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1. INTRODUCTION
Consider the vector valued initial value problem on a closed interval
I ={[a,bd]:
(1.1) X' =1{t,x); x(a) =X, (" = d/dt) .

Commonly, an approximate numerical solution of (1.1) is constructed by
taking a set of nodes,

(1.2) Ty={tili=0,1,....M; ty=0a, t:<t ,}cl,

and associating a vector X; with every ¢ (¢=0,1,...,M). For
n=0,1,...,M —Fk, the vectors X; are constructed by means of
the difference equations

(1.3) FuXo, X015, X)) =0,

from which X;, with maximum index ¢, is derived as a function of the
known, lower indexed Xis. The operators F, are so chosen that X;
is in some sense an approximation to the solution x(f) of (1.1) at ¢t =¢,.

In the two most widely used classes of discrete variable methods, one-
step methods (mainly of the Runge-Kutta type) and linear multistep
methods (cf. [23], [31]), the operators F, are independent of n. In the
latter, the nodes are equally spaced.

Various ideas have been applied for construction of the operators F,.
The following possibilities may be mentioned as a natural background for
the present work.

In derivations that lead to linear multistep methods, the components
of f(t,x) have been replaced by a Lagrange interpolation polynomial,
and then integrated, or the components of x(f) have been approximated
by a Lagrange interpolation polynomial, and then differentiated [23].
Dahlquist [13], [23] has generalized the difference equations obtained by
these ideas to the classical linear multistep methods, without any close
connection with interpolation.

The idea of interpolation has been extended for instance by Salzer [46]
and Quade [43], who applied Hermite interpolation in order to derive some
linear multistep methods. Unfortunately, these methods are unstable. The
idea of interpolation has also been presented by Osborne [38].
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Another approach involves the use of truncated Taylor series for the
determination of unknown parameters in the operator F,. This idea is
exemplified by the Runge-Kutta methods.

Inspired by the use of interpolation polynomials for the construction
of the operators F., some authors have proposed other different approxi-
mating functions for the components of f(f,Xx) and x(f). Instead of
polynomials, Brock and Murray [4] have used linear combinations of
exponential functions, Gautschi [17] has used trigonometriec polynomials,
and Lambert and Shaw [28, 29, 30] have applied rational approximations
and polynomials, added with a non-polynomial term which can be singular.
Loscalzo has studied the application of spline functions to initial value
problems (cf. [33] and also [11]).

Lambert [27] has generalized the classical linear multistep methods with
constant coefficients to similar methods with mildly varying coefficients.
Also Brunner [5, 6, 7] has used coefficients which are linear functions of
the step size.

As a rule the nodes # have been equidistant, although in some cases
it would be very desirable to change the spacing of the nodes. No more
than a few multistep methods with varying step size have been presented.
‘We shall mention the method of Nordsieck [36, 39], which is equivalent to
the Adams method [23] when the step size is constant. Krogh [26] has made
another generalization of the Adams method; in addition to the step size,
this also permits the integer k£ in F. to be dependent on 7. Krogh’s
method is suitable for differential equations of higher order as well. A
third generalization of the Adams method is that made by Piotrowski [41].

Another way of generalizing the linear multistep methods with constant
step size is by means of introducing some additional nodes between the
equally spaced nodes. This leads to the so-called hybrid methods introduced
by Giagg and Stetter [21], Butcher [8], [10] and Gear [18], and reviewed
in [31]. The hybrid methods fall somewhere between linear multistep
methcds and Runge-Kutta methods. Butcher [9] has presented unifying
formalism which covers not only Runge-Kutta and multistep methods but
also hybrid methods and some others. Other unifying techniques have
been proposed by Gear [20], and Papian and Ball [40].

Our aim here is the construction of some reasonable operators F,. As
a result we generalize the classical multistep methods, but our starting
point is not a linear multistep method with constant coefficients. Our
method is based on the idea of Hermite-Birkhoff interpolation [48] by
means of generalized polynomials [12]. This idea is present in Dyer [15],
too. Let & be a given constant. Then for every index = we associate a
generalized polynomial y.; with the j:th component of X,,,. These
polynomials are linear combinations of prescribed continuous functions
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with unknown coefficients. To fix these coefficients we require the following

Ynj(tays) = w Xl for some values of ¢ =0,1,...,k—1,

(1.4) {

Yoi(tuss) = pifi(tayi s Xops) for some values of ¢ =10,1,...,k,

where the superscript j indicates the j:th component of X,,;, or f
respectively. The constants u; and u; are fixed previously, and usually
have values near to one. The value of X/, is then obtained asa function
of the known values X,,, by stating

(1-5) X{.+k = ynj(tn+k) .
Thus the operators F, have been implicitly constructed. The nodes of
T, may be arbitrarily spaced.

Our basic goal is to discuss a unifying method for constructing the
operators F,, and to study the consequences of our approach.

In chapter 2 we give the problem and make some preparatory assump-
tions and definitions.

In chapter 3 we present the basic construction principles (paragraph
3.1) of our generalized polynomial interpolation approach to the initial value
problem. These principles implicitly define the operators F,.

Given the construction principles, it is natural to ask the circumstances
under which the construction is possible. This question is studied in the
following paragraph, 3.2, in which we give two existence theorems for our
construction. We use some results from the general theory of finite inter-
polation and Hermite-Birkhoff interpolation. This background material is
presented, and applied to our case in Appendix 1.

Paragraph 3.3 is devoted to explicit formulation of our construction.
There the connection between our method and the classical linear multi-
step methods is brought out. Paragraph 3.4 contains some detailed dis-
cussion of the most important case, the use of the usual polynomials as
interpolants.

Chapter 4 is very similar to some parts of the book of Henrici [22].
The results of chapter 4 concerning stability, consistency, convergence and
errors of our method are obtained by slight modifications of those of Henrici.
Therefore we use the notations and definitions of Henrici as far as possible.

Chapter 5 provides illustrative examples of our method and shows
how some earlier published methods, and new methods, can be derived
by our approach.

Our construction leads to the following results. As a natural assumption
of existence and uniqueness related to our method, let us assume that we
have as many equations (1.4) as we have coefficients in the expression of
Ynj, and that (1.4) will determine these constants uniquely. Then (1.5)
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leads to an expression similar to linear multistep methods, except that the
coefficients and the step size in general are functions of n. If a constant
step size % is used, the coefficients of the resulting difference equation are
usually functions of %, but independent of n. When the generalized poly-
nomials are »usualy polynomials, and the step size is constant, our method
reduces to classical linear multistep methods with constant coefficients.

Our construction will cover most of the linear multistep methods with
constant coefficients, the variable step size versions of these methods, and
a number of methods based on nonpolynomial approximations. In addition,
we are able to discover many new methods.

2. PROBLEM, ASSUMPTIONS, DEFINITIONS

We want to construct numerical solutions to the initial value problem
(1.1). The definitions of this chapter are based on Henrici [22]. We assume
that I = [a,b] is a closed finite interval of real numbers. The vectors
associated with problem (1.1) belong to the real normed @-dimensional
space Y, The components of X€Y, are denoted by a',2?,..., xC.
Usually the norm of @ is defined by

. Q N >
(2.1) Xl =3 W'l
i=1

but other norms are also applicable.

We assume that f(t,x) € ¥, and f is an L-function,i.e. a continuous
function from Ix Y, to Y, satisfying the uniform Lipschitz-condition
2:2) e, x) — .2 <Dix—2
for all t€1, x €Y, z€Y, With these assumptions, the problem (1.1)
has a unique solution on I for all x, € Y,. For a fixed X, we denote the
solution of (1.1) by x(¢).

