,ppirtg of tlie u,nit disk u)ith
giuen, tltere is cL ?'efil num,be,r

qr!)) <kt(I)
uhen I is an interual of SL outside the isometric circle of T ctnd the length

of an interaal J of St 'i,s d,enoted, by l(J) and, l(I) > d. If T is a rotati,on

through the cr,ngle 2nln, then the constant k may be chosen' so that
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t(rtg) ) < kt(r)

u,here L < i, < n and, I is also outsiil,e the i,sometric ci,rcle of T-r.
Propositions l.I-I.3 summarize the facts we need about isometric

circles of conformal mappings. The reader wishing a more comprehensive
treatment is referred. to X'ord [2], where also proofs of some of the above
propositions can be found.

C. Miscellaneous. To conclude this chapter we prorre a proposition
that allows us to infer, when -F is a discrete group of conformal mappings
of the unit disk such that X'ix(,F') : {P(T):T e E, the ord.er of ? is
infinite) is dense in §F, ,[ and J arbitrary intervals of ,S1, the existence
of an element T of -F such that P(T) €.I and N(T)?J.

1.4. Proposition. Let ,S and, f be two conformal, mappi,ngs of the
u,ni,t d,,isk, both haaing i,nfinite ord,er and, no cornnl,on fi,red, poi,ruts. Then i,f
Li is a neighbourhood, of P(T) in SL and, V a neighbourhood, of P(S) dn
St, then for some integer n> o P(T"S-") e U ancl N(T"S-") eY.

Proof: Choose n, so large that there are circles A,A',8,8' external
to each others (or tangent externally to each others) such that P(T) e Ä,
I{(T) e Ä', P(S) €-8, lf1^9; eB' (denoting the closure of the interior of
a circle 1{ by -K;, and such that T"(A'): .4. and. ,S"(B') : B. Besides
\\,e may suppose thal ÄO §1c U and.Bn $ c 7. Then T"S-"(Ä) c Ä
and §"7-"(B) c B. This proves the proposition.

2. Discrete groups of conformal mappings and pointerl surlaces

A. Discrete groups of simply connected Riemann surfaces. In this
section we consider a discrete group of a simpl;.' connected. Riemann surface
X and the resulting canonical projectiorr p : X ---> XII : g. With the
help of the projection p we define a mappirrg n : S --+ N. This leads us
to the concept of a pointed surface in the beginning of the next section.

As is well known, every simply connected Riemann surface is con-
formallS, equivalent to one of the follorving Riernann surfaces:

B' the Riemann sphere

C the complex plane

E the open unit disk

Let X denote one of these surfaces and let -F be a group of conformal
equivalences of X onto itself.

2.1. Definition. The grou,gt P is a d,iscrete group of X i,f, giaen z e X,
there ,i,s a finite subgroup I, of n a,nd, a neighbourhood, U of z such that



10 Ann. Acad. Sei. Fenniem A. I. ,iu4

Unfg):afor?e-F\tr',
T(z):zforTeX,'

The groryt l, that i,s obui,ously uni,quely d,eterm'ined, by these cond'iti,ons is

called, the stabi,lizer of z.

ft is not difficult to see that the stabilizer of a point a € X must be

one of the following groups:
(a\ V,:{id*}. Thestabi,li,zer I, is triaial.
(b) F, is the grouyt generated, by a rotati,on through the angle Znln.

The stabi,li,zer n, isthe rotati,o% gro%P of d,egree n.

(c) I, 'i,s the group generated, by a reflection, T satisfyi,ng the relatiott

T2:id. ?hestabili,zer I, isthe reflection group.
(d,) X, i,s a groryt of ord,er 2n hauing as generators two refl,ecti,ons I

and, T such, that B? rls a rotation through the angle Znln. The stabi,li,zer n,
i,sthe il,i,hed,ral, gro%p of degree n.

Note that in (d) I, is as an abstract group the group generated b1'

B and T and having the relations

S2:f2:(SZ)":1.

The factor space § : xlx is a bordered surface that is naturally endo.red

with a conformal structure. Its boundary is empty if arrd only if there are

no reflections in -F. Let gt:X->§ be the canonical projectio:r. It is a
local conformal equivalence at a point z € X if and otrly if the stabilizer

I, of z is trivial. At other points of x the local behaviour of the mapping

p ntay be described as follows:
(,,) If I, is the rotation groryt of degree n, then p i,s i,n in suitable

local coordinate's of the form

? ---> z^ .

Inthi,scclsebesaytltat p isof d,egree m at z. Thi,sinclud,esalsothe

case where I, is triuiul, if ue set n : L in thi,s case.

To stud.y the local behar.iour of p at points rvhere p(z) lies orr the

boundary of §, i.e. -F, is a reflection gl'oup or a dihedral group, rve'

define a special mappir:g z : C --+ C such that

r(n * iy) : * + i,Y' . r. Y € R'

(ii,) If l, i,s the reflect'i,on grouTt or rl'ihedr«l group of degree n, then,

in suitable local coord,inates, p i,s of the form

z --> t(2")

where n : L i,f I, i,s the reflection groult and n, ) L if I, is the d,ihed,ral

group of d,egree n. In this ca,ce we say p is of d,ihedral d,egree n,
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Above we have associated with each discrete group of conformal map-
pings of a simply connected Riemann surface X a bordered, Riemann sur-
face § and a projectiorr p : X --> §. The local behaviour of p will be de-
fined by a mapping z : §-> N, where N is the set ofthe natural rrnmhers
(zero exempted), such that

11

if the degree or dihedra,l d.egree of p
easily seelr to be ind.ependent of the
is a discrrete sulrset of ,S.

Finally we make arr obseryation to which we have an occasion to refer
in conrrexion of the proposition 2.4. The property (i,i,i,) of the projection
p : X --> XIX : S suggests that the situation we are considering is a

generalization of the case where .trr is the covering projection of the uni-
versal covering surface of a surface B. This analogrr, too, is clarified in
the proposition 2.4.

(idi) If u e S there is a neighbourhood, U of r suclt that the contponents
of p-L(U) are U;, i, e I, and restriction of p to L:i, i, e I, is of theform

s -s s"@\ or

z "> r(2"@)1

accord,ing to whether u lies onthebound,arg of S ori,s an interi,or point of S.

So we shall call the canonical projection p : X -+ § a covering pro-
jection, if this seems appropriate.

B. Pointeil surfaces. The above consid.erations gir-e rise to the fol-
lowing definition:

2.2 Definition. A poi,nted, surfaceis apair (S,n) ah,ere § is a bardered,

surfa,ce wi,th countable basis ancl, n: S -> [ ntcrpping such, that the set ini :
{r€§:n(r)}L), callertrthe suppoi't of n,. isrliscrete. Incase B has

a conformal structure tlte pair (§, n ) is cctllecl o, pointecl Riemann surface.
Parl,icularl;, if (§. rr) is the pointed P,iemarrn surface defined above

by the d.iscrete group I of a simpll' corrrrected Riemann surface X,
we denote

where p is the covering projection X -> §.
We next state the inverse problem:
2.3 Problem. Gi,aen a poi,ntecl Riemam surface (§,ra), is it possible

to represent i,t in the form (*) for sui,table X and, n ?

It is quite natural to define two pointed surfaces (§, z) and (B', n')
homeomorphic if there exists a homeomorphism /: § -> §' such that

at a point z e p-L{r) is l§. This is

(*)
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n,(f(*)): n(r). It is quite clear that, the solution of the problem 2.3 de-

pends only on the homeomorphism class of the pointed. Riemann surface

(§, n) r+,ith this definition of homeomorphisms of pointed' surfaces. To

this end we prove proposition 2.4, bfi before 'r'e do this we d'efine, cor-

responding to each pointed Riemann surface (S,n), a class of mappings

p : X -> §. where X is some Riemann sutface (without boundary), that
generalizes the situation v,here p is the covering projection ofthe covering

surface X. Since proposition 2.4 is the only place where this class of map-

pings is used., t'his ma)' seem unnecessa,ry, but proposition 2.4 is most'

naturalllr expressecl in terms of these mappings, to be called coverirrg pro-
jectiotrs p: X--> (§, rr).

Let X be a eonnected Riemann surface (without boundary), (§' n,) a

pointed ll,iernann surface. Then a mapping p : X ---> § is a couerin,g pro'
ject'ion p: X --> (§, rz) if it satisfies the follorving condition:

Giren a poin,t r € S, there is a neighbotcrhood U of t such that the

comyton,ents of p-t(Li) are fii, i € I. ctnd, that the restricti,on of p to U;

is of the form'

z ---> zht i,f r. is an interior Ttoi,nt of B

z --> r(zki) i,f r i,s a bound,ary point of S

for de I, and, where k; il,i,aid,es n(r).
2.4. Proposition. Let Xi be a Ri,emanm surface, (Br, za;) « poi,nted,

Ri,emann surface and pi; Xi -> (§i, z;) a coueri,ng projecti,on, fori : 1,2,
anrl let 

"f 
t(§r., nr)-(Sz,nz) be a homeomorphism of pointed, surfaces. If

X, i,s sim,ply connected, and the degree or d'i,hedral degree of p, is nlpr@))

for z e X1, then for any interior point :r of S, such that n(r) : I anrl

for a,ny pai,r of poi,nts

4eprr@) and, z,2e'p;t(f(d )

there 'i,s a un'i,que mappi,ng f' , Xr--> X, suclt tltat the diagrant,

x1
Pr{

§1

x2

{p,
s2

!',

!,
commutes and, f'(zr) : zr.

Proof : We construct first f' I X', when Xj : pi | (Sr\lzl1, i : 1,2.

Let z€Xi; then there is a path u:I'-->Xi (/ is the closed interval

[0, 1]) such that z(1) : z and u(0) :7r. Since t'he boundary of §,
may be non-empty, we cannot define f '(z) : u'(I) where u' : I -'> X',

is a path such that
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(o) 'u'(A) : zz artd Pz'u - f'Ptri

for the path u' is not uniquely determined by these conditions. But if
we note that by the definition of a covering projection there is a division

foli : 1, . . ., n, such that u(lt,_r, tl) C Ut and unique homeomor-
phism fi:Ut-+Ui such that ?zfi,:f@rlU,), frl(JiOLii_1:
fr-rl Url Ur-, and /t(zr) : 22, 'i 1n, we may set the additional contlition

(**) u'lltr-r,trf :fr(ulltra,trl), ,i, 1n,
t,hen u' is uniquely determined by (**) and satisfies besides (*). lYe set

f'(") - %'(L) '

We must show that this does not depend. on the choice of the path tz.

§ince X, is simply connected it suffices to show that for paths of the form
% : 'utou-L where a(0) : z, and w is a closed path .such that

u(t) : g(e"" 2)

where g : E ---> [/ is a conformal equivalence from the open unit disk to
the neighbourhood U of a point z' € X.\Xi, the path tz' corresponding
to u is closed, i.e. z'(0) : u'(l): zz. But this follorvs from the fact that
the degree or dihedral degree of p, at, a point z" ep;r(f(pr(r) ) ) divides
the degree or dihedral degree of p, at z'.

After that it is obvious how to extend the mapping f' to the cliscrete
set X\X'r: pr'lnl) .

