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Introduction

1. The modern theory of harmonic functions owes much of its richness
to the striking phenomena encountered, in the generalization of the theory
from plane regions to abstract Riemann surfaces. In particular, the classi-
fication theory and the relatecl compactification theory of Riemann sur-
faces are among the main achievements in function theory during the past
two decades.

In contrast, the theor), of biharmonic functions has been restricted
mainly to plane regions. One is led to these functions in a natural m&nner
by first replacing Åu : 0 b;' the equation Åu : const; we call its solu-
tions quasiharmonic. More generally, for any harmonic h one considers
Au: h, that is, t]ne bi,harmonic equation Å2u : 0. The reason for the
restriction of its theory to plane regions is that the Laplacian is not mea-
ningful on an abstract Riemann surface. However, on a Riemannian marri-
fold the Laplace-Beltrami operator is rvell-defined, and the theory of
quasiharmonic and biharmonic functions can be systematically developed.

This natural observatioll seerns to have far-reaching consequences, and
a promising nerv doctrine is in the rnaking (cf. [2]-[0]). Various bounded-
ness conditions can be imposed separately on the function and its Laplacian.
This gives, as it were, & nelv dimension of richness to the theory of bihar-
monic functions and the related classification theory of Riemannian mani-
folds, in comparison with the case of harmonic functions. Analysis on Rie-
mannian manifolds also gains independent raison d'ötre, not merely as
a generalization of a theory developed on Riemann surfaces.

2. The first problem here is to find a biharmonic function u with
given boundary values of z and l|u. We shall solve this problem by what
we call the biharmoni,c projecti,ott. The compactification of the manifold,
and the boundary on which the values of tr and Au are given, will depend"
on the bounded,ness properties required of u and Au. We shall in fact
use simultaneously d.ifferent compactifications for u and Åu.

As a by-product we obtain conditions und,er which a biharmonic func-
tion can be d,ecomposed into a harmonic part and a potential part and, as
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a consequence, represented by a pair of harmonic functions. Conversely,
we characterize the pairs of harmonic functions which are the harmonic
parts and the Laplacians of biharmonic functions.

\Me shall first consider the case in which the above decomposition re-
quires no confitions on the Riemannian manifold R: functions with
positive Laplacians. In other cases a condition on -E is unavoid.able, but
it will suffice to assume that .B e Ope, that is, -B carries positive quasi-
harmonic functions z with Åu: l. We shall prove this by establishing
the biharmonic projection for functions rvhose harmonic parts are essen-

tially positive, bounded,, Dirichlet firrite, or bound.ed. Dirichlet finite, and
rvhose Laplacians possess various boundedness properties.

The present paper includes (but is not restricted to) the proofs and gene-

ralizations to unbounded functions of the results announced. in Nakai-
Sario l3]. The authors are pleased to acknowledge stimulating discussions
with their friend. Professor Mitsuru Nakai.

§ 1. The G-operator

3. On a noncompact Riemanrrian manifold R of dimension m ) 2

with a smooth metric tensor (gr;), the La.place-Beltrami operator is given
by

o

A.'

where r:(d,...,fr*) is a local coordinate system, g:deL(gq), and
(gti): @r)-,. We shall assume that R is h;perbolic, i.e., R e.Oc.
Let g(r, g) be the Green's function on .8, and. G the operator d,efined by

,v)f(v)d'a,

wrth d,y the volume element of -8. The class

ro:{fleln < o}

will play a fundamental role in the sequel. Given a class X of functions,
we set Xr: {f I Al e X}. In particular,

(ro)z: {f I Åf € rr} .

Lemma 1. If f e Io anil' Gl e C2, then AGf : f.
Proof. For every g e Ctr we have

I ,rL.i
{s3,

Gf : 
r{ "

tn,

§Z.
J:1
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ÅGf(r)' v@)d*

v@)dv

Therefore ÅGf :/ in the seuse of distributions, and, the lemma follows.
Note that if f eEonO*, the above proof and the hypoellipticity of

/ show that Gf € C-, hence the lemma applies to such /.

4. We refer the reader to Sario-Nakai l7l for general background' in-
formation need,ed here and later on harmonizable functions and on Wiener's
and Royden's compactifications.