Let us denote the set of consecutive integers by J,=1{0,1,...,n}
Given the set 7, defined in (1.2), we relate a certain vector Xi(M) € Y,
to the solution vector x(t) at every t; € T,. The approximation Xi(M),
which is considered as an approximation of X(t;), is obtained as a solution
of a certain difference equation

(2.3) Fioi(Xin(M) , Xicpsa(M) , ..., X(I)) =0,

where k is a fixed integer. Here, F is a given function from J,,_, and
from the (k -+ 1)-fold Cartesian product of a subset of Y, with itself to
Y,
Equation (2.3) will define Xi(M) as a function of the k preceding
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approximations Xi_w(M), Xiky (M), ..., Xiea(M). Therefore we assume
that there exists a proper starting procedure, which produces the first &
approximations Xo(M), Xy(M), ..., Xea(HM). It is assumed that these
starting vectors have been used, umless otherwise indicated. Naturally,
the functions Fi—, are so chosen that X;(M) uniquely exists for every
t; € T);. The explicit expression of F; is derived in chapter 3.

On occasion, X; is written instead of Xi(M).

The behaviour of the approximations X (M) will be studied when
the density of nodes t; is increased. Let us denote %; =t — tiq for
1=1,2,...,M and

(2.4) h¥ = max k.
i=1,2,...,M

We assume that when M — oc, hi;— 0 so that M~} remains bounded
above, i.e. there exists a constant C such that

(2.5) M, <C, M=1,2,....
Further, we must assume that constants C; and C, exist such that for
every M and for every i=1,2,..., M —1
hiva
(2.6) O<CIST§02-

For a fixed M, we define a k-vector h, by

(2.7) No = (hnt1 > Pntas o+ s Poti) " Vn€dy ;-
A starting procedure is called bounded, if a constant S exists such that
(2.8) IXi(M), <3S, i=0,1,...,k—1,

for all sufficiently large . A starting procedure is called compatible with
the given initial value problem (1.1), if
lim X;(3) =%, for i=0,1,...,k—1.
M-
The procedure for generation of the vectors Xi, i € J, \Ji— is called
an approximating method for the numeral solution of the problem (1.1).
Since the most essential characteristic of a method is the equation (2.3)
we call the method associated with (2.3) an F-method.
An approximating F-method is called stable, if for every L-function
£, and for all starting procedures bounded with some constant S, and
with M > M,, a constant §' exists such that

max | X;(M)|| < 8§ for all M > M,.

i€Jpy
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Here M, is a sufficiently large constant; a more precise statement is given
in (3.15). The stability of a method implies that the approximate solution
remains uniformly bounded as M — co. However, the bound S’ may
depend on the bound S of the starting procedures.

An F-method is called consistent, if for all L-functions f the following
is true: if x denotes any solution of the differential equation X’ = f(¢, x),
then

(2.9) max [Fi(x(t) , X(tia) o - - -, X(E))ll = o(h3y)
i€Jpr_ g
when M — co.
An F-method is called convergent, if for all L-functions f, and for
all initial value vectors x, € ¥,
(2.10) lim max | X;(M) — x{&)| =0,
M—>w i€Jyp
when x is the solution of the initial value problem (1.1) and the approxi-
mation Xi(M) is obtained by the aid of any bounded and compatible
starting procedure.
The order of an F-method is defined as the largest integer ¢ such that
(2.11) max [Fi(x(t) , X(taa) - -+ o X(trr))l| = O(R3E)
i€IM_k
for all solutions x of all initial value problems (1.1) where £ is continuously
differentiable of sufficiently high order.
The error E defined by

(212) E; = X,‘ — X(ti) , Vi€ ’].’ll

is called the discretization error of the F-method. The error is totally defined
by the problem (1.1), and the given approximating F-method with the
starting procedure applied. It is assumed that all the calculations are exact.
In practice another error will be caused by approximation of the real
numbers by the very special rational numbers used in the computation
machinery, whatever it may be. Thus, the actual computation produces

a vector )Ei, instead of the exact vector X;. The difference
(2.13) r= X — Xi. Vi€dy.

is called the round-off error.
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3. CONSTRUCTION OF THE OPERATORS F,
3.1. Construetion prineciples

Given an L-function f, a set 7T, a fixed integer k, and vectors
Xy, Xy, - -, Ximq produced by a bounded starting procedure compatible
with a given initial value vector X, our generalized polynomial inter-
polation method for the initial value problem (1.1) is defined by the following
rules of construction:

i) Assume: given sets F c Ji; with K >1 elements and D c Ji
with L >0 elements so that 0€F UD. Denote N =K + L.
Assume that the elements ¢; € F and i € D have been ordered:
By <y e < gy Oy <y < e <

ii) Assume: given K real numbers p; and L real numbers ;. associated
with the sets F and D, so that for every ¢ € F we have a fixed w;,
and for every ¢ € D we have a fixed u. The numbers u; and u; are
called weights. Denote by R the NxXN diagonal matrix with the
diagonal elements

R R N R
iii) Assume: given N real functions g; € C[(1 — k)hj;, h3;], which generate
an N-dimensional Haar subspace Y, of C[(1 — k)hjy;, k3] Yy is
called a Haar space, if it satisfies the Haar condition (cf. [12]): Any
nonzero vector in Y, vanishes at most at N — 1 distinct points in

[(1 — k)%, h¥]. The system {g;,¢s,...,9n; is usually called a
Tchebycheff system [1, 25]. Denote an arbitrary element of Yy by
N
(3.1) y) = 3 eailt)
ivyFor n =0,1,...,M —Fk and j=1,2,...,Q pick up functions

Yo from Y, such that

N
[y"j(tn+y) = z Cij(n)gi(tni—v - tn+k—l) = nqu{w}v V 4 e F
(3.2) .

N
]y;,xtm) = 3 eyl (s, — taisor) = ifhs, V9 ED.

Here, and through the remainder of this paper we denote
fory = itoss X, 1)
v) Finally, take

(3.3) Xk = Yniltasn) j=1,2,...,Q.
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The rules above implicitly define the operators F, for every = € J,,_,.
An  explicit generalized polynomial interpolation algorithm may be
developed by an algorithmization of the picking act in iv) above. Obviously,
the construction is of use only if the polynomials Yy, satisfying (3.2) will
exist independently of 7'y, and for arbitrary values of w, X7, and u.fi

n+v ntv*

3.2. Existence of the method

The existence of the interpolation polynomials that satisfy (3.2) is
guaranteed by
Theorem 1. Given the construction rules i)—iii) of paragraph 3.1 with
arbitrary set 7'y, any L-function f and any compatible starting procedure,
assume:
i) Yy is an N-dimensional Haar subspace of CY(1 — k)l , h%] such
that the space spanned by the derivatives of the basis functions of Yy
is an (N — 1)-dimensional Haar subspace of C[(1 — k)h},, h%],
1) for any » € DN\F either v <y, or » > v, when we define

(3.4) g =miny and » = maxy.

VEF veF
The conditions i) and ii) above are sufficient for the existence of the
polynomials defined by (3.2). The polynomials are unique if they exist.
The condition ii) is also necessary if Yy = wy_; (the usual polynomials of
degree N — 1).

Proof. In Appendix 1 we have presented, and modified for our purposes,
some results derived from the general theory of finite interpolation and
Hermite-Birkhoff interpolation. Theorem 1 is an obvious corollary of
Theorems Al—A4 in Appendix 1.

Remark. Condition i) is automatically satisfied by =y_;, but is not
necessary in every case. An example of a space for which i) is not valid is
the system spanned by 1, sinwf, cos wt, sin 2wt, cos 2wt , . ... For spaces
not covered by Theorem 1, the existence must be proved case by case.

For the trigonometric polynomials, we are able to prove

Theorem 2. Given the construction rules i)—iii) of paragraph 3.1 with
equally spaced set T, any L-function f and any compatible starting
procedure, assume:

1) Yy is spanned by the N first functions of the sequence

(3.5) 1, sinwt, coswt, sin2wt, cos22wt,...,

where  is an arbitrary, given frequency parameter that satisfies
27/ |w] > khj;
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ii) for any » € D\F either v <w», or » >, as in (3.4).
Then the polynomials defined by (3.2) exist, if M is sufficiently large.
Proof. The proof is presented in Appendix 2.