Remark. The proposition 2.4 shorrs that 7r, : Xr --> (Br, zr) is, in a
sense, a universal object in the categor.v l-hose objects are covering pro-
jections p:X--> (§r,rr). It can be shorrrr that in the sense specified by
the proposition 2.4, ever1, pointed Riemann surfaee has a universal object
,p: X-> (§,2), but. in general, the degree or dihedral degree of p at
points z e p-t(r) rua.v differ from z(.t:). r € S. \\:e do not pursue this
subject further, fol rre are nlore interested in the colollaries of proposition
2.4 thatr in the propositiorr itself. Of these corollaries rve prove first:

2.4.1 Corollary. Let X: 11, p : ?t. ,S : §r, n : r\ be as aboue.

Then the group I of conformal egui,aalences of X sueh tkat the triangle

conxm,n",tes, ts a, discrete group
(§, ,t) . I,f (§, ,r) - (Sr, nc)
E -,= G,

fx;x
p\ /p

,S

of confornxal ?wtppings such that (§r, tbil :-=

fo, some discrete group G ,f X" then,
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Proof:It sufTicestotake X : Xt: Xr,P : 1,-- p, and § :,Sr : §z

in proposition 2.4. After that the proof is rather obvious.

2.4.2 Corollary. The soluti,on of the probl,em 2.3 depends only on the

homeom,orgth'ism class of the pointed, Riemann surface (§, m).

Proof : Let (§;, ra;) be trvo pointed' Riematrn surfaces. i :1,2, atrd

let f : (§r, %r) -> (82, nr) be a homeomorphism of pointed surfäces. suppose

that (§r, %r) : (S* np) for some covering project'iori p : X -+ (§r, %r)

where X is a simply connected Riemann surface arrd thus (§r, ur) :
(Br, nr) by corollarS: 2.4.1 for some discrete group x of x. Theti

fp , X -, (,S2, nr) is not as a rule a covering projection of (§2, nr) because

it does trot behave in the required ma,nner with respect to the conformal

structures. But it is rrot difficult to see that the confbrmal structure of X
may be redefined in such a lva}- that fp i-* a eoYering projection. Then

the conelusion follo'r's by corollarl- 2.4.1'

2.4.3 Corotlary. Let -f,1 ancl Xz be ttoo simply connected, R'i'emann

surface.s ttnd, Ii a d,iscrete group of X;, i':1,2. Let (S;, zr';): (§p.,rap)

fori,: !,2, anil let f : (§r,%r)-> (§2, nr) be a, homeomorgthi,sm, of poi,nted

surfaces. Let fr, fr: X, --> X, be two homeomorphis'ms such that the d,iagram

conlnl,ute,s (i, _

(1)

x1 \x'
Pr$ .t l,P,

s1 ls,
L, 2) rahere pt and Pz Qre the corering proiections, Then

fz,: ^SÅ f,' sorne § € fr'

The rn,rrypings fi indruce 'isomorphi,sms Ei:Ir-->I, such that

f,Q(t)) : qlT)(ft(r)) for r e Xt,f e Fr. and' i, : r,2'

Then u,e haae

E,(T) : §q1(7)S-1

where ,'i 'i,.s the element of I, specified by (l) aboue.

This is again arr obvious consequence of proposition 2.{'

It is clear that problem 2.3 does rrot alrr-a1-s have tr solrttion. Consider.

for exanrple, the case where § : §2 is the oue poitrt courpactification of
the complex plane A, n lC:1, n(oo) > 1. Thetr (§, r) eatrnot be re-

presented in the form (§p, np) for arry discrete gloup of conformal rnap-

pings of a simply connected Riemann surface l(.
The case where § is compact is well-knowrr and leads to well-knowrr

groups of conformal mappirrgs. (See e'g. Zieschang-\rogt-Coldewey [7]).
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Therefore we restrict our attention to the case of pointed surfaces (§, n)
where § is non-compact and in this case show, d.isregarding the possible
conformal structure of (§, n ), that it may be represented in the form
(§r, nr) where -E is a discrete group of conformal mappings of the unit
disk. It will follow by corollary 2.4.2 that any pointed Riemann surface
(§, u), § non-compact, has a representation in the form Sr,nr) 'where

-P is a discrete group of the unit disk or the complex plane C. The re-
maining sections of this chapter are devoted to this.

C. Discrete groups of conformal mappings of the unit ilisk. In this
section we consider only groups containing no reflections. We first stud.y
§orne very simple discrete groups of the unit disk as rryell as their funda-
mental domains and introduce a principle of combining these groups into
m.ore complex groups of the unit disk. Later we show that every non-
compact pointed surface without, boundary can be represented in the form
(§r, nr) where .F, is a group obtained this'rra-v.

Let F be a eyclic group of eouformal mappings of E. Since groups
containing reflections have beeu excluded from the discussion the structure
of -F depends on the order of .F. We treat, separately the cases where the
order of -n' is finite or infinite arrd agree on the corrventions and uotations
to be used.

Å. The ord,er of X i,s fi,ni,te. X 'i,s generated, by a rotati,on T through the

«,n,gle Znln, n ) 2, and, has a fund,amental d,omai,n Dy whi,ch is closed,

in E a"nd, whose sid,es are nom-tuclid,ean rays P, and, N, such that the

inter.secti,on of Py anil, N, is the uerter Q, : X'ix(?) and, such that

T(Nr) - Pr.

We denote by P, the non-Eucl,id,eu,n,l,i,ne uhose (ideal) end,poi,nts on SL are

the same as the (ideal) enilpoints ol P, attd )ir. IYe clenote by D, the

component ,f U'\P; for uhich D; n (r\D r) : s and, by C; the

ath,er component of ,'\P;.
If n:2. thett Pr: Prl)§r- uttcl u'e dqy tltat P, is the sideof Dr.

In this case the fund«mental domctin hcts tto rertices.
B. The order of ? is infinite. In tltis case I is generated, by a d,irectly

or indirectly conforntal mapping f attd, has a funclarnerutal, d,omain D*,
closecl in E, whose sid,es are two n,on-intersecting non-Eucl'id,ean lines P,
artcl, Ny such that

hr both cases A and"

n r in fr is d"enoted b)-

T(Nr): Pr,

B the complemetrt of the firndamental clomain

C r : E\l)r'
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Now we may state the principle of combination for groups of the form
A or B.Let J be some index set, and suppose that for each i e J a group

"E; and its generator Ti, as well as a fundamental domain Di: Dri
are giverr. \&'e suppose that the triples ?r, Tr, D;, i e J, are as in /. or ,8.
We shall use the rrotations introduced above in ./. or B replacing tbe
doubleindex 7i by i, thus Prr: P; etc.

2.5 Definition. Let Ii, Di,Ci,Ti,, i, e J, be as aboue. If the inclus'ion.s

(r)

(2)

cls Ci g int'p Di fr, 'i, j e J, i + j,

are aalid, i,n (T), then we say that the system I* Dr Ti, J forrns a free com-
bi,nati,on of cyclic groups.

We shall find it later important to be able to decide whether a gir"err
system I;, Di, Ti, J forms a free combination of cyclic groups by eon-
sidering inclusions of the form

cl(C;) n$ccl(Dj) n§'for i,jeJ,i*j
This coridition is at first appearance not equivalent u'ith (I). It is clear
that the inclusions (2) are implied by (t). On the other hand the inclusiotrs
(2) almost imply the inclusions (1). The only case u'heu this is not true
is the case when J consists of two elemetrts, say J : {1, 2}, 7; is elliptic
of order two fo1i : L,2,intrDr: C, and intrDr: Q. Taking account.
of this exceptional case we may express the definition 2.5 in the equivalent
form:

2.5' Definition. Let XilDr,Ti,J be as aboae. Then they form a free
combination of cycli,a groups if the i,ncl,usions (2) are sati,sfi,ed, and, i,f i,n additiott
it i,s proper when, Ti and, Ti are el,liptic of ord,er two.

Before stating the main theorem of this section we introduce the fol-
Iowir:g not'ation. Let F be a group of conformal mappings of the urrit disk.
Therr we set

Fix(,E) : {P(T) : T e, F,7 has infinite order} ,

which is a subset of §1.

2.6. Theorem. Let X;, Di, Ti, J fornt a free com,binati,on of ayali,c

groups and, let X be the group generated, by Ir, i, €J. Then X i,s the free
prod,ttct of thegraryts Il,'ie J. lVloreouer,if oneof thefollowingcond,i,tions
is true

(a) X'ix(.F') is d,ense,in Bt,
(å) Ni ,is an arc of the isometri,c ci,rcle of T;, i e J,

then X is a d,iscrete group of conformal mappi,ngs of the unit cli,slo wi,th a ftut-
d,amental d,omai,n

n I)i
ieJ

D=-
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In the case (b),the set Fix(.F,) ,i,s d,ensein Sr if and, only i,f clDfiBl con-
tains no ,interaals o/ St.

Proof: We first prove the followirg assertiorr v,here we call a non-
Euclidean line or ray a side af D if it is a side of Di for scme a €./ and
a point a vertex of D lf it is a ver.tex for scme Di, i e J.

A. Let T : Tr...f o be an element of I such tltat f,, €I,&\{1},
l{k1n, and i*t'io_, for k:2,...,n. If theorderof n;n isin-
fin'ite let C'rr be the comg;onent of C4, that contains Tn(intsD*), otherwise

tet C!*: Cr*. ?hen

(a) T(D) c ctuCi,

tb) f@)(1D : a if n> | or if n: I anrl the ord,er of X,, ,i,s,i,n-

fini,te and, T, is not a generator of Xr,,
a aerter of D ,f n : I and, the order of Ir, i,s fi,ni,te
wi,th Tr: T!, where L < k < (the order of X,,) - I,

: a side of D i,f tt,:L and Tr:Tr, or Tt:Ti'.
\Ve prove A by induction on n. The case n : L is clear. If t has

irlleadv been proved fot T' - f 2.. . ?", then

T'(D) c clrC!,c int,D,, .

l'rom this foliows the conclusion.
It is a consequence of A that -F is the free product of the groups

Ii,iel, and Lhat D is a fund.amental domain of the discrete group -ä'
if we can show that
(1)

is the r,r,hole open urrit disk.
'Io prove this we set

9:{T(D):TeI}
and irrtroduce the notion of a ehain in D. A collection {D*: n > 0} is
called a chain of D if

(i,) D"ff D,+t is a common s,id,e or a conlnl,on uerte.u, n,Z 0,
(ii) D"_r anil Do*, are in clifferent conrponertts o/ Z\(int D.), n ) t.

Besides we make the follorving assumption rrhich is quite unessential but
will simplify notations:

(iii,) Do: D.
Then it is easy to see that there is a unique sequence of elements of ? Tr,
T,, such that

(2) Dn:fl ...7,(D)
u4rere each T * e F io\{ 1} for some ,i* e J and satisfies
,

D': U r{D}
7e 'r'
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(") If ?;o is infini,te cyclic, then T, 'i,s a generator of I;^, and if
in+t:'i,n, then T,1f i,s To, n) l,

(b) If Tio 'is fi,nite, then 'i,,*, f i".

Comespondingly, given a sequence ?" € Jfr,\{t} and satisfying the
conditions (a) and (b) above, the domains Do : D and Dn : Tt. . . f "(D)
form a chain of D.

Given a chain {D") of D we define a sequence Kr,K*
Euclidean lines by

(3) K,: Do-ln D" if .ä';, is infinite cyclic (d > I),
Ko:Tt...T^-r(P!.) if Ii, is finite (if F,, is finite Kt: P!,)

(m 2 t).

