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Null Orlicz classes of Riemann surfaces

1. Introduction. Maurice Heins [1] has used null Hardy classes to
classify Riemann surfaces. His success depends to a considerable extent
on the Myrberg example, the Szego-Solomentsev Theorem and the way
that |2?| smears the behavior of ¢,(x) = 2P over an angular sector (for
references see [1]). In this paper we attempt to refine this linear classifica-
tion by using the non-linear lattice-like null Orlicz classes €. We obtain
partial results on the problem of characterizing the inclusion relations be-
tween the classes ©_ in terms of the growth relations between the functions
.

To be precise we say that a homeomorphism ¢(r) of [0, co) onto
itself is an Orlicz function if

(1) @(r) is convex in logr,

(2) log 7 = o(g(r)) -

In other words the Orlicz condition (1) means that @D(x) = @(e*) is convex
and the de La Vallée Poussin condition (2) means that x1®(x) — oo as
2 — oo. In this paper the symbol »g» will be reserved to denote an Orlicz
function. Although functions other than ¢ could be considered, the Szego-
Solomentsev Theorem applies naturally to these.

If S denotes a Riemann surface let A(S), P(S) denote its family
of analytic, positive harmonic functions respectively. Let

H,(S) = {f €A(S): ¢ [ =u€PWS)}

denote its Orlicz-¢ family. (For more general functions y we refer to
H,(S) as its Hardy-y family.) To be sure H (S) always contains the con-
stant functions, but when it contains no other functions we say H_(S)
is null. In the classic notation

@, = {S:H,(S) is null}
denotes the null Orlicz-p class of Riemann surfaces.

In particular if @,(r) = 7P then (@"’p = @, (p > 0) are the null Hardy-p
classes discussed by Heins. His basic result is that
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(3) CV,cnNCec..cUQcO%GbcNGc...cUQc@y,,

>0 <p pP<gq >0

where €, , , @y, is the null Lindel6fian analytic class, null bounded analytic
class respectively. (Our set notation is that A cB, Ac B, A4 B
means inclusion, proper inclusion, no inclusion respectively and after
Hausdorff A|B means 4 & B and B & 4.)

In the general case there are two growth conditions to be considered.
(4)  Finite growth means lim sup 2 Pp(x) < oo for some p > 0.

Infinite growth means lim sup 2 Pp(x) = oo for all p>0.

We shall call ¢ superscalar when (5) holds and subscalar when (6) holds.

(5) Lo(r) < ¢(Kr),
(6) ¢(Kr) < Lg(r) ,
where in case (5) we, may choose

(7) K—-0 as L—0.

In addition

@

p(inv ¢(t))
(8) p<g@ meansf*l—_{—_tTdt< o,
0
i 14
(9) py<<g meansfwdt<oo, for all » >0,
0

where inv ¢ denotes the inverse of . Our main results are as follows:
Theorem 1. If ¢,y are Orlicz functions then

(10) C,cO,, if p<<q,
and if in addition @ s superscalar or vy is subscalar then
(11) ©,c0,, if y<g.

Corollary 1. (Countable unions and intersections).

(12) U@, c@,cU,,
n=1 m=1

whenever ¢, << ¢ << gm or in the case that ¢, ¢. are superscalar or
®n , @ are subscalar whenever @m < ¢ < Qm .

Corollary 2. (Arbitrary unions for finite superscalar functions).
(13) uo,co,,

yp<o

whenever @ s finite and superscalar.
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Needless to say more questions are raised than answered. In particular
the problem of characterizing the inclusion relations “C, c, £, 1”7
between the @, in terms of the relative growth relations between the ¢
is left open.

The basic idea is to bring the theory of conformal strip mappings to
bear on the problem of finding a replacement for z? in the general case.
In particular the soft geometric extremal length distortion theorem of
Jenkins-Oikawa [2] is used in the finite case and the hard analytic distor-
tion theorem of Warschawski [3] is used in the infinite case. (It is interest-
ing that both theorems were needed.) Once the replacements k, , which
correspond to ¢ and play the role of 2P in the general case, are obtained
Heins’ methods may be applied.

I am grateful to David Drasin for his suggestions and especially for
introducing me to the nuances in the theory of conformal strip mappings.
I also wish to thank K. V. Rajeswara Rao and Gerald R. MacLane for
their incisive remarks.

