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Abstract

Some finiteness properties of formal series over several non-commutative variables
are invostigated. Somo unsolvability results for those properties are proved. A
simple example of a context sensitive languago over å, single letter alphabet which
is not probabilistic is exhibited.

Introduetion I

An interesting connection between some classical results in analysis
dating back to Cauchy and Jacobi and some quite new theories such as

System Theory, Automata Theory and, Computability has been established
in the past few years. The classical results &re concerned rvith a special type
on infinite matrices, called Hankel matrices, connected with the Routh-
Hurwitz problem (see Cantmacher (1959)), r,r'ith formal series expansion of
rational and alg'braic funct'ions (see Hurwitz (1889)) and. approximations
of formal series by an expansion of a rational function - Pade' approxi-
mat'ion (see Frobenius (1881)). The formal approach has been rejuvenated
recently by Schutzenberger (1961) followed by several others (e.g. Shamir
(1967)), Nivat (1968), X'lies (1969) who introduced, noncommutative vari-
ables and studied formal series in connection with the theory of formal
languages and automata. Kalman and Ho and others (see Kalman Arbib
and X'alb (1969)) have applied a getreralized form of Hankel matrices to
System Theory and solved the realizatiotr problem of input-output linear
maps. I{asu arrd Honda,emergirg from probabilistic autornata theorS', have

established an interesting finiteness propertl' of a formal series gene a,-

ted by a probablistic automaton, a ploperty rvhich rvas used by them to
prove some undecidebilit5r theorems (see Nasu and. Honda (1969)). X'inally
Carlyle and. Paz (1970) have found a connection between a generalized

form of Hankel matrices and formal series u'hich are generated by pseudo-

probabilistic a,utomata.
The first three sections of this paper are concerned with four finiterress

properties of formal series over several noncommutative variables. Those

1) Presented at the Symposium on Probabilistic Automata held at the University
of Turku in May, 1970. Research supported in part by Grant 68-1408 at tho Uni-
vorsity of California, Los Angeles.
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properties are related. to both classical results and modern ones as mentioned.
above. While the four properties above 'w'here kno.w'rr to be equivalent when
a single variable is involved, it, is shown that this is no longer true over
several noncommutative variables, and the relationship between these
properties is investigated. in general.

In the next two sections some nonsolvability results connected to the
properties described in the first sections are pl'oved, includirrg some open
problems left over by Nasu and Honda (1969).

The last section deals with formal latrguages over a single letter alphabet
definecl by formal series satisfying firriteness conditions as described in the
first sections. A simple example of a context sensitive language which is
not probabilistic is presented and it is shown that the problem u,hether an
arbitrary probabilistic language oyer a single letter alphabet is regular or
context-free is not solvable.

A. Woril-Iunctions

Let X: ( r,U) be a finite alphabet (fortiresake of simplicit;'r-e
shall assume that X contains at most tt-o elements unless otherrvise
stated), let X* be the free semigroup over X (the set of all »rvords», or
finite sequences of »symbols» or elements, from X including the empty
wordtobedenotedby A) andlet / beafunction f ,Z*->A where A
stands for some division ring (in particular A may be equal to -B - the
set of real numbers which is a field). Such functions 'uiill be called »rvord-
functions».

Consider the following properties of a given x'ord-function:
(I) For every word a e X* there exists an integet n 4?ao, rr.here

no is afixedintegerwhichdoesnot depend orr u,and elements Cn-., . . .,
CoeA such that for any two words lt,,tt)eX* the following equation
holds true

(1)

tVhere

and u

. -.aj).

f (uu"ttt) - Cn-tf (ua"*lu)) + Cn-zf (ua"-zu)). . . + Cof @u:)

?)n is the \\'ord n'u?) . . . a and u,u is the catenation of the $.ords u

-n-(i.". if xL-frL, .,frkr,t):Ut, ,Uj theu uu: ?)1 ...frkUL

(II) There exists an integer h , % X ro matrices A(r) , A(g) over A ,

andzr-dimensionalvectors over A,z and TtTt ilroryvector and, 11 acol-
umn vector such that for any lt) : fiL. . . fr* e Xx

