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§ 1. Introduction

A point ¢ = ¢” on the unit circle C,: |z] = 1 is said to be a Fatou
point of a function f(z) defined in the unit disk D: |z| << 1 provided
there is a constant ¢ such that f(z) has angular limit ¢ in each Stolz
angle at {; c¢ is called the Fatou value of f(z) at (. In case f(z) is a
bounded analytic function, then f(z) has ¢ as Fatou value at { if and
only if f(z) has radial limit f({) =c¢ at (:

f(€) = lim f(rC) ;
and by Fatou’s theorem, f({) exists for almost every point ¢ (i.e. for
almost every value of 0, 0 <0 < 2=).
In [6, Theorem 4] Seidel proved the following improvement of a theorem
of R. Nevanlinna:
Theorem 0. Let w = f(z) be a bounded analytic function in D:

fE)<1.

Suppose f(z) has radial limits of modulus one at almost every point of an
open arc A on C.. Denote by E. the set of radial limits f(), ¢ € A, that
lie on the circle Cy: |w| = 1. If f(z) has a singularity on A, then E, is
the whole circle C..

In Theorem 0, it follows that X, has the same property on each subarc
of A containing a singularity of f(z). We consider the following question.
If E. is any set on (. and K. is the set of all points { on C; such that
f(¢) € B, what metric properties does E. have in each neighborhood of a
singularity ¢ of f(z) on A? Theorem 0 only asserts that there is a non-
empty subset of E. in each open arc containing (.

A bounded analytic function f(2) constructed in [2, Theorem 12],
originally due to J. A. Jenkins, serves to illustrate the problem. The function
f(2) has radial limits of modulus one at almost every point ¢ on C. (thus
If(®)] < 1) and each point { is a singularity of f(z). Also, there exists
a set K. of measure zero on C, that satisfies the following: Each point
of K. is a Fatou point of f(z), and on each subarc of C, there is a subset
of K, for which the corresponding set of Fatou values covers (.. Thus,
given any set E, on O, if
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E. ={{:f(0) € B},

then conceivably E. could be of measure zero on some subarc of C..
However, as to be shown in Theorem 1, this is not the case provided E.
has positive inner Lebesgue measure.

In Section 3 functions of class (U) are considered. By a simple appli-
cation of a well-known extension of Lowner’s lemma, a general inequality
on the inner and outer measures of K. and E. can be obtained for functions
f(z) of class (U) satisfying f(0) = 0. Infact,if E. and E. are measurable,
their measures are equal. In Section 4 some limitations on the distribution
of the set E. are pointed out.

Finally, in Section 5 our results are used to answer negatively a question
concerning the distribution of Fatou points of normal analytic functions
posed by Bagemihl and Seidel [1, page 10].

§ 2. The distribution of Fatou points

A measurable set E on C; is said to be metrically dense at a point
{ € C, provided

m(ENA4)>0
for every open arc 4 on C. containing {, where m denotes Lebesgue

measure.
Theorem 1. Let f(z) be a bounded analytic function in D:

) < 1.

Suppose f(z) has radial limits of modulus one at almost every point of an open
arc A on C, Let E. be any subset of C., and define

B.={C:f(0) € B

If E. is a Borel set, m(E,) > 0, then E. is metrically dense at each
singularity of f(z) on A.

In general, for each singularity C of f(z) on A and each open arc
A, c A, €A,

mi B0 Ag) > 0 if mi(Ea) > 0
and
’)’ne(E; n AO) < m(AO) ?:f me(Ew) < 2x ’

where m; and m. denote inner and outer Lebesque measure respectively.
Proof. Suppose E,, is a Borel set, m(E.,) > 0. Then E. is measurable
(see [4, Corollary]). Take any singularity { of f(z) on 4 and any open
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arc Ayc A, (€4, We can assume { =1, or otherwise consider the
function f(£z). Then, by [6, Theorem 8], there exists a point wy, |w,| <1,
and a sequence {z.}, |zs| <1, z.—1, such that

(1) fza) =wy, n=1,2,....

carries K, onto a set E, on C,: |t| =1 satisfying
m(l,) > 0.
As z,— 1, the linear transformations of |z| <1 onto itself given by

2+ 2z
w2 =115,

(2)

converge uniformly to 1 on each compact subset of |z| <1 that does not

contain z = — 1. For, if |24 1] >0, [z <1, and z. is sufficiently

close to 1, then

(1 — Z) — (1 — 2|
1+ Zuz|

Thus each function ¢.(z) maps a subarec 4, of (. onto A4, where

4
9 — 1] = <=l

(3) lim m(A4,) = 27 .
Consider the sequence
T = ga(2) = P(f(gn())) -
Let
Fo={l:gu(l)€C, — E}.