Throughout this paper t'he term "continuous" will be used in the re-
stricted sense, i.e., with the values @, - @ excluded,. \Ye denote by
Mr: Mr(R) the family of continuous harmonizable functions / on J? for
which there exists a continuous superharmonic function s1 with sy 2 l"fl

on -8. Let Nl(-E) be the family of functions in Mr(R) which vanish
identically on the Wiener harmonic bound,ary dM,. Denote by Xr(fi)
the potential subalgebra of Mr(R), i.e., the algebra of those functiorrs in
Mr(R) whose harmonic parts HI are identically zero on R. Clearly
ffr(ä) c Nr1A1. The space Mr(R) has the direct sum decompositions

Mr(R): HP',(R)@ Ä"(A) ,

Mr(R) : HB',(R) @ Nr(A) ,

where HP' isthe class of essentially positive harmonic functions and' HB'
is the class of quasibounded harmonic functions. In general these d,ecom-

positions are different. For example, orr -B : {reCi&ez > 0} the func-
tion f(z): Rez-1 is in äP'(-R) but not in HB'(R).

When no ambiguity can arise, u-e s-ill often omit the s1-rnbol (.8) in
our notation.

Lemma 2. If f e Io and Gf is cont'inuous, then Gl e Nt(.;P,).

Proof. Let, f :f+ -/- with 7+: f U 0 and /-: (-/) U 0. Since

f e Io, Gf+ and Gf- are well definecl and Gf - Gfo - Gf-. By the super

mean value property and. the lower semicontinuity we see that G/+ a,14

Cf are superharmonic, hence harmonizable, and lGfl < Gf+ + Gf-.
Therefore Gf e ML(R), and, it suffices to sho'w t'hat, Hrr:0 .

Suppose that for a given superharmonic function s on E there exists
a subharmonic function z such that s ) u on R. Then by the Riesz

Gf(*)' Av(*)d*

l{ s(r, v)' ae@)d'.) ttawa

Gtv(il.f@dy: {ttol 
.

:!
:{

:{

{
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representation theorem there exists a unique harmonic
a, unique measure o's on R such that

s : h,, + { 
g(', y)ctor(y) 

2

with h, the greatest harmonic ,J;rrant G.H.hf . s. fn

Gf* -hcf- + { 
g(.,y)closy;.@),

fGfn: J n(.,a)f+(y)dy
Å

and the uniqueness of the representation that G.H.M. Gf+ : g .

On a regular subregion !),wehave Gf+ : H3* * po, where äfy+ is the
harmonic function on ^fJ with boundary values Gf* ,n 0.(}. Clearly O < Hfi+
< Gf* on (). On taking the ]imit O --> R r.r.e obtain O < H[r+ < Gf*.
Since G.H.M.Gf*:0, it follows that H[r;:0, that is, G/+e]i(A).
The same holds for Gf-, and thus G/€t'1(,8).

function h, and

particular,

ancl we corclude by

§ 2. Functions with positive Laplacians

5. Denote by W(R) the family of biharmoni,c functi,ons, that is, C4-

functions satisfying Azu:0 on Ä. Let H,B,P,D be the classes of
harmonic functions, bounded functions, nonnegative functions. and func-
tions with finite Dirichlet integrals. We rrill be iutelested in the subfamilies
WXyÅ:WfiXnYl of IIl, l-ith X,Y:8,P, or D. Itwillbe
illuminating to first consider II'KSB/, r'here

§:{"fec2ilf>o}
and. K denotes the class of harmonizable functions.

Theorem 1. On an arbitrary hyperboli,c Rieruanni,an m.ani,fold the func-
ti,ons in 1(BB/ haue a uni,que d,ecompos,ition into bi,harmonic functions and,

potent'i,als:

lf§§/ : WKSS'6- nfr(ffr)r^95, .

Proof. We will show first, that every harmonizable function / € S has
a Riesz decomposition

f :Hr+ Glf ,

where Åf e Io.



Let Q be a regular subregion of -B and gr(r, A) the Green's function
on g. For a ball B, about r e O with radius e such that, E*c Q,

Green's formula vields

f
I {so@, y) * dlf@) - uf (il1 - lf@) - nf @) x d,eo@, a)}

J
0(a -Bi)

r
I {so@, illlf @ - uf (il] - lf@ - Hf (il)a,so@, v)\dv ,

J
Q-Bn

where Hf is the harmonic function on .(/ rvith boundary values .;f on

ä0. On letting e -+ 0 we obtain

f(*) : Hf (r) * { t,@, y)af(a)dy .

a
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Since / is harmonizahle, Hf(r) tends to a harmonic function äy(r)
on R &s Q -'> R. The monotone collvergence theorem now gives the
desired, result.