(2) f(*) - %A(*r) . . . A(**)q - n,A(w)rl
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(III) Let A(/) be the infinite matrix A(/) : llo,i(/li) with a,;'(/) :
f(te1q) where ututps. . . is a fixecl preassigned lexicographical ennumera-

tion of the elements of X*

(3) A(/) is of finite rank

(IV) There exists two polytromials P(r , y) and' Q@ , A) r'i'ith coeffi-

cients in ,4 and (noncommutative) variables in X such that:

(4) Q@,y) (Zf @)a-t): P(x,a) ar (Z"f(r)r-') Q @,a): P(r,y)
orX* otX*

l,here the product in the left-hand side is defined in the ord'inary way.

The following theorems are either knou,n or can be easily derived from

known theorems.
Theorem 1. If x contains a single letter then the four properties (I),

(II), (III), (IV) are equivalent for a given rvord-function'
Proof. That (I) is equivalent to (II) follots a-s aparticularcasefroma

more general theorem proved. by Ho (see Kalman Arbib and x'alb (1969)).

That (I) is equivalent to (III) and (IV) is a classieal result rvhich can bt:

found in many books, e.g. Gantmacher (1959) p1t.243-247.
TheOrem 2. X'or the general case (X contains tryo or more letters),

the properties (II) and (III) are equivalent and both of them impl;r pro-
per"tv (I) for a given rvord function .f .

Proof . That (II) is equiralent to (III) follows as a particular case from
å more general theorem proved by carlyle and Paz (1970). That (II) irnplies

(I) lias been proved. by Nasu and Honda (1968).

B. §ome negative results

TheOrem 3. If in propeltl- (I) iz > 3 fol ererv ue-I* a1d X cor:rt1i1s

tu,o (or more) ttottcotitntttttrtite ]etters (r-ariables) tlien (I) does uot impl;r
(rrr).

Proof . We shall shorv horv to coustluct tr §'ord frilrct'ion / such that' f
satisfies (I) but it does not satisfl- (III). Let r: (0,1) atrd consider

the following infinite sequence

L,' : 01I01001100i011(l 'rarznz. . .

constructed as follows: for #;:0 or c;: I Let fri: l-;rt. Tiie first'

letter in the sequence is 0. If the first 2Ä leters (for k : 0 ,1 ,2 ,. . . ) in
the sequence have already been fixed and are equal to frrnz. .. rrr then the

next 2å letters are frrfr, . . . frz* . Let r, tu denote finite subsequences of U
of the form o : friri+t. , .tri+* 1 't.o :: ji;trj+l . . .:t1*n. It is knoli'n that the

i)
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infinite sequence u , constructed as above, contains no finite subsequence a
such that u:,ty,tu1D: tr;3 (see Morse and. Hedlund (I9Bg)). Consid,er now
the following two sequences of words over X* .

and. construct, a word
a relation of the form
terrninants

I f (uorr)
I

i

I f (u'oo1

will ail have nonzero value for i
that the construction of such a

: frL, %Z : fiLffy, . . .'?,Li : frLfrZ . . . fr;

: frz, Az -- ffgTy, . . . Ag : fri+l . . . frzi

function f , f : X* -> -E as follows: f r,\,ill satisfv

%o: Ä, %t

uo- )'ruL

. f (uour)

' ' ' f @t';ui)

function is

-A;
4 , .. . We prove by induction

^ I f(1) f(*r)
./\ I

,' \- -- I' 'r 
1f @t) f i'rr*r)

and the values of / appearing in this determinant can be choosen at u-ill
and in & rrrav such that Ar * 0 'without affecting the relation (I) to be
satisfied b5, j for the arguments of / in the entries of Ar are words of
lerrgtlr { 2 (the »length» of a rryord w: n!...nx, to be derroted. ieol is
the number of letters in it, i.e. lul : 7;.1 . Assume now that all the values
of / have been choosen for rr ords u, rrith iwl < 2i such that ./ satisfies
the rclatiorr (t) for such words and,^.; * 0.,^.;+r has the form