Each F, is measurable since F, corresponds under ¢.(z) to the measurable
set F. given by

F. being measurable because K. is a Borel set [4, Corollary].

By (1) and (2), ¢g(0) = 0 for each =, and, by Theorem 0, the set of
radial limits ¢a(l), € F.N A., covers C, — E,. An extension of
Lowner’s lemma [5, page 34] implies
(4) m(F. N A4,) <m(C, — E,)

= 27 — m(&)),
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where m(&,) > 0.
It follows that
(5) m(F N Ay) < m(dy),

for otherwise
m(Fo.NA4,) =m(4n), n=1,2

s PAREE )

and, by (3),
lm m(F. N A,) = 27,

which contradicts (4). By Theorem 0, every point of C,, is a radial limit
of f(z) on A4, and so

(6) m(E. N 4y) + m(F. N Ag) = m(4,) .
By (5) and (6),
m(E, N Ag) > 0.

Thus E. is metrically dense at = 1.

Now choose any singularity ¢ of f(z) on 4 and any open arec 4, A4,
€Ay, If mi(B.)>0, let E, be a closed set such that E, c E, and
m(E,) > 0. Set

E.={l:f(C)€E}.
Since K. is a Borel set, E: is metrically dense at . Thus, since Eé cE,
mi(E-N 45) > 0.
Now suppose me(Fn) < 27. Let
Fo={(£:f(0) € Com B
By what was just proven, since m(Cw — E.) > 0,
mi(F,. N 4g) > 0.
By Theorem 0, the set of radial limits f({), ¢ € 4,, covers C., and so
m(4,) = mo(E. N 4;) + mi(F.N Ag)
> mo(E. N 4,) .
This completes the proof.

§ 3. Functions of class (U)

If a bounded analytic function f(z) in D has radial limits of modulus
one at almost every point of C. (thus [f(z)] << 1), then f(z) is said to
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belong to the class (U). It is apparent how Theorem 1 applies to functions
of -class (U).

For functions f(z) of class (U) satisfying f(0) = 0, Lowner’s lemma
assumes the following form.

Theorem 2. Let f(z) be of class (U), f(0) = 0. Let E. be any subset
of Cw, and set

E;={C3f(C) €E.} .

Then

(7) mi(B,) < mdBw) and mi(B.) < me(H,) .
If K., is a Borel set, then

(8) m(B.) = m(E.) .
Proof. Let

F.={C:f() €Cw— Eu}.
Since f(z) is of class (U),
mE-UF.)=2x.
By the extension of Lowner’s lemma in [5, page 34],
(9) mi(B) < md(B.)
and

miF) < m(Co — B

= 21 — mi(F.) .
Thus
(10) miBu) < 27 — my(F.)
= me(E") .

By (9) and (10), we have (7).
If E, is a Borel set, then E. is measurable, and (7) implies (8).

§ 4. Limitations on the distribution of Fatou points

The lower mean metric density of a measurable set £ on C; at a point
. €C, is defined to be

.. mENA)
o—(E,0) = hmme- ,

£—>0
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where A4, is the open arc on (. of length 2¢ and midpoint . It is a
fundamental result in measure theory that

o-(B,0) =1

at almost every point ¢ € E. Thus, it is evident that given two measurable
sets H; and K, on an open arc A on C,,

m(By) > 0, m(Ey) >0,

both E; and FE, can be metrically dense at every point of A4, but it
cannot be the case that both #, and F, have positive lower mean metric
density at each point of A.