2. Conformal strip mappings. a. Although the results reviewed in
this section hold for more general domains, it will suffice for our applica-
tions to restrict the study to symmetric strips with ’nice”” boundaries. A
symmetric strip domain will be defined by

Seg={x+1y: |yl <%6()}

where 6 is positive and continuous. Let w = f,(z) denote the normalized
(4= o, 0 are left fixed) conformal map of Sy onto S; = {u + w: jv] <3}
and let g,(w) =z denote its inverse. The general problem is to describe
the behavior of f, in terms of the behavior of 0. Here we are interested
in determining the conditions on 6 under which |Kf,(x) — Nf,(z) | is uni-
formly bounded, because this simulates the relation between |zP| and
. In the next section we shall show how to choose 0 so that Rfy(x)
(weakly) approximates a prescribed log ¢(e*) . In this section we point out
two sufficient conditions on 6 which guarantee that “Nf,(z) = Nfg(x) -+
4+ 0(1) . As we previously mentioned two types of distortion theorems
are used.

A. The Jenkins-Oikawa Theorem. Although the theorem we have in
mind is not explicitly stated as such in the Jenkins-Oikawa paper [2] it is a
trivial consequence of their method and is certainly stated implicitly in
their paper. We shall also outline their proof but first we need to recall
some notation.

Let Qu(t) ={o<z<t, |yl <%6(x)} and let any of the symbols
mg(t) = m[Qg(t)] = mI'y(t) denote the module for the family of arcs I'y(t)
in Qg(t) which separate the vertical sides of the quadrangle Qg (t) . Let
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(14) w(x) = inf Rfp(2) ,
y
#(x) = sup Kfg(z),
osc(x) = d(x) — u(x) .

The Jenkins-Oikawa approach to our problem depends on the initial ob-
servation that

(15) |Rfo(z) — mp()] < K

if and only if ose(xr) < B. This follows immediately from the conformal
invariance and monotonicity properties of modules, namely

me(x) = m[f(Qe(®))],
(@) — a(0) < m[fg(Qe(®))] < a(x) — u(0),
() — u(0) = u(x) — @(0) + osc(x) + osc(0) .

The module my(x) can then be estimated by well-known techniques to
give information about “Rf(z) such as Ahlfors’ distortion theorem. But for
our applications it will suffice to show that mg(x) itself has a desired
behavior.

Consequently from our point of view their theorem is a sufficient con-
dition on 6 which guarantees osc(x) < B. To state it let L = Ly(x) > 0
be given, set I=[x—L,x+ L], M =sup{0(t):t€L},m =
inf{6(t): t €I} and define

N

S

_ Lmin(}, L)
(16) #6(:1') = [nTn(m , L)]2 .

Then their theorem reads as follows:
Theorem A. (Jenkins-Oikawa). For a symmetric strip S, let  Lg(w)
exist on a set E c [0, o) and have the property that

(17) gy < B, for x€E.

Then the mapping function fo satisfies (15) at each x € E for K independent
of x.

The proof is delayed until we state the next theorem.

B. The Warschawski Theorem. The actual result we quote is War-
schawski’s Theorem [3] but it is clear how this originated from Ahlfors’
distortion theorem (see [3]). Warschawski calls the stip S, an L-strip
(of inclination zero) if (6(x) — 0(xy)) [ (xy — @) >0 as &, — 0.
As we shall see the degree of smoothness of § makes no difference for our
applicatons so we shall assume 0'(f) is continuous. L-trip condition is
0'(t)y >0 as t— oo.



ArTHUR E. OBROCK, Null Orlicz classes of Riemann surfaces 7

Theorem B. (Warschawski). If Sg is a smooth symmetric L-strip and

(0°())®
(18) 0() < 0,
then fo, has the asymptotic expansion
dt Ly
(19) fe(z)=l+f9—(t)‘+@%+0(l),
0

where A s a real constant.

(Actually, Warschawski’s original formula is slightly more complicated
because it also includes the non-symmetric case.)

b. We outline the proofs. Because mg(x) = m[fe(Qe(x))] we let
@) {{’d( —1<u<u@) +1, [v| <1}, if w@) — @(0) > —1,

Xr) —

’ {a(0) — 1 <w<ao), <y, if y(x)—aw)s—l,
and set o(w) =1 in Ry(x), zero elsewhere. Then p(w) |[dw is admissible
for the module m[f,(Q,(x))] and hence

x) — U 2, if wu(x) —a(0)>—1,
20) (x)<{ (®) — a(0) + w(@) — 4(0)
1, if w()— @(0) < —1.