A;+r:

Bv colrstruction u;a1ui+r : frtfiz . . . fr2i+2 wich is an initial subsequence of
U of lerrgth 2i + 2 so that, b.r, the property of [/ mentioned above,
tlre valne f(u,;a1uia) does not depencl on anr' other values f(u) alreadv
fixed - although / is requiled to -"atisfv a rel:rtiorr of the form (t). But,
by induction, at * 0 and therefore, ol1e can choose r-a.lues /(ri') for all
zu rvjl,h lwl < 2i, | 2 not ),et fixed b;- the relation (1) inclucling f(u,+rar+r)
so tlrat L,i+t * 0 . ft follorvs that a function / -.,rtisf)-irrg a relation of the
forrn (I) can be constructed such that 

^(f) 
has infinite rank, for the

deterrninants [; are subdeterminants of {(/) for i, : I ,2 , . . . .

Theorem 4. Tf x contains two or more valiables then (rv) does rrot
impi)' (r) in general and therefore (rv) does not imply (rlr) or (rr) eiflrer
(for (III) implies (I) by Theorem 2).
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Proof . Let' A be the
and. y are commutative
defined as follows:

f (*): 
{

set of real numbers
variables oYer A.

if w - fr*y*

otherwise.

and, let, X - {* , U} where

Consid.er the n'ord, function

rn- 0rt ).,.

a)

f

I
0

Then

o]

(*y - r)å*U,: ",
Thus /(ru) satisfies (IV). But /(eo) carrnot satisfy (I). To proYe this, assume

that

f(u"a) : C ^-tf(u"-ru) | C "-zf 
(u'"-?a)' " Cof (u\

then if rr, : fi and. u : yn we must have that

f@"a\ :C.-rf(r"-1Y") *' * Cof(Y")

whichisimpossibleforf(x"g"):I rvhile f('"-ta"):0 for i:l '''' 2 n'
Remark: Note that the variables in the example of Theorem 4 are com-

rnutative. For noncommutative variables 'Iheorem 4 is no longer true.

For noncommutative variables (IV) implies (II) (ancl therefore also III
and. (I)). This follorrs, as a particular case, from a Theorem of schutzen-

berger ( 1961).

Erarnple: Let, A be the set, of real
and y are noncornmutati,ue \rariables

cl.efined as follows:

f(u):
1 if w- (ry)*ru:0,1
0 otherx-ise

then

(rv-L)2@v)-':,,Y

but this function /(,) satisfi". r*"lrq as follo*'s: Let A(.r): (3å) '4(y) :
(3ä);":(10) ;rl:(å) . It is easilyverifiedrlnat f(ta):nÅQc)q.Note
that this function red,uces to the function in Theorern 4 lvhetl the r''ariables

:i' a[cl y are commutative.

numbers and. let X - {r , Y) w}rere

over A. Consider tlte lrord functiou
,,t:

f
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C. Two particular cases

The previous two theorems showthat the range ofrheorem 2 cannot be
extended to the range of rheorem I in generat. The purpose of the next
two theorems is to show that the range of Theorem 2 can be extendecl
slightly, provided that some additional restrictions are imposed on the
specified conditions (I), (II), (III).

Theorem 5. If the function f : X* -+ -4 is such that the Variables -f
are comrnutative and A is a division rirrg then propertl' (r) implies the
property (III) and therefore, by Theorem 2, properties (I), (II) and (III)
are equivalent.