3.3. Details of the algorithm

From now on we assume that the method defined in paragraph 3.1
exists. In such cases, the coefficients c¢;(n) in (3.2) can be solved as func-
tions of X7, and fI,,.

We denote by @. the N-vector, which has components X}, ,, v €F
and haifl,,, v €D. Finally we use the matrix and vector notations

G1(tugy — Tntk=1) " Iy, — tntk—) l K rows
. I vy E€F
(3.6) P,= : ,
Fnrgy (bnyy — toti—1) * * * Paiagn(t, o, — tatia) ! L rows
: . ) i vy €D
and
(3.7) ¢j(n) = (cy;(n) , cj(n) , . . ., cx;(n))" .
Equations (3.2) can be expressed by
(3.8) P.g(n) = Rayy j=1,2,...,Q.

Naturally, we have (3.8) for every n € J,;_,. The assumption of the existence
of the method guarantees that P,;' exists. Hence we have

(3.9) ¢;(n) = P;'Ra.; .

Let us denote g, = (¢3(hnss) s - « + » gx(hnsx))T. Then, in view of (3.9),
the relation (3.3) is expressed by
(3.10) Xi. .= grejn) = gl P ' Ro.; .

The row vector g.P,'R is independent of j. For fixed » and j, X7,
is a linear combination of the components of @,;. It is therefore possible
to write (3.10) in the form
(3'11) ‘X{1+k + Z O‘ﬂn X.rit-(—v = k"+k Z ﬂvnfi%—v .

vEF v€D
Here, the coefficients «, = «,(h,) and p,, = §,(h,) in fact depend on
h, defined in (2.7), and are independent of j so that we also have

(3.12) Xtk + z o, (1) Xy = Fnir > B,(n) £, .
vEF vE€D



16 Ann. Acad. Sci. Fennice A. I. 503

Now F,. has been explicitly defined by (3.12).

We denote the column vectors of P;' by p,. We have a p,, cor-
responding to each equation in (3.2), with » € /' and » € D. By the aid
of (3.10) we get

ocvn:“v(h" - - Z ny [y Vy€eF
(3.13) { ) 8n Doy 4

ﬁvn = ﬁv(h") - gr’f pnwu; ‘V’ y € .D .

By combination of the formulas (3.13) and (3.12) with the construction
rules of paragraph 3.1, we have defined our generalized polynomial inter-
polation algorithm (GPIA) for the initial value problem (1.1).

The algorithmy may be computationally poor, since P, may have
nearly equal rows, when M is large, and the nodes in 7', are close to
each other. This difficulty can be overcome by means of suitable com-
putational modifications, which will avoid the direct matrix inversion.
Despite this inconvenience, the algorithm is theoretically interesting.

The expression (3.12) defines X4 explicitly if £ ¢ D. In such cases,

GPIA will produce a unique sequence of vectors Xi, Xity1, ..., starting
from the given vectors X,, X;,..., Xi—y. If £ €D, X,.4p is defined only
implicitly by (3.12), which may be rewritten as

(3.14) xn—l-k = hn+k,3nkf(tn+k ) Xn+k) + Z = G( Xn-Hc) 3’

where z is a constant vector. If G is a contracting mapping, (3.14) has
a unique solution attained with arbitrary accuracy by the iteration of
(3.14) (cf. [37], p. 120).

G is contractive for every n when M — oo, if

i]ln.Hfﬂ,.kLi < 1.

L is the Lipschitz-constant defined in (2.2). The condition of con-
tractiveness is fulfilled, if we are able to assume that B < g for every
fixed ¢, when M — oo. For a moment, let us make this assumption.
Then, with fixed M we have

i L] < R3S L
and a constant 1/, exists such that
(3.15) RESEL < 1 for every M > MM, .
In what follows, we assume that a constant f;° exists such that
(3.16) Bor] < B Vn€Jdy_p, VM > M,.

From (3.12) we see that our method may reduce to a linear multistep
method with constant coefficients, if we have an equidistant 77, and
the coefficients «,(h,) and g,(h.) are independent of h,.
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If T, is equidistant with spacing %, the elements of P, and g, are
functions of %, only, and we write P, = P(h), g. = g(#) and consequently
(3.17) Xotr + 3 500X, = 53 4,0,

v€F v€D

Formula (3.17) defines a linear multistep method with constant coef-

ficients, but we have different coefficients with different step size h.

3.4. Polynomial approximations
Interpolation with my_; leads to the simplest case.
3.4.1. Arbitrary nodes

If Yy = mny_;, the elements of the j:ith column of P, in (3.6) are
homogeneous functions of h,, and of degree j — 1. Thus, the elements
of the j:th row of P;' are homogeneous functions of degree — j -+ 1.
When P! is multiplied by g7 = (1, hnsr ;- - . , ko op), as was donein (3.10),
the elements of the resulting vector are homogeneous functions of degree
zero. Consequently the coefficients «,(h,) and f,(h,) in (3.12) are homo-
geneous functions of h, and of degree zero.

Let us denote by d(h.) the determinant of P,. Then, each coefficient
«,(h,) and g,(h,) is a quotient of a continuous homogeneous function of
h, divided by d(h.). d(h,) is a continuous funection of h, when h, > 0,
and moreover d(h,) # 0 by assumption, when h, > 0.

Thus, the coefficients «,(h:) and f,(h.) are unique forevery n € J_,
and every M. However, the limits of these coefficients will depend on the
way by which the nodes are distributed in [a, 0], when M — oo. For
example, assume that we have hiq/hi =y forevery i =1,2,..., M —1
and every M. Then for every M,

{ '\r(hn) == ar(:")
/3 ,,(hr.) = ﬁ v )
ie. the coefficients are constants, but mayv depend on . The limiting
values of the coefficients may thus depend on the way in which the limit

has been achieved. An illustrative example is given in (3.7).
If the weights are nonzero, formula (3.11) can be written as

()

. (xyn : ey
(3‘18) Xi»-,l—k + z - HVX.III+V = hn—l~k z ﬁ—' luvfr{—i—v *
vEF [ veD My
In view of Theorem Al (Appendix 1) the result of Hermite-Birkhoff

interpolation is unique if it exists. Therefore, if we have x €ny_,, and
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2ty — toth) = @, X0, Vy€EF
(3.19) { (s +1) Hns

xl(tn-{w - t"'”"'l) = U, r{—i-v Vv€D
then
(3.20) Tltwsr — twrie1) = X2, .

Now, by means of (3.19), (3.20) and the selection of z() =
1,t,8,...,t""", after the proper divisions by hn.yx (3.18) yields

“l‘n
(3.21) 1—{—2——:0,
veF My
Kin fn+v - fn—?— - vn
(3.22) R e o
veF MYy ]Zn+k veD MKy
and generally
K (tn+v - tn~$—k—l)i ﬂvn . (tn-)-v - tnLk—l)i—l
(323) 143> — ; => =71 ot ;
vEF My ‘n-tk €D luu nt+k

when 2=0,1,...,N — 1.

3.4.2. Equidistant nodes

When 7T,; is equidistant with spacing h, we have P(h) = PH, and
gy = (1,h,k2,..., kK" HT. Here, P is an N XN -matrix independent
of &, and has a form

(3.24) L v—k+1 (p—k+17 ... @—k=1"" \ | rows
. . : . vy E€F
P=|" : : ) \
0 1 20 —k+1) ... (N1 —k+ 1) [|rows
. . . . v €D

. . . . /

H is an N X N-diagonal matrix with diagonal elements 1,h,A%,..., A"}
(the common multipliers for the columns of P(k)). Therefore, we get

g7(h)PH(h) = g"(h)H-1P— = §7P1,

in which we have defined é = (J;) as an N-vector with unit elements.

We denote P~'= (p;, Ps,...,Py) Where a column vector p, cor-
responds to each of the values » € F and » € D. Hence, in correspondence
with (3.13), independently of %, we derive

{‘xl’:——MVTp’V VVEF

3.25
( ) ﬂvzft;&Tpv V’VGD‘
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Thus, we have proved

Theorem 3. Every generalized polynomial interpolation method reduces
to a unique linear multistep method of form (3.17) with the constant
coefficients (3.25), if Yy = way_; and T is equally spaced.

