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Introduetion

1. The modern theory of harmonic functions owes much of its richness
to the striking phenomena encountered in the generalization of the theory
from plane regions to abstract Riemann surfaces. In particular, the classi-
fication theory and the related compactification theory of Riemann sur-
faces are among the main achievements in function theory during the past
two decades.

In contrast, the theory of biharmonic functions has been restricted
mainly to plane regions. One is led to these functions in a natural manner
by first replacing Aw = 0 by the equation Auw = const.; we call its solu-
tions quasiharmonic. More generally, for any harmonic % one considers
Aw = h, that is, the biharmonic equation A2y = 0. The reason for the
restriction of its theory to plane regions is that the Laplacian is not mea-
ningful on an abstract Riemann surface. However, on a Riemannian mani-
fold the Laplace-Beltrami operator is well-defined, and the theory of
quasiharmonic and biharmonic functions can be systematically developed.

This natural observation seems to have far-reaching consequences, and
a promising new doctrine is in the making (cf. [2]—[6]). Various bounded-
ness conditions can be imposed separately on the function and its Laplacian.
This gives, as it were, a new dimension of richness to the theory of bihar-
monic functions and the related classification theory of Riemannian mani-
folds, in comparison with the case of harmonic functions. Analysis on Rie-
mannian manifolds also gains independent raison d’étre, not merely as
a generalization of a theory developed on Riemann surfaces.

2. The first problem here is to find a biharmonic function w» with
given boundary values of « and AJu. We shall solve this problem by what
we call the bikarmonic projection. The compactification of the manifold,
and the boundary on which the values of w and Aw are given, will depend
on the boundedness properties required of % and Au. We shall in fact
use simultaneously different compactifications for % and Awu.

As a by-product we obtain conditions under which a biharmonic func-
tion can be decomposed into a harmonic part and a potential part and, as
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a consequence, represented by a pair of harmonic functions. Conversely,
we characterize the pairs of harmonic functions which are the harmonic
parts and the Laplacians of biharmonic functions.

We shall first consider the case in which the above decomposition re-
quires no conditions on the Riemannian manifold RE: functions with
positive Laplacians. In other cases a condition on R is unavoidable, but
it will suffice to assume that R € Oyp, that is, R carries positive quasi-
harmonic functions «# with Au = 1. We shall prove this by establishing
the biharmonic projection for functions whose harmonic parts are essen-
tially positive, bounded, Dirichlet finite, or bounded Dirichlet finite, and
whose Laplacians possess various boundedness properties.

The present paper includes (but is not restricted to) the proofs and gene-
ralizations to unbounded functions of the results announced in Nakai-
Sario [3]. The authors are pleased to acknowledge stimulating discussions
with their friend Professor Mitsuru Nakai.

§ 1. The G-operator

3. On a noncompact Riemannian manifold R of dimension m > 2
with a smooth metric tensor (g;), the Laplace-Beltrami operator is given
by

o m - 9
2w 2V 5

=1

A-

_ 12
=V &

where z = (z%,...,2™) is a local coordinate system, ¢ = det(gy;), and
(97) = (¢:;5)~. We shall assume that R is hyperbolic, ie., R €0O.
Let g(x, ) be the Green’s function on R, and G the operator defined by

6= [ o0y,
R

with dy the volume element of R. The class
Fo={f|G|fl < o}

will play a fundamental role in the sequel. Given a class X of functions,
we set X, = {f|Af € X}. In particular,

(FO)A ={f|AfeFo}-

Lemma 1. If f€F, and Gf€ C? then AGf=f.
Proof. For every ¢ € O we have
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fAGf(x) cplx)yde = /Gf(x) - Agp(x)dz

- f [ f g, y)'Atp(l‘)dx} fy)dy

R

= f GAp(y) - fly)dy = f f@) - o(y)dy
R R

Therefore AGf = f in the sense of distributions, and the lemma follows.
Note that if f € F,N C*, the above proof and the hypoellipticity of
A show that Gf € C®, hence the lemma applies to such f.

4. We refer the reader to Sario-Nakai [7] for general background in-
formation needed here and later on harmonizable functions and on Wiener’s
and Royden’s compactifications.