Therefore, in Theorem 1 it is not necessarily the case that £, has
positive lower mean metric density at each singularity of f(z) on 4. For,
if E, is a Borel set on C.,,

0 < m(By) < 27,

and each { € 4 is a singularity of f(z), we arrive at such a conclusion by
considering the sets

E,=E.NA, E,=F.N4,
where

F.={C:f(0) €Co— B}

§ 5. An application to normal analytic funections

Let f(z) be meromorphic in D. Then f(z) is said to be normal if
and only if the family

2+ a
f(1+dz)! [al<1’

is normal in the sense of Montel, where convergence is defined in terms of
the spherical metric.

In [1, Theorem 3], Bagemihl and Seidel proved that if the set of Fatou
points of a normal analytic function f(z) is of measure zero on a subarc
A of C., then f(z) has oo as a Fatou value at some point of A. In the
same paper is shown the following: Given any &> 0, there exists an
analytic function f(z) normal in D such that the set of Fatou points of
f(z) has measure less than &, but oo is not a Fatou value of f(z). How-
ever, the set of Fatou points of f(z) is an open subset of (. and the fol-
lowing question remained unanswered. If E. is the set of Fatou points of
a normal analytic function f(z) in D and
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0 <m(E.N A4y < m(4,)

for each subarc 4, of an arc ' 4 on C., need oo be a Fatou value of f(z)
at a point of A? The following theorem answers this question negatively.

Theorem 3. Given ¢ > 0, there exists an analytic function f(z) normal
m D for which E., the set of Fatou points of f(2), satisfies

(11) 0 < m(B.N A) < m(A)

Jor each subarc A of C, and m(E.) <e, but oo is not a Fatou value of
1.

Proof. By Bagemihl and Seidel’s result [1, Theorem 4], there exists
an analytic function w = ¢g(r) normal in |7| << 1 for which £, the set
of Fatou points of g¢g(r), satisfies

0 <m(B)<e,

and oo is not a Fatou value of g(z). As noted previously, E, is an open
subset of C,:|7| = 1. The function ¢(r) is in fact finite and continuous
at each point of X, and does not have an asymptotic value at any point
of C,—E..

Let 7= ¢(z), 0= ¢(0), be a function of class (U) for which every
point of C. is a singularity of ¢(z). We claim that the function

w = f(z) = g(¢() ,

which is normal in D (see [3, page 57]), has the required properties.
Let

(12) E.={l:¢9) €L}
and

Since E, is a Borel set, both E. and F. are metrically dense at each
point of C, by Theorem 1. Thus (11) holds for E. defined by (12). Also,
by Theorem 2,

m(E.) =mE) <e.

It only remains to prove that E. is the set of Fatou points of f(z). Since
g(t) is finite and continuous at each point of E,, this will also show that
o is not a Fatou value of f(z). Finally, we need only verify that E.
is the set of points on €. at which f(z) has a radial limit since, by a theorem
of Lehto and Virtanen [3, Theorem 2], { is a Fatou point of f(z) if and only
if f(z) has a radial limit at £.

If €E, then the radial limit ¢({) € E,. Since g(z) is continuous
at each point of K, the radial limit f({) = ¢(¢({)) exists.
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If (¢E., then there are two possibilities: Either (€F. or
(€E.UF.. If (€F, then ¢() exists, but ¢(¢) €. As noted
previously, w = g(r) does not have an asymptotic value at any point
of C, — E,. Thus f(z) does not have a radial limit at {. Finally, suppose
(€E.UF. Then

lim ¢(r{)
r—>1
does not exist. The set of limit points of 7 = ¢(r{) as r—1 is a continuum
S in |7] <1 containing more than one point. If
(13) Iim f(rf) = lim f(g(rl)) = c¢
r—>1 r—>1
were to exist, then ¢(r) =c¢ for each 7 €S8, || < 1. Thus S lies on
C,, for otherwise g(r) =c¢ by the identity theorem. But if S lies on C,,
then ¢@(z) maps the radius at { onto an arc p, in |t| << 1 that converges
to the subarc S of C,, and
lim g(t) =c¢.
|7|=>1
€y,
Then, by a theorem of Bagemihl and Seidel [1, Theorem 1], g(7)=c,
which is not the case. Hence the limit (13) cannot exist, and ¢ is not a
Fatou point of f(z).

Michigan State University
Michigan, U.S.A.
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