ANNALES ACADEMIAE SCIENTIARUM FENNICAE

 $S_{\text{eries}} \ A$

I. MATHEMATICA

496

THE DISTRIBUTION OF FATOU POINTS OF BOUNDED AND NORMAL ANALYTIC FUNCTIONS

 $\mathbf{B}\mathbf{Y}$

STEPHEN DRAGOSH

HELSINKI 1971 SUOMALAINEN TIEDEAKATEMIA

doi:10.5186/aasfm.1971.496

Copyright © 1971 by Academia Scientiarum Fennica

Communicated 15 April 1971 by Olli Lehto

KESKUSKIRJAPAINO HELSINKI 1971

.

§ 1. Introduction

A point $\zeta = e^{i\theta}$ on the unit circle $C_z : |z| = 1$ is said to be a Fatou point of a function f(z) defined in the unit disk D : |z| < 1 provided there is a constant c such that f(z) has angular limit c in each Stolz angle at ζ ; c is called the Fatou value of f(z) at ζ . In case f(z) is a bounded analytic function, then f(z) has c as Fatou value at ζ if and only if f(z) has radial limit $f(\zeta) = c$ at ζ :

$$f(\zeta) = \lim_{r \to 1} f(r\zeta) ;$$

and by Fatou's theorem, $f(\zeta)$ exists for almost every point ζ (i.e. for almost every value of θ , $0 \le \theta < 2\pi$).

In [6, Theorem 4] Seidel proved the following improvement of a theorem of R. Nevanlinna:

Theorem 0. Let w = f(z) be a bounded analytic function in D:

$$|f(z)| < 1$$
.

Suppose f(z) has radial limits of modulus one at almost every point of an open arc A on C_z . Denote by E_w the set of radial limits $f(\zeta)$, $\zeta \in A$, that lie on the circle $C_w: |w| = 1$. If f(z) has a singularity on A, then E_w is the whole circle C_w .

In Theorem 0, it follows that E_w has the same property on each subarc of A containing a singularity of f(z). We consider the following question. If E_w is any set on C_w and E_{ζ} is the set of *all* points ζ on C_z such that $f(\zeta) \in E_w$, what metric properties does E_{ζ} have in each neighborhood of a singularity ζ of f(z) on A? Theorem 0 only asserts that there is a nonempty subset of E_z in each open arc containing ζ .

A bounded analytic function f(z) constructed in [2, Theorem 12], originally due to J. A. Jenkins, serves to illustrate the problem. The function f(z) has radial limits of modulus one at almost every point ζ on C_z (thus |f(z)| < 1) and each point ζ is a singularity of f(z). Also, there exists a set K_{ζ} of measure zero on C_z that satisfies the following: Each point of K_{ζ} is a Fatou point of f(z), and on each subarc of C_z there is a subset of K_{ζ} for which the corresponding set of Fatou values covers C_w . Thus, given any set E_w on C_w , if

$$E_{\zeta} = \{\zeta : f(\zeta) \in E_u\},\$$

then conceivably E_{ζ} could be of measure zero on some subarc of C_z . However, as to be shown in Theorem 1, this is not the case provided E_w has positive inner Lebesgue measure.

In Section 3 functions of class (U) are considered. By a simple application of a well-known extension of Löwner's lemma, a general inequality on the inner and outer measures of E_{ζ} and E_w can be obtained for functions f(z) of class (U) satisfying f(0) = 0. In fact, if E_{ζ} and E_w are measurable, their measures are equal. In Section 4 some limitations on the distribution of the set E_{ζ} are pointed out.

Finally, in Section 5 our results are used to answer negatively a question concerning the distribution of Fatou points of normal analytic functions posed by Bagemihl and Seidel [1, page 10].

§ 2. The distribution of Fatou points

A measurable set E on C_z is said to be *metrically dense at a point* $\zeta \in C_z$ provided

$$m(E \cap A) > 0$$

for every open arc A on C_z containing ζ , where m denotes Lebesgue measure.

Theorem 1. Let f(z) be a bounded analytic function in D:

|f(z)| < 1.

Suppose f(z) has radial limits of modulus one at almost every point of an open arc A on C_z . Let E_w be any subset of C_w , and define

$$E_{\mathcal{E}} = \{\zeta : f(\zeta) \in E_w\}.$$

If E_w is a Borel set, $m(E_w) > 0$, then E_{\leq} is metrically dense at each singularity of f(z) on A.

In general, for each singularity ζ of f(z) on A and each open arc $A_0 \subset A$, $\zeta \in A_0$,

$$m_i(E_z \cap A_0) > 0$$
 if $m_i(E_w) > 0$

and

$$m_{\mathbf{e}}(E_{\mathcal{F}} \cap A_{\mathbf{0}}) < m(A_{\mathbf{0}}) \quad if \quad m_{\mathbf{e}}(E_{w}) < 2\pi$$
 ,

where m_i and m_e denote inner and outer Lebesgue measure respectively.