It may be asked whether there always exists an equally spaced poly-
nomial interpolation method, which corresponds to a given linear multi-
step method. By correspondence we mean that the two methods produce
the same sequence X, Xky1, ... of solution vectors, if the starting values
are the same for both methods. We shall examine this problem.

Given a linear multistep method with constant coefficients,

(3.26) X,k —i—kisocpx,, =nh ﬁoﬂ,fm ;

let us define

(3.27) F={yx #0,. D={p %0} and
(3.28) F= {(yv€F or v€D and » <wv <},

when », and », are defined in (3.4).

It should be recalled that matrix P of an equally spaced polynomial
interpolation method, as written in (3.24), is totally defined by F and D.
Similarly, F with K elements and D with L elements given by (3.27)
and (3.28) will define an N X N-matrix 15, when N = K + L. P exists
by Theorem 1. We denote the column vectors of p1 by p,. If we are
able to state

=0 Vv € F\F
> YreF
(3.20) =T 5T, ne
Iu,; = af: Vv y € D

we have generated a unique, equally spaced polynomial interpolation
method, defined by the weights (3.29), the sets F and D in (3.28) and
(3.27), and which corresponds to (3.26).

Let us call

(3.30) 6"p,# 0 for Vv€F and Vv €D

the inversion condition. Hence we proved
Theorem 4. A linear multistep method (3.26) corresponds to a unique
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equally spaced polynomial interpolation method defined by (3.27), (3.28)
and (3.29) if and only if the inversion condition (3.30) is satisfied.

The meaning of the inversion condition will be studied elsewhere.

The role of the weight matrix R is clarified to some extent by our
next theorem. From (3.23) we are able to conclude that in the equidistant
case, where lpi =% and 7, — tupq = (v — &k -+ 1)h, the following is
true:

Theorem 5. Every equally spaced polynomial interpolation method with
unit matrix R reduces to a consistent linear multistep method of the
order N — 1.

Theorem 5 becomes evident if the definition of consistency is recalled
and it is observed that (3.21) and (3.22) are necessary and sufficient con-
ditions for consistency in linear multistep methods (cf. [22], Theorem 3.4).

Thecrem 5 has an immediate consequence, first discovered by Dahlquist
([13], Theorem 2):

Corollary. There exists a lincar k-step method of the order 2k.

For the proof, it should be observed that the equally spaced polynomial
interpolation method with F = J,;, D = J; exists by Theorem 1 and
has N = 2k - 1.

If a weight differs from unity, the order of the method will automatically
be lower than the maximum otherwise possible. However, the nonunity
weights may be useful, if we are secking a method with properties other
than the maximum order. See [31]. For an example, see also paragraph
5.1.1.

4. STABILITY, CONSISTENCY, CONVERGENCE, ERRORS
4.1. Preliminaries

In this chapter we shall examine the conditions of stability, consistence
and convergence of our method and derive some bounds for the errors
(2.12) and (2.13). Our starting point is the equation (3.12), here repeated as
(4.1) Xoit + > 0,(0) X, ., = kg > B (R, .

ey veD

In our case the coefficient functions «,(h,) and B,(h,) are the special
functions defined by (3.13), although the equation (4.1) is more general,
permitting the coefficients to be arbitrary functions of h,. Thus (4.1)
includes the methods of Lambert [27] and Brunner [5, 6, 7].
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The following results can be proved only on the assumption that the
coefficient functions o, (h,), (as in [27]) will have the form

(£.2) o, () = &, + hapra (), Vv €F,

where «, is constant, and functions ,(h.) are bounded by constants
a¥ such that

(43) ja,(h)] < a¥

by s

Vv€EF, Vn€Jy ;.
Further, we must assume that constants f) exist such that
(4.4) B, < B, VvED, Vn€Jy .

In (3.16) we have already made this assumption for » = L.

Our results are heavily based on a lemma due to Henrici ([22], Lemma
3.2). The lemma has been slightly modified so that the arbitrary spacing
of T, can be taken into account. We present the following

Lemma. Let

k
0e) = 3 ot
i=0

be a polynomial with real coefficients, o 7% 0. (Subsequently they are
the coefficients o, of (4.2).) Let BY ((=0,1,...,k) be k+1
given sequences of functions from Y, to Y, defined on Jy_, such
that, for suitable constants B® >0,

IBO@Z)| < BYZ|, i=0,1,....k Vj€Jy .

for all vectors Z € Y,. Also,let A be a sequence of vectorsin Y defined
on Jy_p and {k} (G=1,2,...,3) be a sequence of positive real
numbers, and take A} as in (2.4). Write he difference equation

E
k—i .
Kp—i Zm-l—k—i = }Zm—'rk z Bin l)(Zm-i-k—i) - Am .
0 i=0

M

(4.5)

14

I

Denote by o the maximum of the moduli of the roots of the polynomial
o(z). If all the roots of modulus « have multiplicity 1, and if

Wiy < loalBO T,
then for every solution Z of difference equation (4.5) satisfying
1Zo] <o"H, n=0,1,...,k—1,
for some constant H, the inequality
(4.6) |1Z0|] < " T*(AH + An)e™3!™®
holds for »n =0,1,..., M, where
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k
A = z Tk~ ';ock_,l ;

B —Zw’B(' ;

3
I
=)
et
=N
l
fa—

2 A, n="Fk,k+1,...,M;

and
I' = I'(1 — hjlon|1B®)—1

if we define
k

I' = sup [ya] (which exists) and (> o* 'm-iz)™ = > pa'.

n=0,1,2,... i=0 i=0
If any root of modulus o has multiplicity > 1, then for every @ > o
and for

(A k(=1
AR A s

the inequality

(4.8) \Zu)) < & THAH + Aerial*
holds for n =0,1,..., M, where

k

A =@kt 1— 205 ),
. i=0 .
B =20 Za) BO |
i=0
H =ma (7, ),
1, — 25 2 —il4] and
D= PO — B o[t BY)1, if we define
I = Sup il 26 = (e — @) and =TTN@f) = 3 9

Proof. The proof runs completely in parallel to that of [22] (Lemma 3.2),
if the constant A of [22] is estimated by #Zj; in the obvious way.

4.2. Stability

Assumptions (4.2) and (4.3) allow us to prove that the stability of
method (4.1) is a consequence of a purely algebraic property of the poly-
nomial g(z). According to [22], we say that any polynomial
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k
Q(z) — Z (xk_izk—i \Vi‘t.h [6,9 7é 0
=0

1

satisfies the roof condition if its k roots =z satisfy |z <1, 1=
1,2,...,k, and if the roots of modulus 1 have multiplicity 1.
With the aid of (4.2), we write the difference equation (4.1) in the form

(48) Xﬂ‘l'k + z lxvxn%«y = hn+k [z ﬁy(h")fn+u - Z a’v(hn) Xn+v ’

vEF vE€D vEF

and associate with it the polynomial o(z) with coefficients «, We take
o«,=0 of v&F, otherwise «, is taken from (4.8). Clearly o = 1.

We can now prove as in [22]

Theorem 6. Method (4.8) is stable if the polynomial p associated
with it satisfies the root condition.

