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Null Orlicz classes of Riemann surfaces

1. Introiluction. Maurice Heins [r] has used null Hardy classes to
classify Riemann surfaces. His success depends to a considerable extent
on the Myrberg example, the Szegö-Solomentsev Theorem and the way
that lzol smears the behavior of go@) - frP oyer an angular sector (for
references see [1]). In this paper we attempt to refine this linear classifica-
tion by using the non-linear lattice-like null Orlicz classes @*. We obtain
partial results on the problem of characterizing the inclusion relations be-
tween the classes @* in terms of the growth relations between the functions

E,
To be precise

itself is an Orlicz

(1)

(2)

we say that a homeomorphism V?) of [0, oo) onto

function if

V?) is conYex in log r ,

logr-o(q(r)) .

In other words the Orlicz cond,ition (1) means that <D(r) : V@") is convex
and the d,e La Vallde Poussin conili,tion (2) means ihat r-r@(r) -+ oo as

n ---> @. In this paper the symbol »g» will be reserved to denote an Orlicz
function. Although fiurctions other than g could be considered, the Szegö-

Solomentsev Theorem applies naturally to these.

If § denotes a Riemann surface let A(§) , P(,S) denote its family
of analy'tic, positive harmonic functions respectivelv. Let

H*(S) : {/ € A(S) : V',fi ltc € P(§)}

denote its Oili,cz-q fami,ly. (For more general functions V we refer to
Hr(§) as ils Hard,y-y family.) To be sure H.r(§) always contains the con-

stant firnctions, but, when it contains no other functions we say II,(,S)
is null,. In the classic notation

@-r: {S: Hr(§) is null}

denotes the nul,l, Orl,i,cz-g cla,ss of Riemann surfaces.

fn particular if qo@): rp then q*o: @o @ ) 0) are the null Hardy-p
classes discussed by Heins. His basic result is that



Anrt. Acacl. Sci. tr-enrricre A. I. 4gg

(3) @"ac (1@0c... c U @rc@oc (1@, c... c g@,0c,@ru,
q>o c<P P<q 9>o

where @rn , @un is the null Lindelöfian analytic class, null bounded a,nalytic
class respectively. (Our set notation is that A c B, A c B, A + B
means inclusion, proper inclusion, no inclusion respectively and after
Hausdorff /llB means /$B and B*e.l

In the general case there are two growth cond.itions to be considered.

(4) nini,te growth me&ns lim sup r-Pg(r) < a for some p ) 0 .

Infinite growth means lim sup n-pE@) : q for all p > 0 .

We shall call E superscalar when (5) holds and subscalar when (6) holds-

(5) Lq(r) < q(Kr) ,

(6) q(Kr) < Lq(r) ,

where in case (5) we, may choose

(7) K--->0 as -t->0.
In addition

(8)

f uln(inv a(t\\1(9) lt, << I means J -tl+; d,t < q, for all n) 0,

where inv g denotes the irrr"å" of g. Our main results are as follou,s:
Theorem l. If q , !) e,re Orlicz functions then

(10) @* c@*, if yt ll q ,

and, i,f in add,i,ti,on q, is superscalar or y ,i,s subscal,u,r then

(tI) @*C@.*, if y{V.
Corollary l. (Countabl,e un'ions and, intersecti,ons).

(12) u@*^c@*cö***
n:l m:l

whenever g" 11 V << gt or in the case that g , go &re supersco,l,ar or
gn t g ata subscalar wheneaer g* I g I V^.

Corollary 2. (Arbi,trary uni,ons for finite sugterscalar functions).

(13) U @* c@*,
rpl E

wheneaer g i,s fini,te and, sugterscalar.
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Needless to say more questions are raised than answered. fn particular
the problem of characterizing the inclusion relations "c , C, $ ,ll"
between the @* in terms of the relative growth relations between iln, g
is left open.

The basic idea is to bring the theory of conformal strip mappings to
bear on the problem of finding a replacement for zp in the general case.
fn particular the soft geometric extremal length distortion theorem of
Jenkins-Oikawa [2] is used rn the finite case and the hard anal;rtic distor-
tion theorem of Warschawski [3] is used in the infinite case. (It is interest-
ing that both theorems were needed.) Once the replacements h*, which
correspond to g and play the role of zp in t}ne general case, a,re obtained
Heins' methods may be applied.

f am grateful to David Drasin for his suggestions and especially for
introducing me to the nuances in the theory of conformal strip mappings.
f also wish to thank K. V. Rajeswara Rao and Gerald R,. Maclane for
their incisive remarks.