Proof. Suppose E_w is a Borel set, $m(E_w) > 0$. Then E_{ζ} is measurable (see [4, Corollary]). Take any singularity ζ of f(z) on A and any open

are $A_0 \subset A$, $\zeta \in A_0$. We can assume $\zeta = 1$, or otherwise consider the function $f(\zeta z)$. Then, by [6, Theorem 8], there exists a point w_0 , $|w_0| < 1$, and a sequence $\{z_n\}$, $|z_n| < 1$, $z_n \rightarrow 1$, such that

(1)
$$f(z_n) = w_0, n = 1, 2, \ldots$$

The linear transformation

$$\tau = \psi(w) = \frac{w - w_0}{1 - \bar{w}_0 u}$$

carries E_w onto a set E_τ on C_τ : $|\tau| = 1$ satisfying

 $m(E_{\tau}) > 0$.

As $z_n \to 1$, the linear transformations of $|z| \leq 1$ onto itself given by

(2)
$$\varphi_n(z) = \frac{z+z_n}{1+\bar{z}_n z}$$

converge uniformly to 1 on each compact subset of $|z| \leq 1$ that does not contain z = -1. For, if $|z+1| \geq \delta$, $|z| \leq 1$, and z_n is sufficiently close to 1, then

$$|arphi_n(z)-1| = rac{|z(1-ar{z}_n)-(1-z_n)|}{|1+ar{z}_n z|} \! \leq \! rac{4}{\delta} \, |1-z_n|$$

Thus each function $\varphi_n(z)$ maps a subarc A_n of C_z onto A_0 , where

$$\lim m(A_n) = 2\pi .$$

Consider the sequence

$$\tau = g_n(z) = \psi(f(\varphi_n(z))) .$$

Let

$$F_n = \{\zeta : g_n(\zeta) \in C_{\tau} - E_{\tau}\}.$$

Each F_n is measurable since F_n corresponds under $\varphi_n(z)$ to the measurable set F_z given by

$$F_{\zeta} = \{\zeta : f(\zeta) \in C_w - E_w\};$$

 F_{ε} being measurable because E_{w} is a Borel set [4, Corollary].

By (1) and (2), $g_n(0) = 0$ for each n, and, by Theorem 0, the set of radial limits $g_n(\zeta)$, $\zeta \in F_n \cap A_n$, covers $C_{\tau} - E_{\tau}$. An extension of Löwner's lemma [5, page 34] implies

(4)
$$m(F_n \cap A_n) \leq m(C_{\tau} - E_{\tau})$$
$$= 2\pi - m(E_{\tau}),$$

6

where $m(E_{\tau}) > 0$.

It follows that

(5) $m(F_{\zeta} \cap A_0) < m(A_0),$

for otherwise

$$m(F_n \cap A_n) = m(A_n)$$
, $n = 1, 2, \ldots$,

and, by (3),

$$\lim m(F_n \cap A_n) = 2\pi,$$

which contradicts (4). By Theorem 0, every point of C_{w} is a radial limit of f(z) on A_0 , and so

(6)
$$m(E_{\varepsilon} \cap A_0) + m(F_{\varepsilon} \cap A_0) = m(A_0) .$$

By (5) and (6),

$$m(E_{\zeta} \cap A_0) > 0.$$

Thus E_{ζ} is metrically dense at $\zeta = 1$.

Now choose any singularity ζ of f(z) on A and any open arc $A_0 \subset A$, $\zeta \in A_0$. If $m_i(E_w) > 0$, let E'_w be a closed set such that $E'_w \subset E_w$ and $m(E'_w) > 0$. Set

$$E'_{\zeta} = \{\zeta : f(\zeta) \in E'_w\}.$$

Since E'_w is a Borel set, E'_{ζ} is metrically dense at ζ . Thus, since $E'_{\zeta} \subset E_{\zeta}$,

$$m_i(E_i \cap A_0) > 0$$
.

Now suppose $m_{e}(E_{w}) < 2\pi$. Let

$$F_{\zeta} = \{\zeta : f(\zeta) \in C_w - E_w\}.$$

By what was just proven, since $m_i(C_w - E_w) > 0$,

$$m_i(F_{L} \cap A_0) > 0 .$$

By Theorem 0, the set of radial limits $f(\zeta)$, $\zeta \in A_0$, covers C_w , and so

$$\begin{split} m(A_0) &= m_{e}(E_{\zeta} \cap A_0) + m_{i}(F_{\zeta} \cap A_0) \\ &> m_{e}(E_{\zeta} \cap A_0) \;. \end{split}$$

This completes the proof.

