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T. INTRODUCTION

Consider the vector valued initial value problem on a closed interval
I : la,bf:

x' - t(t, x) ; x(a) __ xo (' : d,ldt)

Commonly, an approximate numerical solution of (1.f ) is constructed by
taking a set of nodes,

Trr-{ttl,i,-0,1). ,lYIi to-a, t;1 ti+r}c1,
and associating a vect'or X; with every t; (i,:0,1,..,,M). X'or
n:0,1,...,M-k, the vect'ors Xi are constructed by means of
the difference equations

(1. 1)

(1 .2)

(1 .3) F"(X, , X,ar , ,Xn+k) -0,
from which X;, with maximum index ,i, is derived as a function of the
known, lower indexed X;:s. The operators f', are so chosen that X;
is in some sense an approximation to the solution x(f) of (f .f ) at t : ti.

fn the two most, widely used classes of discrete variable methods, one-
step methods (mainly of the Runge-I(utta type) and linear multistep
methods (cf. [23], [3I]), the operators F, are independent, of n. fn the
latter, the nodes are equally spaced.

Various ideas have been applied for construction of the operators F,.
The following possibilities may be mentionecl as a natural background for
the present work.

fn derivations that lead to linear multistep metlr.ods, the components
of f(f , x) have been replaced by a Lagrange interpolation pol;rnomial,
and then integrated, or the components of x(l) have been approximated
by a Lagrange interpolation polynomial, and then differentia.ted [23].
Dahlquist [3], [23] has generalized the difference equations obtained by
these ideas to the classical linear multistep methods, without any close
connection with interpolation.

The idea of interpolation has been extended for instance by Salzer [46]
and Quade [43], who applied Hermite interpolation in order to derive some
linear multistep methods. Unfortmately, these methods are rurstable. The
idea of interpolation has also been presented by Osborne [38].
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Another approach involves the use of truncated Taylor series for the
determination of unknown pa,ra,meters in the operator F,. This idea is
exemplified by the B,rurge-Kutta methods.

fnspired by the use of interpolation polSrnomials for the construction
of the operators Fo, some aut'hors have proposed other different approxi-
mating functions for the components of f(f , x) and x(r). fnstead of
polymomials, Brock and Murray [4] have used linear combinations of
exponential functions, Gautschi [17] has used trigonometric pol5momials,

and Lambert and Shaw [28, 29, 30] have applied rational approximations
and polynomials, added with a non-polynomial term which can be singular.
Loscalzo has studied the application of spline functions to initial value
problems (cf. [33] and also flll).

Lambert [27] has generalized the classical Iinear muitistep methods with
constant coefficients to similar methods with mildly varying coefficients.
Also Brunner [5, 6, 7] has used coefficients which are linear firnctions of
the step size.

As a rule the nodes 4 have been equidistant, although in some c&ses

it would be very desirable to change the spacing of the nodes. No more
than a few multistep methods with varying step size have been presented.

We shall mention the method of Nordsieck [36, 39], which is equivalent to
the Adams method [23] when the step size is constant. Krogh [26] has made
another generalization of the Adams method; in addition to the step size,

this also permits the integer /c in F* to be dependerfi, on n. Krogh's
method is suitable for differential equations of higher order as well. A
third generalization of the Adams method is that made by Piotrowski [41].

Another way of generalizing the linear multistep methods with constant
step size is by means of introducing soure additional nodes between the
equall;z spaced nodes. This leads to the so-called hybrid methods introduced
by Gragg and Stetter [21], Butcher [8], [f0] and Gear [18], and revie'wed
in [31]. The hybrid methods fall somev'here betrreen linear multistep
methods and B,unge-Kutta methods. Butcher [9] has presented unifying
formalism which covers not, only Rulge-Kutta aud multistep methods but
also hybrid methods and some others. Other unifying techniques have
been proposed by Gear [20], and Papian and Bail [a0].

Our aim here is the construction of some re&sonable operators F,. As
a result we generalize the classical multistep methods, but our starting
point is not a linear multistep method with constant coefficients. Our
method is based on the idea of Hermite-Birkhoff interpolation [a8] by
means of generalized polynomials [12]. This idea is present, in Dyer [15],
too. Let, k be a given constant. Then for every index za we associate a

generalized pol;momial A^j with the j:th component of X,+r,. These

polynomials are linear combinations of prescribed continuous functions
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with unknown coefficients. To fix these coefficients we require thefollowing

n.4\ [A*iQ^+r): I'tiXr,+i for some va]ues of i,:0, 1,. ..,k - l,
lya$a): p!fi(t.u, X,+,) for some values af i:0,1,. ..,k,

where the superscrrpt j indicates the j:th component of Xn+;, or t
respectively. The constafis pi and p', are fixed previously, and usually
have values near to one. The value of Xi*o is then obtained, asafunction
of the known values Xn+,, by stating

(1.5) Xi+x: U^iQ^+*) .

Thus the operators Fo have been implicitly constmcted. The nodes of
Ty may be arbitrarily spaced.

Our basic goal is to discuss a unifying method for constructing the
operators F,, and to study the consequences of our approach.

In chapter 2 we give the problem and make some preparatory assump-
tions and definitions.

fn chapter 3 u'e present the basic construction principles (paragraph
3. 1) of our generalized polynomial interpolation approach to the initial value
problem. These principles implicitly define the operators Fo.

Given the construction principles, it is natural to ask the circumstances
under which the construction is possible. This question is studied in the
foilowing paragraph, 3.2, in which we give trvo existence theorems for our
construction. We use some results from the general theory of finite inter-
polation and Ilermite-Birkhoff interpolation. This background material is
presented, and applied to our case in Appendix l.

Paragraph 3.3 is devoted to explicit formulation of our construction.
There the connection between our method and the classical linear multi-
step methods is brought out. Paragraph 3.4 contains some detailed dis-
cussion of the most important case, the use of tlie usual polynomials as
interpolants.

Chapter 4 is very similar to some parts of the book of Henrici [22].
The results of chapter 4 conceming stabilitv, consistency, convergence and
errors of our method are obtained by slight modifications of those of Henrici.
Therefore we use the notations and definitions of Henrici as far as possible.

Chapter 5 provides illustrative examples of our method and shows
how some earlier published methods, and neu, methods, can be derived
by our approach.

Our construction leads to the following results. As a natural assumption
of existence and uniqueness related to our method, let us a,ssume that we
have as many equations (1.4) as we have coefficients in the expression of
Uoj, and 1,hat (1.4) win deturmine these constants uniquely. Then (f.5)
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leads to an expression similar to linear multistep method.s, except that the
coefficients and the step size in general are functions of m. If a constant

step size ä is used, the coefficients of the resulting difference equation are

usually functions of ä, but independent, of n. When the generalized poly-
nomials are r)usual» polyrromials, and the step size is constant, our method

reduces to classical linear multistep methods with constant coefficients.
Our construction will cover most of the linear multistep method.s with

constant coefficients, the variable step size versions of these methods, and

a number of methods based on nonpollinomial approximations. fn addition,
'!,!,e are able to discover maf,Iy new methods.

2. PROBLEM, A§§UMPTIONS, DEFINITION§

We want, to construct numerical solutions to the initial'i'alue problem
(1.1). The definitions of this chapter are based on Henrici 1221. We assume

fhat I : lct , ö] is a closed finite interval of real numbers. The vectors
associated with problem (l.l) belong to the real normed @-dimensional
spa,ce yo. The components of xe ya are denoted lry *',n2,.".,nQ.
Usually the rrorm of c is defined. by

{2.1)

(2.3)

a

ijxil -:i*'i ,
j:l

but other norms are also applicable.
lMe assume that f(l , x) € Yn and f is an Z-function, i.e. a continuou.s

function from IX Y o to Y e, satisf-vi:rg the uniform Lipschitz-condition

(2.2) llf(f , x) f(f , { ilix z'i,i

for a,11 t e I, x € Y e, r, €, Y a. With these

has a uniqtle solution on I for all xo € Y 0.

solution of (1.1) lry x(r).
Let us denote the set of consecutive integers lrr* "I": {0,1,...,n\.

Given the set ?y defined in (1.2), we relate a certain recbor Xt(M) e ya

to the solution vector x(4) at every f; € ?n . The approxirtation Xt(M),
which is considered as an approximation of x(f;), is obtained as a solution
of a certain difference equation

F;-r( Xi-n(Å{) , X;-r,+r(M) , .. . , X,(lt)) - 0 ,

assiilr,ptions, the problem (1 . 1)

For a fired Xo, \\.e Cenote the

where fu is a fixed integer. Here, F is a given functionfrom J*-1" and
from the (k f l)-fold Cartesian product, of a subset of Yo with itself to
ya.

