ANNALES ACADEMIAE SCIENTIARUM FENNICAE

 $Series \ A$

I. MATHEMATICA

492

NOTE ON THE DISTRIBUTION OF IRREGULAR PRIMES

BY

TAUNO METSÄNKYLÄ

HELSINKI 1971 SUOMALAINEN TIEDEAKATEMIA

.

doi:10.5186/aasfm.1971.492

Copyright © 1971 by Academia Scientiarum Fennica

Communicated 15 January 1971 by K. A. INKERI

KESKUSKIRJAPAINO HELSINKI 1971

.

Note on the distribution of irregular primes

1. Introduction. A prime p is said to be *irregular* if it divides the numerator of at least one of the Bernoulli numbers B_2 , B_4 ,..., B_{p-3} (in the even suffix notation). The simplest proof for the known fact that the number of irregular primes is infinite was given by CARLITZ [1]. JENSEN [2] proved the stronger result that there is an infinity of irregular primes $\equiv -1 \pmod{4}$, and MONTGOMERY [3] generalized this as follows: for every integer T > 2, there are infinitely many irregular primes $\equiv 1 \pmod{T}$. This result also contains the proposition asserted by SLAVUT-SKII [5], namely, that the number of irregular primes $\equiv -1 \pmod{3}$ is infinite.

SLAVUTSKII remarked that some of the known irregular primes $\equiv -1$ (mod 3) are $\equiv 1 \pmod{4}$. According to MONTGOMERY, the first 216 irregular primes, grouped modulo 12, split into groups of 49, 66, 43, and 58 primes. More generally, as noted in [3], numerical results indicate that there is no deficiency of irregular primes in the residue class 1 (mod T), if T > 2.

In this note we shall show that there are infinitely many irregular primes $\equiv \pm 5 \pmod{12}$, so that the following theorem holds true:

Theorem 1. At least one of the residue classes $1 \pmod{3}$ and $1 \pmod{4}$ contains an infinite number of irregular primes.

In addition, using ideas from [3], we shall generalize this result by proving

Theorem 2. For every integer T > 4, $T \neq 6$, there are infinitely many irregular primes $\equiv \pm 1 \pmod{T}$.

We also wish to mention the connexion between the questions about the distribution of irregular primes and the number of *regular* primes. This number has been conjectured to be infinite ([4], cf. also [7]). The conjecture is proved if, for some integer T, there exists a residue class (mod T) prime to T containing only a finite number of irregular primes. However, in view of our present knowledge about irregular primes, the existence of such a residue class seems improbable.

2. Preliminary results. Write the Bernoulli numbers in the form

 $B_{2k} = N_{2k} / D_{2k}$

(in lowest terms) with $D_{2k} > 0$. Then, by the known Staudt-Clausen theorem, D_{2k} is the product of those distinct primes l for which l-1 divides 2k. Furthermore, by setting

$$S_{2k}(t) = 1^{2k} + 2^{2k} + \ldots + (t-1)^{2k}$$

we can state that N_{2k} is connected with D_{2k} by the congruences

(1)
$$t N_{2k} \equiv D_{2k} S_{2k}(t) \pmod{t^2}$$
,

valid for each positive integer t [6, p. 260].

Those prime divisors of N_{2k} which divide the numerator of N_{2k}/k are called *proper*. As is known (see, e.g., [3]), every prime which is a proper divisor of some N_{2k} is irregular.

To be able to use (1), we shall need some information about $S_{2k}(t)$. If P denotes an arbitrary odd prime, we have [3, p. 555]

(2)
$$S_{2k}(P) \equiv P/6 \pmod{P^2}$$
 for $k \equiv 1 \pmod{P(P-1)}$.

Moreover, assuming that k > 1 the following congruences can be easily established:

(3)
$$S_{2k}(8) \equiv -12 \pmod{32}$$
 for $k \equiv 1 \pmod{4}$,

(4)
$$S_{2k}(9) \equiv -3 \pmod{27}$$
 for $k \equiv 1 \pmod{9}$,

(5)
$$S_{2k}(12) \equiv -10 \pmod{24}$$
.

3. Proof of theorem 1. Let us suppose that there exists only a finite set of irregular primes $\equiv \pm 5 \pmod{12}$, say, p_1, \ldots, p_s . Put

 $A = (p_1 - 1) \dots (p_s - 1)$

and consider B_{2q} with a prime $q \equiv 1 \pmod{12A}$.

It is seen that $D_{2q} = 6$. Hence, by (1),

(6)
$$12N_{2q} \equiv 6S_{2q}(12) \pmod{12^2}$$
,

which combined with (5) yields

$$N_{2q} \equiv -5 \pmod{12}$$
.

From this congruence it follows that N_{2q} must contain a prime factor $p \equiv \pm 1 \pmod{12}$. Since $p \neq q$, we conclude that p is a proper divisor of N_{2q} and thus irregular. By our assumption, p then appears in the above set of primes.

Now, because N_{2q} contains a prime p_i $(1 \leq i \leq s)$ as a factor, the congruence

$$B_{2a}/q \equiv 0 \pmod{p_i}$$

holds true. On the other hand, by virtue of $q \equiv 1 \pmod{p_i - 1}$, the socalled Kummer's congruence gives us

$$B_{2g}/q \equiv B_2/1 = 1/6 \pmod{p_i}$$

and we have a contradiction.