2. Conformal strip mappings. a. Although the results reviewed in
this section hold for more general domains, it will suffice for our applica-
tions to restrict, the study to symmetric strips with "nice" bound.aries. A
symmetric stri,p d,omai,n will be defined by

§e:{ n+iy:lyl<*0(*)}

ll-here 0 is positive and continuous. Lel w:fe@) denote thenormalized
(f oo,0 areleftfixed)conformalmapof §, onto &:{ ul i,a: Irl <å }
and let, ge(w): z denote its inverse. The general problem is to describe
the behavior of fs in terms of the behavior of 0 . Here lye &re interested
in determining the conditionson 0 underwhich l%fe@)-%fn@) | isuni-
formly bounded, because this simulates the relation between l"ol and
rp . fn the next section we shall show how to choose 0 so that Rfe@)
(weakly) approximates a prescribed log E@,) . In this section we point out
two sufficient conditions on 0 v'hich guarantee that, 'Xfr(z):%fe@) *
+ 0(l) . As we previously mentioned t'wo types of distortion theorems
are used.

A. The Jenkins-Oikawa Theorem. Although the theorem we have in
mind is not explicitly stated as such in the Jenkins-Oikawar paper l2l it is a
trivial consequence of their method and is certainly stated implicitly in
their paper. We shall also outline their proof but first we need to reoall
some notation.

Let Qe(t): {o (r {t, lyl<ä0(") } and let any of the symbols
m"(t) : mlQe(t)l : mf e(t) denote the module for the family of arcs J-r(ä)
in Qr(t) which separate the vertical sides of the quadrangle Qu(t) . Let
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(14)

(16)

(17 )

fr'(r\ : suP 'Xlr(z) ,

r
osc(r) : A@) - g(r) .

The Jenkins-oikawa approach to our problem depends on the initial ob-

servation that

(I5) l%f"(r) - ms(r)l 1K
if and only if osc(*) ( B . This follows immediately from the conformal

invariance and monotonicity properties of mod'ules, namely

me(r) : mlle(Qe@))1 ,

q(r) - r(0) < mlfe(Qe@))l < il(r) - aQ) ,

il(n) - a(0) : tt@) - a(0) + osc(o) f osc(0) .

The module m"(r) can then be estimated by well-known techniques to
give information about 'Rf(") such as Ahlfors' distortion theorem. But for

åur applications it will suffice to show lhat mr(r\ itself has a desired

behavior.
Consequently from our point of view their theorem is a sufficient, con-

dition on 0 which guarantees osc(u) ( B. To state it let L - L"(r) > 0

be given, set I :lr - L,n + L|, M: suP {0(t):t € I ),m :
inf {0(l); teIl1 and define

.t min (LVI , L)
pe@): 

Wi"(", Jy
Then their theorem reads as follows:

Theorem A. (Jentci,ns-Oi,kawa). Ior a syntmetric stt'ip So let Lrr(*)

erist on a set E C [0 , oo) and, haue the property that

pe@)<8, fo, neE

Thenthemaltlti,ngfunction f" sati,sfi,es(L5)ateach re E for K i,nil,eltenil,ent

ol n-

The proof is delayed until we state the next theorem.

B. The warschawski Theorem. The actual result we quote is war-
scharvski's Theorem [3] but it is clear how this originated from ahlfors'
distortion theorem (see [3]). warschawski calls the stip §o an L-stri,p

(rf inclinatiorl zero) if (0(rr) - 0(rr)) I (r, - rr) --> 0 as nz , nL-> oo '

As we shall see the degree of smoothness of 0 makes no difference for our

applicatons so we shall assume 0'(t) is continuots. L-tri,1t conclition is

0'(t) -> 0 as ä -> cP .
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Theorem B. (Warschawshi). Il Se is a smooth syrnmetric L-stri,p and,

(r8) Iryf d,tq a,

then fs has the asymptotic ergtansiom

(re) re("):^* I ffi*c#t+o(r),
where ), is a real, constant. 

o

(Actually, Warschawski's original formula is slightly more complicated
because it, also includes the non-symmetric case.)

b. We outline the proofs. Because mo(*) : mtfe(Qe@Dl we let

R^(x\: I {d(0) - 1< uls(r) * t, lol <+}, if s.(r) - il,(o) > -1,e\' [{r(0) -r<u<il,(o), l'rl (å}, if a@)-d(0) <-r,
and set q(w) : I in .Br(r) , zero elsewhere. Then q(zo) lilw', is admissible
for the module mlfe(Qe@Dl and hence

(20)

Next let l,:{n:t,lyl<*0{t)} denote the vertical line segment,
cut off by S, and note that Br(r) : {1,,:0 <, < r} c Tr(x). There-
fore by monotonicity mr(r) : mfu@) ) mB"(r) and since l0(r)l-1ld,zl
is extremal for the last module mB"(*), we obtain

[w@) rl(o)+2, if s(r)

={

Q6(") o

dt
me@)

Hence as soon as Ahlfors'condition IlOt)l-ra,] I holds we must have

me@)> 1 and hence g(*)-A(O) i r must hold. This proves the Aht-
fors distortion theorem.