Equation (2.3) will define Xt(M) as a fiurction of the ft preceding
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approximations Xr-*(M), X,-r"+r{M), '.., Xi-r(l}I). Therefore \1'e &s§ume

that there exists a proper starting procedure, which produces the first I;

approximations Xo(M), Xr(M) , . . . , Xn-t(M). It is assumed that these

starting vectors have been used, rurless otherwise indicated. Naturally,
the functions F.;-yo &r€ so chosen that Xr(M) uniquely exists for every

t;€Ty. The explicit expression of F; is derived in chapter 3.

On occasion, X; is 'written instead of X(l[).
The behaviour of thc approxirnations Xr(M) $'ili be studied wherr

the density of nodes ft is increased' Let us denote hi : ti - ti-r for
'i,:1,2,...,M and

11

{2.4)

'We assume
aborre, i.e.

(2.5)

(2.6)

For a fixed M,

t2.7 )

we define a &-vector h, hy

h§' :,:,1T:'.T 
.,n!" '

that when frI --> ffi, laf, -+ 0 so that Mlfi, rema,ins boundecl

t,here exists a, constallt C such that

Mhfrr<c,l,f =-=1,2,

X'ur"ther, we must assutne tirat corrstants C, and C2 exist such that for
eYery M and for every f: 1 , 2,. '.,1I - |

h,,: {h*+trll*+r,...
called bou,ncled, if a

, lrn+n)' YneJ*r-*

A starting procedure is

(2.8)

for all sufficiently larye M. A starting procedure is called cotngtati'blewith

the given initial value problern (1.1), if
limXr(Ir') :Xo fol i:0,I,.",k-l'
M+q

The procedure for generation of the vectors X,, d € J*\"Ir,-r is called
an approximating method for the numeral solution of the problem (l.l).
Since the most essential characteristic of a method is the equation (2.3)

we call the method associated u'ith (2.3) an F-method.
An approximating F-method is called stable, if for every ,L-frurction

I, and for all starting procedures irounded with some constant §, and

wit}a M ) Mo, a constant §' exists such that

rnax l[X, ${)ll < ,S' for all ]UI > frIo
i€Jy1

constant ,S exists such that
a',t,:0rl r,.,rk- 1,
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Hero Mo is a sufficiently large constant; a more precise statement is given
in (3.15). The stability of a method impiies that the approximate solution
remains uniformly bounded as M --> q. However, the bound B' may
depend on the bound B of the starting procedures.

A;n F-methodiscalled cons,istent, if forall Z-functions t thefollowing
is true: if x denotes any solution of the differential equation x' : f(f , x),
then

(2.9) maxllF;(x(f;) , x(f;+r) ,..., x(fr+r))ll:o(hh),
i e JM_k

wher, M -> co.

&r F-method is called conaergettt, if for all Z-functions f, and for
all initial value vectors xo € Ip,

(2.10) lim max ilx,(jlf) - x(l;)ll : 0,
M+a iQ.J14

when x is the solution of the initial value problem (1.f ) and the approxi-
mation Xr(M) is obtained by the aid of any bounded and compatible
starting procedure.

Tbe ord,er of an F-method is defined as the largest integer q such that

(2.11) maxllF;(x(fi) , x(l;1r) ,...,x(ti+n))ll- O(hk+')
i e lI[_h

for all solutions x of all initial value problems (l . I ) r,r'here f is continuously
differentiable of sufficiently high order.

The error E defined by

(2.L2) E;:Xi-x(r;), YöeJnt

is called lhe disuetizati,om error of the F-method. The error is totally defined
by the problem (1.I), and the given approximating F'-method with the
starting procedure applied. It is assumed that all the calculations are exact.
In practice another error rvill be caused by approximation of the real
numbers by the very special rational numbers used. in the computation
machinery,_v'hatever it may be. Thus, the actual computation produces

a vector X;, instead of the exact 'yector X;, The difference

(2.13) r, : i, - X; , Y,i e Jrr,

is called trhe round,-off error.
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3. CONSTRUCTION OF TIrE OPERATORS r"

3.1. Construction prineiPles

Given an tr-function i, a set T *, a fixed integer k, and vect'ors

Xq, Xr , . . . , X,-1 prod.uced by a bor:nded starting procedure compatible

with a given initial value vector Xo, our generalized polynomial inter-
polation method for the initial value problem (l.f )is defined by the following
rules of construction:
i)Assume: given sets ICJnt with K>L elements and DcJn

with L>O elements so that 0€-tr'UD' Denote N:K+L.
Assume that the elements ii e I and i; e D have been ordered:

i, 1 i, 1 . . . I d*, i', < i; I . . . f i'r..

ii) Assume: given K real numbers p; and Z real nurnbers pci associated

with thesets -F and D, sothatforevery i,e I we hat"eafixed P;,

and for every tl € D we have a fixed ,ai. The numbers p't aud p! ate

called weights. Denote by E the :.Yxl/ diagonal matrix with the

diagonal elements

Fir' lt;r" " ' ltr;K' P!'r' t'i'r'"'' P:'r'

iii) Assume: given ff real functions fi e CIQ - Uhfn, äfrl, u'hich generate

an .ltr-dimensional Haar subspace I," of Ct(I - k)lLh,hfÅ. I.,y is
called a Haar space, if it satisfies the Haar condition (cf. [12]): Any
nonzero vector in I* vanishes at most at .lI - t distinct points in

l(t - k)hh, hhl. The system {gr, gr, . . ., 9N\ is usuall5r called a

Tchebycheff system ll, 251. Denote an arbitrary element of I,y by

(3.1 ) y(t):,å ctsi(t).

ir) For %-0,I,...,1I k and. j-1,2,
Ani from I'^- such that

, I pick 11p functions

+r) :

+r) -

c4(tt)gi(tn+y tn-t -r) : prX'^+, Y 'v e F

t*+k-t):lrlrfi*+o YveD
( 3.2)

/\r

j:1

N

i:L

lo,,tt-

\,,u-
Here, a,nd through

Y) Finally, take

(3.3)

the remainder of this

tn+r: f(t*+r, Xolr).

Xin+t, : A*1(t*+t)

paper u/e denote

j :1,2,.. ,8
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The rules abor.e implicitly define the operators tr', for every n e J *_*.
Arr explicit, generalized poly-nomial interpolation algorithm may be
developed by an algorithmization of the picking act in iv) above. Obviously,
the construction is of use only if the polynomials y^i satisfying (8.2) rvill
exist, independently of T *, and for arbitrary values of p"Xt**, and pifi,a,,

3.2. Existence of the methoil

The existence of the interpolation polynomials that satisfy (8.2) is
guaranteed by

Theorem 1. Given the construction rules i)-iii) of paragraph 8.1 with
arbitrary set T *, any Z-function t and any compatible starting procedure,
assume:
i) I, is an .tr[-dimensional Haar subspace of C1[(t - k)hh, äf;o] such

that the space spanned by the d.erivatives of the basis functions of Y*
is an (l/ - l)-dimensional Haar subspace of C[(t - k)hil,hhf,

ii) for anv ? € D\-f' either y l yc or tt ) z" when we define

(3.4) Ts : mil} y and es : rrr&x rl
yeP y€F

The conditions i) and ii) above are sufficient for the existence of the
polynomials defined by (3.2). The polynomials are unique if they exist.
The condition ii) is also necessary if In, : zry_r (the usual polynomials of
degree If - I).

Proof . hi Appendix I we have presented, and modified for our purposes,
some results derived from the general theorv of finite interpolation and
Hermite-Birkhoff interpolation. Theorem I is an obvious corollary of
Theorems A1-A4 in Appendix l.

Remark. Condition i) is automatically satisfied by zN_r, but is not
necessary in every case. An example of a space for which i) is not valid is
the system spanned by l, sin«;f, cos«rf, sin 2at, cos2at,.... For spaces
not covered bv Theorem 1, the existence must be proved case by case.

X'or the trigonometric pol;,nomials, we are able to prot-e
Theorem 2. Given the construction rules i)-iii) of paragraph 3.1 with

equally spaced set I *, any Z-function I and any compatible starting
procedure, &ssume:

i) I* is spanned by the .l[ first functions of the sequence

(3.5) 1, sina;f , cosoä, sin?at, cos2att,...,

where @ is an arbitrary, given frequency parameter that satisfies
2nllal> hhfo;
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ii) for any ',) € D\J,
Then the polfnomials

Proof. The proof

either alao or v)'t)s
defined by (3.2) exist, if

is presented in Appendix

a,s in (3.4).