Then it is easily verified, usir:g the properties (i) and (ii) of a chain of D,
that the K,,n ) 1, form a collection of disjoint non-Euelidean lines such
that, K,*, and Kn*, are in the same component Q. of ,O\1{" . Hence
the lines K^, ffi ) n, are in the component Q, of .A\.f<". (Incid.entally,
we now see that, all the elements of a chain {D"} of D must be different.)
The intersection

A- n cl 8"
n)l

of non-

(1)

is either a point of ,S1 or of the form K O E1 where K is a closed disk
whose boundary is orthcgonal to the unit circle. It is easy to see:

B. If {D"} ,is a chain of D, then the 'i,ntersection of Q with D' in (L)

is empty.
Forlet D,:Tt...f"(D), n)0, be achainof D wheretheelements

T"eX are as above. Let C:T(D) beanarbitraryelement of I) where
T e I maybeu:rittenintheform T:T'r...f; where T:,1<n1k,
satisfy (a) and (b) modified" to the finite case. If f:: T* for n 4m
and T'**1 *T^+t v-here m1h, then C flclQ.: a for nlm. Other-
wise CiclQ":s for n>kf 1.

We associate rrith each point r €.O\D' a chain of D such that:
(i) Do: D.
(ii,) Let D, be the unique element of D such tltat D,l D"-r, is ct, common

s'ide or cornrnon aerter and, tltat u ancl Dn-, are in different comltonents of
,\(int D"). (This i,mgtli,es tltat D^*1 attd D^-, are in different comgtonents

o/ ,E\1int a"; 1.

Then r € Q where Q is defined as in (+) by rneans of the chain {D"}.
In this case @ cannot be a point sirrce it corrtairrs a point of ,&'. We no'w

derive a contrad.iction from this if one of the assumptions (a) or (b) of
t'hcorem 2.6 is true.
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Under the assumption (a) the set X'ix(.E') is dense in §1. In particular
there is an element T e I such that P(n e ints, @ O B1 which is an open
interval of ,S1. But this contradicts assertion B, since I n D' : a and.
in every neighbourhood of P(7) there are transforms ?"(z) of. an arbi-
trary point, z of E.

The situation is somewhat more complicated under the assumption
(b) of theorem 2.6. \4re proye that given d > 0, there is an integer zo
such that

diam(K")<d for n)%o
where K, is the sequence of open arcs of circles orthogonal to §1 defiued
by equation (3) and arrive in this way to a contradiction with the assump-
tion D' * E. Let

D.:Tt...T"(D)
where 7" € .F';"\{l} satisfy conditions (a) and (b). Then

K,: Tr. . . T.-.(K"X: fi if n : l), ra ) 0 ,

where K; is a side of D or the non-Euclidean line P;,, if E;n is
It folto'vr/s easily by A that T*...f n-rK:) is outside the isometric
of f *-1 and thus we have the increasing sequence

diam(-l(,) : diam Tr...T.-r(K*) <diamTr...T,-r(K',) < ...< diam(I{i).

Since by L T*. . .T.-r(K'^) cli* we may draw the conclusion that the
diameter of Ko does not exceed the diameter of the components C;^,
nx < n. Thus if diam(K) <d, for all n ) 0, then in the sequence ?r,
Tr,. . . only a finite number of elements can occur, i.e. those elements
TneTi* for which the diameter of components of C;. exceeds il,. We
denote this finite set of elements of -F,,\{I}, h ) l, by X.

We are now in a position to use proposition 1.3. In this connexion we
must remember that arnong the transformations of X there may be some

whose isometric circle is not unique, i.e. the elements of an elliptic cyclic
subgroup whose fixed point is the origin. We denote this subgroup by .E'o

if it exists. Then, by proposition 1.3, there is a real 10,0 < fr q l, such
that

diam(K") < tci diam (K',\

where 7 is the number of elements in the sequence Tr,...,7,-1 lhat'
do not belong ho I o. Since 7 --+ oo when n ---> q a contrad.iction can be
derived from this if it is assumed. that diam(K"\ , d for all n.

It remains to prove that in case (b) the set X'ix(.E) is d.ense irr B1 when-
ever cl D n $ does not contain intervals of §1. Since, evidently, X'ix(-F')

finite.
circle
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cannot be dense in §1 if cl D f}§1 contains intervals of' §1, we must onlr-
prove the r:orrverse assertion. In this case / contains at least two elements.

We have:
C. If the inder set. J contains two 'ind,eres, then for each contponent C

of (-);, j e J, there is a trunsformat'ion T e I of infini,te ord,er such that
PQ) e cr C.

To prove C we choose another i,e J, i * j. Let, f e Ij be an element
such that T(D) c cl C. Then

TTI(C) gT(C) cT(D;) c cl C

and thus P(TTt) € cl C fl Sr.

Norr let r be an arbitrary poitit of S1. It'there i.q T e F such that
every neighbourhood of ;u contains componeuts of ,\ 7(D) conclusion

follorvs try C. If tliis is not the case there is a chain [D"] of D such tha,t:

(i\ Dn: 11,

(ii) D, is an ,,lent,ent of D su.ch that D^n Do-r i,,s ct common side or tt,

con't:tnutt tefiet ctrtd that D^ and, Dn*z are 'i,m different comltonents af
Zl\(int D*-r) (n, ) 2) and that there is a component C of D\D" such

that ,i: € cl C. Dn-tff C : o.

trt is quite eviclent that there is such a chain alld that if Q,,

is clefined äs abore corres])ollcling to the chairt lD"i tlren ;r' e Q,

CI Q,

We lrave shoutr that diam (cl 0,) --> 0 as i --> q.. Since everl- p; c:oll-

tains transforms of D (".g. D, fot large enough n.) the conclusion follorvs

bir Cr,

D. Stantlard representations for non-compact pointed surfaces without
boundary. It is rrell-knou'n that, every compact surface can be obtained from
the closed unit disk Zt b)'identifying suitably intervals of §1. We prove
here a similar represet.rtation theorem for non-compact pointed surfaees

without boundarl'.
Let (§, z) be a non-comlract poiutecl. snrfaee rrithout boundarl'. Let

fc»" al]

n
,>1

U
i€K

l,rrlrer"c. eäch I i, i e I{ , is an ollen

; 

half-opetl itrterval of S1 such that

1t)

/;O

a" cornrnorl endpoint for 'i,

I'urther, w'e set

Ij : a

jeK, i * j.
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(l) V : {Q:Q e ltl1I1,i, j e K,d -+ j}

and. let 'i, : E' l1 BL --> E' O §1 be a homeomorphism such that

(2) 'i,2 : 'id,, ?(1;) : .I; where i + j,i, j e K, and

iiv:id.
Then if we identify n with i(r) for n e E'l-l §1 we obtain a surface
denoted by §'; let, lc: t' --> §' be the canonical surjection. If there is
a. homeomorphism /: §'-> § such that

(3) tnl : f(k(V) )

'we say that R: (t',i,f): (E',i, lc, §',/) is a standard representation
of (§, z).

trYe may note that the set of intervals I;,'i e 1(, is uniquely determined
by the mapping i. The set 7 defined by (t) is also defined b;r

V : {n e E'n §1 ; i("u) : z"}

and is called the set of aerti,ces of the represerrtatiotr -8.

The remainder of this section is devoted to proviug the follo'ring pro-
position:

2.7 Proposition. Let (5, n) be a pointed, surface uithout bound,ary such

that S 'is non-comltact and, connected,. Then (S,n) has « stand,ard re'prese%-

tation (E', i,,f). If (S, n) is not toptologically equi,rsalent wi,th (E.l) then

u)e nxay suppuse in ailcli,tion:
(i) The sef §1\-O d,oes not contain interaals of St.
(i,i) Let V be the set of uertices of (E',i,f) (i.e. tke set of fiued points of

i). Then i,t can be sugtposed, that (E' n St)\ I' is cr, ult'ion of open iruteruals such
that they are id,enti,fied in pai,rs by i and any trco interuils id,entijied. by i
haue equal length.

'Ihe proof is based on the fact tliat eyery nol1-compact connected surface
with coutrtable basis has a canorrical exhaustion. i.e. there is a sequence
K, c K, c . . . of' cornpact bordered subsurfaces of § such that

@

(d) u/{,:s.
$,i);,q int K,*, for i 2 L ,

{iii,) Each cowtponent of cl1/(,*r\Kr) 'is a connected, subsurfaae of S
hauing in. common with K; exactly one boundary component.

(ia) tach cornponent o/ cl(§\I{;) i,s non-compaot, d > f .

It fbllows from these properties that each K; is connected. A proof of the
existence of such an exhaustion of ,S can be found in Ahlfors-Sario [1].
Besides the above conditions we ca,n obviously demand
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\u) lnlo. Ki C int ff; for i ) | .

A canonical exhaustion of § that satisfies the condition (o) is said to be a
canoni,cal erhaust'ion of the poi,nted, surface (§, ,).

In what follows it is quite essential to have a convenient, representation
for cornpact bortlered pointed surfaces (K,nt) such that' iml does not
contain boundarv points of K. The representation $'e use is quite similar
to the standard representation for open pointed surfaces q'ithout boundary
given above.

Let .I;, i € Z, be closed arcs of circles orthogonal to §1, lying in .O1,

such that the endpoints of each I;, i e L, are on §1. IVe suppose that
this set is a disjoint set of circle arcs. Besides \rye suppose that a set .[;,

i, e K, of closed intervals of §1 is given such that at least one endpoint
of Ii is an end.point of some I*, lc e Z. The other endpoint is either an

endpoint for another Iu I' e L or an endpoint for Ii, j e K. Except for
t'he endpoints the sets -f;, i e K, form a disjoint family. Further, v'e require
that

,U
r:€ K

I,) U ( U
ieL

I,)

is a Jordan curve bounding a Jordan region E' of 81. We suppose that
E' is closed, i.e. A c E'. The set 7 a,.U*r,, called the sef of aerti,ces of

the representatiol, is defined exactly as above by the equation (1). In
the same way, we suppose that a homeomorphism d : .E'O §1 -+.U'fl §1

is given satisfying the equations (2) above. Then if the points r and i,(n)

are identified, ;u e D' n§1, we obtain a bordered surface, denoted b)' §',
witlr the canonical projection k: E' ---> B'. Then if there is a homeomor-
phism /: B'-> "K such that :,rnl, : f(k(V) ), 'n'e sa.v that (E'.i,,f) is
a represent'ation for (K. m). It ma1' also be denoted by

R : (E', i,f) : (E'. i, f. S'. k)

if it is desirable t,o choose a notatiotr fol the factol space §' and the ca-

nonical srrrjection fr.

Let R1 : (E;, i'i, fi, S:, kj) be representatiotrs for two compact, bor-
dered. snrfaces (K;, ni, j:1,2, such that ,K, is a srrbsurface of K, by
which we mealr that K, c K, and that each bouudarv component of K,
is either a boundary component of K, or belougs to the iuterior of Kr.
X'nrther, suppose that E', c E, and that i, I E', O 

^S1 
: ir. Then rre

may regard §i as a subsurface of §i and if in adclition

t;isi:fi
we say that ä, is an ertension of Rr, writt'en Rrc Rr.



Pnxre Turr.L, On discrete groups of the unit disk anrl their isomorphisms 23

We suppose that a canonical exhaustion KrcK2c... of a non-
compact, connected. pointed surface (§, n) without boundary is given.
\1'e exclude the trivial case where § is homeomorphic to the open unit
disk and n : l. Then we may assume that the pointed surface (Kr, n I Kr)
is not topologically equivalent to the pair (E',l) where I denotes the
function ,U1 -+ N havirrg the constant value l. Then, using the well-known
classification theorems for compact, bordered surfaces, (see e.g. Ahlfors-
Sario [1]), it is easy to see that (Kr, n I K) has a standard representation
RL: (Dl,h,fL,Bl,kr). We show that this carr be extended. to arepresen-
tatiotr R, of (Kr, n I Kr). Let K be component of cl(ff\Kr). Then
K is a compact bordered surface having at least two boundary components
of which exactly one, say B, is in common with Kr, i.e.