Now to get the upper inequality we note that

Tn@): {Sr(0) < ulii,(r), lrl (å} trr* module mT"(r):il,(n) -q(0}
and hence by conformal invariance
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(21) il(r) - s,(0) - mls e(Te(r))l

Then we use a variation of the previous t'rick to estimate mlgr(Tr(r))1.
l,et pa@l ld,zl denote the extremal metric for m"(r). Then if Zr(r) is

given set g,: [min(ä,rn")f-r on { lr-sl < L", lAl (}min(2",M")},
zero elsewhere, for s : 0 , fi. Thus if

p(z): max(qo(z) , Q*@), p*(z))

then q(z) ld,zl is admissible for mlgs(Tu(r))l and we obtain

mls.(Tr(x))l < pe(0) + tne@) + pe@) ,

which because of (2f ), (20), (17) completes the proof of Theorem A.
To get '\[arschawski's upper inequality reca]l that, if ar€ Cl(@r(r)) and

if a\r, t, 0(r)) : l, @(n, - $ 01111 : g, lgrad' atl ld,zl is admissible

for me@) and hence with o(r , y) : + + @10(")) on Qe@) , zero

elsowhere observe that

r r i at t 7rs'r»P
{zz) mr(x) I 

J ^J,.E "ualzdr 
dy : 

I uA + u I -ff or,
e6@) (

which is part of Warschawski's inequalit5r. (In the non-symmetric case

where §:{0-(r) <A<A+@)}, 0(r):A+@)- A-@), ty(n):
E@+@) * A-@)) , and A* are continuously differentiable use ar(r ,U) :
* + ty - y(r))10(r) to obtain

x

me@) - {!i#f 
rtt+ */ Wdt

Tho expansion holds in the non-symmetric case rvhen lim A'* :lim 0'- : 0 ,

(0(t))-tdt replaced by

3'inal}y to obtain t
to 'Warschawski 

[3].

\Varschawski u'e a,ppeal

c. In the ca,se of finite growth we ment'ioned that m"(r) wtll be chosen

to approxin:ate lcgg(e") fcr 0 appropriately chosen' This will be ac-

ccrrplished by a ccntinuity argurent,, for which we prepa,re by establishing
a simple fact about me@) . X'or that purpose let

{
co with j

{tr 
+ (,p'(t))'l ( o(t))-'dt .)

he asymptotic expansion of
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llå -åll,: sup{ ll,(t) - fr(t)l:0 <t <r}
be the uniform metric.

Continuity Lemma l. Suppose rp , 0 are posi,tir:e aomtinuous wi'th ty

fixed,. Then llme - m,ll" --> 0 as ll0 - rpll, + 0 .

The modules m"(t) are determined by (or according to Grötzsch defined.
by) the nnique conformal maps w : 86,,(z) of Qe(tl ont'o ReQ):
{ 0 (o ( l, 0 4u <me\)}. A. ll0 - rplt-+0 the domains converge

QeU) * Q*{t1 in the sense of Carath6odory. By Montel's theorem a sub-
sequence of the -f,'r,, converge, by Carathdodory theorem, to a conformal
map Xo of Q*Q) onto a rectangle Ao:{0(o(I, 0{u<m).
By uniqueness of the defining conformal map m : me$) , Fo: n"i and
the lemma follows.

3. Weak approximation. a. Let us &ssume lhart g , y) are Orlicz func-
tions. It is a trivial but useful result that

(23) @*: @u, if K'rE 4y I KE ,

for some K> 0, where f <g me&ns l@) <g(*) foru S*o; Now

since @(r) : g(d) is convex and increasing, we ma,y write @(r) : I O1t'1at ,

where @(t) is non-d.ecreasing and, since r-L(D(r) --+ a a,s * I * we
must have @(r) --> oo a,s r --> co . Thus we may approximate @(r) by
a positive C* function @1@) such that,

is positive u,rrd 
"åtirroous. 

n'inall;' by Arakelyan's fundamental theorem
of approximation or perhaps by more elementary theorems there is a real
analytic function I(*) such that * O'i@) < n@) < 2 @i@). Con-

sequently < 2 @L. Hence

by (23) we obtain the following fact
Lemma 2. The d,egree of smoothness of E d,oes not affect the classi,fi'cati,on

@*. In other word,s for each, Orli,cz functi,on g there 'i,s a real anal,ytic Orli,cz

tuncti,on y such that @* - @v.
b. The main tool for constructing the functions h* w}irich correspond.