Proof. Let f be a rvord function over a two letter alphabet X : {x, A\
satistiyirrg the conditions of the theorem and satisfying a relation of the
form

{5) f (uw"u) - C "-rf (u,'tfi"-Lu) +
rvhere the constants ,/b , Cn-L. . . Cs depend oll
some fixed integer %o not depending on ?0 . Let
such that

i CofQtu)

?t) oulrr and n (nn, for
1l be anv column in [_^(f)

. f (u,r.*) .. . )'
where %t%z . .. is the lexicographic enumeration of the word.s in X* cor-
responding to nonzero rorys and lwl ) 2no-l . Then either q,p : q,1l,x1;tto sr-
'u) : x4st'yno for the variables are assumed to be commutative. Thus either:
rl - (arr",)' i,: 1,2,... or rl : (r',y"")' i : 1,2,. . . r.here u; : l,ilt),
and. ui : ,tti1,0" and in tloth cases the colunur 17 is a linear combirratiotr of
of previous columns in A(/) , because of the relation (5).

Theorem 6. Let / be a word function /: I* -+ A such that, X *-
<tr,U) and / satisfiestheproperty (l) with no12 then / satisfies
(rrr).

Proof. I.et f(u;) be the leading term of the i,-th columrr of A(/) .

As uour,... isalexicographicorderingof thewordsin I*,i> j implies
that lu;i )- ivil, , If lwl ) 4 then ,u,; is representable in one of the
forrns u',tzu,! or u',yzu|. or u',(ry)zu'i or ui(yx)2,zri . This follorrs from the
fact that an;r 'vrord of length 4 which is not equal to (ry)2 or (yr)z must
have a subr,yord of the form xz or a subryord of the forrn y2 (this can be
checked by straight forward inspection). rt follorrs frorn the above obser-
vation and from the conditions of the theorem that any column in A(/)
whose leading term is f(u) with lul > 4 is a linear combination of t.wo
columns lvith leading terms /(zi) with lryl < lu,tl and this concludes
the proof.
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D. Solvability problems

This and the follorving section assume besic knowledge of Automata
Theory arrd. Recursive Functions Theory.

Let, fi , f, b.worcl function3 over the same aiphabet X and define the
following operations on them:

f ,(u) : (f, Y fr)('") : mar(ft(u) , fr(u))

fo(u) : (f' lr fr)(") : m,in(fr(u) , fr(u))

Nasu and. Honda (1969) consid,ered, the followirrg problem: Is it recur-
sively solvable to ascertain for arbitrary word functions /. and /, satis-

fying the property (II) x,hether frY f, and /r A/, satisfy that same

property?
A negative anslver to the abo'r'e question lvas given by the above authors

using an example as follorvs: A set of languages {L} (L is a set of words

L c 2*) and. two sets of word functions {/r} {/r} over an alphabet with
two letters are given such that:

(1) It is recursively unsolvable for an arbitrary elemerrt L in {L} to
ascertain whether L : A (0 is tire empty set of words).

t2) L : 0 implies that f, V /z satisfies the property (II) where frr{fr}
frr{fr\ and. f1f2 are determined by -t '

(3) L + 0 inil-,lies that /, \' /, does not satisfy the propertY $) , frf,
are as in (2). As (II) irnplies (I) we have that

(+) L + 0 if and oirlS'if ftY f, satisfies (II) and tb.erfore it is recur-
sivel). unsoh,able to ascertain for arbitrary f, Y f, , frr{fr) , fru{fr}
whether f, Y f, satisfies (II) (a similar argument do for f, A fr) .

This is Theorem 24 in l[asu and Honda (1969). There are ho'wever

some additiorral cotrsequellces to be drawn from the above example
and our r.ork here. Those eonsequerlces are giveu iu the following
corollaries.

COrOllary 1. For tu'o albitrarv functions /, ancl /, rr-hich satisfy both
property (I) or (III), it is recursir-elt' unsoivtrJ:le to decide I'hether frY f,
and. fi A /, satisfy (I) or (III), respectir-el1'. pror-ided that the alphabet X
contains t'vt"o or more letters.