Proof. The proof runs in parallel to the sufficiency proof of Theorem
3.3 in [22]. We denote by X the family of solutions of (4.8) with fixed
M > M, and with any bounded starting vectors that satisfy

Xi(M)y <8, i=0,1,...,k—1.
The difference equation (4.8) is then written in the form

X"‘H‘ + Z(xvxn—i—v = h"+k{ zDﬂv(h”)[fn—{—v - f(tm{-v ’ O)] - z av(h”) Xn+v} + 4, ’
vEF rE

vEF

where

An == kn-{k Z ﬂv(h")f(tn-f—v s 0) .

v€D
We see that our Lemma is applicable. Functions BY are defined by
(4.9) BY(Xuti) = filha)[fnsi — £(tusi » 0)] — i(hn) X

for every ¢ € F'U D, when the coefficients not present in (4.8) are taken
as zeros. Thus

(4.10) BY = BfL -+ af .
By the continuity of f, we have

14 < RS B*%f, where f= 1;;1[31; l'f(¢,0)] and
t€|a,

(4.11) px = > k.

v€D

Hence, if o(z) has a root of modulus 1, Lemma yields
(4.12) Xl < T (AS + nhifxf)eul® |

where A is as in Lemma,
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(4.13) B = Lp* + a*.
(4.14) at = af

and [I'* is defined by the aid of (4.10) as in Lemma. Here A, hasbeen
approximated upwards. Clearly, [[X.|| in (4.12) is uniformly bounded for
every n € J, and every M > M, since we have assumed in (2.5) that
Mhi < C.

If o(2) has no root of modulus 1, we can apply the second part of
Lemma taking @ = 1. The resulting cstimate is similar to (4.12), with
somewhat different values of the constants 4, S, I'* and B. Con-
sequently the sufficiency of the root condition for stability has been proved.

4.3. Consistency

The consistency of method (4.1), with the restrictions (4.2), (4.3) and
(4.4), is a consequence of some simple conditions in relation to the coefficients
of (4.1). In the same way as in [22] (Theorem 3.4), we have

Theorem 7. Method (4.8) is consistent if and only if the following
conditions are satisfied:

(4.15) 14+ >0,=0,
vEF
(4.16) >ab)—>0, Vae€dy . M— .
vE€F
tn+v - tn-H{—l N >
(4:17) 1 + z :x,,(h,.) "-h—’ — zﬂv(h—x)—‘u, V n €JM_;‘, M— .
vEF nik v€D

Proof. Again, as in [22], we are able to conclude as follows. We denote
the modulus of continuity of x’ = f(¢, x) by y. Then for the solution
x of the differential equation x’ = (¢, x), we have

(4.18) X(t + 8) = x(t) + sxX'(t) + sy()6,

where 6 is a vector of which the components are less than or equal to 1
in the modulus.
We must establish that (2.9) holds for (4.8). Here

Fi(x) = Fl(x(tl) 5 X(ti+1) EEREE R X(ii‘Hf)) =
X(tit) + GZF(% + i, (h)X(Ey,) — P ZDﬁ»(hi)X'(tiﬁLp) ;

and by the aid of (4.18), we can write:
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(4.19)  Fux) =1[1+ Z (o0, + Tigar, (o)) )X (livi)
+mﬂ+zw4wmﬂ)m o tivie1) — Rise D B M)IX (ti)

v€D
+ [hisr + 2 o, - hesaa, () [y, — fioam Tz (tis — 68
vEF
+ higr D, 18,(0a) gt — 1)E .
vED

Here, 6 is not the same as in (4 8). Obviously [F(x)| is o(hiy) if
(4.15), (4.16) and (4.17) are satisfied Ihe necessity of (4.15) and (4.16)
follows from the fact that if X’ = 0, then X(f) =a (a constant vector),
and we must have

[+ 2 (x, + ki—i—kaa/(hi))]/h;ﬁ'—) 0, Vne€Jy,. M— o.
vEF

Tollowing this the necessity of (4.17) is observable on taking X' =e¢
(a nonzero constant vector). This leads to the requirement that the coeffi-
cient of X'(f;.,_;) in (£19) divided by %7 must tend to zero as M — oo.
So, the theorem has been proved.

Remark. Sufficient conditions for consistency are also obtained if
(4.16) is replaced by
(4.20) Sah) =0, Vo€Jy ,, VI 1,

vEF
or if (4.17) is replaced by either

__fn
(4.01 1—{_2 +v +k— 1:2 n . VILGJ_U_k, V.Zl[>.]lf[0,

vEF hn-Hc €D
or

tn*v - tn — -
(Mm1+§Mm—ﬁrﬂi=§mm,thH,VM>%.
" ‘ntk veED

4.4. Convergence

The main result of this chapter will now be proved as

Theorem 8. Method (4.8) is convergent if (4.15), (4.20), (4.22) and the
root condition are satisfied.

Proof. The basic idea has been presented in [22] and [27]. From (4.19)

we get
(4.23) IF(x(E) > X(tiyd) 5 - - - x(ti—:-k));} < C_\zhfll(kh;\%.r) s

where
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Cu=1-+2 (k—1—1) (o] + higaf) + > pF.

vEF v€D

We denote by X() the solutions of the difference equation (4.8)
with any bounded and compatible starting values that have

XM <8, i=0,1,...,k—1.
Thus, we have
F(X;, Xio1 .., X)) =0.
By stating as in (2.12) that
Ei = Xi(M) — x(t:), Vi€dy,

we obtain
(4.24) F(X;, Xi+l veees X)) — Fu(x(5) X(big1) 5o v e s X(t;11))
= Ei+k + ZF(“V _':_ ki-:—ka’v(h) iy T l-rkzﬁ (hl ity tl+1' ’ X(tH—v))] = Ai H
vE
where
“A il < OMhu/(l»kf\kl)
by (4.23).

We write (4.24) in the form
'+k + Z “VEI+V - kl+k z {ﬂ [f ity 2 X( l+v) + El-rv) - f(ti—{—v ) X(ti—f-y))]
k
(hi)Ei+v} +4; = ki+k z Bgv)(Eiw) =+ 4,
r=0

and apply Lemma with Z = E, o =1,
BY = B¥L 4 af
as in (4.10), and
TH = max | X;(M) — x,| + max|x(4;) — X = H(M) .

0<j<k—1 0<j<k—1

Moreover, with the observation that A is as in Lemma, B is as in
(413), I'* is defined by the aid of (4.10) as in Lemma,

(i — k 4+ Vil < Mb%, < C
by (2.5), and
A; < ik Crrg(kh3y)

we get
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(4.25) B < T*(AH(M) + OCyz(khj)e"™™ .

Since H(M) -0, x(kh})—0, and C,; remains bounded as M — oo,
we get

lim max ||[E}| = 0,
M->o i€Jpr

and consequently method (4.8) is convergent, and the theorem is proved.

4.5. Asymptotic behaviour of errors

The asymptotic behaviour of the discretization error E; at a fixed
t =14, M— oo, can be estimated if the method used is consistent, the
root, condition is satisfied, and the method is of order ¢q. We make these
assumptions in this chapter.

The assumption of order is written

(4:'26) max i}Fn(x(tn) > X(Z‘n—}-l) LA X({n—k)) S C* hj\quJ‘_l

Jo+1 s
n€Jpyr

where the constant (7, depends on the constants «;, @ and ff of the
method, and on

max |[x*(t)] ,

t€la,b]
where xU*) is the continuocus (g - 1):th derivative of the solution x.
The result is then stated (again as in [22], Theorem 4.1) as

Theorem 9. Let the method (4.8), satisfying the root condition, be of

order ¢, and let the solution x of the problem (1.1) have a continuous
derivative of order ¢ + 1. Let X De the solutions of (4.8) with the bounded

and compatible starting values X (M), ¢=0,1,...,k— 1, and put
w3y = max X0 — xt)].
0<i<k-1

The discretization error then satisfies
(4.27) IEd| < I'*(Au(M) + CCF_\hif) e,

where I'*, 4, B and C are defined as in the proof of Theorem 8, and
Cj, is defined by (4.26).

Proof. The proof is similar to that of Theorem 8. The only exception
is that H(M) is now replaced by wu(M), and Cyy(kh};) is replaced by
C}i k3. Details are omitted.

