Series A

I. MATHEMATICA

492

NOTE ON THE DISTRIBUTION OF IRREGULAR PRIMES

BY
TAUNO METSÄNKYLÄ

HELSINKI 1971
SUOMALAINEN TIEDEAKATEMIA

Communicated 15 January 1971 by K. A. Inkeri

Note on the distribution of irregular primes

1. Introduction. A prime p is said to be irregular if it divides the numerator of at least one of the Bernoulli numbers $B_{2}, B_{4}, \ldots, B_{p-3}$ (in the even suffix notation). The simplest proof for the known fact that the number of irregular primes is infinite was given by Carlitz [1]. Jensen [2] proved the stronger result that there is an infinity of irregular primes $\equiv-1(\bmod 4)$, and Montgomery [3] generalized this as follows: for every integer $T>2$, there are infinitely many irregular primes $\equiv 1$ $(\bmod T)$. This result also contains the proposition asserted by Slavutskiİ [5], namely, that the number of irregular primes $\equiv-1(\bmod 3)$ is infinite.

SlavutskiĬ remarked that some of the known irregular primes $\equiv-1$ $(\bmod 3)$ are $\equiv 1(\bmod 4)$. According to Montgomery, the first 216 irregular primes, grouped modulo 12, split into groups of $49,66,43$, and 58 primes. More generally, as noted in [3], numerical results indicate that there is no deficiency of irregular primes in the residue class $1(\bmod T)$, if $T>2$.

In this note we shall show that there are infinitely many irregular primes $\equiv \pm 5(\bmod 12)$, so that the following theorem holds true:

Theorem 1. At least one of the residue classes $1(\bmod 3)$ and $1(\bmod 4)$ contains an infinite number of irregular primes.

In addition, using ideas from [3], we shall generalize this result by proving

Theorem 2. For every integer $T>4, T \neq 6$, there are infinitely many irregular primes $\equiv \pm 1(\bmod T)$.

We also wish to mention the connexion between the questions about the distribution of irregular primes and the number of regular primes. This number has been conjectured to be infinite ([4], cf. also [7]). The conjecture is proved if, for some integer T, there exists a residue class (mod T) prime to T containing only a finite number of irregular primes. However, in view of our present knowledge about irregular primes, the existence of such a residue class seems improbable.
2. Preliminary results. Write the Bernoulli numbers in the form

$$
B_{2 k}=N_{2 k} / D_{2 k}
$$

(in lowest terms) with $D_{2 k}>0$. Then, by the known Staudt-Clausen theorem, $D_{2 k}$ is the product of those distinct primes l for which $l-1$ divides $2 k$. Furthermore, by setting

$$
S_{2 k}(t)=1^{2 k}+2^{2 k}+\ldots+(t-1)^{2 k}
$$

we can state that $N_{2 k}$ is comnected with $D_{2 k}$ by the congruences

$$
\begin{equation*}
t N_{2 k} \equiv D_{2 k} S_{2 k}(t)\left(\bmod t^{2}\right), \tag{1}
\end{equation*}
$$

valid for each positive integer t [6, p. 260].
Those prime divisors of $N_{2 k}$ which divide the numerator of $N_{2 k} / k$ are called proper. As is known (see, e.g., [3]), every prime which is a proper divisor of some $N_{2 k}$ is irregular.

To be able to use (1), we shall need some information about $S_{2 k}(t)$. If P denotes an arbitrary odd prime, we have [3, p. 555]

$$
\begin{equation*}
S_{2 k}(P) \equiv P / 6\left(\bmod P^{2}\right) \text { for } k \equiv 1(\bmod P(P-1)) \tag{2}
\end{equation*}
$$

Moreover, assuming that $k>1$ the following congruences can be easily established:

$$
\begin{align*}
S_{2 k}(8) & \equiv-12(\bmod 32) \text { for } k \equiv 1(\bmod 4) \tag{3}\\
S_{2 k}(9) & \equiv-3 \quad(\bmod 27) \text { for } k \equiv 1(\bmod 9) \\
S_{2 k}(12) & \equiv-10(\bmod 24)
\end{align*}
$$