Next let L,={a=1¢, |y <I06@) } denote the vertical line segment
cut off by S, and note that Byx) ={L:0<t<ax}c I[y(x). There-
fore by monotonicity mg(x) = mF ( ) = mBg(x) and since [0(z)] 2 |dz|
is extremal for the last module mBy(x), we obtain

mBy(x) = / / 0 2dxdy = f 01dz and hence

Qp(®)
dt
mg(x) > W
0

Hence as soon as Ahlfors’ condition f [6(t)]7'dt > 1 holds we must have
0

mg(x) > 1 and hence wu(x) — @(0) > 1 must hold. This proves the Ahl-
fors distortion theorem.

Now to get the upper inequality we note that
x) ={u(0) <u <), |v] <%} has module mTy(») = @(x) — u(0)

and hence by conformal invariance
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(21) a(x) — w(0) = m[ge(To(@))] -

Then we use a variation of the previous trick to estimate m[gy(Tg(2))].
Let 04(2) |dz| denote the extremal metric for mg(x). Then if Lg(x) is
given set g, = [min(L,, m)]™* on {|x —s] < L, ly| < g min(L,, M)},
zero elsewhere, for s = 0, x. Thus if

0(z) = max(gy(2) ; €x(2) » 0x(2))
then p(z) |dz| is admissible for m[gy(Ts(x))] and we obtain

m[go(Te())] < pe(0) + mo(x) + po(@) 5

which because of (21), (20), (17) completes the proof of Theorem A.

To get Warschawski’s upper inequality recall that if w€ C*(Qg(%)) and
if o,i0@)=1, ok,—30x)=0, |gradw||dz] is admissible
for mg(x) and hence with w(x,y) =13+ (y/0(x)) on @Qgx), zero
elsewhere observe that

| 1)
(22) me(r) < ff lgrad w2z dy = 9’1‘) -+ 1 ——07(5— dt ,
0

Qg(®)
which is par‘r of VVar<chaW<ki’s inequality. (In the non-symmetric case
where ={0_(x) <y < 9@}, 0@ =0i(x) —0_(x), wp)=
1 (94(2) —|— g_(x)), and O are continuously differentiable use w(z,y) =
L+ (y — w(@))/0(x) to obtain

L @me . 1 [ O
mg(x) < f —é(—tw)———)g dt + ﬁ —Wt)))— dt
0 0

The expansion holds in the non-symmetric case when lim @', = lim 0. =0,

f (6'(1))2 (6(2)) Mdt << o with f ))~idt  replaced by

f [1 - (') (6(6) "t )

Finally to obtain the asymptotic expansion of Warschawski we appeal
to Waischawski [3].

¢. In the case of finite growth we mentioned that mg(x) will be chosen
to approximate lcg ¢(¢*) for 6 appropriately chosen. This will be ac-
ccn plished by a centinuity argument, for which we prepare by establishing
a simple fact about mg(x) . For that purpose let
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Ify — fall= = sup{ [fi(t) — fo®) [ : 0 <t < }

be the uniform metric.

Continuity Lemma 1. Suppose v, 0 are positive continuous with
fized. Then |mg —m,|lz—0 as [0 —p|l.—0.

The modules my(t) are determined by (or according to Grotzsch defined
by) the unique conformal maps w = Fg,(2) of @g(f) onto REy(f) =
{0<v <1, 0<u<myt)}. As [[0 — y|l;— 0 the domains converge
Qo(t) = Q,(t) in the sense of Carathéodory. By Montel’s theorem a sub-
sequence of the F,, converge, by Carathéodory theorem, to a conformal
map F, of @,() onto a rectangle By={0<v <1, 0<u<m}.
By uniqueness of the defining conformal map m = my(t), Fy = Fg,t and
the lemma follows.

3. Weak approximation. a. Let us assume that ¢,y are Orlicz func-
tions. It is a trivial but useful result that

(23) @,=0,if K¢ <y <Ky,

for some K > 0, where f<g means f(z) <g(x) for z <x,. Now

since @D(x) = ¢(e*) is convex and increasing, we may write D(x) = / Ot)dt ,
0

where O(t) is non-decreasing and, since z7'P(x) - 0 as xr—> 0 we

must have O(x) — o as x— oo. Thus we may approximate O(x) by

a positive C® function 6,(x) such that

1 0@) < 6,(x) <20(2),
Oi(zx) > 0.