Proof: (2) and (3) above impl;' not onh- (a) but also t'hat:
(5) L : 0 if anrl onlSr l{' f, Y f, satisfi' (I) (this following from the

fact that (II) implies (I) and if /, and /, satisfy (II) they also

satisfy (I)). The staternerrt regarding property (III) follows from
Theorem 2.

Remark: As properties (I) and (II) are r:.ot equivalent (Theorem 2 and

Theorem 3 here) Corollarrr l is rrot equivalent to the theorem of Nasu and

Honda cited, above.
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Corollary 2. It is recursively unsolvable to decide for an arbitraryword.
function / whether / satisfies property (I) or property (II) or property
(III) provided the alphabet X contains tu,o or more letters.

Proof. Unsolvability of property (II follows from the theorem of Nasu
and Honda. Unsolvability of (I) follows from Corollary I above and un-
solvability of (III) follows from Theorem 2 and from the unsolvability
of (II).

In the above cited paper of Nasu and Honda (1969) they considered the
nonsolvability problems for functions over alphabeta containing at least
two letters, leaving the single-letter case open. We shall prove here that
the nonsolvability results proved by them are valid also for the single
etter case using an example suggesfed by them and introduced first by

this author (Paz, 1966).

E. Unsolvability for single letter alphabets

We introduce first the follolring three function-q over & single letter.
alphabet »:{o}.

å 0 ål
I5111e § el

1111
E T 2_-I

Thus, f satisfies the condition (II) bv its clefinitiq:n.
The follou"ing property of f can be pro\-ecl rrsing

to the olle usecl in Paz (1966, p. 31):
For allr, integer n, there are integers t , l:, ancl k,

,t

f (onroo'1 i- i,")

f{okzs"'1

I*
t_-- ---

I1
!!

i111 r1]'glrmellt Similar

-slrcli that:

r. :'!L- I

.J.. Th..,^function

e'\-erY Zei7i d.efine
if Z i-o still moving

/ir(o") : 0 otherwise.
of the tn.o following

I<.-, .)

g satisfies t]:e conclition (II) trivialh-.
(3) Let {Z} be the farni}".y,* of ?ui'i*g mechirles. }'o,:

the ln'ord function hz a,,s fritrlou,,s: kr{c,):-_ }
after ?L steps, beginning fran: blarrk tape ilnd
Then llz is recursive e?ld tota,l iissulning otie

forms:
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Either hr({):L for n:L,2,..
or h2@):O for n2no

(if Z haks aft'er no steps).
Although it is undecidable to ascertain Ibr arbitrary h, wjrlic]l of t'he

two forms is the actual form of h, still in both cases /a, satisfies the con-

dition (II) for any Z as one verifies easily.

Proposition 1. For arbitrary h, as above the functions fh, and' gh,
satisfy the condition (II).

Proof.It was proved inPaz (1966) that the class of functions satisfying

the condition (II) with the additional restriction that the matrices -4(o) be

stochastic is closed under multiplication. The ploof t,an be extended readily
so as to remove the above additional restriction.

Proposition 2. The function f Y g does ilot satisfl- the condition (II).
Proof: By Theorem I it suffices to show that / '/ g : I does not satisfy

condition (l). Assume the contrary, then there is some integer ra such that
for any integer f the function .F' satisfies a relation of t'he form

Evaluating this relation
definition cf the functiolr

Cn-r?(oko(*-i)r;) i,-'=0,I i

1
-.,-

11*--

11

IL

§L
i:1

ia
ma- trl

/.n

- -i- ) c,,_,
11 ;li

first for f and lr, as in t,i:e remari( after the

f orle finds that:

, f (o"'o"')

n\
Z-l
i:L

C n-1F (okto(rr - i)t;
+\i

C n_1 illrix ( .f (o^r.rn-ilt. 
TI ) .--

tl

./-t

i-.1

or i ,,-r, !Zt Il
On the other hand, evaluatiirg the relatiou for I ancl /,', one finds in the

nl"
same rsav that I, Cn-t : , rvhich is a eotrtlaclictioll.