M is suf{icientlv large.
2.

3.3. Details of the algorithm

X'rom now on we assume that the method defined in paragraph 3.1

exists. In such cases, the coefficients cq(n) in (3.2) can be solved as func-
tions of Xi,*" antd. fi *,.

We denote by o^i the -trf-vector, which has components X].*o, v e X
and h^+*fi+» ? eD. X'inally we use the matrix and vector notations

fgr(t.*, - t^+r"'t) "' Zr'r(t^+, - t,+*-t) \ | f rows

I : : \l,e,(3'6)'" : 
I h**ngil^*"- r,+r.-r)''' k^*ogk(t^.ir - r,+A-:) I \ " 

rows

\ : : I i,eo
and

(3.7) e1(n):(cri(n),czi(n),...,cni(%))'.

Equations (3.2) can be expressed by

(3.8) P"c1(n)-Ro,i j:1,2,...,Q.
Naturally, we haye (3.8) for er:ery 71, e J ru-r,. The assumption of bhe existence
of the method guarantees that, P;t exists. Hence n'e have

ei(n) - P;tRani .(3.9)

Let us denote g^: (glh,+n) ,... ,gx(h,+*))r. Then, in view of (3.9),

the relation (3.3) is expressed b5r

The row vector g:P;'R is independent of j Fcr fixed n and
is a linear combination of the components of onj. It is therefore
to write (3.10) in the form

X'*+o + > ern Xt*+y : hn+kZ §,*,fi*r.

j, Xi*o
possible

(3.1 1)
ueF veD

Here, the coefficients a,o: an(ho) and p,": p,(h") in fact depend on
h" defined in (2.7), and are independent of j so that we also have

(3.12) X,+r * ) a,(h")X,a y: hn+h) f,(h") t"+, .
vCF veD
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Norv F" has been explicitly clefined by (3.12).

trVe denote the column vectors of Po-l by p,,. We have a pD, cor-
responding to oach equation in (3.2), with y € 7, and y e D. By the aid
of (3.10) ule get

(3. 13) ! o,* _- «,(h,) _= - g: Pn, ltu

t sun: f,(h,) - gT, p*, rr;

YveE
YyeD

G(X"+r) ,

mapping, (3.14) has
by the iteral,ion of

By combination of the formulas (3.I3) and (3.f 2) with the construction
rules of paragraph 3.1, rre have defined our generalized polynomial inter-
polation algorithm (GPIA) for the initial value problem (f .t).

The algorithm may be computationally poor, since Po may have
nearly equal roli's, when ll[ is large, and the nodes in Toa are close to
each other. This difficulty can be overcome by means of suitable com-
putational modifications, which will avoid the direct matrix inversion.
Despite this inconvenience, the algorithm is theoretically interesting.

The expression (3.12) defines X,+* explicitly if k 4. D. fn such cases,

GPIA will produce aunique sequence of vectors Xr, X*+r,..., starting
fromthegivenvectors Xo, Xr,..., X*-r. If k€ D, X^+* isdefinedonly
implicitly by (3.f2), which may be rervritten as

X,+r, - hn+x§"*L(tn*k t X"+r) * z -(3.14)

r,rrhere n is & constant yector. If G is a contracting
& unique solution attained \l,ith arbitrary accurecJr

(3. I 6)

(3.1a) (cf. [37], p. I20).
G is contractive for every ra when M --> a, if

t,lr^+o§^oLl < L ,

L is the Lipschitz-constant, definecl in (2.2). Tire condition of con-
tractiveness is fulfilIed, if we are able to assnme that tfr"nl < pf; for ever;.
fixed l, when M ---> a. Ilor a moment, let us make this assurnption.
Then, with fixed Jf we have

lh^+*§,xLl < h!,frf L

and a const'ant -410 exists such that

(3.15) hfrBfL < t for every fI > Mo.

fn what follows, we assume that a constant, Bf; exists such that

l§*rl <pf Yne Jon-o, YII>frIo
X'rom (3.12) we see that our method may reduce to a linear multistep

method with constant coefficients, if we have an equidistant T *, arrd
the coefficierrts a,(h") and p,(h") are indepeudent of h,.
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If fM is equidistant'w'itll spacing h, the elements of P, and g, are

functions of h, only, ancl we urite P" : P(h), g" : 8(å) and consequently

(3.17) X,+r * ),t,(å)X,-, :- lL> §,(h)f"+, .

veF

X'ormula (3.I7) defines a linear multistep method rviflr constant coef-

ficients, but we have different coefficients rvith different step size å.

3.4. Polynomial approximations

fnterpolation \{,,ith rxN*, treads to t}re sirnplest ca,se.

3.4.1. Arbitrary norles

If YN: f,N-t, the elernenls of the j:th column of P* in (3.6) are

homogeneous functions of h", aud of clegree j - l. 'Ihus, the elements
of the j:th row of P;r are hornogeneous functiotrs of clegree - j + t.
When P,-r ismultipliedb"v gI: (1 , lrn+r,,... ,lr}*i), &s\i-a'qdonein(3.10),
the element's of the resulting vector are homogeneolls frinctions of degree

zero. Consequently the coefficients a,(h,) and p,(h") in (3.12) are homo-
geneous functions of h" and of degree zero.

Let us denote by d(h") the cleterminant of P,. Then, ea,ch coefficient,
a,(h^) and p,(h") is a quotient of a continuous homogeneous function of
h" divided by d(h"). ci(h") is a continuous functiotr of h, rvhen h,n > 0,
and moreover tl,(h") + 0 by assurnption, x'hen h" > 0.

Tlrus, the coefficients or,(h") and f,(h") are unique foreverv ne J*r-o
and every ilI . However, the limits of these coefficients xill clepend on the
way by which the nocles are distribritecl in [a , b], rrhen M --> q. For
example, &ssume thatrve have lti+rllt, :. y foter-erv i : 1, 2, . . ., 11I - l
and every M. Tiren for everl' JI,

I .,(h") : ,r,(Z)

t p,(t,) : fr"() ,

i.e. the coefficients are constants, but ina;,' depend on 7. The limiting
values of the coefficients may thus depencl ou tire n'ay itr x'hich the limit
has been achieved. Arr illustrative example is gir,'en in (5.7).

If the weights &re nonzero, formula (3.I1) can be mitten as

(3.1s) Xi*o *,)%* t ,Xi*,: h,+n,\ 
,b; 

fiti.,.
In view of Theorem AI (Äppendix 1) t'he result of Hermite-Birkhoff

interpolation is ulique if it exists. Therefore, if we have r € ziy-1, and

17
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t*+t -t) : prXt*+u

tn*k-t) -_- tifiu.,

Yy.-.f'
YveD

n*v - 
tn-k-r)'- t

h,"ti

(3.19)

then

(3.20) fr(t.+* - t,+r"-r) : X'^*o .

Norv, by means of (3.19), (3.20) and the selection of r(t) :
1,t,t2,.,,,t*-', after the proper divisions by h.+* (3.1s) yields

(3.21)

(3.22)

and generalll.

(3.23) 1

grhen i -:

I *,aa;:-o'

r s%!r&r t 
,?o F, l'n*u

§,* . (f&rn

F,
t1,

fr,
§
Z_J
yeDh'*-, n

, Äi - 1.

+:
0,12

3.4.2. Egui,ilistant nod,es

When T* is equidistant rrithspacing h, we have P(å) : PH, and.

S(h): (t,h,hr,.,.,h*-')'. Here, P is an -X-XrT-matrixindependent
of h, and has a form

(3.24) /L u-klr (r-k+1)2... \y-k,1)*-' 'llrorrs
l: : : : \l,ep

nl .l/' - [ 0 I 2(u -k{t) ... (^/- 1)(, - k+ r;*-'llrorn-s
\: : : : l)ueD\.

fy' is an t[X-l/-diagonal matrix with diagonal elements 1 ,h,h2,...,h*-'
(the common multipliers for the columns of P(ä)). Therefore, we get

g'qtie-r7t1 : gr1h1v-rP-t - örp-L ,

in which we have defined 5 : (d;) as an -ly'-vector with unit elements.
We denote P-L- (pr,pz,...,piv) where a column vector p, cor-

responds toeachofthevalues te I and, ye D. Hence,incorrespondence
with (3.13), independently of ä, we derive

/öoy\ [or:-Prl'P, Yver
\o,4o) Il§,:p:ö'p, YveD.

(t*+v tn.r"-t)i
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Thus, we have proved
TheOrem 3. Every generalized polyuomial interpolation method reduces

to a unique linear multistep rnethod of form (3.I7) with the constant

coefficients (3.25), if I-N : xrN-L and Ty is equally spaced.'