Hence if ®(z) = [@,(t)dt then }d(x) < Pyx) <2 P) and Pj(x)

0
is positive and continuous. Finally by Arakelyan’s fundamental theorem
of approximation or perhaps by more elementary theorems there is a real
analytic function F(x) such that 3 @{(z) < F(x) <2 @[(z). Con-

x t
sequently @,(z) = f ( f F(u)du)dt satisfies 1 @, < @, <2 @;. Hence
0 0

by (23) we obtain the following fact

Lemma 2. The degree of smoothness of ¢ does not affect the classification
@, . In other words for each Orlicz function @ there is a real analytic Orlicz
Sunction vy such that €, =@, .

b. The main tool for constructing the functions %, which correspond
to ¢ and play the role of 27 is the following

Weak approximation lemma 3. Let A(x) denote an orientation pre-
serving homeomorphism of (— oo, ) onto itself for which log x = o(A(x))



10 Ann. Acad. Sci. Fennice A. I. 498

for x large. Then there exists a positive continuous function 6= 6 (x)
such that the symmelric strip Sg, the normalized conformal strip mapping
Jfos of Sg onto Sy, and its inverse go have the following properties:

(24) Wfole) = M) — K,
(25) gol ol <a}2U (Il <b,a=b},
(26) Rfz) < Mz) + K, for  =b,,

where K >0, 0<a,b<i, b.” .

The proof will be in two cases according to whether or not A(z) < px
for some p > 0, z <uz,, which we refer to as finite or infinite growth
respectively.

Case A. (finite growth). Since A(x) < px we may choose 6(f) =p~*.
Then mg(x) = p(x) = A(x), for & < x,. On the other hand if we choose
0(t) =1t then mgy(x) =logx < A(x) for x >x,. We shall push up on
the graph of 6 = p~! from below causing a »dent» to form and thereby
causing mg(x) to decrease. Condition (24) will be maintained throughout
the deformation which is used to obtain condition (26). For functions
0(x) with 6(x) = 0(a) , for ¢ <ax <0b. we define the dent deformation
D, ,(0) = y, as follows:

0(x) , if r<aorax<b,
y(x) =4 0(a) + (x — a), if a<ze<ec,
O(a) +(c—a)—(x—c), if ce<2e<b,

where ¢ =% (a +b). Now clearly m,(x)\as b~ continuously by the
continuity lemma 1. Hence there is a first & for which both

m, (o) = M)
m,(x) = W),
for x > x,. Then take a, b much larger and repeat the dent deforma-
tion to obtain the desired 6 by induction.
To see that g, has the weak covering property (25) we note first that
by Carathéodory’s theorem g, may be assumed to be homeomorphic on

the closed strip S;. Then by the fact that 6 was formed by the dent
deformation from 6(x)=p~! we have

D go(u -+ vi) > 9 (p~(u + vi))

on 0S;={v=41} and hence throughout §;. Hence condition
(25) is obtained and in the finite growth case we obtain the strong covering

property
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(27) gof{lv| <a}d{lyl <ap'}.

To see that (24), (26) hold we need only apply the Jenkins-Oikawa
theorem A to show that Rfy(z) = my(x) + 0(1). It suffices to check
condition (17). With £ =[0, ), L=0@x)+1>p*+1, (p <1),

2
we find that ug(x) < (-i——t—z) in (17).

Case B. (Infinite growth). We assume 0(xp) > pa,, for all p >0,
2, > K, for K given. In other words if y=p~" then 0(z;) > m,(xp) .
To prove this case we shall apply the Warschawski Theorem B to the re-
sulting 6 in the conclusion of the following

Lemma 4. Given A as in the hypothesis of lemma 3, there is a positive
continuous differentiable function 0 with the following properties:

x

dt
28) G = Mo — K,
(29) 6(5,) > b,
bn
dt
(30) 5 < M)+ K,
(31) lim 0'(f) — 0,
. 6'(2))?
(32) f 08) < o
0

where K >0, 0<<b, b, .

Proof of Lemma 4: Consider 7(x) = exp(— 1/x), for 0 <2z <1,
where 7(0) = 0 is understood and set 7.(xr) = 7(4™"x), for 0 <z < 4".
Notice that:

(33) [To(@) | < 47(4/?),
(34) Ta(4") = €1,
4n 1
! 2
(35) f %)— dt = 4™ f t~re M dt .

Then choose &, so small that
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24"
(36) N > 4742,
Now define 6 initially by the formula
7(6n) , if 4" <ax<2-4"+ 4",,
o) — (w —(2-4M4"), if 2.4 L 46, <a <3-4,
T([4" 1 — z2]47"), if 3-4" <4 H—4%,,,,
7(0ny1) 5 if 4rH —4n,  <a <4

Evidently properties (28), (29), (31), (32) hold. To get property (30) we
define the push deformation P,.(0) = x as follows:

le(x), if z<a,
(x) 0(a), if a<z<b,
l@(x—(b—a)), if b<x.