§ 3. Functions of class (U)

If a bounded analytic function f(z) in D has radial limits of modulus one at almost every point of C_z (thus |f(z)| < 1), then f(z) is said to belong to the class (U). It is apparent how Theorem 1 applies to functions of class (U).

For functions f(z) of class (U) satisfying f(0) = 0, Löwner's lemma assumes the following form.

Theorem 2. Let f(z) be of class (U), f(0) = 0. Let E_w be any subset of C_w , and set

$$E_{\zeta} = \{\zeta : f(\zeta) \in E_w\}.$$

Then

(7)
$$m_i(E_{\zeta}) \leq m_{\bullet}(E_w) \quad and \quad m_i(E_w) \leq m_{\bullet}(E_{\zeta}) .$$

If E_w is a Borel set, then

$$(8) m(E_{z}) = m(E_{w})$$

Proof. Let

$$F_{\zeta} = \{\zeta : f(\zeta) \in C_w - E_w\}.$$

Since f(z) is of class (U),

$$m(E_{\zeta} \cup F_{\zeta}) = 2\pi$$
 .

By the extension of Löwner's lemma in [5, page 34],

(9)
$$m_i(E_{\zeta}) \leq m_e(E_w)$$

and

$$egin{aligned} m_i(F_{\zeta}) &\leq m_e(C_w - E_w) \ &= 2\pi - m_i(E_w) \ . \end{aligned}$$

Thus

(10)
$$m_i(E_w) \leq 2\pi - m_i(F_z)$$
$$= m_e(E_z) .$$

By (9) and (10), we have (7).

If E_{w} is a Borel set, then E_{z} is measurable, and (7) implies (8).

§ 4. Limitations on the distribution of Fatou points

The lower mean metric density of a measurable set E on C_z at a point $\zeta \in C_z$ is defined to be

$$\delta_{-}\left(E \ , \ \zeta
ight) = \lim_{arepsilon
ightarrow 0} \inf rac{m(E \ lambda \ A_arepsilon)}{2arepsilon} \, ,$$

where A_{ε} is the open arc on C_z of length 2ε and midpoint ζ . It is a fundamental result in measure theory that

$$\delta_{-}(E,\zeta)=1$$

at almost every point $\zeta \in E$. Thus, it is evident that given two measurable sets E_1 and E_2 on an open arc A on C_z ,

$$m(E_1) > 0, \ m(E_2) > 0,$$

both E_1 and E_2 can be metrically dense at every point of A, but it cannot be the case that both E_1 and E_2 have positive lower mean metric density at each point of A.

Therefore, in Theorem 1 it is not necessarily the case that E_{ζ} has positive lower mean metric density at each singularity of f(z) on A. For, if E_w is a Borel set on C_w ,

$$0 < m(E_w) < 2\pi ,$$

and each $\zeta \in A$ is a singularity of f(z), we arrive at such a conclusion by considering the sets

$$E_1 = E_{\mathcal{Z}} \cap A$$
 , $E_2 = F_{\mathcal{Z}} \cap A$,

where

$$F_{\boldsymbol{\zeta}} = \{\boldsymbol{\zeta} : f(\boldsymbol{\zeta}) \in C_w - E_w\}.$$

§ 5. An application to normal analytic functions

Let f(z) be meromorphic in D. Then f(z) is said to be normal if and only if the family

$$figg(rac{z+a}{1+ar{a}z}igg), \hspace{2mm} |a| < 1$$
 ,

is normal in the sense of Montel, where convergence is defined in terms of the spherical metric.

In [1, Theorem 3], Bagemihl and Seidel proved that if the set of Fatou points of a normal analytic function f(z) is of measure zero on a subarc A of C_z , then f(z) has ∞ as a Fatou value at some point of A. In the same paper is shown the following: Given any $\varepsilon > 0$, there exists an analytic function f(z) normal in D such that the set of Fatou points of f(z) has measure less than ε , but ∞ is not a Fatou value of f(z). However, the set of Fatou points of f(z) is an open subset of C_z and the following question remained unanswered. If E_{ζ} is the set of Fatou points of a normal analytic function f(z) in D and

$$0 < m(E_{r} \cap A_{0}) < m(A_{0})$$

for each subarc A_0 of an arc A on C_z , need ∞ be a Fatou value of f(z) at a point of A? The following theorem answers this question negatively.

Theorem 3. Given $\varepsilon > 0$, there exists an analytic function f(z) normal in D for which E_z , the set of Fatou points of f(z), satisfies

$$(11) 0 < m(E_{\epsilon} \cap A) < m(A)$$

for each subarc A of C_z and $m(E_{\zeta}) < \varepsilon$, but ∞ is not a Fatou value of f(z).