It may be asked whether there alu'a)'s exists an equally spaced poly-

rromial interpolation method, rrhich corresponds to a given linear multi-
step method. By correspondence'!Ye mean that the tr'r'o methods produce

the same sequence Xr , Xr+r , . . . of solution vectors, if the starting values

are the same for both methods. We shall examine this problem'
Given a linear multistep method. with constant coefficierrts,

k-1- h

X,,+r, + > &tKn --,, - h), §rf**y t

'yeD and vs/-'v{ur},

when ro and z" are defined in (3.a).

It should be recalled. that, matrix P of an equally spaced polynomial
interpolation method, as written in (3.24), is totally defined by X und D.

Similarly, -E with -I( elements and. D with Z elements given by (3.27)

and (3.2s) will define an .I[x-l[-matrix .F, rvhen -l[ : K + L. -ä-1 exists

by Theorem l. We denote the column vectors of P-1 by i,. If we are

able to state

fio-:0 YleFff

(3.26)

let us define

(3.27)

(3.28)

(3.2e)

F: {r',re? or

F,
d.v

o'P,

p,

1,,,

we have generated a unique, equally spaced pol;'nomial interpolation

method, defined. by the weights (3.29), the sets .F ancl D in (3.28) and"

(9.27), and. which corresponds to (3.26).
Let us call

(3.30) ö'fr,+O for Yve F and YveD
the ,i,noersion cond,ition Hence we proved

Theorem t[. A linear multistep method (3.26) corresponds to a unique
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equally spaced pol;momial interpolation method defined by (3.27), (3.2S)
and (3.29) if and only if the inversion condition (3.30) is satisfied.

The meanitrg of the irrversion corrdition will be studied elsewhere.
The role of the weight rnatrix -E is clarified to some extent by our

next theorem. From (3.23) we are able to conclud.e that in the equidistant
case, rt'here ltn+k: h and, t,*y - tn*k_L: (, - k f l)ä, the following is
true:

Theorem 5. Bvery equally spaced polrmomial interpolation method with
unit matrix -E reduces to a consistent, linear multistep rnethod" of the
orcler .l[ - l.

Theorem 5 ltercomes evident if the definitiorr of consistency is recallecl
arrd it is observed, that (3.21) atrd (3.22) are necessar), and" sufficient, con-
ditions for consistency in linear multistep methods (cf.1221, Theorem 3.4).

Theorem 5 has an immediate consequence, first discovered by- Dahlquist
([3], Theorem 9):

Corollary. There exists a linear å-step method of the order 2k.

For the proof, it should be observed that thc equally spaced pol5momial
irrterpolation method with -F : Jk-t, D : J* exists bv Theorem 1 and
has 1[ :2k 1_ t.

If a weight diffels flom unity, the order of the rnethod rvill autornatically
be lov,er than tlie maximum otireru-ise possible. Ho§,ever, the nonunity
weights may be useful, if we are seckirrg a method r,vith properties other
than the rnaximum order. See [31]. For err example, see al."o paragraph
5.1.1.

4. §TABIIITY, CON§I§TENCY, CONVERGENCE, ERRORS

4.1. Preliminaries

In this chapter rre shall examine the conCitiotrs of -qtability, consistence
a,nd convergence of our method. and derive some bounds for the errors
(2.f 2) and (2.13). Ow starting point is the equation (3.12), here repeated as

X,,+1, * f o,,(h,,)X,-, l, _- ht,,*kf p,,(trn)f,i-,,(4.1)
y€D

In our case the coefficient functious a,(h,) ar:d d,(h,) are the special
functions defined by (3.13), although the equation (1.1) is more general,
permitting the coefficients to be arbitrary funetiorrs of h,. Thus (a.l)
includes t'he methods of Lambert lzil and Brurrner 15, 6, 7].

A.nn.,\ca i.1. *§ci. Fennir-,'ir,r
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The follou'ing results can be proved only on the assumption that the
coefficient functions a,(h^), (as in [27]) will have the form

(4.2) a,(h,) :uo!h*u"ao(h^), Yae 7v,

where o% is constant, and functions a,\h") are boundecl blr constants

af such that

(4.3) la,(hJl lef;,YveX,t{neJ*r-r".
X'urther, v-e must assume that constants fI exist such [hat

(4.4) ip,(h")l<Pf , Ya€,D, YneJrr-o.

In (3.16) we have already made this assumption for v : k.

Our results are heavily based on a lemma due to Henrici ([22], Lemma

3.2). The lernma has been slightly modified so that the arbitrary spacing

of Ton can be taken irrto account. We preserrt the follorviug

Lemma. Let

q(z) : ! oo-,rr-'
i:0

be a polynomial with real coefficients, au * 0. (Subsequentll' trh", uru

the coefficients oq of $.2).) Ler B(') (i:0,I,...,fr) be k+L
given sequences of functions from Iq to Iq definecl orl Js-n such

that, for suitable constants B(0 > 0,

llB.,4(z)ll <B(4lEil , ,i,:0,1,...,k Yie Jor-rn,

for all vectors Z e Ya. Also, let A be a sequence of vectors in Yp defined
on J*-0, and {hr\ (r: I ,2,...,M) be a sequence of positive real

numbers, and take hf,o as in (2.a). \\'rite he clifference equation

(4.5) 
Zoor-r'^*o-;: 

h^-r'fogf-i)(z"ar"-') + A'' '

Denote by or the maximum of the rnoduli of the roots of the poly-nomial

g(z). If all the roots of modulus co have multiirlicity 1, aud' if
hf;, < iaxlBc)-' ,

then for every solution Z of difference equation (4.5) satisfying

llZ"ll 1t»"8, n : 0, 1,. . .,k - l,
for some constant -I7, the inequality

(4.6) llZ"ll < *"7*1AE * A.)s"hiara

holds for lL : 0,I,...,M, where

2L
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Ä :-:-:'

B -:-

Ao:

ZrnrU-iixr,-,i
h

ZuiBt.4 '

,;,o.

| ,_n

l,ä"-'ilA'll

?L_

tf, --'=-

0r1r...

k,,k+ 1)

and

-I'*: .l-(t - hf;alar"l-t3(k)1-t ,

if we define
ko

f : .sup lrl"1 (which exists) and ( )rok-iay-izil-' :\v,z' .
n:0,1'2,... i:0 i:0

If any root of modulus o has multiplicity ; 1, then for every ä > a
and for

Wfrl < io*iä-kB(k)-I ,

the inequalit;r

(4.8) llz,\i < ä"i*$fr +
holds for ?L -:--.0,1)... rM, where

k

j:0 
k

i:0

rt _= max (E , ä-rllzrll) ,

A n-k

Ä'n - - zä >ä-'[ ltl,l[ and
i:0

i* - i(t. - hhlorl-t g@))-r , if we define

i:0r112r...

Å*)e"oiwfi.fr

@

z,-k|-'(älr) - Z?,r' .
i:0

Proof . The proof runs completely in parallel to that of l22l (Lemma 8.2),
if the constant h of l22l is estimated by hf, in the obvious way.

4.2. §tability

Assumptions (a.2) and (a.3) allow us to prove that the stability of
method (a.l) is a, consequence of a pwely algebraic property of the poly-
nomial p(z). According to 122f, we say that any pol5momial
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lJ a)

e@) : Zoo-r"n-' 
t'-ith a* * o

satisfies the root conditi,oz if its k roots zi satisfy lz;l < l, i, :
| ,2 , . . . ,k, anld if the roots of mod.ulus I have multiplicity l.

With the aid of (4.2), we write the d.ifference equation (4.1) in the form

teF yeD ye F

and associate 'with it the polynomial p(z) 'with coefficients a,. We take
o(,: Q of v C -F, ot'herwise or, is taken frorn (4.8). Clearly oe,: l.

We can now prove as in [22]
Theorem 6. Method (a.8) is stable if the polynomial g associated

with it satisfies the root condition.
Proof. The proof runs irr parallel to the sufficiency proof of Theorem

3.3 in 122). We denote by X the family of solut'ions of (a.8) with fixed
M ) Mo and with anv bouuded starting vectols that satisfy

iiXr(t&/); <§,'i : 0,1,...,k - I.
The difference equation (4.8) is then nritt'en in the form

X,+r* 2o,Y,*,:h^+*{ IP,(t")[t"*,- l(tnt-,,0)] - ) a,(h,)X,*,1 a l^,
?eF ye D ye l'

where

A,: h^+nZ §,(h,)t(r"+, , o) .