Let, f €.K§/S/. Then also Åf e KB because lf > 0 and A'f > 0,

that is, ,:f is superharmonic. Hence we have

af : Hor + GArf .

Clearlv 0 I Hrr I Åf , and. tlnas Hr, € -Eo. We therefore obtain

I : Hr + Glf : (Hr a GHa) + (G/f - GHlf) '

By means of Lemmas I and 2 it is now easy to see that
(4 * GHli e WKSS, and. (c/f - GHri € -l'i1(xi)/,ss-/.-To 

prove the uniqueness of the decomposition, let f e IyKSB/n
trr(flr)r. Since ffeHPnNr,f-0 on -8. Thus f eH OI'r, and,we

conclud,e that f :0 on l?.
This completes the proof.
We call IYKSS/ tlne bihctrntoni,c proiection of liSS/. Note that we

have, in particular, the above decompositiou for positive functions in SSr,

since P§ c 1(.

6. On observing that WSS,.(R): II'S(-B) : 'l'YPz(R), we obtain
the following Riesz decomposition for IYKPr(R):

Theorem 2. On am arbi,trary hyperbolic Riemanni,an n't'anifold, euery

harmoni,zable b'i,harmoni,a functdon wi,th a posi,ti,ue Laplacian has a unique

d,ecomgtos'it'i,on 'into a, harmon'i,c function and, the potenti,al of a posi,tiae har'
mon'i,c functi,on,

/tD:'uL*Gu,we WKPo,ue H,ue HP.
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Every function zu which has such a decomposition is harmonizable,
hence we cannot suppress this assumption. For example, the function
f("): - l"l, on -B: {zecl |zl > l} isin WPo, butnot harmonizable.

X'or any Riesz decomposition 1t) :/u, * Gu, w € WXY* u e HX,
a C HY, we call u the harmonic part and. Ga lhe potenti,al, part of w.

§ 3. Function classes

7. Theorems I and 2 state that K§§r(-B) has the biharmonic projec-
tion and WKPI has the Riesz d,ecomposition with no restrictions on the
functions in KBBr(.B) or on the manifold, R e Or. However, this is not
true in general (see Nakai-Sario [5]). In the remainder of this paper, v.e
shall establish conditions und.er which it is possible to have biharmonic
projections and Riesz decompositions for certain classes of functions which
we now introduce.

Let Mr(R) and -l[r(.8) be the \4/iener algebra and the Wiener potential
subalgebra (see e.g. Sario-Nakai [7]). It is clear that Mr(R) : MJR) n B@)
and trr(A) : Ifl(l?) n Mz(R). Denote by Mr(R) the class of Tonelli
functions with finite Dirichlet integrals and, by trr(ä) the subclass of
functions f e Ms@) which vanish on the Royden harmonic boundary
dM,. It is known that Mr(R) c MI(R) and that flr(A) : Ifl(A) n Ms@)
(see Constantinescu-Cornea [I]), hence the subclasses of Mr(R) coffe-
sponding to ffr(E) and lVrtBl coincide. Clearly the Ro;,den algebra
Mn@): Ma(R) n B(e) and the Royden potential subalgebra Jf*(ä) :
ffr(A) nM^(R):Ifr(A) nML(R). X'or simplicity, we write Mri(R):
tuIt(R) n @q/@) and trc,(A) : X,(A) n (tr;)r(A), i, j : 1,2, s,4.

8. The potential subalgebras ff,(A)
Lemma 3. If f e (ro)o n Är,(-B) fo,
Proof. We have shown that for any

have the follorrring propert)-:
i-L,2,3, 1, tlten Glf -f .

regular subregion 0 of R,

f("): H?(r) + y)Af (y)dy

Since / € -lfr(.B), limo-* Hf (r) : 0 on R. By Lebesgue's dominated
convergence theorem we conclud,e that

f(*): ! s(r,y)af(y)da

!,,o(r'

on R.
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§ 4. Funetions with essentially positive harmonic parts

9. Set (hi: M\(ns),o, i:1.,2,3,4, where z stands for the har-
monic projection. Clearly *@u WMr(Fo)/.

Theorem 3. The d,i'rect sum d,ecomgtosi,tion

@11 :W@r,@ffrj@,r,

j:1,2,3,4, i,s aali,il, on o,% arbitrary hyperboli,c R'i,emann'i,an mani,fold,.