If (30) holds then there is nothing to do. If (30) fails to hold then it still
fails after a push deformation. The other 4 properties continue to hold.
However because 1 has infinite growth characteristics there is a first
b =0b; for which y = P, (0) satisfies (30) at b,. Consequently sub-
sequent push deformations for @, b much larger will ensure that § can
be constructed with the 5 properties of lemma 4.

Proof of Lemma 3: Consider 6 with the properties of lemma 4. By
(31) Sy is an L-strip and by (32) Warschawski’s expansion (19) holds.
Hence properties (24), (25), (26) can be read from properties (28), (29),
(30) by Warschawski’s expansion.

¢. The reason for the dichotomy in this proof is that there is a dicho-
tomy in the theory of conformal strip mappings. In the finite case, condi-
tions (31), (32) may not be possible, which makes it difficult to apply
Warschawski’s theorem. In the infinite case it is difficult to obtain the
weak covering property without the help of Warschawski’s L-strip theory.

d. We conclude this section by describing the functions %, which
play the role of 22. The only problem will be to define A. There are
several cases.

I. The superscalar case. Given a superscalar Orlicz function ¢, set

Alx) = log ¢(e) .

II. The subscalar case. Let y be a subscalar Orlicz function, ¢ an
Orlicz function and o < ¢ . Then for every n > 0

6/‘ w[n(lln_z iz;(t f

dt<oo
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Hence @, «© may be found such that

[>o]

/w(n nve@) 1

(37) —]:*_rt‘z— b << o -

an

For b, =n inv ¢(a,) select the a, to diverge so rapidly that an Orlicz.
function y can be found with the properties:

(38) x(r) = g(r/n), if b,<r<b,,,
(39) 2(r) < g(r/n) if r<b,.,,
then set

(40) Ax) = log y(e¥) .

In this case 1 depends on y and ¢.

III. General case. If y << ¢ then (37) holds and we proceed to
choose y and A exactly as in case II.

The crueial property. In case Ilet v < ¢, in case II, IIT ¢ is given.
Let y = ¢ in case I. Then in every case

o

(41) fw(llL_t_xt(;—)-)dt<oo.

Approximation. Given A= 1  defined in case I, II, III we obtain
0 = 0, from the weak approximation lemma 4. (In case I, IIT 6 also
depends on o .) Then the symmetric strip §, and the conformal functions
fo» 9o are defined with properties (24), (25), (26). Let ( be the variable
in 85 and let o be the variable in S;. Define

A, ={(,0):€8,, z=¢"}.

Then the defining parameter 7: (z,7)—{ gives A_ a conformal structure
and the canonical projection 7: (z, () —2 defines 4 as a smooth cover-
ing surface over the complex plane. We then define the conformal equival-
ence between A_ and the halfplane H = {Rw > 0} by

(42) h,(z, C) = exp fo(£)

(43) k(o) = (exp go(log ) , gg(log w)) .
From (24), (25), (26) we obtain

(44) [z, ) | = x(lz )[K,

(45) n[kw{arg(ofgb}]za{largﬂgb,.,}z]=b,,},
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(46) [y (25 8) | < x(1z)K, if [z] = ba,

where K >0, 0<a,b< N b, . If in addition ¢ is finite and
subscalar then the strong covering property holds

(47) [k, {largw | <a}]D{largz| <b}.

This follows from the strong covering property (27) for g, .
The crucial property again. In every case I, II, IIT we have

0

y [k, (it) |
(48) J <

-

That is because |k (z, ()| = x(|2] )/K implies |k (w)| <inv yx(Klw|)
and hence (48) follows from (41).

4. Construction of surfaces. a. The surfaces S we construct are essenti-
ally a hybrid of two of Heins’ examples. We »tear» the »Riemannian sectors»
from an example [1, ITI, 5, p. 47], deform it into the »sector» A described
in section 3d and »weld» these back onto another of his examples [1, III,
3, p. 37]. The »sectors» ensure that the surface S € @ and the »base sur-
face» ensures that S ¢ @, .

b. Given the Orlicz function ¢ we choose A4,, %, , k, asin section
3d according to case I, IT, or III. Only in the first case (¢ subscalar),
are these actually independent of . In the other two cases they depend
on p < ¢, py<<¢. Considering the covering number b > 0 in property
(44), choose an integer N > 2n/b and denote the Nth roots of unity by
w, = exp(2niv/N) for 1 <v» < N. Then define the marked disks and
marked sectors as follows:

@

D ={(z,1): 2] <3}, for n =1,
D,={(z,2):]2] <3}, for n =2,
D,={(z,n): |zl <n}, for n >3
B,={(z,w,v):2=0mag5w)}, for 1 <v<N.