We see that our Lemma is applicable. Functions BP are defined. by

(4.9) Bf)(X"*,) : ft(h,)[f,+i - t(tai, 0)] - or(h,)X,+i

for every i, e E U D, §,he.n the coefficients not presetrt in (4.8) are taken
as zeros. Thus

(4.r0) B(i): §f L + "! .

By the continuity of f, t'e have

Ilr{"ll < hf,P.l, where /: ä:ä ilt(r,0)ll and

(4.r1) tr:zfr.
Hence, if q(z) has a root of mod.ulus l, Lemma yield.s

(4.L2) llx,ll < I* (.48 + nhh|*f)e"itwr.a ,

where ,4 is as in Lemma,



A. I. 503

and .f* is defined by the aid of (4.f0) as in Lemma. Here A, hasbeen
approximated upwards. Clearly, llX"ll in (a.I2) is uniformly bounded for
every %e J* and, every M ) XIo, since rve have assumed. in (2.5) that
Lrhh < c.

If p(z) has no root of modulus l, u'e cau appl), the second part of
Lemma takir:g 6 : l. The resultirrg estimate is similar to (4.12), with
somewhat different values of the cor.rstants A, §, f* and B. Con-
sequently the sufficiency of the root condition for stability has been proved.

4.3. Consistency

The consistency of method (4.1), with the restrictiorrs (4.2), (a.3) and
(4.4), is a consequence of some simple conditions iu relation to the coefficients
of (a.l). In the same way as in [22] (Theorem 3.4), rve have

Theorem 7. Method (a.8) is consistent if and only if the following
conditions are satisfied:

(.1. 13)

(+.r1)

(4.15)

(4. 16)

(4,19)

fi-, L§* +,*
&* : I O,,T

1+zo,:0,
yeF

Io,(h,) -->0. Yn€/.r*0, ]l-> cc:
veF

(4.17) r + > o"$;t*-)8,(tr,)-+0, Y n€Jn,-o, rr --> a.
reE t04+h t'eD

Proof . Again, as in 122), we are able to couclude a-q foilorvs. We denote
the modulus of continuity of x' : f(f , x) I:;' Z. Therr for the solution
x of the differential equation x' : t(i, x), rve have

x(f f s) : x(r) + ,ox'(r) -i- .-s./(.*)6 ,

where 0 is a vector of which the componetr+"s aLe iess thau or equal to I
in the modulus.

We must establish t'hat (2.9) holds for ('{.8). Here

F;(x) : F;(x(tr), x(ft+r), . . ., x(f;a6)) :
x(f;ar) * ) (a, I h;16a,(h))x(1,+,) - hiu"f B,1h,1x'1t,*,1 ,

r€F r€D

and by the aid of (4.18), we can write:

o,t
.Ltt Ann. AeacX. Sci. }-ennicltl
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(4.19) F;(x): tl + > (ao!hia*a,(h;))lx(l;1p1)
vEF

* lh,+* * ) (u, ! hia*a,(hi))(t,+, -- t;+r-r) - fr,+r lf,(h,)lx'(fi+r-r)
r4.jF eeD

4 lh;u" * ) la, -l hiu,a,\hi)] if,+, -- t;+*-rlfr.$i+n - tr)A

* hr+*Zl§,$)lx$;+* - t;)o .

)eD

Here, 0 is not the same as in (4. 8). Obr-iously iiF;(x)li is o(/afg) if
(4.15), (4.16) and (4.17) are satisfied I'he necessity of (4.15) and (a.I6)
follos-s from the fact that if x' : 0, theli x(r) : a (a eonstalrt vector),
aiid. 'ure must have

il + > (a,*hiar"ct,(hr))l/äfr--0, Y ne Jrn-u. M -> ot.
t€F

Following this the necessiby of (a.17) is observable on taking x' : c

(a nonzero consbarrt vector). This leads to the requirement, that the coeffi-
cient of x'(f,+o-r) in (a.I9) clivideel by /,.ii urust terrd to zero as il{--> oo-

So, the theorem has beett pror-ed.

Remark. Sufficient coud.itiols for colsistet)cv ale also obtained if
(a.16) is replaced b5'

(4.20) )4,(h") :0, Yne Ju-1", YII >-,I10,
eetr'

or if (4.I7) is replaced. by either

t^+' - t--t-t
(4.21) 1+>a,v ;.-E:>p,(h") . Yiie Jr,-n, Yi'l/)XIo,

,ef ttntk v€D

or

(4.22) rf,>or,(h,r'*;#-:,>p,(h,) . Y;a e Ju,-r,, YtrlMo.

t[.t[. Convergence

The main result of this chapter will trox' be proved. as

Theorem 8. Method (a.S) is convergent if (4.I5), (4.20), (4.22) and the
root condition are satisfied.

Proof. The basic idea has been presented in [22] and [27]. X'rom (a.19)

we get

(4.23) llF,(x(r,), x(,,+r), . . ., x(t;+*0"1 ! C*hfr0@hf*),

r'vhere
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cm : r + ) (r - I - u) la,l +htr,af) + 
"],§f 

.

We denote by X(lyI) the solutions of the difference equation (4.8)
with any bounded and compatible starting values that have

llx,(r]4il <S,'i, : 0,I,...,k - L.

Thus, we have

Fi(X,, X,+1 -.., X;+r):0.
By stating as in (2.12) that

Ei:X;(lll) -x(f;) , YieJM,
we obtain

(4.24) F,(X,, X,*r,..., X,+.0) - F,(x(f,) , x(ä,+r) ,...,x(ft+*))
: Ei+r * ) @, { h, ,na,(h,))E,.i, - h,*oZ §,(h,)[f,+, - f(tr*u, x(tr*,))): A, ,

teF v€D

where

lll,ll < Cyrhftx@hf,)

by @.231.
We write $.2+) in the form

E,+o * Z o,E,*,: hi+*å {B,to,lttt, i+y , x(ti+v) * E,+,) - l(tr+,, x(fr+J)l
./e F v:0

,r

a,(h,)E,*,) * Åi: /2,+e >oB!')(E,+,) * A,

and" apply Lemma with Z : E, a): l,
30)_§fL+"f

as in (4.10), and

IE : *u,* lixr(,U) - xoll * max llx(l;) - xoll : E(lW) .
0<j<&-r 0<j<r,-r

Moreover, with the observation that A is as in Lemma, B is as in
14.13), "l'* is defined by the aid of (4.10) as in Lemma,

(i-k+r)htr <n[hfl<c
by (2.5), and

4 < ihf,C Mx@hf) ,

we get
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(4.251 llE,ll < r*g.E1a1 { C}*y@hf,))scPa .

Since .E(J[)*0, X(khfr)->0, and Clyr remains bounded as M * o,
we get

lim max ilE,il : 0 ,
M+a i€,J1yy

and consequently method (a.8) is convergent, and the theorem is proved.

4,.5. Asymptotic behaviour of errors

The asymptotic behaviour of the discretization error E; at a fixed
t : ti, ilI * q, can be estimated. if the method used is consistent, the
root condition is satisfied, and the method is of order q. We make these
assumptions in this chapter.

The assumption of order is x-ritteu

(+.26) max llF,(x(t,), x(t,+r), . . ., X(f^_r,))ri < cä+1ä#+r'
ne'JM

where the constant Clar depends on the constants oci, a! and pf of the
method, and on

max llxa+r(t)ll ,
,€[a,D]

where a(e+t) ir the continuous (a f t):th derivative of the solution x.
The result is then stated (again as in [22]" Theorem 4.l) as

Theorem 9. Let the method (4.8), satisf5,ing the root condition, be of
order q, and let the solution x of the problem (1.I) have a continuous
derivative of ord"er q + l. Let X be the solutious of (a.8) *,ith the bounded
and compatible starting values X,(JI), 'i:0,1,...,k-1, and put

pr(:'11) ::n11* i,X,(,]I) - x(f,)li .

The discretization error then satisfies

(+.27) llE"ll < f*(Ap.(M) + CCf+thtrf)ect'a ,

where f*, A, B and C ate defined as in the proof of Theorem 8, and
Cn[r is defined by (+.26).

Proof. The proof is similar to that of Theorem 8. The only exception
is that EtU) is now replaced by p(M), and C*y(khfn) is replaced by
Cf*rh\f. Details are omitted.