to g and play the role of ap is the following
Weak approximation lemma 3. Let X(r) ilenote am ori,entat'ion pre'

seru'i,ng homeornorphi,sm of (- .o, oo) onto i,tself fm which log r : o(1(*))

:
Hence if @(*) - .l @L(t)dt then



10 Ann. Acad. Sci. Fennicre A. r. 498

lo, fr large. Then there eri,sts o Ttosi,ti,ae conti,nuous functi,on 0: 0r(r)
such, that the syrnmetric stri,gt 5", the normal'i,zeil, conformal strip rnappi,ng

le, of S, onto Sr, and,'i,ts'i,naerse g, hatte the fol,lowi,ng propert'ies:

aafr@) > ).(r) - K ,

el) 
lJ,t lyl <b , n : b,\ ,

]'(r)+K, for n-bn,
1a,b <å, bov oc.
be in two cases according to whether or not 1(") I pr
fr 1 xr, u,hich we refer to as fini,te olinfi,nite grouth

Case A. (fi,ni,te growth). Since ,tr(r) l px we may choose 0(t1 : p-r .

Alnen m"(x) : p(r) 2 1(n) o for * ( ro. On the other hand if we choose

0(t): f then me@):logr < )'(r) for n Z.ro. 'We shall push up on

the graph of 0:p-1 from below causing a »dent» to form and thereby
causing mr(r) to demease. Condition (24) wiII be maintained throughout
the deformation which is used to obtain condition (26). X'or functions
0(r) with 0(u): 0(a) , for a 1r ( å . we define the dent d,eformation

D*o(0) : j( , &E follows:

(24)

(25)

(26)

u;h,ere K> 0, 0

The proof will
for some p> 0,
respectively.

x@)-

where c-t@+b). Now clearly mx@)'"
contintrity lemma 1. Hence there is a first b

m,r(ro) : )'(ro) ,

m,r(r) ) 1(u) ,

for r ) uo. Then take a , å much larger and repeat, the dent deforma-
tion to obtain the desired 0 by induction.

To see that gu has the wealc coaering propertg (25) we note first, that
by Carathdodory's theorem ge fraY be assumed to be homeomorphic on

tho closed strip §, . Then by the fact that 0 was formed by the dent
deformation from 0(r): p-1 we have

7 g"(u * ad) > 71p-t1u + ai,))

on ä§r:{r:*å} and hence throughout §r. Hence condition
(25) is obtained and in the finite grou"th case we obtain the strang cooeri,ng

progterty

if n 4a or n {b,
if 0, {rc{c,

if c 1r <b,

as b,z continuously by the
for vr.hich both
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(27) 9,o{ lrl 1a}:l{ lyllap-l }

dt

o(b") > b ,

bn

rdt

,r* 0'(t) :0 ,

To see that (24), (26) hold we need only apply the Jenkins-Oikawa
t'heorem a to show that' %f"("): me{r) + 0(l) ' rt suffices to check

condition (17). With E:10,a), L:0(r) +l>p-L*L, (p<l),
/l + 4r\2

we find tt;at p"(*) 
= \r;) 

in (I7)'

Case B. (Infi,ni,te grou;th). 'We assume 0(rr) > pro , for all p > 0 ,
uo2K, for K given. fn other words if x:p-1 then 0(rr)> mr(ro).
To prove this case we shall apply the warschawski Theorem B to the re-

sulting 0 in the conclusion of the foilowing
Lemma 4. Giaen, ], as 'i,n the hypothesi,s of lemma 3, there is a posi,ti,ae

continuous iti,fferenti,abl,e functi,on 0 wi'th the following prolterties:

(28)

{2e)

(30)

(3r )

(32)

{

{

uhere K> 0, 0<b, bnv oo.

Proof of Lemma 4z Consider
where ?(0) - 0 is understood and
Notice that:

lr*(*) I <

r"(4) -

r(r) - exp(- U") , for

4-"(4le') ,

o-L ,

1,
4,,.

(33)

(34)

4n

(35) f wdt-4-n
! r'$)

Then choose ö,, so small that

{
t-a e-Llt dt
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2.4"(36) ,(öJ > 1(4+r)

Now define 0 initially by the formula

if 41r<2.4"+4ön,
if 2.4+4"ön1r <3.4n,

o(ru) _
3 . 4n 1r < 4+L - 4ön+t

4"+t_4oö-,,1r<4"+1.

Evidently properties (28), (29), (3I), (32) hold. To get property (30) we
define lhe push d,eformati,on P",o(0) : )( &s follows:

[o(*), if *1a,
I

x@):'0(a), if a{r{b,
I

Irtr-(b-a)), irb.--r.
If (30) holds then there is nothing to do. If (30) fails to hold then it still
fails after a push deformation. The other 4 properties continue to hold.
However because L has infinite growth characteristics there is a first
b : bt for which ,l : P*o(O) satisfies (30) at bL. Consequently sub-
sequent push deformations for a, ö much larger will ensure that 0 can
be constructed with the 5 properties of lemma 4.