3. Proof of theorem 1. Let us suppose that there exists only a finite set of irregular primes $\equiv \pm 5(\bmod 12)$, say, p_{1}, \ldots, p_{s}. Put

$$
A=\left(p_{1}-1\right) \ldots\left(p_{s}-1\right)
$$

and consider $B_{2 q}$ with a prime $q \equiv 1(\bmod 12 A)$.
It is seen that $D_{2 q}=6$. Hence, by (1),

$$
\begin{equation*}
12 N_{2 q} \equiv 6 S_{2 q}(12)\left(\bmod 12^{2}\right) \tag{6}
\end{equation*}
$$

which combined with (5) yields

$$
N_{2 q} \equiv-5(\bmod 12)
$$

From this congruence it follows that $N_{2 q}$ must contain a prime factor $p \neq \pm 1(\bmod 12)$. Since $p \neq q$, we conclude that p is a proper divisor of $N_{2 q}$ and thus irregular. By our assumption, p then appears in the above set of primes.

Now, because $N_{2 q}$ contains a prime $p_{i}(1 \leqq i \leqq s)$ as a factor, the congruence

$$
B_{2 q} / q \equiv 0\left(\bmod p_{i}\right)
$$

holds true. On the other hand, by virtue of $q \equiv 1\left(\bmod p_{i}-1\right)$, the socalled Kummer's congruence gives us

$$
B_{2 q} / q \equiv B_{2} / 1=1 / 6\left(\bmod p_{i}\right)
$$

and we have a contradiction.
4. Proof of theorem 2. It is sufficient to prove, that the number of irregular primes $\equiv \pm 1(\bmod t)$ is infinite for $t=8,9,12$, and P (an arbitrary prime >3). Indeed, every integer $T>4, T \neq 6$, is divisible by at least one of these numbers t.

For $t=12$, the proof was carried out above. The case $t=9$ can be treated analogously by choosing $q \equiv 1(\bmod 18 A)$, whereupon (6) is replaced by

$$
9 N_{2 q} \equiv 6 S_{2 q}(9)\left(\bmod 9^{2}\right)
$$

which gives, by (4), the congruence

$$
N_{2 q} \equiv-2(\bmod 9)
$$

The remaining cases are more complicated. In the first place, let P be a prime >3 and suppose, contrary to our assertion, that p_{1}, \ldots, p_{s} are the irregular primes $\equiv \pm 1(\bmod P)$ 。

We put

$$
\begin{equation*}
M=6 P(P-1)\left(p_{1}-1\right) \ldots\left(p_{s}-1\right)=P^{h} M_{1} \tag{7}
\end{equation*}
$$

where M_{1} is not divisible by P, and choose a prime l satisfying

$$
\begin{equation*}
l \equiv-1\left(\bmod 2 M_{1}\right), \quad l \equiv 3\left(\bmod P^{h}\right) \tag{8}
\end{equation*}
$$

Then $l \neq \pm 1(\bmod P)$, and we can find a factor n of $\frac{1}{2}(l-1)$ such that $D_{2 n}$, the denominator of $B_{2 n}$, is of the form $6 a l^{\prime}$ where $a \equiv \pm 1$ $(\bmod P)$ and $l^{\prime}(=2 n+1)$ is a prime $\neq \pm 1(\bmod P)$. (See [3], proof of theorem 3.1, where n is denoted by μ^{\prime}.)

Note that l is chosen such that $\left(\frac{1}{2}(l-1), M\right)=1$. Consequently, $\left(n, l^{\prime} M\right)=1$ and the congruence

$$
\begin{equation*}
n q \equiv 1\left(\bmod l^{\prime} M\right) \tag{9}
\end{equation*}
$$

is solvable for q. Moreover, one can assume q to be a prime satisfying simultaneously with (9) also

$$
\begin{equation*}
2 d_{j} q \equiv-1\left(\bmod l_{j}^{2}\right) \quad(i=1, \ldots, r) \tag{10}
\end{equation*}
$$

where d_{1}, \ldots, d_{r} are the divisors of n and l_{1}, \ldots, l_{r} are distinct primes $>l^{\prime} M$.