We rrotice that if the starting values are sufficiently accurate, i.e.
p(M) : O(hXu'), the discretization error is O(hfr\.
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In numerical computations, rouncling operatiorrs occur, so that, the

vectors Xr are in fact replaced" by vectors i, : X, * rr. The vectors

f; äre called. accumulated rourid.-off errors. The per"tulbecl vectors i; will
satisfy the difference equatiou

(4.2s) i,*.n * ) {o,, + la;a.pa,(h))*,+u - hi+r") p,1tr,;t1r,*,, i,*,) : r,,
re? rED

rrhere the vector ei is ca,lled the local lound-off error. To obtaitr (4.28)

we must of course apply rnethod (4.8).

trVe assume that the loctri errors are bounded, i.e.

1le;ii <e)0, YieJLr.
Substracting from (a.28) the corresponding relation (4.8), rve get

r;+r f \ t"" + h,*oa,(h,))r,*o -- h,*o) B,(t ,)[t(t,+, , f,;+,) - f,*,] : *, .
p€F y*aD

Recalling the assumption that method (a.8) satisfies the root condition,
and observing that r;:0, 'i,:0,1,... ,k - !, 11'e can apply Lemma
'q.'ith o : I, &s in the proof of Theorern 6. Ifence 'ire have (in corresponcleuce

tnith Henricis Theorem 5.1)
Theorem 10. The accnmulaterl louird-off error of nrethod (4.8), satis-

fying the root conditiotr, erncl applicd to the initial r-a.lue problem (1.1),

is estimated bv
l*tC(4.2e) 1ir;ll < -jtr ecI''B , Y 'i e JM,

rvhere f*, B and C are the same as irr the proof of Tlteorem 6.

5. APPLICATIONS

In this chapter lre shall consider rvhat kind of methods can be con-

structed by our generalized polynomial interpolation approach. The treat-
merrt is illustrative rather than exhaustive.

S.L Polynomial approximations

5.T.1. frquid,i,stant nodes

From Theorem 3 lve see that our methods will recluce to classical linear
rnultistep methods rvith constant coefficients, 'when Ty is equidistant
with spacing h, and we use 'usual'polynomial interpolants. In such cases
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ow method is totally d.efined by the given sets -F' and D, t'heinteger' ä,

and the weight matrix -8. Sets -E and D must satisfy the cotrd.ition ii)
of Theorem I for an existing method. X'or the theory of stabiiity, consistency
and convergence of the methocls u,e refer to lfenrici 122, 231 for more
complete results than those presented here in chapter 4.

As far as we know, the problem of stability of a given polynomial inter-
polation method can be solved only by conversion of the method into the
equivalent multistep method, followed by exarnination of the root condition.

When a search is being rnade for pol.,vnomial interpolation methods, the
most natural course is that of taking unit t'eiglrts associated u,ith the givetr
sets -E' and -D. fn such cases, the order of the resulting methotl will be
as high as possible, and the method. is al'ways consistent, as is stated by
Theorem 5. Clearly, we thus rediscover the classical methods based on
numerical integration (see [23]), by taking a unit matrix .8, and using the
sets of Table 5.1.

Table 5.1.

IXethod

Adams-Bashforth

Adams-lIoulton

N5, strörn

Milne-Simpson
(generalized)

Method

DO

D1

D2

D3

U'-li
{0}
{t' - li
t0)
{k-2}
{0}
r0)
{k*2}

{0,1,
iri
{0,1,
{1}
{0,1,
{2)

{1,2i
{0,1,

,k - li

,k>

,l§ - Ii

,kj

k

l 12,
I
L 12,
2

2 r3,
2

2

2 r3,

L 12,
L r2,
2
ODasos
fD
o
f)

ö

3r4,

DE

I
\
I
\
{
It

I

Similarly we rediscover the classical methods based on numerical
differentia:tion (the methods 5-48 of [23]) by meaus of Table 5.2.

Table 5.2.

7 D

{Ä,}

{k-ri
{o\(-l

\k-2|
{0}
{0}\-,
{k-3}

f
t
t

,,

i

{0,t,
{0,1,
{1}
t0,1,
i2)
{r,2}
{0,I,

,lc - l)
,k - u
,k - ti

,lc - 1)

The coefficients d,,, arld. p,

matrix P of type (3.24). In P,
of these methods are obtained by use of
wehavearowforeach ye E a,nd yeD.
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Corresponding columns appear in P-1. The coefficients a, and B, are
the sums of the elements of these columns.

We notice that the existence of the classical methods is guaranteed
by the fact that either I or D has only one element. It is also worthy
of note that methods D0 with fr : 2,3, 4,5,6 are the stiffly stable
(see [31]) methods proposed by Gear [I9].

If the u,eights in -B differ from unity, the maximum possible order is
not reached, as is seen from (3.21), (3.22) and (3.23). However if the order
of a multistep method is relaxed by one, we arrive at a one-parameter family
of methods, as proposed e.g. in [a5] and [24] (see also [3I]). The nonunity
weights may serve as this parameter as well as a, para,meter introduced
into coefficients a, and P,. The parameter can then be used to modify
the method to obtain useful properties other than high order. Naturally,
the idea of parameters is easily generalized to more than one parameter.

As an example of nonunity rreights 1r/e give a met'hod of type D0
(lc, : 4) and trvo of its also stiffly stable modifications proposed" by Jain
and Srivastava 124f. The basic formula of order 4 is

(5.1) 25X*+4: 48X*+B - 36X^+z + 16X,+I - 3X, + L2tbf,+4,

when written for the scalar problem as in [24]. Jain and Srivastava give,
amolrg others, the following two third,-order versions of (5.f):

(5.2) 150x,+4 - 262x,# - lSgx^-2 + 54x,+1 - 7x, +'ighf*+4,
10X,+4: LIX*+B - 3X,+z - 2X,,=*t + X" + 6hf,*n(5.3)

X'orrnulas (5.2) and (5.3) can be obtained by means of .F : {3 ,2 , | ,0},
D : {4), and the weights ps, pz, Ft, #o attd pln. The rreights are the
ratios of coefficients (5.2) aud (5.3) to those of (5.1). The three decimal
values of these rveights are:

tr'ormula

(5.2\
(5.3)

{ts

.9r0

.7 29

Fz

.736

.209

ltr

"563
--.313

lto

.389

-.833

1.083

L.250

I
ltq

The behaviour of these u-eights is understood by reference to an
illustrative approach made by Gc'ar []91.

The problem of findirg the proper rronurrity u-eights is rrot treated
here, but certainly calls for further study.

The meaning of the inversion condition (3.30) is clarified b;'the following
examples. Let us assume bhat we have a given &-step method. with coef-

ficients ao*O and. B, * 0 and the corresponding sets / and D. We
assume that -F and D are such that there exists a polyromial inter-
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polation method defined b;' them. I' and D define the matrix P of
type (3.2a).

When the inversion condition is met, the sums of the elements of the
columns in P-l are nonzelo and the 'weights corresponding to coefficients
oq and p, are obtainable by (3.29).

Ilowever, in some cases, zero sums exist and the corresponding weights
are not defined. This phenomenon occurs, for instance, when "ä.' : {0}
and D : {0 , 1} (I{yström's method with k : 2) or .F : {0} and

D : {1 , 2} (Milne-Simpson method with fu :2) or .F' : {1} and D :
{0, l, 2, 3} (Milne-Simpson method with ä : 3). Thus, given these pairs
of sets l, and D u'ith the corresponding nonzero coefficients a, and' 8,,
it, is impossible to find a corresponding pol;-nomial interpolation method.

However, the polynomial interpolation methods with sets .F and D
mentioned above, and with unity weights, will produce the classical methods

mentioned. But these methocls have a zero coefficient, reducing them to
methods obtainable by unitl'rveights in connectiol with the pairs .E' : {0},
D : {1} (Nyström's uethod rit}r Ä; : 2, the mid-point rule) or 17 : {0},
D : {0 , | ,2} (Milne-Simpson methocl rvith fu : 2, the farniliar Simpson

formula). The explanation is that these rnethods possess a higher accuracy
tlran would normally be expected (cf. [23], chapter 5.L-2).

Another difficulty involved in finding the polynomial interpolation
method that corresponds to a given multistep method occurs if the given
sets .E' and. D are such that existence condition ii) of Theorem 1 is not
satisfied. The corresponding interpolation method, is constructed by taking,

instead of .F, the set -F definedin (3.28) and then applying the formulas
(3.2e).