Theorem Z. ili. recursively unsoh,able to determiue for arbitrary rvord

fun-ctions /, g satisfying both the conclition (II) ttntl orreL a single-letter
alphabet , : {o} v'het}rer f V g or .f /'r g satisfy the condition (II).

Proof: lYe shall prove the Theorem for / V g , the proof of the other
statement, being similar.

Consider the functions fh, and gh, for albitrar',v /2, as exhibited at
the beginning of this section. Both of tliem satisfv the condition (II) (Pro-
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position f ). But the function fh, Y gh, : (f Y g)h, does not satisfy this
conditionif andonlyif h(o"):1 forall n (forif f(o"):0 for n)lLot
which is the onl;r alternative, therr (f V S)lo, will assume only finitely
many nonzero values), which is undecidable by the choice of the set {hr) .

Corollary 3. ft is recursively unsolvable to determine for an arbitrar;'
given word function over a single letter alphabet whether this function
satisfies either of the conditions (I), (II), ([I) or (IV).

Proof: Property (II) is und.ecidable for the function exhibited in Theo-
rem 7 and the other properties are equivalent to property (II) by Theorem l.

F. Languages over a single letter alphabet

Given a rrord function / we define the languages:

L(f):{r;reZ*,f(r)*0}
L(f , ),) - {rc: xeZ* ,f(") > 1)

'vl'here /, is a real trumber.
Languages of the first forrn irar.e lieetr itrtroduced by Sliutzenberger

(1961) and, languages of the second. form ha.i-e beerr introduced by Rabin
(1963). Let irs assume rrou'thzr,t the u,ord function / in the definition of
the languages above satisfies the property (II). The following properties
are s'ell knorvn or easill'proved for this case:

(I) There are nonregular languages r.vhich can be represented in the
form L(f) (Turakainen, 1968).

(2) Every language representable in the forrn L(f) is representable also
in the form L(f , ).) (f in both cases satisfies (II)) but' the collr:else
is rrot true.

For the first part see Triltrkainen (1968). For the seconcl part consider
tlre language .f, -: {x"A" t ?L : 1,2,.. .1. It has been prol,ed by Tura-
kainen (1969) that it can be represented in the fo,"m L(f , l.) with / satis-
fying (II). That it cannot be represented in the form L(f) can be proved
using an argument identical to the argument used in the proof of Theorem 4:
ff Lff) : {r"U" t?L : 1,2,...} : {* :f(w) + 0} then / cannot satisfy
property (I), but / is assurned to satisfy propeltv II rvhich implies pro-
perty (I).

(3) The cardinality of the set of languages replesentable in the form
L(f , ),) rvith / satisfying property (II) is eqrial to the cardinalit;,
of the continuum (Rabin (1963)) u.hich is also the card.inality of
the set of all languages (I being firrite, Xx is countable and the
set of all subsets of J* has the cardinalitv of the continuum).
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The following problem is now natural. Are there languages not represent-

able in the form L(f , )") with / satisfying (II)? Bukharaev (1965) has

given an example of such a lar:guage oYer a single letter alphabet. IJnfortu-
nately, he diil not prove his example (which is quite complicated, being

defined on the basis of four arbitrary primitive recursive functions). We

have not been able to prove Bukharaev's result, not have we succeded in
establishing contact, with him (directly or indirectly) ar:d, to the best of
our knowledge nobody else in the west knorvs how to plove that result (see,

e.g. Salornaa r,r,-ho needed" that results in order to establish some relat'iorr

between time variant events and events d.efinecl as above). Note that, when

looking for a language as above, one must take into consideration that
there may be different word functions defining the same language; in
addition, if a single letter alphabet is assumed, then, the required language

if existent must be at least context, sensitive. for context free languages

over a sir:gle letter alphabet are regular and therefore also representable

in the form L(f , /') with / satisfS'ir:g (II) (see Paz (1966))'