Throughout this paper the term ’’continuous” will be used in the re-
stricted sense, i.e., with the values oo, — oo excluded. We denote by
M, = M,(R) the family of continuous harmonizable functions f on R for
which there exists a continuous superharmonic function s, with sy > |f]
on R. Let N;(R) be the family of functions in M;(R) which vanish
identically on the Wiener harmonic boundary d,,. Denote by Ny(R)
the potential subalgebra of J(R), i.e., the algebra of those functions in
M,(R) whose harmonic parts H? are identically zero on R. Clearly
N,(R) c Ny(R). The space MM;(R) has the direct sum decompositions

M\(R) = HP'(R)® Ny(R) ,
M\(R) = HB'(R) @ Ny(R)

where HP’ is the class of essentially positive harmonic functions and HB’
is the class of quasibounded harmonic functions. In general these decom-
positions are different. For example, on R = {z € /Rez > 0} the func-
tion f(z) = Rez"1 is in HP'(R) but not in HB'(R).

When no ambiguity can arise, we will often omit the symbol (R) in
our notation.

Lemma 2. If f€F, and Gf is continuous, then Gf € Ny(R).

Proof. Let f=f+r—f~ with ff=fU0 and f-= (—f)UO0. Since
f € F,, Gf+ and Gf~ are well defined and Gf = Gf* — Gf~. By the super
mean value property and the lower semicontinuity we see that Gf* and
Gf- are superharmonic, hence harmonizable, and |Gf] < Gf* + Gf~.
Therefore Gf € M,(R), and it suffices to show that Hg = 0 .

Suppose that for a given superharmonic function s on R there exists
a subharmonic function » such that s >wv on R. Then by the Riesz
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representation theorem there exists a unique harmonic function A and
a unique measure ¢, on R such that

S—ILS—T—f y)dos(y

with A, the greatest harmonic minorant G.H.M. s. In particular,
= heg+ “f—f y)dogs (y)

and we conclude by

G = f g0 D)y

R

and the uniqueness of the representation that G.H.M. Gf+ =0.

On a regular subregion 2, we have Gf+ = H¢+ + p®, where Hg+ is the
harmonic function on 2 with boundary values Gf* on 9. Clearly 0 < H¢,
< Gft on Q. On taking the limit Q- R we obtain 0 < Hiy < Gf+.
Since G.H.M. Gf+ =0, it follows that H¢,~ = 0, that is, Gf~ € Ny(R).
The same holds for Gf-, and thus Gf € 1\’1(}?)

§ 2. Functions with positive Laplacians

5. Denote by W(R) the family of biharmonic functions, that is, C*-
functions satisfying A% = 0 on R. Let H, B, P, D be the classes of
harmonic functions, bounded functions, nonnegative functions, and func-
tions with finite Dirichlet integrals. We will be interested in the subfamilies
WXY,=WnNnXnNnY, of W, with X,Y =B58,P, or D. It will be
illuminating to first consider TWKSS,, where

S={feC?[4f =0}

and K denotes the class of harmonizable functions.

Theorem 1. On an arbitrary hyperbolic Riemannian manifold the func-
tions in KSS, have a unique decomposition into biharmonic functions and
potentials:

KSS, = WKSS,® Ny(N,) 4S8, .

Proof. We will show first that every harmonizable function f €8 has
a Riesz decomposition
f=Hy G
where Af € F,.
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Let 2 be a regular subregion of R and ¢,(z, y) the Green’s function
on Q. For a ball B, about x € Q with radius e such that B,c 2,
Green’s formula yields

f (o, ) * dLfw) — HEW)] — [fy) — HEW)] * dgale, 9)}

0(2—B,)

— - f (9ol AL ) — H2@)] — L) — BRI gale, )y |

2-B,

where H{ is the harmonic function on £ with boundary values f on
90. On letting ¢— 0 we obtain

flo) = H (@) + f Gl NAfW)y .