Proof. Lef f e @o. By the direct sum decomposition Mr(R) : HP'(R)
@ Ifl(A),/ : nf I fr with nf € HP',lt e I{1, and. Ålc: //. Since Åf e Ml
weobtain lf :nlf f p with nAf eXo,pe.l[r. Therefore f :wf {k:
(nf t GnAf) + (fr - GnAf), and one verifies immediately that (nf *
GnÅf) e W@t and, (h - Gnlf) € ff r@r'.

The uniqueness is clear, and rre have proved. the theorem for @rr.

It is knowrr ihat Mr(R): HB(R) @ trr(fi), tuIs(R) : HD(R) @ fla(A),
and, Mn(R) : HBD(R) @ Ifn(A). By means of these decompositions the
theorem follows for @r,, j:2,3,4, in analogy u,-ith the proof above.

10. fn view of Lemma 2 we have also proved:
Theorem 4. On an arbi,trary hyperbolic Riemannian mani,fold', the

functi,ons w, e lT@r, haae the un'ique d,ecompos'it'ions q * Gu1 with

ure HP', are HP' ,

ure HP', are HB,

u,e HP', o,e HD,

une HP', une HC ,

where C stand,s for BD.

11. We proceed to a more detailed studl' of the cases j : 2, a. By
imposing a simple condition on -E rve rrill be able to dispense 'with the
(-Fo).,-requirement.

We call a Cz-function ?, oI1 -E l-ith Åu : L quasiltarmoni,c and. d.enote

bV 0(A) the class of these furrctions. X'or a given class X of functions let
Oy be the class of Riemannian manifolds R on which there exist no
nonconstant X-functions.Itisknownthat -E € Opp if andonly if Gl < oo

(see Nakai-Sario [3], [a]). Thus it R eOqe, then @p: M* and @u:
Mrn'

Lemma 4. If R Q. Ope, then f e Cz n Bo i,mgiies that f is harmon-
izable on R.
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Proof. lYithout loss of generality we may assume that

know that on a regular region A of R, f (*) - Hf (x) + I

JU.J

besgne's theorem that { lrlruro "onverges 
as d} + R.

0
converges anC f is harmonizable.

Theorem 5. If R C, O qe, then

Mrr(A) -- fiilvlLBo@) G) ÄLr(A) ,

Mrn(R) -- Iry kI$ 
^(R) 

G) r[ra(A) ,

y)Af (v)dv.

b;r Le-

Therefore Hf

and

TTrlYILBo@) c HP'(A) G) GIIB{R) ,

WIVILCo@) c HP'(R) @ GHC(R) .

12. Theorem 5 gives the linear mappings

yp: WMrBr---> HP' x HB ,

ys: lVMrCo-> HP' x HC .

The solvabilit;r of the biharmonic Dirichlet problem depends on the sur-
jectivity of these mappings. This in turn can be completely characterized:

Theorem 6. TYM.B,- HP' x HB, and, also WM.C,r=HP' x HC,
i,f and, only if R e Oa*.

Proof. On R QOqe, let ure HP' and ure HB be given. Clearlr
Gu, is well defined and, by Lemma l, lGur: 1Lz. Lemma 4 gives zr f
Gure TYMTB, and. therefore tl/lll$l.= HP' x HB.

Conversely, yrr'(O,\: I g(.,y)dy eqP, and a fortiori R 8oqr.!
The proof of WMrCo - HP' x HC is similar.

§ 5. Funstions with bounded harmonic parts

13. Let

?t: {f e ?rl sup i Gf (*)i < ,.c} 
,

r€A

qri : 7[2j (Ft)-o ,

taft

I p(r,

lude
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Theorem 7. On an arbitrary hyperboli'c Ri,emanni,an mani,fold,,

@21: W@21 @ I{ri@ri'

Moreouer, the functions w, e W@r, haae the un'ique d,ecomytos'it'ions ui *
Gu, with

ure HB, are HP',

ur€ HB, are HB ,

ure HB, are HD,

une HB, une HC .

The proof is similar to those of Theorems 3 and. 4. The assumption
(-F'r),", iu to assure the boundedness of the potential part of the biharmonic
projection *Qzi.