As an example, consider the 3-step rnethods defined by trl : {O ,2},
D: {1}. Let us assume that they are stable aud corrsistent. They are

then given by

31

{5.4)

(5.5)

where - ll2 I a (-1. \Yhen q,: Q, I and a double zero are the roots of
q(z). All the roots of p(z) are of modulus I in the method with o : I'
Methods (5.4) are of order L

The matrix P defined by .[, and D is singular, but if 'we take .F' :
{0 , I , 2i and. D : {1}, we derive a linear multistep method, which is,

with unity weights, of type D2 (k : 2) and is written. as

X,,*3 : 6X*+z 3X,+r __ 2X, - 6lll^a1

Hence method. (5.1) is obtained" t ), use of the weights
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{ p,:

1,,:
lFo:
I pi:

(1

0

o) l6

- 012

(1 + 2a,)16

It is very illustrative to consider the case of a: ll2. Formula (5.4)

is then written

(5.6)

This is equivalent to the polynomial
makes use of a 3-degree polynornial formed"

L 1L2Xu+2, 0, L l4X^* and 113f,11. At
not seem rrery reasonable, althotrgh (5.6)
method.

+ 2ltt"n41 .

in'berpolation method, which
rvith the aid of the values in
first glance. the weights d"o

is closely relatecl to Euler's

5.1.2. Arbitrarg nod,es

When T* is arbitrary, the situation b:comes rather difficult, and the
properties of the methods generated, by the pollmomial interpolation are
not known completely. The existence of a method is fully prescribed by
the sets -F and D. The coefficients of a method are functions of ho, and
are derived by inversion of the matrix P,,. This is a ted.ious process for
.ltr > 4. However, for the conditions of stability, cousistency and con-
yergence, we must know the properties of coefficients a,(h,) and B,(h").
In particular, we must, hope that these coefficients have a certain form, and
that they are bounded as required in (4.2), (a.3) and (4.4), Lo ensure that
we can use the results of chapter 4.

The situation is here illustrated by only a ferv examples. The methods
of Piotrowski [41] are easily obtairrable by our approach with sets -F and
D devoted to Adams met'hods. Thus, ne get the fonnulas

X,,* ts : Xn-r,- r -i- hn= r Zf ^yl*-t,

with coefficients §o,i Among others l\re hat'e

a) k-2, §*r-0,

(5.7)

2hn+t ' Pno 2hn=t

b) k-2,
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§,,

§ *,,

§no :

1 lrn*,

? h"-r, + h"*r:

, I hn+z
f a t\,* !

I
2

I
2

1 lr?**,

c)

6 hn*t\h,.+z * h,n+t) i

hn*i(Zh^+t + 6h*+z * 3h^+)
6h*-rz(hn+z * lr^-rr)

§,,

o -h.+r(2h^+ri\h^+r)Pno - 6lt^+L(hn+2 I h,*r)

Recall assumption (2.6). The coefficients are clearll, bourrded, as required

in (4.3) and (4.4). X'urthermore they have the property 2 fl",: l. The

methods are thus convergent for every T* ihal satisfies (2.5) and (2.6).
However, the limit of a coefficierfi 8., will depend orr the way in which
the limit is achieved w}l.en XI -> oo. For instance, consider mebhod a),

and take ?* such tnat !! : y for eyery 72, M --> q. The limits of
hn+l '

§,, and §^o are functions of 7, 'ivhich may, be an arbitrary positive
constant.

The methods of Krogh [26] iuclude the geueralized Ad"ams methods
mentioned above. Moreover, Krogh has sugge-sted the use of a variable
step number fr.

The mid-point rule (Nyström's method l.it'h -F : {0}, D : {1},
lt :21 has a varying step size analog;'

I ft"-r\,(5.8) X.+2 : Xn * h^+z\t _- ,,*l f,.r .

The root condition is satisfied, but' for consistency we must demand
that

ti,, pr : r for every n.
Mnq hn+Z

This means that the only reasonable spacing of Ty is equidistant.
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A similar phenomenon appears in bhe usual Milne-Simpson method
rryith .E, : {0}, D : {0 ,1 ,2}, k : 2, wlich has the coefficients

*no:1,

Here

å , l'n*, hn-,

,*,n"' 
- t hn+z l,'n*,

For a consistent method. we mustr require that'

6)
A

lirn Z §,, : 2 for eYer-lr !?, ,
ill-+o p:0

and thus the limit spacing mllst be equidistant.

5.2. Generalized polynomial approximations

In order to simplify the notatiorr"vve d.iscnss the equidistant ?*, onl;..
The existence of the methods depends otr the space I1,, used. As was
proved in Theorem 2, the trigonometric pol;rromials are applicable. Gautschi

[I7] has studied these methods in some detail. He ]ras derived. his formulas
in the form of polver series. By our approach the results are obtained in a
closed form.

tr'or comparison lye gir.e the coefficients of atr Ädams-Bashforth and
Adams-Moulton method: Adams-Bashforth: -F : {l}, D : {0, l}, k : 2

&L:1 ,

1 cos ah

i §t: *r, sin roh f sin «fi (1 cos osh') )

| -_I I cos,å,ln
I 

no - ah, sin coä '

Ehn+'
6 hn+t '

Lhn+'
6 hn+t

a -L r-Lh*o' Lft:I\'
u nz B -i- 6 

h,n +z 6 \tr**, I

R å -r- 1 7'n*' 
-i- 1 {h**!'\'PnL 2 -T- 2 hn+z 
-i- 6 \,hn+zl

o I- r llln*'
iltsJå

tuno - 6 r B h,_ , n

Adams-Moulton: f _-{0}, D-{0,1}, k- I
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do: I ,

a a I l--coslcoh
YL - Po - oth, sin uh

Wren expand.ed. into their Taylor series these coelficients are equivalent
to those of Gautschi. Here ar is t'he frequency parameter (see [17]).

As would be expected. the exponential functions rvill give rise to similar
formulas. Let us Lake g, - l, gz: e'' and gr: e-@t. The Adams-Moulton
type formula with -F : {0}, D : {0 , 1} and It: L then has the coeffi-
cients do: L,

cosh arä - I
h: §o: ,h uirh rh .

A detailed discussion of different nonpol5momial approximations d.oes

not fall trithin the scope of this paper.

Appendix lz Results from the theory of interpolation

1. General problem of tinite interpolation

Tlre problem of selecting the polyrroinials !*i tbat satisfS, (3.2) is an
example of the general problem of finite interpolation fl4l. The problem
is stated as fo]lows: given an .ly'-dimensional linear space Ir, rvith a basis

{gr,go,..",gN}, arrd -l[ linearfunctionals pi,'i, - L,2,...,1[ defined.
on I,y. Is it possible to fincl an element ?J € Y x such t,]rat

(4.1) via : Lui, d : I, 2,. . . . ;1t

for an a,rbitrary -0[-array w of given values wi? In the preserrt case,
the functionals !)i are the e'i'aluation functionals at poirrt. f,*,, a e E,
arrd the derivative evaluation functionals at poirrts tn*u, y e D. Values
1i are the values p,Xi+, and pifr^*,. The problem occurs for any n e J xa_1",

The knorvn results (cf. [Ia], c]rapter 2.2) corrcelrring the general prohlem
of finite interpolation needed here are giverr rrithout proof as

Theorem 41. There exists y e Yx satisf;-ir:g (4.1) for arbitraryvalues
L0i if and only if the functionals yi are lineariy irrdependent, i.e. the
generalized. Gram determinant lrp,gil (d,j:L,2,...,If) is non-
vanishirig. In that case, the solution is unique.

The basic difficulty in the application of Theorem At is that the
generalized Gram determinarrt may be complicated. However, if by some
means we can show that (4.1) has a solution for arbitrary wi:s, then by
Theorem AI we know that it, is unique.
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2. Hermite-Birkholt interpolation by polynomials

A more powerful result is obtained by the observation that our inter-
polation problem is an example of a generalized Hermite-Birkhoff inter-
polation. The name HB (I{ermite-Birkhoff)-interpolation was first used by
Schoenberg [48] in connectionwith Yx: nN-r (the poly'nomialsofdegree
< .nf - 1), although the problem was initially treated by Birkhoff f3l and
Polya [a2]. The moclern contribution to the theory of HB-interpolation
wit'h z*-, is due to Sharma and Prasad [49], Atkinsorr and Sharma [2],
X'erguson f16], Schechter [47] and Lorentz andZeller [32], see also Mathson

[3a]. The use of spline functions as interpolant has been d.iscussed by B,itter
1441.

X'or rzly-1, the HB-problem is sta.ted as follows: given

1) k + I nodes (real or complex)

(4.2) to<ä<...1t*,
ii) a so-called incidence matrix E:(e,j),i,:0,1,...,k, j:0,

1,...,fl - l, with elements e4 that are 0 or 1,

iii) a set e: {(d , j)leti: l} with Å- elements,
iv) -l[ real numbets %;i, $ , j) e e.