We notice that if the starting values are sufficiently accurate, i.e.
u(M) = O(h3%)), the discretization error is O(h3f).
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In numerical computations, rounding operations occur, so that the
vectors X; are in fact replaced by vectors Xi= X:; 4 1. The vectors
r; are called accumulated round-off errors. The perturbed vectors X; will
satisfy the difference equation
(428) Xi—{»k + Z (0‘11 ‘T— ]I'H kav(h) XL-|—1I htLL z ﬁ t-rv s Xi+r) = &,

vEF vE€D
where the vector & is called the local round-off error. To obtain (4.28)
we must of course apply method (4.8).
We assume that the local errors are bounded, i.e

e <e>0, Vi€dy.
Substracting from (4.28) the corresponding relation (4.8), we get
l+k + z %, ' '+ka’ (h) itv H—k z ﬂ [f tl-rl’ 5 z+v) - fi+v] =§&;.

Recalling the assumption that method (4.8) satisfies the root condition,
and observing that r; =0, ¢=0,1,..., %k — 1, we can apply Lemma
with o = 1, asin the proof of Theorem 6. Hence we have (in correspondence
with Henricis Theorem 5.1)

Theorem 10. The accumulated round-off error of method (4.8), satis-
fying the root condition, aud applied to the initial value problem (1.1),
is estimated by

* 1

(4.29) I < I, Y €Ty,

%
where I, B and C are the same as in the proof of Theorem 6.
5. APPLICATIONS
In this chapter we shall consider what kind of methods can be con-

structed by our generalized polynomial interpolation approach. The treat-
ment is illustrative rather than exhaustive.

5.1. Polynomial approximations
5.1.1. Equidistant nodes
From Theorem 3 we see that our methods will reduce to classical linear

multistep methods with constant coefficients, when T, is equidistant
with spacing %, and we use 'usual’ polynomial interpolants. In such cases
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our method is totally defined by the given sets ¥ and D, the integer £k,
and the weight matrix R. Sets F and D must satisfy the condition ii)
of Theorem 1 for an existing method. For the theory of stability, consistency
and convergence of the methods we refer to Henrici [22, 23] for more
complete results than those presented here in chapter 4.

As far as we know, the problem of stability of a given polynomial inter-
polation method can be solved only by conversion of the method into the
equivalent multistep method, followed by examination of the root condition.

When a search is being made for polynomial interpolation methods, the
most natural course is that of taking unit weights associated with the given
sets F and D. In such cases, the order of the resulting method will be
as high as possible, and the method is always consistent, as is stated by
Theorem 5. Clearly, we thus rediscover the classical methods based on
numerical integration (see [23]), by taking a unit matrix R, and using the
sets of Table 5.1.

Table 5.1.
Method F D k
Adams-Bashforth k-1 0,1,...,k—1) 1,2,
0 1 1
Adams-Moulton { il} 1) EO} 1 ) 1.2
l — s l,ee., Ly=,.
_ IRC @ 2
Nystrém \ & — 2) 0,1,...,k—1} 2,3,
0 2 2
Milne-Simpson ioi 4{:1} 2} 2
(generalized) & — 2 {0,1,...,k) 2,3,

Similarly we rediscover the classical methods based on numerical
differentiation (the methods 5—48 of [23]) by means of Table 5.2.

Table 5.2.

Method F D k
DO ©,1,..,k—1) ) 1,2,.
D1 ©,1,...,k—1) * -1 1,2,.

) f {1 {0} 2

D2 V40,1,....k—1} k-2 2,3,...
J{2} {0} 3

D3 a,2 {0} 3
I{O,l,...,k—l} k— 3 3,4,

The coefficients «, and B, of these methods are obtained by use of
matrix P of type (3.24). In P, we have a row for each » € F and » € D.
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Corresponding columns appear in P~1. The coefficients «, and f, are
the sums of the elements of these columns.

We notice that the existence of the classical methods is guaranteed
by the fact that either F or D has only one element. It is also worthy
of note that methods D0 with £k =2,3,4,5,6 are the stiffly stable
(see [31]) methods proposed by Gear [19].

If the weights in R differ from unity, the maximum possible order is
not reached, as is seen from (3.21), (3.22) and (3.23). However if the order
of a multistep method is relaxed by one, we arrive at a one-parameter family
of methods, as proposed e.g. in [45] and [24] (see also [31]). The nonunity
weights may serve as this parameter as well as a parameter introduced
into coefficients «, and f,. The parameter can then be used to modify
the method to obtain useful properties other than high order. Naturally,
the idea of parameters is easily generalized to more than one parameter.

As an example of nonunity weights we give a method of type DO
(k= 4) and two of its also stiffly stable modifications proposed by Jain
and Srivastava [24]. The basic formula of order 4 is

(5.1) 25X, = 48X, — 36X,., + 16X, — 3X, + 12}f, ., ,

when written for the scalar problem as in [24]. Jain and Srivastava give,
among others, the following two third-order versions of (5.1):

(5.2)  150X,,, = 262X, ., — 159X, ., + 54X, ., — 7X, + T8hf, .4
(5.3) 10X,,, = 14X, ,; — 3X,,, — 2X,., + X, + 6hf,,.

Formulas (5.2) and (5.3) can be obtained by meansof F ={3,2,1,0},
D = {4}, and the weights us, s, 1y, po and p; The weights are the
ratios of coefficients (5.2) and (5.3) to those of (5.1). The three decimal
values of these weights are:

Formula s Hy # Ho 1a
(5.2) 910 736 563 .389 1.083
(5.3) 729 208 —.313 —.833 1.250

The behaviour of these weights is understood by reference to an
illustrative approach made by Gear [19].

The problem of findirg the proper nonunity weights is not treated
here, but certainly calls for further study.

The meaning of the inversion condition (3.30) is clarified by the following
examples. Let us assume that we have a given k-step method with coef-
ficients «, # 0 and B, # 0 and the corresponding sets F and D. We
assume that #F and D are such that there exists a polynomial inter-
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polation method defined by them. F and D define the matrix P of
type (3.24).

When the inversion condition is met, the sums of the elements of the
columns in P~1 are nonzero and the weights corresponding to coefficients
«, and B, are obtainable by (3.29).

However, in some cases, zero sums exist and the corresponding weights
are not defined. This phenomenon occurs, for instance, when F = {0}
and D ={0,1} (Nystrém’s method with &k =2) or F ={0} and
D = {1, 2} (Milne-Simpson method with k= 2) or F = {1} and D =
{0,1,2,38} (Milne-Simpson method with k& = 3). Thus, given these pairs
of sets F and D with the corresponding nonzero coefficients «, and f,,
it is impossible to find a corresponding polynomial interpolation method.

However, the polynomial interpolation methods with sets F and D
mentioned above, and with unity weights, will produce the classical methods
mentioned. But these methods have a zero cozfficient, reducing them to
methods obtainable by unity weights in connection with the pairs F = {0},
D = {1} (Nystrom’s method with & = 2, the mid-point rule) or I’ = {0},
D =={0,1,2} (Milne-Simpson method with £ = 2, the familiar Simpson
formula). The explanation is that these methods possess a higher accuracy
than would normally be expected (cf. [23], chapter 5.1—2).

Another difficulty involved in finding the polynomial interpolation
method that corresponds to a given multistep method occurs if the given
sets F and D are such that existence condition ii) of Theorem 1 is not
satisfied. The corresponding interpolation method is constructed by taking,
instead of F, the set F defined in (3.28) and then applying the formulas
(3.29).

As an example, consider the 3-step methods defined by F = {0, 2},
D = {1}. Let us assume that they are stable and counsistent. They are
then given by

(5.4) Xois = (1 — X, -+ aX, + h(1 + 20,1,

where — 1/2 < a < 1. When ¢ == 0, 1 and a double zero are the roots of

o(z). All the roots of p(z) are of modulus 1 in the method with « = 1.

Methods (5.4) are of order 1. _
The matrix P defined by F and D is singular, but if we take F =

{0,1,2} and D = {1}, we derive a linear multistep method, which is,

with unity weights, of type D2 (k = 2) and is written as

(5.5) X,.s=6X,.,—3X,,, — 2X, — 6hf

n+l *

Hence method (5.4) is obtained by use of the weights
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pe = (1 — a)/6
l.ul =0
l,“o = — a2
fh = — (14 2a)[6.