It is known that Oqp < OaB and that R e, Oqa if and only if
sup lGl l < oo (Nakai-Sario [4]).

n
Theorem 8. Il R q, Oqs, then

Mrr(R): WBB/(R) @ ffrr(A) ,

Mrn(R): lyBCl(R) o lr%(A) .

Iurth,ermore, if R Q Oqe, then

WBB/(R) c HB(R1 e) GHB(R) ,

WBC/(R) c HB(R1 @ GHC(R) .

Theorem 9. \'VBB/- HB x HB, and, also IVBCI- HB x HC,
i,f and, only i,f R Q. Oeu.

§ 6. Diriehlet integrals

14. Let

where

G(fr,fr)- { ,@, Y)fr(*)fr(Y)d'rclY '

we denote the Dirichtet J;;., or f by D(f).
Lemma 5. If f e Frfr C*, tlten D(Gf) - G(f ,f).
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Proof . Let Q be a regular subregion of .B and ga@, y) the Green's
functionon(J.Define ga(r,A):O for ror yeR- (J and set, Grf(r):
f
I go@, y)f(y)dy. Then Stokes' formula yields

o - [*rr(r) * d,Gof@)

0e

Since ÅGnf - f on d),

DoGofl:- 
.[ *r,(x)f (r)d,r

RxR

B), Lebesgue's theorem

Gf(*) - lim Gof@) ,

and b)' I'atou's lemma,

D"(Gf) < lim inf DoGrf)

A fortiori Lebesgue's theorem gives

Do(Gf) -- lim Do(Gof)

: ;; { n,(*, y)r(*)r@)d,rd,y

J

:"årr,f).

The proof is herewith complete.
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§ 7. Functions with Dirichlet finite harmonie parts

15. Consider

@31: M3i(I2),7 ,

v-itli j : L,2,3,4.
Theorem 10. On an arbitrary hyperboli,a R'i,emannian mani,fold,,

@3i : W@3i @ lfr.i@u; .

Proof . Let f € @rr. As in the proof of Theorem 3, rve can writ'e

f:(nflGwAf)+(k-GnAf)
with nf e HD, keNs, and nlf eXzn C'. Using Lemma 5 we obtain
D(Gnt1f) < a, and thus also D(k - Gnlf) < a. It is now clear that
the above decomposition is the desired one and. that it is unique.

The proofs for the other classes are similar.
Theorem 11. On an arbitrary hyperbolic R'i,emanniam mani,fold,, the

functions w, e W@r, haae the uni,que d,ecomposi,ti,ons u ,* Ga, wi,th

ure HD, ure HP',

ure HD, ara- HB,

ure HD, are HD,

une HD, ane HC .

16. It is known that Ope lopo and that R Q,Oq» if and only if
G(I, 1) < oo (Nakai-Sario [4]).

Theorem 12, If R Q Oqo, then

Mrr(R) :'[YDB/(R) @ ffrr(fi)

Mrn(R) :'IYDC/(R) @ 
^Ln(r) 

.

Iurthermore, i,f R e Oqe, then

TYDBA@)cHD(R)@GHB(R)

WDC'@) C HD(R'I @ GHC(R) .

Theorem 13. WDBr-.HD x HB, and, also WDCI-.HD x HC,
i,f a,nd, only i,f R Q, Oqo.
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§ 8. Functions with bounileil Dirichlet finite harmonic parts

17. We close by consid.ering the class

@ai: Maf?l).r(Ir)., ,

with j:L,2,3,4.
Theorem 14. On an arbitrary hyperbolic R'iemannian manifold,,

@a,: W@a, @ Nni@ni.

Moreoaer, the functi,ons w, e W(Dn, haue the un'i,que d,ecompositiotts q I Gui

wi,th

ure HC, are HP',

ure HC, are HB,
ure HC, are HD,
un e HC, une HC .

18. It is known that, Oqc:OouUoqo and that R {Oqc if and
only if sup lGll < oo and G(1, 1) <.o (I{akai-Sario [4]).

R

Theorem 15. If R Q. Oqc, then

Mn(R): IYCB^R) G) Å'+r(a),

Mnn(R): WCC/(R) G) rrrr(A) .

If Reoqp, then

WCB/(R) c HC(R) @ GHB(R) ,

WCC/(R) c HC(R) @ GHC(R) .

Theorem 16. WCBI=.HC x HB, and, also WCCa-zHC x HC, ,f
and, only i,f R A Oqc.

University of California
Los Angeles, Cal., U.S.A.
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