Proof of Lemma 3: Consider 0 with the properties of lemma a. By
(31) Bu is an tr-strip and by (32) Warschawski's expansion (19) holds"
Hence properties (24), (25), (26) can be read" from properties (28), (29),

(30) by Warschawski's expansion.
c. The reason for the dichotomy in this proof is that, there is a dicho-

tomy in the theory of conformal strip mappings. fn the finite case, condi-
tions (3I), (32) may not be possible, which makes it difficult to apply
Warschawski's theorem. fn the infinite case it, is diffieult to obtain the
weak coverrng property without the help of Warscha'ivski's -L-strip theory.

il. We conalude this section by describing the functions lbq which
play the role of zp . The only problem will be to define ).. There are
several cases.

I. The supersealar case. Given a superscalar Orlicz firnction g , set

X'(r) : log E@") '

II. The subscalar case. Let y be a subscalar Orlicz function, V arr
Orlicz function ard rp ( g . Then for every n ) 0

yln(inv p(r))l

7(ä") ,

r(lr - (2 . 4")14-") ,

r(14"+L - nf4-") ,

7(Ö,+r) ,

if
if

II s(inv v(t))
,*, dt<.o1+t2 dt<M"
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Hence a,ov @ may be found such that

(Bz) .f 
r*;T#"') u,. | .

ouo 
L _r_ v

X'or ä" : m irl g(a") select t'he a* to diverge so rapidly that an Orlicz.
function X carL be found with the properties:

(38) x@) > E(rln), if b. 3 r 3b.+, ,

(3e) xU) < E(rln), if r Sb^+r,
then set

(40) ),(x) : Iog y@) .

fn this case l, depends on yt and E,
III. General case. If V << g then (37) holds and we proceed to.

choose X, arld ,1 exactly as in case If.
The crucial property. fn ease llet' y < p, in case ff, IIT y is given.

Let y: g h case f. Then in every ca,se

(4r) jryyd,t<q
0

Approximation. Given ).: 1* defined in case I, II, III we obtain
0 : 0* from the weak approximation lemma 4. (In case If, III 0 also
depends on ? .) Then the symmetric strip §" and the conformal firnctions

f6,geare defined with properties (24), (25), (26).Let 6 be the variable
h B" and let ar be the variable in §1. Define

A*: {(2, C) :i €§e, z : e: ).
Then the d,efdni,ng parameter r : (z , e) --- C gives .d* a conforma"l structure
and the aanon'ical projecti,on n: (z,e)---z defines A* as a smooth cover-
ing surface over the complex plane. We then define the conformal equival-
ence between A* and the halfplane H:{%r> 0 } by

(42) h*(z , C): exp"fe(6) ,

(43) k*(a) : (exp gr(log o) , gr(log a;)) .

X'rom (24), (25), (26) we obtain

(44) lh*(2, ö) I : x(lzl)lK,

(45) nlk*{argo)l <b}l rL {@tgzl 1b.,l"l:b^},
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(46)

where K
subscalar

(47)

lk'*(z,f) l{x(lrl)K, if izl:bn,

then the strong coaering property holds

n lko { }arg co I < a})3 t larg a I < b } .

This follows from the strong covering property (27) for ge.
The crucial property again. In every caso f, ff, ilI we have

(48)

'That is because lh,(z , C) I > x( l"l )lK implies 1k*(w) I { inv x6l*l )

and hence (48) follows from (41).

4. Construction of surfaees. a. The surfaces B we construct are essenti-
ally a hybrid of two of lleins' examples. We »tear» the »Riemannian sectors»

from an example [], III, 5, p. 47), deform it into the »sector» .4, described
in section 3d and »weld» these back onto another of his examples [1, III,
3, p. 37]. The »sectors» ensure that the surface S e @* and the »base sur-
'face» ensures that S e@*.

b. Given the Or1icz function g we choose A*, hE, Ic, as in section
3d according to case f, ff, or III. Only in the first, case (g subscalar),
.are these actually independent of rp. In the other two cases they depend
on rp( E, y<<g. Consideringthecoveringnumber Ö>0 inproperty
(44), choose an integer N > Znlb and denote the Nth roots of unity by
,a,: exp(Zni,vlN) for I ( rr { -lI. Then define the marlteil, d,isks and
marlceil sectors as follows:

Dt:{@,r):]z] <3}, for ra:1,
Dz:t@,2):lrl <3), for n:2,
D,:{(z,n):l"l<n}, for n}3,
B,: {(2, w, v) ; z : co"ng"(w)}, for I (y (.0/.