B: KfIKT.

It is easy to see that the pointed surface (K,nl K) has a representation
R: (E',i,f,S',ä) such that A: E|l1.E' is an arc of a circle orthogonal
to §1 and that

B : f(k(A)) .

Let A, Or, . . . , O. be the disjoint set of circle arcs orthogonal to §11 such
that

B - fr(kr(A u o, u u o"))

(We may suppose that A cf rr(W'(f) ) ). S'e choose the arcs of circles
A|, . . ., Oi orthogonal to §1 such that Oj and .Ei\O; af,e in different
cornponents of .E\Or, i {n. Letr G; be the region of .E whose boundar;r

{in -E) is O, g Oi, i, < n. Define

E' : DIU D'IJ Cl(G, U. . U G.) .

Then it is easy' to see that there is a representatiorr R" : (8", i', f', B', lcu)

of KrU K that is an extension of .Er. (Note that it B * frkr(A) ) it is
not an extension of R; .I{\/'(Ä''(.0') ) is homeomorphic to [0,f] x (0,1). )

Treating separately each component of cl(ffr\Kr) lre obtain a, represen-
ta,tion R, that is an extension of -Er.

By now it is clear how to continue. tr1'e extend inductively the repre-
serrtation -81-, of (Ko-r,nlKt-r) to (K1,, ru1,K*) and obtain a sequence

RrCRrC... of representations of (Kr,n,iKr)c.... It may besup-
posed that at each stage ofconstruction the orthogonal circle arcs bounding
E'* are arbitrarily small when R,: (E:, i,, f,), e.E.we may demand that
if Cr is a component of ,Dl\.Ej then

(1) diam C < Lln
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After that it is quite obvious how
sentation of (§, ,ra). Set

to define the desired standard repre -

ti
Then, by (4), E C Ei' and we may note that S1n,U' has the propertv:

(a) §'O.O' does not contain intervals of §1.

The mapping i:.8'n /S1 --> E'l1§1 is defined by the formula:

i I E*n§l: d,.

Similarly, the homeomorphism /: §'--+§ is defined by the formula:

ftB::f".
The verification that (E',i,f, B', fr) is a standard representation of (s, rr,)

is trivial. Besides it satisfies the condition (i) of proposition 2.7 . It is pos-
sible that it does not have the property (ii), but by investigating how- the
representation of (Kt, n I Kr) was extend.ed to a represerrtation of (1ir,
% | Kr) $/e malr observe that the intervals of (§1O Z')\t, (rrhere I/ is
the set of vertices of the representation) may be indexed in such a u'ar that
we haveasequence 11,12,... of intervalsof (,O'n§!)\f andthatthere
is a sequence n, l nz I .. of integers such that

(b) If k,l > nr) lc',l,' and the intervals 1r and 11 ate id.entified b1-

i, then In and Ir are in the same component of sr\1-Io. U 1,.y.
(k,1, lc' ,7' e N) .

Then if the standard representation (E',i,f) does not have the pr.opertJ
(ii), it can be reconstructed b5r (b) in such a way that it has both properties
(i) and (ii).

E. The representation of non-compact pointeil surtaees by means ot
discrete groups of the unit disk. In this section we give an affirmative an-
swer to problem 2.3 in case of a non-oompact pointed surface. The follo.r.virrg
theorem is based. essentiallv on theorem 2.6 and. proposition 2.7. If the
boundar';' of § is norr-empty, use is made also of corollary 2.4.1.

Before we state the next theorem we agree on some notations corrcerrrirrg
pointed surfaces with non-empt5r boundary. Let (§, r) be a coureeted
pointed surface whose boundary is non-empty. Its double (§*, ii*) is
defined as follows: S5zmbolically, we denote

§* := ,sllsi a§

@

il,- U
i:1

where ä§ is the borrrrdarv of §. This meäns that we take two copies of
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the surface §, form their disjoint union, and identify the corresporrding
boundary points. Thus §* is a corrnected surface without boundary. There
is a canonical projection

p*:§*->§
and two inclusions d;:§->§*, j:L,2. Since tia§-ti, ä§, the
boundary of § may be imbedded uniquely in §*. Thus we may agree
that ä§ is a subset of §*. Besides the above rnentioned. mappings we
lrave still an involution of §*. denoted P, that might be called a reflection
about ä§, such that

iz: PL .

After that we define a mappirrg ra* : §* -> N such that ru*(r) :
n(p*(r) ). The support, of rcx is discrete and therefore we have a connected
pointed surface (§*, n*).

We may rrow state the main theorem of this section:
2.8 Theorem. Let (S, rz) be a ruon-compact connecteil, ,poi,nterl su'rface.

Then up to u homeomorpthi,snr

(§, za) : (S",rup)

where E 'is sorue d,,iscrete group of conformal, m,appings of the unit tlisk,.
Besid,es we hatse:

(d) If the bound,a,ry of S is empty , I can be chosen to be a free cotithittotiom
of cyclic groups and ,is thus a free procl,uct of cyclic groups.

{ii) The sef X'ix(/) : {P(T) : T e F. f has infini,te ord,er,\ ntay be

supposed, to be d,ense ,in SL ,proaided S has no bounclat'y rmd, is not topolog,i-

cally equiualent with, one of the followi,ng cases:

(a) (E,m) where rm' contains at most one poirtt. Then F is a finite
cycli,c grouyt or F : {id,}.

{b) A ,spehere puncttr,red at tLL;o ,Ttoittts or a projectite plane .punct'u,rerl at
one point, with ,/1,, : @. F is rm infinite cyclic group.

{c) (8,m,) where 'tnl', cottsists of ttro poittts ;t) end y such, that m(r)
: nt'(y) : 2. F is the ft'ee produ,ct of tto groups isomorph'ic with Zr.

(iii) If X is a d,,iscrete groryt of conforntctl mappings of the unit d,islc,

then (Bs,np) (or (§$, "$) if B, has bouncktry cotnponents) is toptologi,cally

equ'i,aalent to one of the poi,nted .surface.s in (a), (b) or (c) i,f and, only i,f E d,oes

not contai,n a free subgrougt with two generators. If thi.s is the cruse, Fix(.E')

e,antains at rnost two gto'ints.

Proof : We first consider the case where the boundary of § is ernpty.
If (§, z) is topologically equivalent to (8, L) , therr we can obviously
set ,f' : {dd). In all other cases we can choose a standard representation
(E',i,,f) for (§,r) satisfying conditions (i) and (ii) of propositiorr 2.7.
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If E'n§1 is an interval, we have the case (a) rrhere lz] contains exactly
one point. Then, evidently, (§, z) is topologically equivalent to (8., zp)
where -E' is a rotation group, thus a finite cyclic group. If E'n§l consists
of two intervals and. n: l, we have the case (b). Then (§,2) is topo-
logicalll, equivalent to (Br,nÅ where f is the infinite cyclic group
generated by a hyperbolic trarrsformation T of lhe unit disk, that may be,
in the terminology we have adopted, either directly or indirectly conformal.

The case (c) deserves a special treatment. We choose two points r, y e E
and denote Tty T, resp. by §, a rotation of the unit disk through the angle
n havingthefixedpoint r, resp. y. Wesupposethal r *y, i.e. B +T.
Then ST is a hlperbolic transformation whose axis passes through r and
y and is uniquely determined by these. It is easy to see that every element
of infinite order in the group -E generated by B and T is of the form
(B?)", m € Z, n + 0. Every other element of -8, different from I, ma3, be
written in the form (§7)"X(S7)-" where X is S,T,TST or S7S.
It is a rotation of order two such that its fixed point lies on the a,xis of

After that we treat the general case, i.e. the case of an open connected
pointed surface without boundary that is not equivalent to the surfaces
in (a), (b) or (c). In this case E'O §1 contains at least two open intervals.
We denote these by 16 k e K. The index set -K may be represented as

a disjoint union

K : KtU KzU KB

snch that i,(Ih) :,Ir for k e Kr and where I e Kz. For ä € ff, 'w-e have
i(Ik\ :.Ir,. 'We choose some ft e Kr. Let On be the eircle orthogonal to
§1 that passes through the endpoints of .Ir,. Similarl.v for k € -Ilr. Then
by proposition l.l there is a directly or indirectl5, conformal mapping ?r
of the unit disk sueh that the isometric circle of T* is Or and that of
T;' is Or where i(16) - 7, and such that T*(Or") : Q1. Let T* be
indirectly conformal if f lireserves orientation on 16, otherwise directly
conformal. Let, therr Å' be an index of l(r. Let nr,: n(f(k(z*) ) ) where
ft is the canonical surjeetiotr of the representation (E',i,,f):(E',i,,1,
§', /c) and e* is t'he vertice of this representation contained in .Ir. Let
I* be the irrten'al .I of the proposition 1.2 and let Oi be the circle O;

in the same proposition, i:1,2. X'inall1,, let T* be the tlar.rsformation
? of proposition 1.2. ft may happen that the circles O'o are lines passing
through the origin. Then. in the followirrg, by the region of ,O outside the
circles Oro and O21" we mean the component of A\(Oi U Ol) whose inter-
section with other circles Or, I e KrU Kz and Oi and O?, l, e Ks, is
non-empty.

Let Dr be the closed domain of .E v,hose bourrdaries are the arcs
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O*I\E and. Otflt, for fu€K, and i(I*):,Ir. tr'or lce Ks, let Dr be

the closure of the region outside the circles O! and O'o.

We claim that the system T*, D*, KLU Ks is a free combination of
cryclic groups and that the group -F generatedby Tn, lteKLUKe is a
rliscrete group of the unit disk whose fundamental domain ,. , :n.f,Jufo.

These are immediate consequences of the definition 2.5' and proposition
?.6. Besid.es it, can be seen that X'ix(.F') is dense in §1 since cl D O §1

does not contain intervals of S1. This is again a consequence ofproposition
2.6. Finally, it is easily seen that (Be,nr) is topologically equivalent to
(§, za).

Thus it is seen that the assertions (i) and. (ii) are true in the case § has

no boundary components. As for (iii), it follows by corollary 2.4.3 that the
topological character ofthe pointed surface (§r,2r) determines the group
.F, op t'o an isomorphism. Thus in cases where (Br, nr) is of the type (a),

(b) or (c) the elements of infinite order (if they exist) form a subgroup that
is infinite cyclic, and, hence in these cases X'ix(-E) contains at, most two
points, and. catrnot contain a free subgroup t'ith tv'o generators. If (§r, %r)

is not of the type (a), (b) or (c) then it is seen that either

(1) I is a free product of more than two cyclic groups, or
(2) n is a free product of two cyclic groups, not both of them

isomorphic to 22.