4. Proof of theorem 2. It is sufficient to prove, that the number of irregular primes $\equiv \pm 1 \pmod{t}$ is infinite for t = 8, 9, 12, and P (an arbitrary prime > 3). Indeed, every integer T > 4, $T \neq 6$, is divisible by at least one of these numbers t.

For t = 12, the proof was carried out above. The case t = 9 can be treated analogously by choosing $q \equiv 1 \pmod{18A}$, whereupon (6) is replaced by

$$9 N_{2a} \equiv 6 S_{2a}(9) \pmod{9^2}$$

which gives, by (4), the congruence

$$N_{2g} \equiv -2 \pmod{9}.$$

The remaining cases are more complicated. In the first place, let P be a prime > 3 and suppose, contrary to our assertion, that p_1, \ldots, p_s are the irregular primes $\equiv \pm 1 \pmod{P}$.

We put

(7)
$$M = 6P(P-1)(p_1-1)\dots(p_s-1) = P^h M_1,$$

where M_1 is not divisible by P, and choose a prime l satisfying

(8)
$$l \equiv -1 \pmod{2M_1}$$
, $l \equiv 3 \pmod{P^h}$.

Then $l \equiv \pm 1 \pmod{P}$, and we can find a factor n of $\frac{1}{2}(l-1)$ such that D_{2n} , the denominator of B_{2n} , is of the form 6al' where $a \equiv \pm 1 \pmod{P}$ and l' (= 2n + 1) is a prime $\equiv \pm 1 \pmod{P}$. (See [3], proof of theorem 3.1, where n is denoted by μ' .)

Note that l is chosen such that $(\frac{1}{2}(l-1), M) = 1$. Consequently, (n, l'M) = 1 and the congruence

(9)
$$nq \equiv 1 \pmod{l'M}$$

is solvable for q. Moreover, one can assume q to be a prime satisfying simultaneously with (9) also

Ann. Acad. Sci. Fennicæ

(10)
$$2d_j q \equiv -1 \pmod{l_j^2}$$
 $(i = 1, \ldots, r)$,

where d_1, \ldots, d_r are the divisors of n and l_1, \ldots, l_r are distinct primes > l'M.

Consider B_{2Q} with $Q = nq \equiv 1 \pmod{l'M}$. Then (10) assures us that D_{2Q} has no other prime factors than those of D_{2n} , that is,

(11)
$$D_{2Q} = D_{2n} = 6 \ a \ l', \qquad a \equiv \pm 1 \pmod{P}.$$

Applying this with (2) to the congruence

(12)
$$P N_{2Q} \equiv D_{2Q} S_{2Q}(P) \pmod{P^2}$$

we get

(13)
$$N_{20} \equiv \pm l' \pmod{P}$$

To eliminate the improper divisors of N_{2Q} , we must write $Q = Q_1Q_2$ with $(Q_1, Q_2) = 1$ and Q_2 containing exactly those primes of Q that divide D_{2Q} . Then Q_1 divides N_{2Q} (see, e.g., [6, p. 261]) and thus the numerator of N_{2Q}/Q equals N_{2Q}/Q_1 . Now, because $Q \equiv 1 \pmod{6l'}$, none of the prime factors 2, 3, and l' of D_{2Q} appears in Q_2 so that, by (11), $Q_2 \equiv \pm 1 \pmod{P}$, and we have $Q_1 \equiv \pm Q \equiv \pm 1 \pmod{P}$. Together with (13) this yields

$$N_{2Q}/Q_1 \equiv \pm l' \pmod{P}$$
 .

Hence N_{2Q} contains a proper prime factor $\equiv \pm 1 \pmod{P}$ and the proof can be finished similarly as in the above cases.

As for the case t = 8, one has to modify slightly the preceding proof. In fact, the formulas (7), (8), and (12) are replaced by

(7')
$$M = 24(p_1 - 1) \dots (p_s - 1) = 2^h M_1$$
 $(M_1 \text{ odd}),$

$$(8') l \equiv -1 \pmod{M_1}, l \equiv 3 \pmod{2^h},$$

(12')
$$8 N_{20} \equiv D_{20} S_{20}(8) \pmod{8^2},$$

the last of which then gives, by (3), the crucial congruence

$$N_{20} \equiv \pm l' \pmod{8}$$
.

University of Jyväskylä and University of Turku Finland

References

- [1] CARLITZ, L.: Note on irregular primes. Proc. Amer. Math. Soc. 5 (1954), 329-331.
- [2] JENSEN, K. L.: Om talteoretiske Egenskaber ved de Bernoulliske Tal. Nyt Tidsskrift for Matematik 26, Afd. B (1915), 73-83.
- [3] MONTGOMERY, H. L.: Distribution of irregular primes. Illinois J. of Math. 9 (1965), 553-558.
- [4] SIEGEL, C. L.: Zu zwei Bemerkungen Kummers. Nachr. Akad. Wiss. Göttingen Math.-Phys. Kl. II Nr. 6 (1964), 51-57.
- [5] SLAVUTSKIĬ, I. Š. [И. Ш. СЛАБУТСКИЙ]: К вопросу о простых иррегулярных числах. Acta Arith. 8 (1963), 123-125.
- [6] USPENSKY, J. V., and HEASLET, M. A.: Elementary number theory. New York (1939).
- [7] VANDIVER, H. S.: Is there an infinity of regular primes? Scripta Math. 21 (1955), 306-309.