Since f is harmonizable, Hf(x) tends to a harmonic function H(x)
on R as Q—R. The monotone convergence theorem now gives the
desired result. :

Let f€ KSS, Then also Af € KS because Af >0 and 4% >0,
that is, Af is superharmonic. Hence we have

Af = Hy + G .
Clearly 0 < H,, < Af, and thus H, € F,. We therefore obtain
f= Hf + GAf = (Hf + GHAf) + (GAf — GHAf) :

By means of Lemmas 1 and 2 it is now easy to see that
(H; + GHy) € WKSS, and (GAf — GH ;) € Ny(N1)488,.

To prove the uniqueness of the decomposition, let f€ IWKSS,N
N,(N,),. Since Af€ HPN Ny, Af=0 on R. Thus f€HNXN,, and we
conclude that f=0 on R.

This completes the proof.

We call WKSS, the bikarmonic projection of KSS, Note that we
have, in particular, the above decomposition for positive functions in SS,,,
since PS c K.

6. On observing that WSS, (R) = WWS(R) = WP,(R), we obtain
the following Riesz decomposition for WKP (R):

Theorem 2. On an arbitrary hyperbolic Riemannian manifold every
harmonizable biharmonic function with a positive Laplacian has a unique
decomposition into a harmonic function and the potential of a positive har-
monic function,

w=u-+Gv,w€WKP,,u € H vEHP.
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Every function w which has such a decomposition is harmonizable,
hence we cannot suppress this assumption. For example, the function
fe)=— |22 on R={z € O| |z] > 1} isin WP,, but not harmonizable.

For any Riesz decomposition w=u + Gv, w€ WXY,, u€ HX,
v € HY, we call u the harmonic part and Gv the potential part of w.

§ 3. Function classes

7. Theorems 1 and 2 state that KSS,(R) has the biharmonic projec-
tion and WKP, has the Riesz decomposition with no restrictions on the
functions in KSS,(R) or on the manifold R ¢ O,. However, this is not
true in general (see Nakai-Sario [5]). In the remainder of this paper, we
shall establish conditions under which it is possible to have biharmonic
projections and Riesz decompositions for certain classes of functions which
we now introduce.

Let My(R) and Ny(R) be the Wiener algebra and the Wiener potential
subalgebra (see e.g. Sario-Nakai [7]). It is clear that M,(R) = M,(R) N B(R)
and Ny(R) = Ny(R) 0 My(R). Denote by M,y(R) the class of Tonelli
functions with finite Dirichlet integrals and by N4(R) the subclass of
functions f € M,(R) which vanish on the Royden harmonic boundary
Op,- It is known that My(R) ¢ My(R) and that N,(R) = N,(R) N M,(R)
(see Constantinescu-Cornea [1]), hence the subclasses of My(R) corre-
sponding to N;(R) and N,(R) coincide. Clearly the Royden algebra
My(R) = My(R)N B(R) and the Royden potential subalgebra N,(R) =
Ng(R) N My(R) = Ny(R) N My(R). For simplicity, we write MyR) =
My(R) N (M))4(R) and DNyR) = Ny(R) N (N;)4(R), 4,j=1,2,3,4.

8. The potential subalgebras N;(R) have the following property:
Lemma 3. If f€ (Fy)),N N(R) for i =1,2,3,4, then GAf = f.
Proof. We have shown that for any regular subregion Q of R,

fl@) = HE() + f Gl 1) AF )y

Since f € Ny(R),limgy,, Hf(2) =0 on R. By Lebesgue’s dominated
convergence theorem we conclude that

fla) = f 9(@, ) Af )y
R
on K.
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§ 4. Functions with essentially positive harmonic parts

9. Set &y; = Mi(F),s j=1,2,3,4, where = stands for the har-
monic projection. Clearly W®,; = WM, ,(F,),.
Theorem 8. The direct sum decomposition

@, — W, @ Ny,

j=1,2,3,4, is valid on an arbitrary hyperbolic Riemannian manifold.

Proof. Let f € @;;. By the direct sum decomposition M,(R) = HP'(R)
@ Ny(R),f = anf + k with =f € HP', k € N,, and Ak = Af. Since Af € M,
we obtain Af = aAf + p with zdAf € F, p € N;. Therefore f =af 4 k =
(nf + GnAf) + (k — Gndf), and one verifies immediately that (zf 4-
GrAf) € WDy, and (K — GrAf) € Ny Dyy.