It, {bllows that -F contains a free subgroup with two generators' Thus we

have proved theorem 2.8 in case the boundary- of § is empty.
It, remains to consider the case where the boundary of the pointed sur-

face (S,n) is non-empt1'. We have defined earlier the double surface

(§*, ä*) of (§, rr) without boundary. \Ye defined also the surjection

,p* : §* -> § and the involution P : §* -+ §*. \Ye have seen above that
there is a discrete group of the unit clisk -ä'* such that (§*, z*) is topo-
Iogicalll' equivalent, to (§.., rap*). \tr-e denote the canonical projection
,O -> §* : §r. 1r]' -p'. Then rre have the combined projection

p p*p':,u-+s(*)

We have now reached the point where the conclusion may be drawn by
corollary 2.4.L.In order to be able to use this corollarJ/, we choose some

conformal structure on S (this can be done using a trick employed in
Ahlfors-Sario [I] theorem 5E p. 127). This induces a conformal structure
on §* such that p* is a local conformal equivalence except at the points
of ä§, where it is dihedral of degree one. This induced conformal structure
may be different, from that of §* regarded. as the factor space §p. of Z.
Thus the mapping p : E --> (§, z) is not, as a rule, a covering proiection,
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but it is easy to see that the conformal structure ol E may be redefined so
lhat p is a covering projection of the pointed Riemann surface (§, z).
Then by corollary 2.4.1 lhe conformal equivalences / of E for which the
triangle

f
EE
Pt tP

§

commutes, form a discrete group .F of the unit disk such that (§p, rup)
: (§, z) . We must still show that the conformal structure of E after
the redefinition remains conformally equivalent l"ith the conformal struc-
ture of the open unit disk. If -Px C .F' contains a free subgroup with trvo
generators, denoted lry H, then Ef H is homeomorphic to either a torus
punctured in one poirrt or a sphere punctured in three points (we mar as-
sume that ä does not contain indirectly conformal elements). This rnearrs
that the conformal structure of Z is equivalent to that of the open unit
disk after the redefinition. hr cases where (§*, n,*) is one of the pointed
surfaces irr (a), (b) or (c). by considering the eases that mav occur., 1\.e rnay
choose the conformal structure so that the confonnal structure of -& in-
duced byp is the original corrformal structure. Thus rre have proved that
eyery norr-compact poirrtecl surface nav be represented b;. means of a clis-
crete group of the unit clisk.

To conclude the proof of theorem 2.8 we must examine the algebraic
structure of X. It has a subgroup n* of which ur know that it is a free
product of cyclic groups. Now, consider the commuting diagram

p*
E i-- E

P'+ n {n'
sr< 1> s*
?*t ,/P*

§

where we choose P* to be a reflection of -F. It is easv to see. using pr.o-
position 2.4, t'hal every element B € .F' may be l'ritten uniquelv in the forrn
7X where 7 e Ft and X : P* or : id, i.e. is an element of the sub-
group generated by Px that is isomorphic to Zr. Thus as a set. the group
X can be identified rrith the cartesian product F* X Zz, but its composition
is trot that of the cartesian product. We have

(§X) gY): (§XfX)XF, §, f e E* and X. I'e Zz: {P*,idi
Thus we may define a left action of 7rz on
Then the group structure of F is given hy
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(^9, X) (T, Y): (S?x, XY) .

We say that this is the slrcw proil'uct structura defined by the a,cti,on of Z,
on l*.

To prove the assertion (iii) it, suffices to remark that if (§*, 2*) is

topologically equivalent to one of the surfaces in (a), (b) or (c), then every
element T of -F' having infinite order satisfies the corrdition Tz e I*
and is thus in the infinite cyclic subgroup of the elements of .F'* having
infiriit'e order. On the ot'her hand, if (/Sx, n*) is not topologicall5r eqqiva1"6
to one of the surfaces in (a), (b) or (c) then -n'* a,nd, a fortiori, -E contains
a free subgroup with two generators. This concludes the proof of the theo-
rem.

We have also proved the followir:g corollary:
2..8.1 Coroltary. Let I be a d'i,suete group of a si'mply connected, Rie-

man,m surface such that (Sp, n) is q, non,-compact poi,nted, surface. If Ss
has na bou,nil,ary, ? is a fre.e product of cyclic grou,ps. If the bound,ary of S,
is non-entgtty, there is a u:ell-defined, su,bgroup F* of F such that (S p-, n p.)
: (§F, nfr). Il P* i,s a reflection of F arutl Z, the subgrougt of F generated,

by P*, then X i,s isomorphi,c to the skew proclttcl 1* X Z, where the a,ction

o.f Z, on F* i,s defineil, by (X, §) -+ X§X, 
^S 

€ F*, X e Zz. Thi,s result
'is also ualid, i,f Ss is comytant.

3. Isomorphisms between aliscrete groups of the unit ilisk

A. Preliminary tlefinitions and propositions. Let .F' be some discrete
group of conformal mappings of the unit clisk. \Ye harre already defined

I'ix(.F') : {Pg) : T e F, T }ras infinite order}

u,,]rich is a subset of §1. Similarlt, u'e set

(3.1)

t3.2 )

w'here it might be observed. that rre har-e excluded the axes of reflections
ofJ'

3.1 Proposition. Let S, ? e F ltctue infinite ord,er. Then S and' T
haue no colnrno?L fixed, points, unless some power of them is in an i,nfini,te

cycli,c subgroup of F.
Praof : The case in which § and T have all their fixed points in

cornmon is treated. by performing a suitable transformation in such a way
tha,t the fixe d points are transformed to 0 and oo of the Riemann sphere

(or to oo if both B and T are parabolic). Thereforewe ma,yassumethat
7 is hyperbolic and has a fixed point that is not a fixed point of §.
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Under these circurnstances define S' : B7§-1. Then

(l) dr: d(*,T(u)): ds,: d(y, S'(y)),r e Ax(T), y € Ax(§')

where d is the hyperbolic metric of E, and. both §' and 7 are h54per-

bolic and have one (and. only one) common fixed point. Define

To: T"S'T-" ,

then

(2) drn: il'(u, T"(r) ) : dr for r € Ax(?")

Because Ax(?") converges to Ax(?), we have by (t) and (2)

)::r"t"l 
: T(z) for z € Ax(r) .

But this is impossible since "E is discrete and none of the mappings ?',
is equal to I.

Let, f be a homeomorphism (§",r") --->(Sp,,ns,) where I and. I'
are discrete groups of conformal mappings of simply connected Riemann
surfaces X and X'. fn corollary 2.4.3 it was shown that / induces a

family of homeomorphisms X --> X' differing from each other by some

§e"F'. At the same time "/ induces a family of isomorphisms -F -->X'.
The study of such isomorphisms is precisely the srrbject-matter of this
chapter when X : X' : E. Therefore we define:

3.2 Definition. Let f and, X' be two d,iscrete groups of conformal
rnarypi,ngs of the uni,t ilisk and, E: n --> I' an 'isomorphism. We say that q
i,s geometric if there 'i,s a lwmeornorphism f : E ---> E' such that

l(r@)):q(\ff(r)) for T ex,s€8.
In that c&se we say that E is i,niluaed by f .

Our aim is to give necessary and sufficient conditions for an isomor-
phism of discrete groups of the unit disk to be geometric. In this connexion
the following definition is of fundamental importance:

3.3 Definition. Let X be a grougt of conformal, mappi,ngs of E anil
/S, 7 € E elements of infini,te ord,er. Then we so,y that S and, T are uossed,

i,f Ax(T) o Ax(S) I o.
ft turns out that an isomorphism between discrete groups of ,O is geo-

metric, with few exceptions, if and only if it preserves the relation of
beirrg crossed. We first prove:

3.4 Lemma. Let X and, I' be two d,iscrete groups of conformal mappings
of the uni,t d,islt and, g: I ---> T' a geometri,c'i,somorphism. Then V preserues

the relati,an of being crossed,.

Proof: It suffices to show that if 9(B) and g(T) arecrossed for some
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§, ? € .[', then also § and f are crossed. Moreover, we ma,y assume that
neither 9(§) nor 9(?) is parabolic or that some power of them is in an
infinite cyclic subgroup of I', i.e. they have & common fixed point. 1We
suppose that their order is infinite). Let, C, be a closed circle arc in EL
whose endpoints are P(T) a,nd -l/(?) (in case 7 is parabolic let C, be
a circle in Et, different from §1, tangent, to §1 at P(T) ). Define sirui-
larly Cs. There is a homeomorphism lr:R-->Cyl1,O such that

fr(**n) : T"f(n) for n eZ and' r € R'

The homeomorphism ,fr ' 
R --->CsllU is const'ructed in the same way.

Let E:nU{*,-oo}. Then we canextend f, to acontinuousmap
/i,E *Cr by setting fi, cn): itr(?), fl@): P(T). rn the same
manner we extend ,f, to fi. Let h: E --> E be some homeomorphism
inducing g. Then we define g', and, S! t R- -+ Er by setting

grlF.:h,f,
g'r(- a): X(s(") ) , gr(*) : P(q(T) )

and analogously for g!. Then from the assumptions lre have made re-
garding Vg) and ?(§) it follows that gi(R) and g!(R) are Jordan
arcs whose intersection is a point of Z. Consequently, C, and Cr must
be circle arcs whose intersection is a point of E. This proves 'uhat § and
T are crossed.

B. The case in which Fix(D is ilense in St. We assume that "E and .F"

are trilo discrete groups for which X'ix(X) arid Fix(F') are dense in §1,
and that an isomorphism g: I ---> X' preserving the relation of being
crossed is given. In that case an element T of ? is parabolic if and only
it gQ) €X' is parabolic. This is seen using proposition 1.4. Then a map-
ping g' : X'ix(X) + Fix(P') is defined by

v'e(r) )- P(v(r) )(1)

This is obviously a bijection. The follou'ing proposition shows that it can
be extended 1,o a homeomorphism g* : §r -+ §1, if q presexves the relation
of beirrg crossed.

3.5 Proposition. Let I,I',g and, q' be cvs aboue. Then there ,i,s a
uni,que ertension of q' to a homeomorgthism g* : §1 -+ S1.

Proof: fn proving the above proposition r,r'e make use of the notion
of a nested, sequence T1, T2,. . . of elements of -F. We say that a sequence
TyT2,... of hllerbolic elements of I' is a nested sequence if there is a
properly decreasirrg sequence Ir) Irf,... of closed intervals of thecircle
B', such that the endpoints of Ii are P(?r) and l{(T;), i, > L.
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Usir:g proposition l.{ it is seen that a sequence 71,72,.. . of elements of
-F is a nested sequellce if and only if g(Tt), g(Tr),. . . is a nested sequence
of elements of F'. Le1" r be an arbitrary point of §1. Therr there is a
nesterl sequence Ty 72,. . . of elements of -ä' such that, if Ir, Ir, . . . is
the correspond.irg sequence of intervals,

Thetl the intersectioir of
V(Ti, V(Tr), . consists

It is (iä sil \: -qee tr1 th at ,F'F

siorr of ,l' , \Ve ma]' note

{*l :,!,r,
intervals corresponding to the trestecl seqrrence

of one point y. \Ye rlefine

r*(e,) - e

is rrlriqlrely deterillined aild" is tire- desired exten-
that g'* has r-he pl'ol)ert\-

(:r"5.I i V'k(T(ll )-q(T)(g*(.t") )1or.i'€^S1 anC Te F

This is i,l"re funclamental propertv of g* and it will be needed later.
\tr'e plove a corollar.v to proposition 3.5 for which we have no use.

but 'which is, nonetheless, interesting in itself.
3.5.1 Corollary. Let, n,I',E and, V* b, cr,s i,n proposi,ti,on 3.5 and, f

som,e ltonteomorphism inducing q,. Then the bijection E7 ---> Er defined by

f and rp* 'is a homea'morphism..

Proof : The mapping f' : Er-->Er defiired b1-

f'(r):J@) for r€E
: V*@) for r € sl

is obviorrsly a bijection and to show that it is a hotreomorpirism it suffices
to prove its continuity at points of 81. Let .r be a point of §1. Let Tt,
Tr,. .. be anested.sequence of elements of ,F ancl Ir. Ir. .. . the sequence
of interr..als correspondirig to it, satisfying

{"} :,!,r, .