Consider $B_{2 Q}$ with $Q=n q \equiv 1\left(\bmod l^{\prime} M\right)$. Then (10) assures us that $D_{2 Q}$ has no other prime factors than those of $D_{2 n}$, that is,

$$
\begin{equation*}
D_{2 Q}=D_{2 n}=6 a l^{\prime}, \quad a \equiv \pm 1(\bmod P) \tag{11}
\end{equation*}
$$

Applying this with (2) to the congruence

$$
\begin{equation*}
P N_{2 Q} \equiv D_{2 Q} S_{2 Q}(P)\left(\bmod P^{2}\right) \tag{12}
\end{equation*}
$$

we get

$$
\begin{equation*}
N_{2 Q} \equiv \pm l^{\prime}(\bmod P) \tag{13}
\end{equation*}
$$

To eliminate the improper divisors of $N_{2 Q}$, we must write $Q=Q_{1} Q_{2}$ with $\left(Q_{1}, Q_{2}\right)=1$ and Q_{2} containing exactly those primes of Q that divide $D_{2 Q}$. Then Q_{1} divides $N_{2 Q}$ (see, e.g., [6, p. 261]) and thus the numerator of $N_{2 Q} / Q$ equals $N_{2 Q} / Q_{1}$. Now, because $Q \equiv 1\left(\bmod 6 l^{\prime}\right)$, none of the prime factors 2,3 , and l^{\prime} of $D_{2 Q}$ appears in Q_{2} so that, by (11), $Q_{2} \equiv \pm 1(\bmod P)$, and we have $Q_{1} \equiv \pm Q \equiv \pm 1(\bmod P)$. Together with (13) this yields

$$
N_{2 \varrho} / Q_{1} \equiv \pm l^{\prime}(\bmod P)
$$

Hence $N_{2 Q}$ contains a proper prime factor $\equiv \pm 1(\bmod P)$ and the proof can be finished similarly as in the above cases.

As for the case $t=8$, one has to modify slightly the preceding proof. In fact, the formulas (7), (8), and (12) are replaced by

$$
\begin{gather*}
M=24\left(p_{1}-1\right) \ldots\left(p_{s}-1\right)=2^{h} M_{1} \quad\left(M_{1} \text { odd }\right), \\
l \equiv-1\left(\bmod M_{1}\right), \quad l \equiv 3\left(\bmod 2^{h}\right) \\
8 N_{2 Q} \equiv D_{2 Q} S_{2 Q}(8) \tag{12'}\\
\left(\bmod 8^{2}\right)
\end{gather*}
$$

the last of which then gives, by (3), the crucial congruence

$$
N_{2 Q} \equiv \pm l^{\prime}(\bmod 8)
$$

University of Jyväskylä and
University of Turku
Finland

References

[1] Carlitz, L.: Note on irregular primes. - Proc. Amer. Math. Soc. 5 (1954), 329 - 331.
[2] Jensen, K. L.: Om talteoretiske Egenskaber ved de Bernoulliske Tal. - Nyt Tidsskrift for Matematik 26, Afd. B (1915), 73-83.
[3] Montgomery, H. L.: Distribution of irregular primes. - Illinois J. of Math. 9 (1965), 553-558.
[4] Siegel, C. L.: Zu zwei Bemerkungen Kummers. - Nachr. Akad. Wiss. Göttingen Math.-Phys. Kl. II Nr. 6 (1964), 51 - 57.
[5] Slavutskǐ̆, I. S̆. [И. ІІІ. Славутский]: К вопросу о простых иррегулярных числах. - Acta Arith. 8 (1963), 123-125.
[6] Uspensky, J. V., and Heaslet, M. A.: Elementary number theory. New York (1939).
[7] Vandiver, H. S.: Is there an infinity of regular primes? - Scripta Math. 21 (1955), 306-309.