We abuse the notation by defining the canonical projecti,on 1r. as the pro-
jection of an za-tuple onto its first coordinate (for example n(z , ID , u) : z ,
n(z , n) : z) . We shall attempt to indicate what' is the topological structure
of the surface described in each case. Then the conformal structure will
always be induced by the canonical projection ,z . X'or example D., A,
are bordered covering surfaces because z is univalent on them.

'We shall first »puncture» and »cut» these marked surfaces and then at
pairs of »cuts» which have common projections »weld» them together by
the usual »criss-cross» technique. To define the cuts let oo - 2-2o , b, :

f yw\l
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Z-zr+t, co:1-2-'n be fixed so that b,)e,>Ö,+r\0, and choose

d, arbitrary (for the moment) except that

(49) 2 <... <cy<il,<c,*ry' 3.

Designate Ltre cuts as follows:

I, :t(a\t,w,a)e A,:l<t<2\, (1 (r'<itr),
I,r:{(a"t,2)e Dr:l <t <2}, (1 ( I <-ntl) ,

J,o:{(t,n)eDnia,,<t<b"}, (z}t,n:L,2),
K,.:{(t,fieD.ic,<t <d,,), (z}3,?b:2 ovv:n} 3).

The yrunctured, and cut il,i,sks and sectors are then defined as follows:

Er: Dr- { (0, t) } - ö J,,
';rr6

Dz: Dz- { (o ,2)\ - P,t,r-,9rr,,-,Yr*,,,
E*: D, - Knn, (n ) 3) ,

Ao: B, - ro (l { r'' < 'l[) '

To repeat E.,Au are considered as bordered Riemann covering sur-

faces of the complex plane C with projection z .

c. To form a Riemann swface from these pieces it is only nece§§a,ry

to explain how to identify border points on cuts with common projections

under z . The topology will then be given by the quotient topology and

the conformal structure v'ill be determined by n . To explain the identi-
fication we orient the cuts .I so that in their positi,ae direction the modulus

of their z-projection increases. Hence it makes sense to speak of lln;e ri,glfi

or left si,ile of a cut 1 and to speak of the right,left border point pa , ?- te-
spectively which corresponds to the interior point p of the cut 1.

The regtai,r weld, at a cut, .I is the surface formed by identifying border

points the of the cut -I which have a common projection

(50) P+: P-'

Tbe cri,ss-cross weld between two cuts Ir, I, which have a common
projection is formed by first identifying end points ?r: 9z when z(pr) :
n(pzl , then at interior points

I Pr+: ?r ,

(51) \ p,-: p,+ ,

when z(Pr) : n(Pz\ : n(P*): n(,r+) .

15
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Now the primary surface §* is formed by criss-cross welding all pieces
E" (r2I) and A" (t 4y (n) at all pairs of cuts with common pro-
jections. (There &re neyer more than two cuts with a common projection.)
The mth trunnati,on is

§ä:8, -i1n, @>2)
v:n*l

and the regtai,reil, nth truncati,on T| is obtained from §; by using the
repair weld at 1", for a ) n I L .

d. fn this subsection the basic properties of ,S, , B:, , f; are discussed.
Evidently they are all ramified covering surfaces over C with projection
z. The covering is smooth except at the end points of the cuts .f, where
there is a criss-cross we1d, these last points being branch points of order
2-L : L We may designate them by §, §r, S*,*, etc., according to
the degree of dependence we wish to denote. X'or similar reasons we ma,y
wish to write n : n*: n*,, .

The basic coverage property is

(52)

(53)

;z(§*) ::- c ,

nglr,) -- c ,

in general,

when V has finite growth.

It, is also useful to note that

§| c §[+r . .,q,§ä : B* .

We adapt Heins' notation Mf as the least harmoni,c majorant of the (real
valued) function / on its domain of definition D . Since Jly'l depends
on D we may wish to write ilIflD: Ml in order to avoid confusion. With
this notation we state the basic ltyrberg property that if / € A(S) , where
§ : §, , or T3* has property (52) or (53), I is any Orlicz function, and
MXlllls exists, then

(54) f -ton, where g e A(C)

To prove this we resort to Heins' r'ariation of the Xlyrberg argument lL,
Remarlc, p.STl.Restrict f(p) to

R - (§,
lr

E, - l) A,) (1 {p, in(p)l < å }l
l:L

a,nd. consider

@

U
Y:3

r@)- ltJg-JLl' , where {p ,,1 } - n-,(z)
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Note that -E is analytic on { 0 < lzl < } } and

n(r"): g 
'

Now g(e') : @(r) has the Orlicz and de La Vall6e Poussin conditions (l),
(2) arrd ! loglfl is subharmonic. Moreover ylfl 4u e P(§) . It follows
that Xlll'tz<U harmonic on {0 <l"l<ä}.Hence by the Szegö-

Solomentsev Theorem [f, p. 17] Myl?ltlz is quasi-bounded and hence

constant on {0 < lrl < å } . Since ? is bounded its singularity at
z : 0 is removable andsince -F(2-") : 0, I(") : 0 bythe accumulation-
of-zeros principle.