Let fI, be the eomponent of ,Et\Ax(?,) to rrhich r belongs. Then
Ui, i ), l, form a basis of neighbourhoods for c in E', and it is not
difficrrlt to see that f'(U;), d) l, is a basis of neighbourhoods fot f'(r).

C. The main theorem. We have now at our disposal all that is needed
to prove the main theorem of this chapter. \Ve suppose that trvo discrete
groups -E and X' of conformal mappings of the unit disk and an iso-
morphism q: I -> I' are given. We prove, r,r,ith some restrictions, that
q is ind.uced by a homeomorphism if and only if it preserves the relation

Ann. ,\cad. Sci. Fennierc
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of being crossed. We suppose that the factor space Ell is non-compact,.

except if the boundary of § is non-empty in which case we assume that
boundary components are compact. There are two reasons for tliis: If
0B : a, our method of proof applies onlywhen § isnon-compact, trhereas
the case 0B * a is reduced to this by omitting the bound.ary. The other
reason is that for the case § is compact and 0§ : o proofs of combina-
tory rrature are available (see e.g. Zieschang-\rogt-Coldewe;r l7) ot Zie-
schar:g [6]) but if 0S * a only proofs making use of quasieorrformal

theory and Teichmiiller spaces are knorvn (cf. Macbeath i3]). The compact
case is trasically different from the non-compact, case in the resltecu that
every isomorphism is induced by a homeomorphism (and thus pleseryes
the relation of being crossed, as we later show in lemma 3.6.2).

3.6 Theorem. Let I and' I' be two di,screte groups of conform,al, ruuyt-

pings of the uni,t d,i,slc such that X contai,ns a free subgroryt wi,th two genera,tors

and, S : E I I is non-compact or that the bound,ary of S is non-em.pty. The

bound,ary comltonents of S are assumed compact. Let g: n --> P' be an
isomorph'i,sm. Then g is geome-tric if and only if it pre.serues the relation of
be'i,ng crossed..

Remark 1. The theorem is presumablv true evetr t'ithout the assurup-

tion of compactness of the boundary componetlts, but I have ttot been

able to prove it in this case.

Remark 2. If § does rrot contain a free subgroup with two generators
rather strong limitations are imposed on the topological charact'er nf the
pointed surface (§r', m") (cf. theorem 2.8.).

Proof : We agree to call in this proof a cliscret'e group of eonformal
mappings of the unit disk simply a discrete group. Bv lemma 3.4 it suffices
to show that if ? preserves the relation of being crossed it, is geometric.
We divide the proof in several parts:

L. Bome general results

trVe first prove some lesults of general ciraractel fbt' Iater use.

A. If a d,iscrete group G ltus cr, compacl futtdnmentrul clomai,n,. lhen the

sef X'ix(G) is d,ense iru SL.

In proving this we rnake use of the follorring result: ff a discrete group
G has compact fundamental domain. theu it contains a subgroup G'
of finite index that is a surface group, i.e. E is a coveringsurface of EIG'.
(This result is proved e.g. in Zieschang-\rogt-Colderrey [7] Satz IV.17).
Then G' has also a compact, fundamerrtal dornaiu and evidently G' + {l}.
Let § { I be an element of G'. Then § is a hyperbolic transformation
of the unit disk. Let r be an arbitrary point of §1 and let U be a:r open
neighbourhood of r in Et whose bourrdary in EL is a closed arc of a
circle orthogonal to the unit, circle. Theu there is an element T of G'

3
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such that ?(Ax(S) )fiU fa, and consequently, TBT-| has a fixed
point in U n $. This proves A.

B. Il the isomorTthism E preserl)es the relati,on of being uossed, then g
carrdes re,flections bijecti,aely onto reflections.

To prove B v-e choose a reflection B € -F. Since .ä' contains a free
subgroup with two generators, v,e d.educe using proposition I.4 (and pos-
sibly proposition 3.1) that there is a hSryerbolic T € -E' such that Ax(?) O

Ax(§) t' a or, equir.,alently, that T and. §7§ are crossed. Be-.ides we
mav ässume that /S?S + 7-1. Then E(T) and g(§7§) are crossed, and
since q(f)-\ I g(§7§) and 9(B) is of order two, this is possible onl;'
if g(B) is a reflection. Similarly, it can be shovrr that, if §' € .F'' is a re-
fleetiotr therr g-1(§') is a reflection.

2. The ca,se where F contai,ns tto reflections

I{' -F contains no reflections, then B shows that I' cannot contain
reflections, either. Besides, we c&n suppose using lemma 3.4 and theorem
2.8, that X'ix(X) is dense in §1. Similarly, we c&n assume that X'ix(-F")
is dense in §F. This is seen as in the case of I if EII' is norr-compact or
by result A if it is compact. Besides by the above arguments we can assume
that .ä'is a freecombinationof cyclicgroupsformedb)- .F,, D,,1',,i,e K.
In addition notations Pt, I{, and C; are used as in section C of chapter 2.

Then according to definition 2.5' r'e have the iuclusions

(r) cl(Or) n §1 c cl (D) n 
^S1 

foli. j e K, 'i + j

and the inclusion is proper if "Fi and -F] ale c1-clic groul.rs of order tv'o.
Since both Fix(,F) and X'ix(-F') are dense in S1 and q presexyes

the relation of being crossed there is a homeomorphism g,* : §' -+ §r satis-
fying (2i

(2) q*(P(T\ ) : P(v€) ) for 7 € -F' the order of 7 infinite.

E*(T(r) J : V(4 (E*@)) for r € §1 ancl T e F

by proposition 3.5. \Ye use g* to construct -F' as a fi'ee combination of
evclic groups.

Let i be arr element, of J( such lhat Fi is infirrite. Then the funda-
mental domain D; of -F'; is a closed region of E rrhose borrndarv con-
sists of t,x'o nolr-Euclidean lines Pt and lV;. Fi ha-q a generator T;
such that ?;(ffr) : Pi and P(Tr) and If(?,) e cl C;. The non-Euclideal
line P; has two (ideal) endpoints r and y. Therr there is tr rvell-defined
non-Euerlidean line s,hose (ideal) endpoints are ,F*@) and V*@). It is
denoted by Pi and the non-Euclidean line rYi is defined similarly. If
Ti : p(?,\, r;(N) : Pi and P(r), N(T',) € s,*(cl c, n $). This means
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that the closed. region of E, d.enoted by Di, whose boundary con§ists

of the lines Pi and .Yj is a fundamental domain for Ii: 9@t).
If the order of -F; is finite we proceed. quite similarly. It is a con-

sequence of the equations (2) that if 7; is a generator of lr that is a
rotation through the angle 2nln then f! : V(f r) is also a rotation through
tlre angle 2nln. Therr Tt satisfies the condition Pi,: Ti,(Ni) where

Pi and -lV'; are the sides of the fundamental domain Di of .Pr. We
associate with the non-Euclid.ean ralr P; another notr-Eucli«lean ray Pi
as follows: P; has an (ideal) endpoint r in §1. The other endpoint of
Pi is the fixed point of ?i. Let P! be the non-Euclidean raJi whose

(ideal) endpoint, is gx(r) and the other endpoint the fixed point of ?i. We

define similarly Å'f . Let D', be the closed region of l7 whose boundary
is P;U^'i and suclr. that q*(cl?l0B')c clD',,i +i,ie1(. Since the
index set K corrtains at least tu'o elements, Dj is defined uniquely by
this requirement. It is clear fhat Di is a fund.amental d.omain for .E'i :
E@r).

We claim that F' is formed. by the s1'stem X:, D:, T'r, K as a free

combination of cvclic groups. Lel Ci: ,E'\D; for i e K . Applying p*
to the inclusions (l) u'e obtain

clCjO§r c clD;n§1 for i,ieK,i,+i

and the inclusion is proper if .Fi and ?j are cyclic groups of order two.
Therr accordirrg to the definition 2.5', li, D:,7',, K forms a free combina-
tion of c1'clic groups. Since X'ix(,E') is denseirr §1, .D' : (\Di isafunda-
rnenta,l clotnain for ?; try proposition 2.6,

Ohviouslv there is a homeomorphism h from the

,EK

fund.amental d.omain

n D; of F' such
,€K,eK

t hat, lt,(T t(")) -
harncornorphism
for .r' e I) and

fi(h(e:)1 for i e I{ and. n e Å:i. Then lrre can d.efine a,

f,E+E inducing V b-v setting fQ@)) - Vg)(h("))
T € ,f'. Clearly, this is the desired homeomorphism.

3. The case w'i,th non-empty boundary

We now proceed to the case in which the boundary is non-empty while
still assuuring that boundary components are compact. This means that
there are reflections in the groups -E and -F". We generalize the definition
of being crossed also to the case in which § and T are reflections: We say

that two distinct reflections are crossed if their axes intersect. The principal
differenee between the above definition and the d,efinition of being crossed

for elements of infinite order is that a reflection is not crossed with itself.
The followitrg assertion is trivial:
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C. Two d,i,sti,nct reflecti,onsi,n a d,,i,screte grougt are crossed, if and onl,y
i,f their prod,uct is of fini,te ord,er.

Letr R, B and 7 be reflections. W'e say that S separates ,E and 7 if
Ax(-B) and Ax(?) lie in different components of .E\Ax(S).

D. Let R, S and T be reflecti,ons of I. Then R' : E(R), T' : q,\T)
are separeted, by S' : g(S) i,f and, only i,f S separates R and, T.

We may assume that the axes of -8, S and 7 do not intersect. Therr
D follows immediately if we observe that ,E and T are rrot separated
by § if and only if there is a hyperbolic transformatiorr P in -f' such
that the axis of P intersects the axes of ,E and 7 but not that of §.
This is seen using proposition 1.4 and observing that the eomponents of
B1\Ax(,8) and ,Sl\Ax(T) +,ha+, do not intersect with Ax(§) contain points
of Fix(.F'). Similarly, if ,S' separates -B' a\d T', § separates -B and 7.

I{ext we choose a component Eo of p-1(§\0§) where p: E ---> S
is the canonical projection. The boundary of Eo in .E consists of axes
of reflections of 7,, with the endpoints excluded, or closed segments of
axes of reflections of n.

We denote by r(E o) the set of reflections in ,P whose axes intersect
the boundary of .Eo; thus

r(Eo): {S € .F' : § is a reflectiorr and Ax(§)0rclrEo * o} .

The set r(.Oo) satisfies the conditiorr:
E. Eanh element T of r(Eo) is ei,ther uosseil, wi,th no other reflectiort, of

I or it'is crossed, wi,th emctl,y two reflections R anrl S i,n r(E). In the former
case Ax(T)fi clu Eo is Ax(T)fl E; i,n tlte latter it is the closed, segrnent of
Ax(?) whose endptoints are the poi,nts where Ax(T) intersects the anes of
R anil, S. Besid,es these end,paints this segment does not corrtain otlter fired,
poi,nts of rotati,ons.

Let T be an element of r(Eo). Then .Eo is contained in one compo-
nent of ^U\Ax(?). Therefore Ax(") llcl Eo is a disjoint union of closed
segments of Ax(?)O.O or is Ax(?) nE. It is Ax(?) nE if. p(AxQ)nE)
is contained. in a boundarr- component of the pointed surface (§, r,r.) :
(§r,zr) that does not contaiu point-r of inl; this is equivalerrt to the
statement that f is not crossed lrith othel reflections of -F. If ? is
crossed with other elemetrts of ,F then eaclt component of Ax(?) O clu.,Eo

is a closed segment of Ax(?) whose eudpoitrts are fixecl poiirts of rotations
of -8. Let A7 be& componerlt of Ax(?)OclrZo, andlet ,ai beasubseg-
ment of A, lhat does not contain fixed poirrts of rotatiorrs of .t, other
than its endpoints r, and xr. Then there are elemerrts §, and §, of
r(.Eo) such that Ax(§r)nA;: {ri}, i:1,2. Then Ax(")\(CrUCr2) :
,4i\{rr, rr} when C; is the eomponent o1 Z\Ax(&) forirhich .b'0 n Cj
:6,'i,:lr2,
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Let T be a reflection of r(Eo). Then we set

Ar: Ax(T)O clrEo.