We show now an example of a nonrepresentablcr language oYer a single

letter alphabet.
Let X: {a,} and let A: {rz ,b}.T,et 2cLLtz... be alexicographical

enummeration of all nonempt)' 'w-ords over A and let [/ be the infinite
sequence of letters from 7\ resulting from the concatenation of the Words

ut%2... in their given order. Let, U(i) denote the tl-t'h let'ter in U and'

define the language Lr: {e.k:Lf ft): a). Z is not representable in the
form L(f , ,1) 'r'rith / satisfS-ing property (II)'

Proof: Assume 4: L(f , )') for some I satisfying property (II)'
As property (II) implies propert;r (I) (Theorem 2 here) there are constants

Co...C--, suchthat

-l- C n-rf (xt',"-t1

13

(6)

Let t0 . . . t,, do . . . ö, be tlr-o rr-ords in A* definecl as follo'*-s; ei : b

if and onl-v if C;) O,ti: a otherl-ise, €,t: tL. ö;: [ - e;. By the
construction of U there are integers Ä', auil A, sucll that:

U(kr) . . . L*(k, = n) : 60. .' €,

U(kr) . . . U(k, * n) : ä0. . . ö,

It follows from the definitions that:
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Evaluating the formula (6) first for k - kL and then for k -- kz .we have

n-L

1>Ct

ancL

n.-1

Ci

which is a contradiction.
Remark: It is easily seen that the language Z is context-sensitive for

the sequence U can be generated by a linear bounded automation, and,
as remarked above, no single letter and simpler language can satisfy the
required properties. On the other hand by constructir:g the sequence U
in a more complex way (but still containing as finite subsequences all
words in A*) one can construct languages not representable in the form
L(l, 1.) with / satisfying (II), but not context-sensitive either. This
remark is due to S. Greibach.

\\re conclude this work v'ith the follov,ing:
Theorem 8. It is recursively unsolvable to determine for an arbitrary

word funct'ion / satisf5,-irrg condition (II) and over a sirrgle letter alphabet,
and an arbitrarS' trurnber )" ,0 < 1 < I, whether the language L(f , 1)
is regular or l.hether L(f , 1) is context-free.

Proof: Consider the functio\ fh, as in Proposition l. fhr: f if hz
assumes only the 'r'aluc, I for everr. argurnetrt and flt, has only firritely
many va,lues otherwise. It n-as provecl in Paz (1966) that Lff , alLf) is
not regular. It follows rhat L(fh, aill) is not regular if and only if h,
assumes only the value I v'hich is recursively unsoh,able for arbitrary hr.
The secor,rd satement of the theorem follorvs frorn the fact that regular and
single-letter la,nguages are context-free.

Remark 1. IJsir:g the functions h, and l-h, one can prove also that
it is recursively unsolvable to decide for an arbitrary word function / satis-
fying (II) and over a single letter alphabet, and arbitrary rrumber ,1 rvhether
the lar.guag, L(f , /.) is empt5r orq'hether il, is equal to .X*.

Remark 2. Note that the theorems 7 and 8 are existential. The func-
tions hr, on lvhich their proofs are based, are sholru to satisfy (II) but
their representation in the form (2) is not explicit. One may still ask there-
fore'vrhether the theorems c&n be improved by shol'ir.g hou- to construct
the functions h2 explicitely in the form (2), for any gireln Z or else by
findirrg a subset of the set {Z} for which this is possible and such that
the halting problem from blank tape is still unsoh'able for it. This remark

n-L\Li:0
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is specially noteworthy with regard to Theorem 8, for the problem con-
sidered in that Theorem is decidable in many cases, provided that the
function is given explicitely in the form (2), as follows from the papers of
Paz (1966) and Turakainen (1968).

Aclmowled,gements. The author is indebted to M. O. Rabin for several
stimulating discussions.
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