Hence f(p) - f(q) on E whenever n(gt) : n(ql. Proceeding to argue
along similar lines by analytic continuation and the accumuJation of zeros

principle at the cuts 1 we obtain thaf f@) - f(q) for p, g e ,S whenever
n(p): n(q) . By the basic coverage properties (52) or (53) property (54)

follows.
Each sector B, has an associated conformal map ä, defined by

L7

It,r(z,e,u)-

and a, conformal inverse k, on H
to (44), (45), (46).

5. Proof of the main result. a" \4re
'We first prove

Lemma 5. S*e@*.
Suppose /€H,(,S?). Then /€A(Se) and 9lll (z€P(§,). Restrict

this to A, and change variables by lr, to obtain on H - h,(1,)

Elf@"(w)) | < u(k,(w)) : U(w) .

Now f o h" e A@ - h, (1,) so u, :1og ll . k) is subharmonic. More-
over @(r) : E@\ }ras properties (l), (2) and U e P@ - h"Q,)) there-
fore the Szegö-Solomentsev theorem implies tb.aL M@u: MElf "k,l is
quasi-bounded. Consequently, nlgif .k,l has a Poisson representation
on {'liw>c} andhence

Ell@"(w))l<rlwl
for lwl) M,(e), Iarg vbl <b. Change variables back by w: h,(p) ,

use the representation (54) that f: g "n and the weak covering property

@$ Lo obtain

Elg@)l l emaxlh*(fr"2 , C) I ,

for lzl : b" >9t. Nowif E issubscalar ellt,*(z)l I eKE(l"l) <9(ä(e) lzl ).
Otherwise elh,(z)l < ev(* lzi) < g(d(e) lzl ) by choice of h*. Therefore
in any case

2

It,*(A, z , å)

These maps have properties similar

have constructed the surfaces SE .
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vls@)l < e(ö(e)lzl) ,

for lzl : b, ) .E . Consequently, by taking inv g of both sides, applying
the maximum modulus principle and Liouville's Theorem we find that
g(z) is constant. Since / : I o tt, it is also constant.

b. It remains only to choose the sequenc. {d,,} in (a9) appropriately.
We prove

Lemma 6. It is
Myln*llS* exists if

(55)

In particular S*e@, when E 'is sugterscalar and, y<8, whem y is
subscalaranil, y<E orwhen y<<8.

The par"ticular part follows immediately from the fact that we estab-
lished the crucial property (55) in these cases in (a8). The necessity of con-
dition (55) follows immediately from the Szegö-Solomentsev theorem and
the representation of a positive, quasi-bounded harmonic function on ä
rvhich has continuous borurdary values.

The sufficiency of condit,ion (55) follorvs from
byitsconStruction|k*(i,t)lisincreasing\4,ith,(0<

ly h(t) -vlkn(i,t)l i* increasing. If lt(t) is inweasing

then the well-known consequenoe of th.e inequality

,.*?(!) ., = f :Y" dt < e(I{(2r)2- J rtt'

is that h(t) : 6111 . Hence

(56) tp',k,r(it):, : o(t) .

Write P * y llc*l as the convolution of the Poisson kernel 's.ith the cont'i-
nuous bouldary values of y llc,rl. Its existence is guaranteed by the crucial
property (55). Then ,plk*l - P x ylh*l: u is subharmonic in Il with
zero boundary values. But P * rplk*l is positive and by (56) ylk*(w)l :
o(1w0. Hence

lim inf" ^u*"W! . or

and Mlylk"llil exists by the Phragm6n-Lindelöf principle'

possible to select tlte sequence {d,,\ 'i,n (49) such tltut
a,nd only i,f

Heins' methods. First
t< oc) . Oonsequent-

and i#,cu<."
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Next we consider the truncated surface §[ (see section 4c) and shov'

that Mylnl/§[ exists. This follows by Heins'argument [I, III 4,p.46].
X'or completeness we outline it in this context. X'irst

Mrpl"llU A, and. My lnll(S| - l) A,) clearly exist' Let /, (1 < e < n'I)
y:l t:L

be copies of closed disks in A, for which -I,c int A, c /" ctt:,1 A,
and n(Å,) is a disk. Lel Å - UA", C : U0Å, and, consider the disjoint
union

s;-c:d)tu!)z
]Y

where Qz: l) (A, - /,) (disjoint union) is the unbound,ed, part and !),
l: I

is the bound,eil, part. Cefiainly Mylnl/f2; exists for i : I ,2 . LeL u , u
have the following properties:

xc ,'t) continuous orl s'], ,

% , u harmonic on QrU Q, ,

'tL <Myl"ll(Qr,U Qr), u ) 0,

'tL maximal, a minimal.