This is by D either the non-Euclidean line Ax(?) ll E or a closed segment
of Ax(?) whose endpoints are the fixed. points of rotations -E? and §?
where -E and § arethetwo elements of r(E) withwhich ? is crossed.

Änalogously we define for T' : p(T) eq(r(Er))

A'r, : Ax(?')nE ff Ar:Ax(T)iE
: the closed, segment of Ax(T') whose end,points are the fired poi,nts

of rotat'i,ons R'T' and, S'T' when R:g-t(R') and' B:g-'(/S')
are the reflecti,ons of r(E o) uosseil, with T.

Then we claim:
?. The set E o i.s the unique open conaefr subset of E whose bounilary

inEis
A: U Ar, T er(E) .

Si,milarly there is o, unique open conx:ex subset E; ,f E whose bounilary 'is

A' : l) A;, , T', e q?@r)) .

?he subgrougt X o of X that leaues E o inaari,ant cotasists of those elements

S of F for whi,ch the mapping S » §7§-1 i,s a bi,jection of r(E o) onto

r(E a)-

Let X'o: g(f o). Then Ii is the subgroupt X' that leaaes EI in-
aari,ant. As aboae'i,ts elements are those elements S' of I' for whi,ch the map-

ping T' r+§'7'§'-r is abijecti,on of E@(Eo)) onto V(r(Ed).
To show that, Eo is the unique open convex domain whose boundary

is / we observe that if r(,Oo) does not consist of tlrree reflections crossed

with each other then for each T e r(E o) there is an element, § € r(Er)
such that § and T are not crossed. If r(E ) cotrtains at least four elements
this is seen by E. If r(.Eo) consists of three ot trro reflections not crossed

with each other, then. evidently, this condition is satisfied. The case that
r(,Oo) consists of only one element or tu'o elements crossed with each other
is iurpossible, since -F contains a free subgroup rvith two generators. Fi-
nally, If r(Eo\ consists ofthree reflections crossed rrith each other, then
.Eo is the set of interior points of the hperbolic triangle bounded by the
axes of these reflections.

Next we prove that -Fo has the properties as asserted in .E'. Clearly,
each element T of I o leaves the boundary of .Eo fixed; hence the map-
ping Bv>TST-r, §€r(.Oo), is a bijection of r(.Eo) onto itself. If 7 is

an element, of -ä' and the mappirrg § r+ TBT-1, §€ r(.8'o), is a bijection
of r(Eo) onto itself, then 7 leaves the boundary of Eo fixed and by
the argument of the preceding paragraph 7 leaves -Oo invariant.
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It remains to prove the assertions concerning fr'o and X[. If there
is an open convex set "Ei whose boundary is A', trhen Eo rnust be

rurique. This is seen &s in the case of Eo. To prove that there is arr open
comrex set whose bourrdary is .4' it suffices by E to show that there are

no elements -B', §' and. T' of q(r(E o\ such that §' separates -B' ancl

7'. Then by D, if .E : g-'(R'), §r : p-1(§') and 7 : g-L(T'), § would
separate -B and 7 which is impossible as B, R,T e r(Eo).

The assertions concerning Xi are proved like the assertions concerrting
no.

Since -Eo is convex by assertion 7, it is simplS. connected.. Therr we
have by corollary 2.4.1:

G. If X o i,s regard,ed, a,s a group of conformal mappings of the s'imply

aonnecteil R'i,emunn surface Eo, then (Ba,za) may be id,entified uith
the poi,nteil, surface (§\a,9, n I S\aB).

In particular, since S\a,S does not have boundary, an elemeut of -Fo

regarded. as a mapping of .Eo cannot be a reflection. We can drau" Ii'otn
this the conclusion that an element, of .F o regarded as a mappin g of E
is not a reflection.

We denote the closure of Eo in -0 by -Eo and that, of E; b:- E;.
We claim:

H. There 'i,s a homeomorphi,sm f : Eo--- E'o such that

(3) fV@) )- pg)(f(r)) fr, neEo a,nd T €Io
and, suclt, that f I A, ,i,s a homeomorphisnt, A7 --> A',,1r.y fo, T e r(E o)

where A, and, A'r1r1 d,re as i,n I.
We consider first the types of boundarJr comporretrts in .O that E o

may have. X'irst of all, Eo may be compact. Then -Eo is a h1-perbolic

polygon whose boundary is a finite union ö Or, where T1, . . ., To, Tt
i-1

are the reflections of r(Er) such that each reflection is crossed with the
preceding one and m is an integer ) 3. Then lve may say that the bound-
ary of ,8, (and the corresponding bound.ary component) is closed,.

If E o is not compact trro t5pes of boundary components may occur.
Each component of the boundary of ,Eo in Z is either of the form A, :
Ax(?) n! for a reflection T of r(E ) or it i-q a chain of segments of the

tor- ,:qjnr, where in the sequellce . . .,T-r,To,Tr, . . . of elements

of r(Eo) each reflection is crossed rvith the preceding one and Tr * Ti
for i, t' j. fn the former case, Ax(?) is also the axis of a hyperbolic transfor-
mation of -F' by the compactness of the boundary component, p(Ax(T) n E)
of §. It is called a simyile aris. By the same argumeut,, in the latter case

there is a hyperbolic transformation T of I such that Tp+^: fT,nT-L
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for some pez and all ne Z. In this case the boundarycomporrentis
called a chai,n of segments.

We first consider the following special ca,ses which correspond to cases

("), (b) and (c) of (ii) in theorem 2.8, as we shall see.

(") Io is either finite cyclic or trivial.
(b) Io is infinite cyclic.
(") I o is a free product of two cyclic groups of order two.
(a) I o i,s fi,ni,te cycl,i,c or triuial. In this ca-qe the discussion in the first

two paragraphs following assertion ä shows that then -Eo must he com-
pact. The set r(.Eo) consists of rz reflections 7;, f < i < z, where n ) 3

and in the sequence Ty . . .,7,, Tt each reflection is crossed u'ith the
preceding one. Let T be a generator of the group .Eo that is a rotation
throughthe angle 2nllc where fu is the order of the group Xo. T leaves
the boundary of E o fixed and hence .Oo is also fixed under 7. It follows
(using e.g. the Brouwer fixed point theorem) that 7 has a fixed point
in .Eo.

Let Ti : C (Tr), I f. i, { tt,. Then each element in the sequence
T'r,...,T:,?| is crossed rvith the preceding one. The segments A'r,i,

I 1,i, {n, form the boundary of the pollgon E;. Since T' : V(T)
leaves the boundary of E'o invariant, it is seen as abor-e that ?' must
be a rotation that has a fixed point in D'o. Tn addition 7" is a rotation
through the angle znlk. This follows from the fact that fu divides n
and if m: nllc, then T*+r : fTLT-r, and so ?'*+r: T'TiT'-t (if
rIL: n, we set T*+r:7, and f'^*, : T'r).

Now that we have clarified the situation it, is easv to see that there is
such a homeomorphism as asserted in H.

(b) I o ,is i,nfi,nite cycli,c. We may regard -F o as a group of conformal
mappings of E o. Then we may identif;' the poirrted surfarces (§,'., ?a4)

and (S\a,S,ra I S\aB). From theorem 2.8 r-e have that ?tro : I and

^S\a,S 
is topologically equivalerrt to eithel a sphere punctured at two

points or to a projective plarre punctured at one point. Let T be the gen-
erator of 10. In the former case § is eithel nou-compact and has one
boundary component (and one point of ideal bourrdary) or it is compact
and has two boundary compolrerrts. If § is non-compact it is easy to see

lhat Eo has one boundary component, rvhich must be, since we assume
that -F contains a free subgroup rvith t'n'o generators, a chain of segments.
This chain of segments has as accurmrlation points the fixed points P(7)
and N(7) of T. If § is compact, it, is seen as above lhat E o has two
boundary components of which at least orre is a chain of segments. Both
boundary components have P(7) and -l[(7) as their accumulation points
and both are invariant under 70. If §\aS is a projective plane punc-
tured at one point, then § is compact and has one boundary comporlent.
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It, is easy to see that in this case .&o has two boundary components that
are chains of segments having P(7) and -l[(7) as their accumulation
points and such that T interchanges them.

Since the structure of r(to) rvith respect to the relation ofbeing crossed

and the action of .Fo defined by §r>TS?-1, §€r(-Eo), T ePo is pre-
served under the bijections r(Eo\ --> V?@oD and ns--> I'o induced
by g, it is easily verified that the desired homeomorphism / exists.

(") I o i,s the free prod,uct of two cyclic groults of ord,er two. We refer
the reader to the treatment of case (ii)c in theorem 2.8. Since .E o does not
contain reflections, -Fo has as generators two rotations § and ? of
order two. The transformation R: BT is a hyperbolic transformation
whose axis passes through the fixed points of § and 7. Every element
of JIo is either a rotation of order two or is in the subgroup generated by
R. LeL the fixecl point of T be P and that of RTR-L be Q : R(P).
Let A be the closed arc of the axis of -E whose end.points are P and Q
and let B and C be two non-Euclidean rays lvhose endpoints are P and

Q, orthogonal to the axis of R, such that -E(B) : C. Then one of the
two closed regions of -O whose boundary is / U B U C is a fundamental
domain for Is, regarded as a discrete group of E. \Ve denote it by D.
If we consider 1o as a discrete group of E o \r1e ma)' observe that
Ax(-E) i E c Eo and.Eo has trvo boundary components C1 and. C, having
P(-B) and -l[(-B) as accumulation points in "81 and such that .E carries
Ci, to Ci, i : !,2, and each rotat'ion of 1o interchanges Cr and Q.
Both C, and C, are chains of segments. A fund.amental domain of 7o
as a discrete group of E, is Zo O D. All this follows from what has been

said above and from the fact that the pointed surface (,S, z) has one

boundary component wrfh n@) - I for all interior points r € ^9 except-
ing two interior points y and z for whicb n(y) : n(z) : 2. Now the
existence of the desired homeomorphism / is easily verified.

After these special cases we consider the general case. The group Jflo

may be regarded as a discrete group of Eo and then (,S\a§, zr, | \a§)
may be identified with (§p, na). We wish to show that if -F,o is not
one of the special groups (u), (b) or (c) considered above, then -Fo contains
a free subgroup with two generators. But this rvill follow immediately from
theorem 2.8 if we remember that the above special cases correspond to the
cases (a), (b) and (c) of theorem 2.8 and in all other cases a discrete group
not containing reflections contains a free subgroup rvith two generators.
But I o does not contain reflections and so we may draw the desired
conclusion. Our aim is to show that, part 2 ofthis proof can be used to prove
the existence of a homeomorphism /' : Eo-->Ei satisfying the condition
(3) of assertion ä. We regard JIo as a discrete group of Eo and .Fi
as a discrete group of E'o. We could now use part 2 of this proof if -Eo
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and D; \Mere the unit disk. But the important thing is that they are
conformally equivalent with the unit disk. W'e choose a confof,mal
equivalence h : E, --> E and transform the group -[', using h to the
discrete group XL: {hThl : T e X o} of the unit disk. The mapping
Tt->ltIh-L is an isomorphism gt:Eo*nt. lYe define similarly the
discrete group I', of the unit disk and isomorphism qir?'ov>Fi. Let,
go: g | -n'. Then Viqorpr': .0,r * -Fi is an isomorphism. If we can show
that it preserves the relation of being crossed, the desired homeomorphism

f ' , E o-+ Zi exists by part 2 of this proof.
To prove that q'rqoEr' preserves the relation of being crossed it

suffices to show' Lhat cp, and gl preserve this relation when .x'o and l'i
are regarded as discrete groups of the unit disk. The proof resembles closely
that of iemma 3.4 and is therefore omitted.