Proof. By Bagemihl and Seidel's result [1, Theorem 4], there exists an analytic function $w = g(\tau)$ normal in $|\tau| < 1$ for which E_r , the set of Fatou points of $g(\tau)$, satisfies

$$0 < m(E_{\tau}) < \varepsilon$$

and ∞ is not a Fatou value of $g(\tau)$. As noted previously, E_{τ} is an open subset of $C_{\tau}: |\tau| = 1$. The function $g(\tau)$ is in fact finite and continuous at each point of E_{τ} and does not have an asymptotic value at any point of $C_{\tau} - E_{\tau}$.

Let $\tau = \varphi(z)$, $0 = \varphi(0)$, be a function of class (U) for which every point of C_z is a singularity of $\varphi(z)$. We claim that the function

$$w = f(z) = g(\varphi(z))$$

which is normal in D (see [3, page 57]), has the required properties. Let

(12)
$$E_{\zeta} = \{\zeta : \varphi(\zeta) \in E_{\tau}\}$$

and

$$F_{\zeta} = \{ \zeta : \varphi(\zeta) \in C_r - E_r \} \,.$$

Since E_{τ} is a Borel set, both E_{z} and F_{z} are metrically dense at each point of C_{z} by Theorem 1. Thus (11) holds for E_{z} defined by (12). Also, by Theorem 2,

$$m(E_{z}) = m(E_{\tau}) < \varepsilon$$
.

It only remains to prove that E_{ζ} is the set of Fatou points of f(z). Since $g(\tau)$ is finite and continuous at each point of E_{τ} , this will also show that ∞ is not a Fatou value of f(z). Finally, we need only verify that E_{ζ} is the set of points on C_z at which f(z) has a radial limit since, by a theorem of Lehto and Virtanen [3, Theorem 2], ζ is a Fatou point of f(z) if and only if f(z) has a radial limit at ζ .

If $\zeta \in E_{\zeta}$, then the radial limit $\varphi(\zeta) \in E_{\tau}$. Since $g(\tau)$ is continuous at each point of E_{τ} , the radial limit $f(\zeta) = g(\varphi(\zeta))$ exists.

A.I. 496

If $\zeta \notin E_{\zeta}$, then there are two possibilities: Either $\zeta \in F_{\zeta}$ or $\zeta \notin E_{\zeta} \cup F_{\zeta}$. If $\zeta \in F_{\zeta}$, then $\varphi(\zeta)$ exists, but $\varphi(\zeta) \notin E_{\tau}$. As noted previously, $w = g(\tau)$ does not have an asymptotic value at any point of $C_{\tau} - E_{\tau}$. Thus f(z) does not have a radial limit at ζ . Finally, suppose $\zeta \notin E_{\zeta} \cup F_{\zeta}$. Then

$$\lim_{r \to 1} \varphi(r\zeta)$$

does not exist. The set of limit points of $\tau = \varphi(r\zeta)$ as $r \to 1$ is a continuum S in $|\tau| \leq 1$ containing more than one point. If

(13)
$$\lim_{r \to 1} f(r\zeta) = \lim_{r \to 1} f(\varphi(r\zeta)) = c$$

were to exist, then $g(\tau) = c$ for each $\tau \in S$, $|\tau| < 1$. Thus S lies on C_{τ} , for otherwise $g(\tau) \equiv c$ by the identity theorem. But if S lies on C_{τ} , then $\varphi(z)$ maps the radius at ζ onto an arc γ_{τ} in $|\tau| < 1$ that converges to the subarc S of C_{τ} , and

$$\lim_{\substack{|\tau| \to 1 \\ \tau \in \gamma_{\tau}}} g(\tau) = c \; .$$

Then, by a theorem of Bagemihl and Seidel [1, Theorem 1], $g(\tau) \equiv c$, which is not the case. Hence the limit (13) cannot exist, and ζ is not a Fatou point of f(z).

Michigan State University Michigan, U.S.A.

References

- [1] BAGEMIHL, F., and SEIDEL, W.: Koebe arcs and Fatou points of normal functions. -Comment. Math. Helv. 36 (1961), 9-18.
- [2] DRAGOSH, S.: Horocyclic cluster sets of functions defined in the unit disc. Nagoya Math. J. 35 (1969), 53-82.
- [3] LEHTO, O., and VIRTANEN, K. I.: Boundary behaviour and normal meromorphic functions. - Acta Math. 97 (1957), 47-65.
- [4] McMILLAN, J. E.: On local asymptotic properties, the asymptotic value sets, and ambiguous properties of functions meromorphic in the open unit disc. -Ann. Acad. Sci. Fenn. AI 384 (1965), 1-12.
- [5] NOSHIRO, K.: Cluster Sets. Berlin, 1960.
- [6] SEIDEL, W.: On the distribution of values of bounded analytic functions. Trans. Amer. Math. Soc. 36 (1934), 201-226.

Printed November 1971