Then find" A e nx_r such that

(4.3) t"':#)
The matrix E is callecl free [32] or poised [48, 49, 2, 16,

lras a solution f,or each selection of numbers lLij alld points
i

i:0
free rnatrix E

etc.], if (4.3)
(4.2).

," ' , '^/ 1'Let us d.enote ??Lj : *, r, änd IIi

Schoenberg t4sl pr";;å that each

co,Ldition

1 ,2

satisfies the Pölya

(4.1) IIi>j+ 1, j:0,1,,..,-lf -1.
According to [32], a sequence of l's on the r,:th row of E

(4.5) g;i:...:eill 1, j1q.,

is called a maximal sequence, if it is not contained in ar:y louger sequence
of l's. A maximal sequence is called supported, if there exists ,i, I d 1d,
and n 1j, Jz<- j, for which ei,j,: e;,i,: l.

Sufficient conditions for free matrices .E are stated in
Theorem A2. (Lorent,z and Zeller [32]). An incidence matrix .E is free

if it satisf ies the P6lya condition, and if each of its supported sequences
has an even number of elements.
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An equivalent theorem is proved in [2].
When the preceding results are applied to our problem with conditions

(3.2), we have n7o: K ) | {f is nonempty), Mt: N and eij:g
for g > l. The P6lya condition is thus fulfilled.

Matrix E may contain three tyles of rows. They can start by

i) I I 0...
(4.6) ii) I 0 0...

iii) o r 0....
Theorem A2 is useless if -E has supported sequences with an odd

number of elements. This may occur only if rows of type iii) exist, since
the rows of type i) and ii) cannot have supported sequences (no e;; exists
with y < 0). If we have a y:th row with e;o : 0, eir: l, this implies
that we have required

(4.7) U'(t) - %it

without any requirement, for y(t1). To avoid the odd supported sequences,

it is necessary and sufficient to avoid the requirement (A.7) for a bare
derivative at a point ti, if ti has the following property: f; lies between
fiir and [i, such that we have a requirement both for y(t;,) and, g(tt,)

(i.e. e;,s : e;,s : 1).

Lorcntz and Zeller [32] called

(4.8) tI1 >i + 2 , j - 0 , I , r . . , -&- _- 2

the strong P6lya cond,i,ti,on. They also proved the following
Theorem A3. (Lorentz and.Zeller). Lel D be an incidence matrixthat

satisfies t'he strong P6lya condition (4.8), and has a rorv consisting of a
single supported one. Then .E is not free.

In onr case (3.2) only single supporbed ones mar- exist. If mo: K - l,
the strong P6l;,s, condition is not fulfilled. In such cases, E has no sup-
ported sequences and is always free. If rmo: K > L, the strong Polya
condition is filled and theorem A3 is applicable.

3. Hermite-Birkhoft interpolation by generalizeil polynomials

The HB-interpolation problem can be generalized. if, instead of ziy-1,
any other -l[-dimensional linear space I,* is taken. Sufficient conditions,
similar to those of Theorem A2 for the existence of the solution of the
generalized problem, are not knovryr. With the exception of the basic
cond.ition for the generalized Gram determinant in Theorem Al, the only
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result known by us is that of Matthews [35]. X'ortunately, it is sufficient
for our puxposes.

We shall present a slightly generalized version of [35] here as

Theorem At[. Let I,y be an N-dimensional Haar subspace of Ala ,b]
such that the space spanned by the derivatives of the basis functions of
Iry is an (nf - I)-dimensional Haar subspace of Cla,bf, denoted by
Yk-r. Take -I : la , bl. Then, for any distinct set

and any distinct set'

To : {tr.li - 1, 2,. . ., P ) trre T o

such that j * p < -ntr, and for alr;r set of real ltllnlbers,

L[u.,r.. ,LCrn),

2 r... ,i ,

,2 r " 'r9'

{urr'1.12t... ,xli t 'Llrr,

an y e I'ry exists such that

t U'(t,r) - xev" , d---* I

Proof. The proof is equi'r'alent to that givel by lfatthervs 135] and has

accordingly been omitted. The on13: fli11*,*rrce in the theorems is that our

set, T, may be a little larger than the corresponding set of llatthews.
Ulattlrews has ToCTy. \\'e permit, poiuts itr TD outside the iuterval

[fu , fr] definecl by set, 7r. Horvel.er., this does not disturb the reasoning

based on Rolle's theorem in [35]'
RemarkS. The result of Theorem A{ is equivalent to that of Theorem

A2, when Theorem A2 is applied to our special interpolation problem with
conclitions (3.2). The uniqueness of y irr Theorern Å4 is u-arranted, if
j I p: ff, as a consequellce of Theorenr 41. The Haar couditiotr posed

for Iry and Yi,-, makes Y,y very similar to z;r--r. The necessity of the

Haar conditiorr is easily unclerstood if we recall that the proofs of Theorems

A2 and. A3 are heavily based on the number of z:r.os of polynomials and

their derivatives. This also applies to the generalized poll'nomials in the
proof of Theorem 44.
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cf. [17]. we

Appendix 2: Proof of Theorem 2

change the basis of )'^- as follon s:

New basis Okl basis

11

(A.lo)

Here, we have defined u: col2. T}re fact that the new functions form
a basis is an immediate consequence of the known trigonometric identity

sin2'(r/z; : l(1 - cos.r)./9li .

from which it follows that

(A.11) sin2t (rlz1: !sa(r - cosjr) , i: I ,2, . ,j:r
where s1 are suitable constants, and in par"ticular .",i * 0. Differentiation
on both sides in (A.f f) gives

(A.12) .irr2i-l @12) cos (rl2) : )ip,r,,sinjr:. i : r, z, . . . .
j:r

If we t'ake n:61[, u: atl! and multiply t]re identities (A.ll) and
(4.12) by suitable constants (uhtro)-" or (zråfl)-ri+t. it is seen that the
new functions form a useful basis obtained b1' a lineal transformation
from the old. one.

Let our basis functions now be derroted br- gr,gz,...,gN and the
evaluation functionals of (3.2) by y,, for everv r, € .t'' and every z € D.
For a fixed n, the generalized Gram determinant 'r1,,.g,' that corresponds
to (3.2) contains elements of type

/sirr ul\2i-r

\W) cos?t'

(w)"

sitr 'icot

cos ao"rd

With a, fixed T M let us define 0 n, so that

(4. 11) tn+, - tn+k_l : 0,,h!, .

The elements of lrl,,grl in (A.13) are explicitlv of the t,3pe
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We can llolv make the follou'ing observations:

[sin (r,t, 0,,hfu)12i- '
L-*,f-) cos (uo*'hfu)

[sirr (rt, 0 *,,hf,)l "
| ,,, nt,-- - I

fsirr (u 0 *,,hfl)l=

L- *X: -:': I iii t'onr (w o*'lt'§') 1)

- [si n izr 0 ,,,,\i];)l 
2i - 1

.ri I ---, ,r. tt t,to "- I 
r.c,§ {.tt o*rh,fr)

di I /siir 7g\ ri - t I dj 02

Tai Lt- , i .os zo | --> ,W and'

d.i t si:r r0'\=' ,! 
j0'i

l___--_--l_L
d7j \, r rl{)i :

(4.15)

{4.16)

1,

l

eI)

CE

tlre convergence beirrg uniform rrich respect to 0 iu any finite interval,
By taking r : uhh and lettirrg lI --., w, we can see that also z -+ 0.

Since 0,, does not depencl on l 
^, 

the elements of our generalized Gram
determinant will have the same limits (if they exisb) as the elements of the
correspond"ing generalized Gram determinant obtained by means of the
elements of z1--1 d.ivided by the proper powers of hfi. X'or the existence

of these limits we must assume that 0o, is independenb of ru when ,11

is large. This is true if the spacing of T na is equidistant rvheu. M is large.

'Ihus we can conelude that if the condition ii) of Theorem 2 is satis-

fied, and T* is equidistarrt, rvhen J/ ) lI, (a sufficientl;r lor*" .orr.-
tant), the generalized Grarn deterurinant lrp,grl has a nouzero limit.
Hence, by the continuit;r of futrctionals gu, the determinant remaius
nonzero for "h!* sufficientll' smali. i.e. for ,l/ sufficientl;' large. The
application of Theorem AI finishes our proof.

Remarks. The results of Theorern 2 are r.er'1- similar to those of Gautschi
(cf. [17], Theorem 2). Gautschi also pror-ides estimates for the smallness of
*h§r. One rough estimate given in [17] is

{4.17)

where p is an integer such that our l[ corresponds to 2p * L. Thus,
the requirement for JlIr i* very modest.

Institute of Mathematics,
Helsinki University of Technology,
Otaniemi, Finland
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