It is very illustrative to consider the case of ¢ = 1/2. Formula (5.4)
is then written

(5.6) Xops = 12(X, 2 + X,) + 208, .

This is equivalent to the polynomial interpolation method, which
makes use of a 3-degree polynomial formed with the aid of the values in
1/)12X,,.,, 0, — 1/4X, and — 1/3f,,,. At first glance, the weights do
not seem very reasonable, although (5.6) is closely related to Euler’s
method.

5.1.2. Arbitrary nodes

When T, is arbitrary, the situation bzcomes rather difficult, and the
properties of the methods generated by the polynomial interpolation are
not known completely. The existence of a method is fully prescribed by
the sets F and D. The coefficients of a method are functions of h,, and
are derived by inversion of the matrix P,. This is a tedious process for
N > 4. However, for the conditions of stability, consistency and con-
vergence, we must know the properties of coefficients «,(h,) and pB,(h,).
In particular, we must hope that these coefficients have a certain form, and
that they are bounded as required in (4.2), (4¢.3) and (4.4), to ensure that
we can use the results of chapter 4.

The situation is here illustrated by ounly a few examples. The methods
of Piotrowski [41] are easily obtainable by our approach with sets F and
D devoted to Adams methods. Thus, we get the formulas

k
(5.7) Xopr = Xosior T hon 2 Bk

y==0

with coefficients f,,: Among others we have

a‘) k=2’ ﬂn2=07

P
n+2 nt2

=14 - — .

P Dhnyy ? o 2,4

b) k=2,
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1 1 Prss
ﬂn2 o 2 a 6 hn+2 + k’n-[-l ’
1 1k,
Pn= 5 T G
1 Fin o
ﬁno - 6 }l'n+1(hn—§~2 + h’n-{-]) ’

P 5(2hy s + 6y 5 + 3R,.,)
6/ i o(Pnis + Pin)
T 5(20, 5 + By 5 + 3y, q)
B = — 6]2,”“}1,"+1 :
hrpol2hoy + 3h,0)
Pro = 6h, 1 (s + Tyin)

Recall assumption (2.6). The coefficients are clearly bounded, as required
k

in (4.3) and (4.4). Furthermore they have the property > f,, = 1. The
v=0

methods are thus convergent for every 7',, that satisfies (2.5) and (2.6).
However, the limit of a coefficient S, will depend on the way in which
the limit is achieved when M — . For instance, consider method a),

and take 71", such that Znu =1y for every n, M — oo. The limits of
nt1

fm and f,, are functions of y, which may be an arbitrary positive

constant.

The methods of Krogh [26] include the generalized Adams methods
mentioned above. Moreover, Krogh has suggested the use of a variable
step number £.

The mid-point rule (Nystrom’s method with F = {0}, D = {1},
k = 2) has a varying step size analogy

, 7?"+1F'
(5.8) Xn+2 = X, + hn+2 I — ) |
\ k’n+2 )

The root condition is satisfied, but for consistency we must demand
that

hn—{—-l

lim =1 for every n.

M- kn+2

This means that the only reasonable spacing of 7', is equidistant.
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A similar phenomenon appears in the usual Milne-Simpson method
with F = {0}, D =1{0,1,2}, k=2, which has the coefficients

Knp = 1 3
h P, 1\?
be=%+3;0 — )
" s nyo
\
3 1 kn-{—l 1 {hn+1 2 5 hn+2
=31 4+ 1 5
ﬁnl 2 T2 ™6\ 6 )
hn-{—Z xkn+2 kn-i-l
1 1 kn+l 1 hn—i—2
ﬂnO =% + .Z:{ 3
hoss P
Here
2 X kn—:—l kn—Lﬁ
Z p’ni’ = 2 T - *
v=0 by o T i1

For a consistent method we must require that

2
lim > B, =2 for every n,
Moo 30

and thus the limit spacing must be equidistant.

5.2. Generalized polynomial approximations

In order to simplify the notation we discuss the equidistant 7', only.
The existence of the methods depends on the space Yy used. As was
proved in Theorem 2, the trigonometric polynomials are applicable. Gautschi
[17] has studied these methods in some detail. He has derived his formulas
in the form of power series. By our approach the results are obtained in a
closed form.

For comparison we give the coefficients of an Adams-Bashforth and
Adams-Moulton method: Adams-Bashforth: F'= {1}, D ={0,1}, k=2

=1,

cos wh

1
) b= o S wh 4

— 11— coswh

sin wh ( cos wh) ,

7 wh sin wh

Adams-Moulton: F = {0}, D={0,1}, k=1



MarTi MAKELA, On a generalized interpolation approach 35

l}oc(,:l,

1 1 — coswh

ﬂl_—_ﬂo—_— I

oh snowh

When expanded into their Taylor series these coefficients are equivalent
to those of Gautschi. Here w is the frequency parameter (see [17]).

As would be expected the exponential functions will give rise to similar
formulas. Let us take g; = 1, g, = ¢ and gy = ¢~*. The Adams-Moulton
type formula with F = {0}, D ={0,1} and %k =1 then has the coeffi-
cients oy =1,

cosh wh — 1

ﬁlzﬂo

A detailed discussion of different nonpolynomial approximations does
not fall within the scope of this paper.

" wh sinh wh

Appendix 1: Results from the theory of interpolation

1. General problem of finite interpolation

The problem of selecting the polynomials . that satisfy (3.2) is an
example of the general problem of finite interpolation [14]. The problem
is stated as follows: given an N-dimensional linear space Yy, with a basis
{91,90,...,9x} and N linear functionals v;,7=1,2,..., N defined
on Yp. Is it possible to find an element y € Yy such that

(A1) py=w,i1=1,2,..., N

for an arbitrary N-array w of given values «'? In the present case,
the functionals ¢; are the evaluation functionals at points ¢,.,, » €F,
and the derivative evaluation functionals at points ¢,.,, » € D. Values
w' are the values p, X7, and g, fJ,,. The problem occurs for any 7 € Jy;_,.

The known results (cf. [14], chapter 2.2) concerning the general problem
of finite interpolation needed here are given without proof as

Theorem A1. There exists y € Yy satisfyving (A.1) for arbitrary values
w' if and only if the functionals ; are linearly independent, i.e. the
generalized Gram determinant |y (1,j=1,2,...,N) is non-
vanishing. In that case, the solution is unique.

The basic difficulty in the application of Theorem Al is that the
generalized Gram determinant may be complicated. However, if by some
means we can show that (A.1) has a solution for arbitrary w’s, then by
Theorem Al we know that it is unique.
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2. Hermite-Birkhoff interpolation by polynomials

A more powerful result is obtained by the observation that our inter-
polation problem is an example of a generalized Hermite-Birkhoff inter-
polation. The name HB (Hermite-Birkhoff)-interpolation was first used by
Schoenberg [48] in connection with Yy = my_; (the polynomials of degree
< N — 1), although the problem was initially treated by Birkhoff [3] and
Polya [42]. The modern contribution to the theory of HB-interpolation
with my_; is due to Sharma and Prasad [49], Atkinson and Sharma [2],
Ferguson [16], Schechter [47] and Lorentz and Zeller [32], see also Mathson
[34]. The use of spline functions as interpolant has been discussed by Ritter
[44].

For my_,, the HB-problem is stated as follows: given

i) £ + 1 nodes (real or complex)

(A.2) : t0<t1<...<tk,
ii) a so-called incidence matrix £ = (ey), t =0,1,...,k j=0,
1,...,N —1, with elements e; that are 0 or 1,
iii) a set e ={(¢,j)|e; = 1} with NN elements,

iv) N real numbers ug, (¢,]) €e.
Then find y € wy_, such that

j .o diy
(A?)) y(l)(t,) = U, (2 ,]) €e (\J(J) — dt]) .

The matrix E is called free [32] or poised [48, 49, 2, 16, etc.], if (A.3)
has a solution for each selectlon of numbers u; and points (A.2).