The uniqueness is clear, and we have proved the theorem for @,;.

It is known that M,(R) = HB(R) @ Ny(R), M4(R) = HD(R) ® N4(R),
and M,(R) = HBD(R) ® N,(R). By means of these decompositions the
theorem follows for @,;, j = 2, 3, 4, in analogy with the proof above.

10. In view of Lemma 2 we have also proved:
Theorem 4. On an arbitrary hyperbolic Riemannian manifold, the
functions w; € W®,; have the unique decompositions wu; + Guv; with

u, € HP', v, € HP',

u, € HP', v, € HB ,

u, € HP', v; € HD ,

u, € HP', v, € HC ,
where C stands for BD.

11. We proceed to a more detailed study of the cases j = 2,4. By
imposing a simple condition on R we will be able to dispense with the
(Fy),,4-requirement.

We call a C2-function w on R with du =1 quastharmonic and denote
by Q(R) the class of these functions. For a given class X of functions let
Ox be the class of Riemannian manifolds R on which there exist no
nonconstant X-functions. It is known that R € Oyp if and only if G1 < o
(see Nakai-Sario [3], [4]). Thus if R € Oyp, then &), = M;, and Dy =
My,

Lemma 4. If R € O,p, then f€C2N B, implies that f is harmon-
izable on R.
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Proof. Without loss of generality we may assume that [4f] <1. We
know that on a regular region Q of R, f(x) = Hf(x) + fgg(x, NAf(y)dy.
Q2

In view of [gpAfi <g and f gdy < o we conclude by Le-
R

besgue’s theorem that f godfdy converges as 2 — R. Therefore H7

2
converges and f is harmonizable.

Theorem 5. If R €Oyp, then
M (R) = WM,B,(R) @ Nyp(R),
Miyy(R) = WIMC,(R) ® Ny(R) ,
and
WM,B,(R) c HP'(R) ® GHB(R),
WM,C,R) c HP'(R) ® GHC(R) .

12. Theorem 5 gives the linear mappings
vie: WM,B,—~ HP' X HB,
yu: WM,C,— HP' x HC .
The solvability of the biharmonic Dirichlet problem depends on the sur-
jectivity of these mappings. This in turn can be completely characterized:
Theorem 6. WM,B, ~ HP' x HB, and also WM,C, ~ HP' X HC,
if and only if R € Oyp.
Proof. On R € Oyp, let u, € HP' and wu, € HB be given. Clearly

Gu, is well defined and, by Lemma 1, AGu, = u,. Lemma 4 gives u, +
Gu, € WM,B, and therefore WJM,B, ~ HP' x HB.

Conversely, y5,'(0,1) = fg( y)dy € QP, and a fortiori R € Op.

R
The proof of WM,C, ~ HP' x HC is similar.

§ 5. Functions with bounded harmonic parts

13. Let
Flz{fEFoisup | Gf(x)] < oo},
x€ER

¢2j = J[zj‘ (Fl)nA >
J=12,34.
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Theorem 7. On an arbitrary hyperbolic Riemannian manifold,
Dy; = WDy @ Ny Dy; .

Moreover, the functions w; € W®,; have the unique decompositions wu; +
Gv; with

u, € HB, v, € HP’,
u, € HB, v, € HB,
uys € HB, v; € HD ,
u, € HB, v, € HC .

The proof is similar to those of Theorems 3 and 4. The assumption
(F,)., is to assure the boundedness of the potential part of the biharmonic
projection W ®,;.

It is known that Oyp < Oy and that R €Oy if and only if
sup |G1| < oo (Nakai-Sario [4]).

R

Theorem 8. If R € O,p, then
M,oy(R) = WBB,(R) ® Ny(R),
My (R) = WBC,(R) ® Ny(R) .
Furthermore, if R € Oyp, then
WBB,(R) c HB(R) ® GHB(R) ,
WBC,(R) c HB(R) ® GHC(R) .