We abuse the notation by defining the canonical projection s as the pro-
jection of an n-tuple onto its first coordinate (for example n(z,w,v) =z,
7z, n) = z) . We shall attempt to indicate what is the topological structure
of the surface described in each case. Then the conformal structure will
always be induced by the canonical projection =. For example D, _, 4,
are bordered covering surfaces because =z is univalent on them.

We shall first »puncture» and »cut» these marked surfaces and then at
pairs of »cuts» which have common projections »weld» them together by
the usual »criss-cross» technique. To define the cuts let a, = 27%, b, =

v
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9+l ¢ — 3 — 2% be fixed so that b, >a,>0b,,,%0, and choose
d, arbitrary (for the moment) except that

(49) 2 <. <e, <d,<c, /3.

Designate the cuts as follows:

I, ={(w,t,w,»n)€A4,:1<t<2}, (1<»<N),
I,={(0,t,2)€D:1 <t <2}, (1<»<N)

J={(,n) €D, 10, <t <D}, v>1,n=1,2),
K,={(t,n)€D,:c, <t<d,}, @W>3,m=2o0rv=mn>3).

The punctured and cut disks and sectors are then defined as follows:

B=D,— (0.1}~ U0/,

«©

@ N
E2:‘D2—{(0>2)}—UJVZ_UIVZ_UKT27
v=1 r=1

v=3
En:Dn'—‘Knna (/)7‘23)3
A, =B, —1I, (1<»<N).

To repeat E,, A, are considered as bordered Riemann covering sur-
faces of the complex plane C with projection 7.

¢. To form a Riemann surface from these pieces it is only necessary
to explain how to identify border points on cuts with common projections
under = . The topology will then be given by the quotient topology and
the conformal structure will be determined by = . To explain the identi-
fication we orient the cuts I so that in their positive direction the modulus
of their m-projection increases. Hence it makes sense to speak of the right
or left side of a cut I and to speak of the right, left border point p4 , p- re-
spectively which corresponds to the interior point p of the cut I.

The repair weld at a cut I is the surface formed by identifying border
points the of the cut I which have a common projection

(50) P+ =p--

The criss-cross weld between two cuts I;, I, which have a common
projection is formed by first identifying end points p; = p, when n(p;) =
7(p,) , then at interior points

_p1+ = p,?,— H
(51)
D1— = Do+

when 7(p;) = 7(p,y) = #(P1.) = 7(Psy) -
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Now the primary surface S, is formed by criss-cross welding all pieces
E, w>1) and 4, (1 <» <mn) at all pairs of cuts with common pro-
jections. (There are never more than two cuts with a common projection.)
The nth truncation is

Sy =38, ——V=EJ+1E,, (n>2)
and the repaired mth truncation T', is obtained from S7 by using the
repair weld at I, for v >n + 1.

d. In this subsection the basic properties of S, S, , 77 are discussed.
Evidently they are all ramified covering surfaces over C with projection
7 . The covering is smooth except at the end points of the cuts I, where
there is a criss-cross weld, these last points being branch points of order
2—1 = 1. We may designate them by §, S_, S, , etc., according to
the degree of dependence we wish to denote. For similar reasons we may
wish to write 7=z, ==, .

The basic coverage property is

(52) 7S, =0C, in general,
(53) a(T) =0, when ¢ has finite growth.

It is also useful to note that

@
J ni-1 .
N i\ c...cUSg_S

n=3

@

We adapt Heins’ notation Mf as the least harmonic majorant of the (real
valued) function f on its domain of definition D . Since AMf depends
on D we may wish to write Mf/D = Mf in order to avoid confusion. With
this notation we state the basic Myrberg property that if f € A(S), where
S =8,, or T? has property (52) or (53), y is any Orlicz function, and
My|f|/S exists, then

(54) f=gom, where ¢ € A(C) .

To prove this we resort to Heins’ variation of the Myrberg argument [1,
Remark, p. 37]. Restrict f(p) to

R = (S, — “UEV—'QJIAV) N{p:ixp) <%}

v=3

and consider

2
-—7—2} , where {p,q} = n1(z).
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Note that F is analytic on {0 < |2| <1} and
Fz")=0.