Then u * ,p(n)a is a superharmonic majorant of y(n) on §[ and hence

ilhplnllS| exists.
Now let h": MylallSi. Since §[c §[+1 we have h^{hn+r on

B!(k <n). I\foreover US; : So.. Evidently if. h: Mylnl§* exists
then h > h* for all ??, . ConverselS,- if li:m lt" exists (finite) then it is

harmonic and majorizes yttt,. fn other rrords it follows from Harnack's
principle that iim h,: llPt,:t'ti§, if and only if

(57) h"(po) 1B (ra > 3)

for some fixed p, € B, . But repeating an argument of Heins similar to
the one above lf , p. 4f ] we find that

(58) h.+r(po) \ ä"(1lo) as d,*, \ c,+r .

Hence if d^+L is selected so that h,*r(po) <h"(po) + 2-" the existence of
MylnllS* will follow.

c. It is now clear how the main theorem 1 (10), (1I) follows from lemmas

5 and 6.

6. Unions anil Intersections. a. If g is finite and subscalar t'hen the
strong covering property (47) and the Myrberg representation (5a) is valid"

for / € H(fL) and hence by the proof of lemma 5 we have

19
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(ii)

(iii )

(irr)
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TLe@e.

fn addition Mrpl"l exists whenever tp I E, because the construction
of f3* is independent of rp and the last selection of {d,") is not necessary.
Hence ne Hr(B*) implies

rLe @v.

b. Next to show the countable union property (12) we need only select
fhe {d,,} in a careful marrrrer. X'irst select, {d,},r., so that MyrlnllS*
exists. Then set d*: d, and write §, : Bre for this selection. Next
choose il,,n for y ) 2 such that on this surface §rr

c,1d,q 1d,6, @ 22) ,

MynlnllSna exists.

Because of (58) we find that Myrlnlf§r. also exists and

Bå, : §lu'
.fn general then

d,r6q1 :dr1r, for u{k,
cyld,*+t1do1,, for v) tr,+I,
MtttilnlS^,-, existsfor 3<j<k+L.tJt t (pEtt

The diagonal sequence d- gives a surface §, on which

MyllnllS* existsfor j>3.
c. To obtain the countable intersections result (r2) we follow a varia-

'tion of Heins' construction. Let §r- be constructed such that

B** e<ao^ - €), .

Define the marked, cogti,es by

B-:{(p,m):peS,r^},
w(P , m) : n(P) .

Make new cuts by letting -3+2-2u:e,, -3+z-u2+r-fr and
setting

L,^ : { (t,2, m) : e, < t < f,),
ior y ,m ) I . Then consider the pieces

@

Ar:§1 -ULrr,, if rn- I

Bn,:,s- - ;**, if nx > 1 ,
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and weld them together by the criss-cross technique (51). Let .E denote
the new surface. Clearly the same argument under (54) applies here and.
hence the Myrberg representation (54) holds on llr(ft) for any Orlicz
function 7 . Using the sectors A,^ of ,S- we see that the proof of lemma,
5 implies

u 
'-p:y.^'

To see that, MElnllR exists we repeat the truncation-majorization-ex-
haustion argument of Heins described in detail in section 5b, to see that
(57) holds for

h-: Mvlnll@- |j s-)
v:n*l

provided the {d,,} and {/,} are appropriately selected (use both dia-
gonals).

7. Questions. The fuaction q(r) : e* is an example of an Orlicz func-
tion which is not superscalar. It rrould appear somewhat doubtful that
an infinite Orlicz function could be superscalar.

Second, there is the open question of what relation between E and y
is necessary and sufficient for {A*C@*. Does @*a @* imply E <V
ordoesitimply ESKV and q(r")<(tln)y(r") for r.v@? Wedonot
even know whether it implies V < KV. Similar and related questions
are open for @n:@u, and @*ii@,,,.

Third, there are the obvious questions concerning unions and inter-
sections. With new firnctions rp (other than Orlicz functions) the question
of characterizing "C" , " :u , "l'1" are more complicated. Suppose that
the growth condition for lrhich "@r)@* if and only if q -y)" were
solved. 'We would say that the classification rvas complete if

.,Yf -: **:*2***'

fs there a complete classification of surfaces by some collection of null
Ifardy-g classes?

2T
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