7

Let us denote m; = Zeq and M_zm,,J_O 1,2,...,N —1.

Schoenberg [48] proved that each free matnx E satisfies the Pdlya
condition

(A.4) M;>j+1,j=0,1,...,N—1.
According to [32], a sequence of 1’s on the i:th row of E
(A.5) gi=...=e=1, j<gq,

is called a maximal sequence, if it is not contained in any longer sequence
of 1’s. A maximal sequence is called supported, if there exists 4 < ¢ << 1,
and j; <J, jo <J, for which e ; =e; = 1.

Sufficient conditions for free matrices E are stated in

Theorem A2. (Lorentz and Zeller [32]). An incidence matrix £ is free
if it satisfies the Pdlya condition, and if each of its supported sequences
has an even number of elements.
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An equivalent theorem is proved in [2].

When the preceding results are applied to our problem with conditions
(3.2), we have my= K >1 (F is nonempty), M; =N and e; =0
for j > 1. The Pdlya condition is thus fulfilled.

Matrix E may contain three types of rows. They can start by

i) 11 0...
(A.6) ii) 10 0...
iii) 01 0....

Theorem A2 is useless if E has supported sequences with an odd
number of elements. This may occur only if rows of type iii) exist, since
the rows of type i) and ii) cannot have supported sequences (no e; exists
with j < 0). If we have a j:th row with e, = 0, ¢; =1, this implies
that we have required

(A7) y(t) =,

without any requirement for y(¢). To avoid the odd supported sequences,
it is necessary and sufficient to avoid the requirement (A.7) for a bare
derivative at a point ¢;, if ¢ has the following property: t; lies between
t; and t such that we have a requirement both for y(t:) and y(&)
(ie. €9=¢€,o=1).

Lorentz and Zeller [32] called

(A.8) M;>j+2,j=0,1,...,N—2

the strong Pélya condition. They also proved the following

Theorem A3. (Lorentz and Zeller). Let E be an incidence matrix that
satisfies the strong Poélya condition (A.8), and has a row consisting of a
single supported one. Then E is not free.

In our case (3.2) only single supported ones may exist. If my = K = 1,
the strong Pélya condition is not fulfilled. In such cases, £ has no sup-
ported sequences and is always free. If my = K > 1, the strong Polya
condition is filled and theorem A3 is applicable.

3. Hermite-Birkhoff interpolation by generalized polynomials

The HB-interpolation problem can be generalized if, instead of my_,,
any other N-dimensional linear space Yy is taken. Sufficient conditions,
similar to those of Theorem A2 for the existence of the solution of the
generalized problem, are not known. With the exception of the basic
condition for the generalized Gram determinant in Theorem Al, the only
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result known by us is that of Matthews [35]. Fortunately, it is sufficient
for our purposes.
We shall present a slightly generalized version of [35] here as
Theorem A4. Let Y, be an N-dimensional Haar subspace of C'[a , b]
such that the space spanned by the derivatives of the basis functions of
Yy is an (N — 1)-dimensional Haar subspace of C[a,b], denoted by
Yy_1. Take I = [a,b]. Then, for any distinct set

Tep={tlh=1,2,...,j; h<b<...<ticl,
and any distinct set
Tp={tli=1,2,...,p; t,€Tp or t, <t or t,>tycl,
such that j -+ p < N, and for any set of real numbers,
{uy s ug oo, %, uvl,uyi,...,uyp},

an y € Y, exists such that

{y(ti)zui,i:1:25°":.'j’

(A.9) .
yi,)=mu,,i1=1,2,...,p.

Proof. The proof is equivalent to that given by Matthews [35] and has
accordingly been omitted. The only difference in the theorems is that our
set Tp may be a little larger than the corresponding set of Matthews.
Matthews has T, c T We permit points in 7', outside the interval
[t,,t] defined by set Tp. However, this does not disturb the reasoning
based on Rolle’s theorem in [35].

Remarks. The result of Theorem A4 is equivalent to that of Theorem
A2, when Theorem A2 is applied to our special interpolation problem with
conditions (3.2). The uniqueness of y in Theorem A4 is warranted, if
j -+ p =N, as a consequence of Theorem Al. The Haar condition posed
for Yy and Yy_, makes Yy very similar to 7y ;. The necessity of the
Haar condition is easily understood if we recall that the proofs of Theorems
A2 and A3 are heavily based on the number of z°ros of polynomials and
their derivatives. This also applies to the generalized polynomials in the
proof of Theorem A4.
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Appendix 2: Proof of Theorem 2

Cf. [17]. We change the basis of Yy as follows:

New basis Old basis

1 1

(sin ut‘)2i—1 ) R

cos ut sin ot i=1,2,

(A.10) uhjy

sin wt\¥ ) )

uk—* cos 1wl 1 =1,2,....
M

Here, we have defined # = /2. The fact that the new functions form
a basis is an immediate consequence of the known trigonometric identity

sin® (2/2) = [(1 — cos 2)/2]".

from which it follows that

(A.11) sin® (2/2) = > s;(1 — cosjx), i=1.2,....
j=1
where s; are suitable constants, and in particular s; = 0. Differentiation

on both sides in (A.11) gives
(A.12) sin®~! (2/2) cos (x/2) = D jlisysinjr. i=1,2,....
j=1

If we take x = of, u =w/2 and multiply the identities (A.11) and
(A.12) by suitable constants (uwhi)™* or (uh¥)~**! itis seen that the
new functions form a useful basis obtained by a linear transformation
from the old one.

Let our basis functions now be denoted by ¢,.¢,....,¢y and the
evaluation functionals of (3.2) by v, for every » € F and every » € D.
For a fixed #, the generalized Gram determinant 'y,g;' that corresponds
to (3.2) contains elements of type

{g,-(t,,ﬂ—tn_,cﬂ) v€F,i=1.,2,...,N

(A.13) , .
Gi(bury — tu_pi1) ve€ED,i=1.2,...,N.
With a fixed 7T, let us define 6, so that

(A'14) tn+v - tn+k—1 = 0nka>tl .

Then, for all n and » we have 1 — k <, <1.
The elements of |y,g:;| in (A.13) are explicitly of the type
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[sin (u 0,,h3)]*
PR cos (u 0,,kjy)
M J e _D
»
[sin (w 0,,0%)]*
whi
(A.15) o
sin (w0, h3)]77°
7% (20 cos? (w 0,,h5) — 1)
w ki 7
r TN v
. [sin (u U T w05
2% |——— cos (u 0, b}
w hi; M

We can now make the following observations:
For any integers j >0, i >1 as 7—>0

di [(sin 70\* 1 AN

T . cOoS TOA 167 and
(A.16) L i

d? (sm 10‘)" A6~

AN

the convergence being uniform wich respect to 6 in any finite interval.
By taking 7 = whj and letting 3 — oo, we can see that also 7-—0.
Since 0, does not depend on Yy, the elements of our generalized Gram
determinant will have the same limits (if they exist) as the elements of the
corresponding generalized Gram determinant obtained by means of the
clements of m,_; divided by the proper powers of k3. For the existence
of these limits we must assume that 0, is independent of # when J/
is large. This is true if the spacing of T, is equidistant when M is large.

Thus we can conclude that if the condition ii) of Theorem 2 is satis-
fied, and T, is equidistant, when J > M, (a sufficiently large cons-
tant), the generalized Gram determinant |y,g,| has a nonzero limit.
Hence, by the continuity of functionals y, the determinant remains
nonzero for whi; sufficiently small. ie. for 3/ sufficiently large. The
application of Theorem Al finishes our proof.

Remarks. The results of Theorem 2 are very similar to those of Gautschi
(cf. [17], Theorem 2). Gautschi also provides estimates for the smallness of
whi. One rough estimate given in [17] is

T
(A.17) 0 < whyp < o

where p is an integer such that our N corresponds to 2p -+ 1. Thus,
the requirement for M, is very modest.

Institute of Mathematics,
Helsinki University of Technology,
Otaniemi, Finland
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