Now x(¢*) = @P(x) has the Orlicz and de La Vallée Poussin conditions (1),
(2) and % log|F| is subharmonic. Moreover y|f| <u €P(S). It follows
that y|FY2 < U harmonic on {0 < |z| <3%}. Hence by the Szego-
Solomentsev Theorem [1, p. 17] My|FY? is quasi-bounded and hence
constant on {0 < |z <% }. Since F is bounded its singularity at
2z = 0 is removable and since F(2-") = 0, F(z) = 0 by the accumulation-
of-zeros principle.

Hence f(p) =f(g) on R whenever zn(p) = n(q) . Proceeding to argue
along similar lines by analytic continuation and the accumulation of zeros
principle at the cuts I we obtain that f(p) = f(q) for p,q € S whenever
n(p) = w(q) . By the basic coverage properties (52) or (53) property (54)
follows.

Each sector B, has an associated conformal map %, defined by

hy(z,C,v)=h, (0,7, L)
and a conformal inverse k, on H . These maps have properties similar
to (44), (45), (46).

5. Proof of the main result. a. We have constructed the surfaces S .
We first prove

Lemma 5. S, €7, .

Suppose f€H_(S,). Then f€A(S,) and ¢|f| <u€P(S,). Restrict
this to 4, and change variables by k, to obtain on H — k()

¢lfk,(w)) | < u(k,(w)) = Uw) .
Now fok,€AMH —h,(I,) so uw=1log!fek,) is subharmonic. More-
over PD(x) = ¢(¢*) has properties (1), (2) and U € P(H — h,(1,)) there-
fore the Szegi-Solomentsev theorem implies that M®Pu = My |fok,| is

quasi-bounded. Consequently, M¢ fok, | has a Poisson representation
on { “Yw >c} and hence

@ |f(k,(w)) | < ¢ w]

for |w| > M,(e), |largw| <b. Change variables back by w = h(p),
use the representation (54) that f = g oz and the weak covering property
(44) to obtain

¢lg(z)| < emaxih (T2, )],

for |z| = b, = K. Nowif ¢ issubscalar &b (z)] < eKo(|z]) < p(d(e)[2]).
Otherwise e|h ()] < ep(L|2]) < @(d(¢) |2|) by choice of h,, . Therefore
in any case

2
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?lg(2)] < @(o(e)lz])

for |z| = b, > R . Consequently, by taking inv ¢ of both sides, applying
the maximum modulus principle and Liouville’s Theorem we find that
g(z) is constant. Since f= gox, it is also constant.

b. It remains only to choose the sequence {d,} in (49) appropriately.
We prove

Lemma 6. It is possible to select the sequence {d,} in (49) such that
Myl|n,|[8, exists if and only if

L[ ylk, (i) |
(55) ;f——_1+t2 dt < o .
In particular S, ¢ 0, when ¢ is superscalar and y < @, when y is
subscalar and w < ¢ or when p << ¢.

The particular part follows immediately from the fact that we estab-
lished the crucial property (55) in these cases in (48). The necessity of con-
dition (55) follows immediately from the Szegi-Solomentsev theorem and
the representation of a positive, quasi-bounded harmonic function on H
which has continuous boundary values.

The sufficiency of condition (55) follows from Heins’ methods. First
by its construction |k (it)| is increasing with ¢ (0 < ¢ << o). Consequent-

h(?)
1+ 2

ly h(t) =vlk,(it)| is increasing. If A(f) is increasing and f dt < o©
0

then the well-known consequence of the inequality

2x

xh(x) h(t)
Trer <) irRtse

x

is that A(f) = o(¢) . Hence
(56) pk (it) =o(t).

Write P %y |k,| as the convolution of the Poisson kernel with the conti-
nuous boundary values of y |k |. Its existence is guaranteed by the crucial
property (55). Then wlk,| — P #ylk | =« is subharmonic in H with
zero boundary values. But P x|k | is positive and by (56) ylk, (w)| =
o(jlw]) . Hence

u(re®)

lim inf, max,

and My|k,|/H exists by the Phragmén-Lindeldf principle.
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Next we consider the truncated surface S7 (see section 4c) and show
that My|z|/S exists. This follows by Heins’ argument [1, III 4, p. 46].
For completeness we outline it in this context. First

Mlp|:7'£|/U A, and My |#|/(S; — U A)) clearly exist. Let 4, (1 <» <N)

be coples of closed disks in A for which I,c int 4, c 4, c int 4,
and 7(A4,) is a disk. Let 4 =U4,, € =Ud4, and cons1der the dls]omt
union

S —0=9UQ,

N
where 2, = U (4, — 4,) (disjoint union) is the unbounded part and £
y=1

is the bounded part. Certainly My|n|/Q; exists for j =1,2. Let u,v
have the following properties:

(1) w ,v continuous on S, ,

(i1) u , v harmonic on ;U Q,,
(iii) u=0on O, v=1 on 2,
(iv) w < Mylal(2,U ), v>0,
(v) % maximal, v minimal.