We hane norv shovrr. that there exists a homeomorphism f':Eo-->E'o
satisfying equation (3) of H. By means of it we construct, a homeomor-
phism f :Eu---Eo rrhere / has the properties as asserted in H. The
set Eol?o mal' be ideutified u'ith ^S. Let the boundarv components of
§ be Ci, d € J. Therr there is a famill' of disjoint sets K; c § and homeo-
morphisms /r : §1 >l I --> Ki such that "f,(§' x {0}) : Cr for i, e J (r,re

denote by -I the interval [0,1]). lVloreovel, \t"e can suppose that if r € §1,

i,eJ, and 1(; :t(81\{r}) x/), and po:Eo--S is the ca,rlonical
surjection, then pe, restricted to a component [/ of p;t(I{'), is a homeo-
morphism U --> I{i. 'Io each boundary component C of Eo there corre-
sporrd,s a unique component Ks of ?;'( U.K;) such that K6iC:C.
Let X" be the irrfinite cyclicsubgroupof -f,''"ur.;'iug C toitself andlet
Tq be a generator of ?s. Then there is a homeomolphism ,fc: R X 1->
K6 such that f"(«:!rt,,t):TZ{.f@,t)) for neZ,r€R and I€1. Itis
clear that in .K6 or:ly the points T'i;(;t). n, €2. are equivalent to r e K"
under the group 1,0. \{ie assume tliat C :/.(R ). i0}) .

Each boutrdar.r conrponent C of .Eo i-c tr unioir of segmerrts A, and
the union of the corresl-rondirtg segrnents A'01r1 is a boundary component
C' of E'0. Therr tire infinite cvclic subgroup I, of F'o carryirrg C'
to C' is generated b1- ?'c,: $(Td. Furthermore. it is clear that the
bounda,ry of /'(/.(Rx (0, 1]) has trro comporrents irr .Ei ofthichonemust
be C' since otherwise "f'("f"(Rx(0, t))) rrould be that component of
,å\/'(/"(R x {1})) tha1, has infinite number of bounclary components and
in /'(/"(RX(0, t))) onlv points of T[,(r). n€2, are equivalent with n
under X;. AJter that it is seen that there is a homeomorphism

f's:Ks--->K'",:clrf'(K"\C; such that the restrictiotrs of f[ and f'to
"f"(R x {I}) are equal and that f;l A, is a homeomorphism Ay-A'*,
for each Ar c C and that
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Let' B:f(q be another boundary cornponent of Eo equivalerrt to C

under "ä,o. Then we define

fÅt*) : qg)(l;(r-'(r) ) ) for :t: e Ks.

Since the /i and f' coincide on /r(R X i1)) \ve sce that f' can be

modified in the sets 1(r, 3 : T(C), T e ?0, irr such a \\'ay that rve obtain
a homeornorphism f l, EoU ("U 

"(C)) -, 
ELU ( 

,,Uo,,T'(C') 
) satisfying

the equation (3) of ä and the condition that f';1 A, is a homeomorphism
Ar*A'*1r,, whenever f'[ is defined on Ar.

It is clear that we can by the above procedure obtain a homeomorphism

/ satisfying the conditions of assertion ä.
We proceed by d.efinirrg inductively a sequence of sets Io c F, n ) L.

Let

(1)

and further, if
(4) ln : {Sf
It is clear that

(5)

Ft: {§f : /S € r(E o\, T € Foj

Fn-, has alreaclr- 
.lreetL 

clefinecl.

u

n:1

Since each Io, n ) l, is in the subgroup of I generated by 7o and

r(Er) we see that -Fo and. r(,Eo) generate E. Since g : E --> 7' is an
isomorphism rre obtain the result thal, n'r:g(/o) and' E@(Eo\ gen-

erate I'.
We are going to sho'rv that we eatl identifl'the set, Ei17i rvith §' :

tlT'. In proving this rre need:

I. If T' is a reflection of I', then Ejn Ax(in) : g.
We first suppose that r(,Eo) doe-q not consist of three refler-'tions clossed

u'ith each other, i.e. E o is not a Inper'boiic trittttgle. \\'e reruark that to
show that .8, is a hypelbolic tliangle it suffice,. to find three reflections
R,S,T of -F whose axesboundah1'perbolictriatrgle l. tr'ortheneither
/ is a component of p-l(\äS) or there i-q tt leflectiott R' of -t' such

that Ax(.B') O int Å * s. But then the axes of R' ancl. ,qav S and 7,
would bound a hyperbolic triangle A' that is a proper -cubset of zl. After
a finite number of steps we would have a hyperbolic tliangle l" bounded
by the axes of reflections R", 5", T" of F that is a component of
p4(^S\a$ and is a subset of /.

We assume that, T' is a reflection of I' for which Ax(?') {18 * a.

We suppose besides that the axis of ?' intersects a boundary component,
of fr'', which must be a chain of segments. Then there are two possibil-
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ities: X'irst there would be two reflections R' and. B' of g(r(-E'o)) sepa-
rated by T'. But, this is impossible by D since then there woulcl be two
reflections § and R of r(Eo) separated by E-'(?'). If this is not the
case, \r/e would find three reflections of .?'' ryhose axes bound a hyperbolic
triangle. This is impossible since .Eo is not a hyperbolic triangle.

If the axis of 7' does not intersect t'he boundary of E'o there are
again two possibilities: First there may be two reflections of g@@ o))
separated by T'. This is shou,n to be impossible as above. Or then all the
axes of the reflections of g@(E o\ are in the same component of -Et\Ax1f';.
This means that if -E' and §' are two reflections of E(r(ili), then B'
«loes not separate -E' and 7'. Usiug D we can conclude that if -8, /S e
r(.Eo), then § does not separate -B and T : g-(T' ). Since for any re-
flection R e r(Eo), there is another S €r(Z'o) such that th.e axes of §
and "E do not intersect, rye 'would have that, for any 

^g 
€ r(,8'0), Ax(?)

and. Eo are in the same component of Zl\Ax(§'), and, consequently
Ax(?)f'lE q.Eo which is irnpossible.

Above wc have assumed that -Eo is not a hllerboli«'lriar':glc. Tf Eo
is a hyperbolic triar:gle, then § and §' are compar:t and, by -4, X'ix(.E)
and X'ix(-E") are d.ense in §1. By proposition 3.5 l'e u'ould have the homeo-
morphism g* : §1 ->,S1 satisfying V*(T(r)) : Vg)@*(a)) for r € B1

and T e l- If R,§ €r(.Eo), R + S, the angle of Eo rvhose sides are
segments of the axes of -E and S is 2nlk u,here fu is the order of the
group generated by § and 7. Using the homeomorphism g* u,e can
norv deduce that the angle of the triar:gle Ei rvhose sides are segments of
axes of E(R) and q(§) is 2z/k. Thus the triangles .Eo and .6i would
have equal angles and so thev rvould be congruent il the sense ofhyperbolic
geometry (cf. e.g.llIeschkowski [3]), i.e. there would be a conformal mapping
T of the unit disk such that Eo: f@'r1 and hence J,.o: TFLT-I.
Since the group -ä' generated by r(Z'o) and 1o does not contain reflections
whose axes intersect, Es, the group generated by E@@o\ and -Ei, i.e.
7', does not contain reflections whose axes irrtersecf E'0.

It is an immediate consequence of 1 that ,Ai is a comllorlent of
p'-1(,S'\a,S') where p' : E --> S' is the canonical projection. Hence, we
nray identify E;IX; rvith E'fE': B'. The horueomorphism / con-
structed. in H now defines a homeomorphism g : (S, n,p) -> (S', nr,) of
pointed surfaces. Lel z be a point of Eo such that nÅp(z)): l. Then
by proposition 2.4 there is a unique homeornorphisrn h: E --> E lifting
g such that h(z) : f("). The homeomorphisur /a induces an isomorphism
g':X -->-F'. We must only prove that, g' equals g. Clearly ltlUo:f
andfromthisitfollowsby H lhat ElIo:V'l?o and glr(E):
E'lr(Eo). Since r(,Eo) and -F'o generate .E', it follor,vs that g equals g'.
Thus the theorem is completely demonst'rated.
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3.6.1 Corollary. Let X anil, I' be two d,'iscrete groups of conformal,
mapp,ings of the uni,t d,i,slc with comgtact fund,amental d,oma'i,ns and, such that
X conta'i,ns reflections. Then any 'i,somorphi,sm g: E ---> X' i,s i,ndu,cecl, by
a homeomorphi,sm.

Proof : Using A it is seen t'hat n'ix(.E) is dense in §1 and, consequently,
I contains a free subgroup u'ith two generators. Then theorem 3.6 is
applicable if we can prove that the relation of being crossed is preserved
with every isomorphism. But this is seen easily using and idea of Nielsen
in [5]. Since the proof depend.s only on t]re compactness of fundamental
domains and not on the assumption that -E contains re{'lections, rve give
it in the form of a lemma.

3.6.2 Lemma. Let n ancl F' be two d'iscrete groups of conformal
mapp'ings of the unit dislt wi,th com,pa,ct fund,am.ental doruains. Then any
isoruorphisrn q: F ---> l' preseraes the relat'ion of bei,ng crosseil,.

Proof : It suffices to shorv that if § and T are two hyperbolic trans-
formations of X then §' : p(§) and, T' : E(T) are not crossed if S
and T are not crossed. To prove this we choose a fundamental domain
D for I. Then the finite set

Ä *{TeP:fp)nD is a cornmon sicle}

isasetofgenerätorsfor f. Weset A -{Tr:i,e I)

,i e I, and

M : nrax d(T:O), o)

where d is the liyperbolic metric. Theu there is ill' > 0 such that if'
d(T(0),0)> M' therr d,(pQ)(0),0)> 2M for T e.I. Nou, it is easy

to see that there aretrvo mappings n-->Tn and n--+§, from Z to F
such that if -f is § or 7 rve have

(i) X;1X..1 €,4 for all n,e Z.

(ii) X'or ever;, pair ra, ra of integers d(T^(O), B"(0)) > If'
(iii) There is n,y) 0 such that I,*,x : -XI, for all ne Z.

We define §j:g(§,) and ?.:g(T^) for n eZ. S' aud ?' are trvo
hyperbolic transformations and by proposition 3.I rre have that Ax(?')
I Ax(§'). Then Ax(T')fl Ax(§') : o fot othervise there would be by (i)
and (iii) two integers n,m€Z such that d(T^(O), §;(0)) <2lL But
this contradicts (ii).
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Corrigend.um

The proof of the assertion D in theorem 3.6 on p. 36 is incorrect. The

last sentence in the paragraph following assertion D should be replaced

by the following sentence: This is seen using proposition 1.4 and the fact
that either the axis of a reflection of P' of 7 is the axis of a hyperbolic
transformation of -ä' or every neighbourhood of an endpoint of the axis

of P' conta,ins axes of reflections of l.
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