Theorem 9. WBB,~ HB X HB, and also WBC,~HB x HC,
if and only if R € Oyp.

§ 6. Dirichlet integrals

14. Let
F2:{f€F0{G(I‘f‘: ) < oo},

where
Gf f) = f 9, (@) faly)dady |

We denote the Dirichlet integral of f by D(f).
Lemma 5. If f€F,NC%, then D(Gf)= G(f.f).
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Proof. Let 2 be a regular subregion of R and g,(v,y) the Green’s
function on 2. Define g,(x,y) = 0 for z or y € R — Q and set G,f(x) =

f 9o, ¥)f(y)dy. Then Stokes’ formula yields

R

0= [ Guft@) + a6, fie)
[o1o]

= Drp(Gyf) — /Ggf(x)AGQf(n‘)dx.
Since AG,f=f on Q,

Dy(Gof) = f Gof (@)f ()

- f 9ol y)f(@)f(y)dady

RXxR
SG(fL D) < .
By Lebesgue’s theorem

Gf(2) = lim Gof(x) ,

2->R

and by Fatou’s lemma,

Dg(Gf) < lim inf Dg(Gof)

=G(fl, 1f) <o

A fortiori Lebesgue’s theorem gives

Dy(Gf) = lim Dy(Gyf)

2->R

= }zin; go(x, ¥)f(@)f(y)dady

- f g, 9)f @) f)dady
RxR

= G(f.f).

The proof is herewith complete.
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§ 7. Funections with Dirichlet finite harmonic parts

15. Consider
(Dsj = J”sj(Fz)zA s

with j=1,2,3,4.
Theorem 10. On an arbitrary hyperbolic Riemannian manifold,

Dy = Wdy; @ Ny Dy, .
Proof. Let f € @,;. As in the proof of Theorem 3, we can write

[ = (@f + Gadf) + (k — Gadf)

with zf € HD, k € N;, and =df € F,N C*. Using Lemma 5 we obtain
D(GrAf) < oo, and thus also D(k — Gadf) < co. It is now clear that
the above decomposition is the desired one and that it is unique.

The proofs for the other classes are similar.

Theorem 11. On an arbitrary hyperbolic Riemannian manifold, the
functions w; € W®s,; have the unique decompositions u + Gv; with

u, € HD, v, € HP’,
u, € HD, v, € HB,
uy, € HD, vy € HD |
u, € HD, v, € HC .

16. It is known that Oyp < Ogp and that R € Oyp if and only if
G(1,1) < oo (Nakai-Sario [4]).
Theorem 12. If R € Oyp, then

Myo(R) = WDB(R) @ Ngy(R)
M,y (R) = WDC4(R) @ Nyy(R) .
Furthermore, if R € Oyp, then
WDB,(R) c HD(R) ® GHB(R)
WDC,(R) c HD(R) @ GHC(R) .

Theorem 138. WDB, ~ HD x HB, and also WDC, =~ HD x HC,
if and only if R € Ogyp.
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§ 8. Functions with bounded Dirichlet finite harmoniec parts

17. We close by considering the class
(-D4j = M4j(F1).—zA(F2):rA >
with j =1, 2, 3, 4.
Theorem 14. On an arbitrary hyperbolic Riemannian manifold,
D, = Wd,; ® N,y ®y; .

Moreover, the functions w; € W®,; have the unique decompositions wu; + Gv;
with

u, € HC, v, € HP',
u, € HC, v, €EHB,
us € HO, vy € HD
u, € HC, v, € HC .
18. It is known that Oy = Opp U Oy, and that R €0y if and
only if sup |G1] < o and G(1,1) < oo (Nakai-Sario [4]).
Theore?n 15. If R € Oy, then
Myy(R) = WOB,(R) ® Ny(R),
My (R) = WCOA(R) @ Ny(R) .
1If R € O,p, then
WCB,(R) c HC(R) ® GHB(R) ,
WOl ,(R) c HO(R) ® GHC(R) .

Theorem 16. WCB, ~ HC X HB, and also WCC,~ HC x HC, if
and only if R € Oyc.

University of California
Los Angeles, Cal., U.S.A.
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