Then u -+ y(n)v is a superharmonic majorant of y(x) on S and hence
My|n|[S; exists.

Now let h, = Myja|/S: . Since S;c Si*' we have h, <h,,; on
St (k <m). Moreover US, =S8 . E\’ldentlv if h= My|n|S, exists
then h >k, for all =n. Conversely if lim %, exists (finite) then it is
harmonic and majorizes »'7' . In other words it follows from Harnack’s.

principle that lim &, = My« /S, if and only if
(57) ha(po) =B (n = 3)

for some fixed p, €S, . But repeating an argument of Heins similar to
the one above [1, p. 41] we find that

(58) B 1(Do) > Pin(po) a8 1™ Coyy

Hence if d,,, is selected so that h, (p,) < ha(py) + 27" the existence of
My|n|[S, will follow.

¢. It is now clear how the main theorem 1 (10), (11) follows from lemmas
5 and 6.

6. Unions and Intersections. a. If ¢ is finite and subscalar then the
strong covering property (47) and the Myrberg representation (54) is valid
for f € H(T?) and hence by the proof of lemma 5 we have



20 Ann. Acad. Sci. Fennica A. 1. 498

T €0,

In addition My|n| exists whenever o < ¢, because the construction
of T? is independent of y and the last selection of {d,} is not necessary.
Hence = € H_(S,) implies

T ¢Q,.
b. Next to show the countable union property (12) we need only select
the {d,} in a careful manner. First select {d,},», so that My,zn|/S,

exists. Then set d,; = d, and write S, =S ,; for this selection. Next
choose d,, for » > 2 such that on this surface S, ,

cr<dv4 dea’ (1122),
My, |2[S,, exists.
Because of (58) we find that My,ln|/S , also exists and

Sza = 824 .
In general then
By = dy» for v <¥Fk,
¢, <dy <d,, for v>L+1,
M'!’j]ﬂ|8¢k+1 existsfor 3 <j<k+1.

The diagonal sequence d,, gives a surface S, on which
Myjla|[S,, exists for j > 3.

¢. To obtain the countable intersections result (12) we follow a varia-
tion of Heins’ construction. Let S, be constructed such that

S €0 — .
gm gm T
Define the marked copies by
Sw={(,m):p €8¢, },
a(p,m) = 2(p) .

Make new cuts by letting — 3 +2"% =¢,, —3 27" =f and
setting

Lvm—_—{(t’g’m):evgtéfv}’
for v, m > 1. Then consider the pieces
oo}
R=8—-UL,, if m=1
y=2

R, = Sw — Lom , if m>1,
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and weld them together by the criss-cross technique (51). Let R denote
the new surface. Clearly the same argument under (54) applies here and
hence the Myrberg representation (54) holds on H,(R) for any Orlicz
function y . Using the sectors 4,, of S. we see that the proof of lemma
5 implies

Reya,, .
m=1
To see that Me|n|/R exists we repeat the truncation-majorization-ex-
haustion argument of Heins described in detail in section 5b, to see that
(57) holds for

b = Moz [(R— U Sn)
v=m-+1
provided the {d,} and {f,} are appropriately selected (use both dia-
gonals).

7. Questions. The function ¢(z) = ¢* is an example of an Orlicz func-
tion which is not superscalar. It would appear somewhat doubtful that
an infinite Orlicz function could be superscalar.

Second, there is the open question of what relation between ¢ and o
is necessary and sufficient for @ c @, . Does @, C O, imply ¢ <y
or does it imply ¢ < Ky and ¢(r.) < (1/n)y (r.) for 7, » 00 ? We do not
even know whether it implies ¢ < Ky . Similar and related questions
are open for O =@, and O || O, .

Third, there are the obvious questions concerning unions and inter-
sections. With new functions y (other than Orlicz functions) the question
of characterizing “c”, "=", ”||” are more complicated. Suppose that
the growth condition for which "@ O @, if and only if ¢ — " were
solved. We would say that the classification was complete if

Uue, =, =Nnv,.
yCe FCy

Is there a complete classification of surfaces by some collection of null
Hardy-¢ classes?
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