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1. INTRODUCTION

Suppose that <711" is a fixed, non-empty class of functions analytic and
univalent in the unit disk /.

In [6] the following definition of the Koebe set XPry of 1/L was
given:

K1'4t) - nf@)
feJyr

x1.t117 is not necessarily a domain in cases considered below so that the
notion Koebe set rather that Koebe domain seems to be more adequate
for our purposes.

rf 5 denotes the class of functiorrs / univalent and. normalized. in
the usual way: /(0) : 0 , ,f'(0) : I , then obviously Xflry is Koebe,s
one-quarter disk.

rn this paper we determine the set 2<f)q for various classes of uni-
valent functions subject to Montel's normalization ([g], p. 66):

f(a) - a,f(zo) - b

Some thirty years ago an analogous problem u,as investigated by W. W.
Rogosinski [10] who gave the solution under an additional assumption of
starshapedness of /.

In this paper we give a general and simple method of evaluatin g Xfyn)
for univalent functions subject to the normalization (1.2). This onables us
to reduce this problem to the following extremal problem which has an
independent jnterest: given a point 1t) and a class @ : @(o, ö) of
simply connected domains ^(2 in the open plane Z2 such ihat a ,b e e ,.

find the supremum p(w , @) of Green's function g(a , b ; e) for all
Q e @ such that ar e %\.f) . This problem is solved here for classes of
convex, starlike and close-to-convex domains (Lemmas 2-4). Also the
general case of arbitrary simply connected domains is considered (Theorem
r).

As corollaries of Lemmas 1-4 we obtain Theorems B-5 which yield
XPq for the relevant classes of functions.
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2. BASIC LEMMAS

We now proYe the following
Lemma 1. Suppose that @ is a class of simply connecteiL d,om,ains l)

containing two fi,red,, d,i,fferent poi,nts a,b of the fi,ni,te plane Zz. Suptpose

that @ has followi,ng properties
(i) if for a giaen, fini'te w there emists i,n @ a domai,n omitting w , there

erists in @ a d,omain d)* wi,th the mar'imal Green's function g(a 'b;9)
arnong att O e @ su,ch that w €1ä\O, i'e.

(2.1) g(a ,.b ; Q) < g(a, b ; Q*) : p(w ; @)

for any Q e @ such that rz € Z2\O ;

(ii) the set {z : g(a,z ; Q*) ) ö} belongs to @ for all, 0 < ö < g(o,b ; AÅ .

Let @, : {Q e @ : g(a,b ; 9) : y},Y > O .

Then n B : {w: p(w, @) < Z} .

o €07

Proof. Suppose that' u does not belong ,. r[].r. Then there exists

gr € 6, such that a; e Zz\q . I{ow, g(a ,b; Zri : y a p@) by (z'1)'

Thus ftr en q implies lp@)>Tf , or k@)<7] implies [zo€fl12]'
oe'o, oel\y

Suppose now that p(w) 27 . From (i) it follows that g(u ,b; Q.) :
t"@)27. Consid.er now Qö:{z:g(a,ziO*)} ä}. Clearly Oo.O*'
Since 7>' 0,wehave g(a,b;Qu)-y fotsuitablychosen d with Qö e@y

by (ii). Since J2d c d)* ,we have to € '22\Od and consequently, w A ll O -

ae6y

This means that conversely, ['rr, € O O] implies lp(w) < 7l . Our lemma
o€0j7

is proved.
We shall be now concerned with the evaluation of the function p(w , @\

for various classes of domains. We start v-ith the class of convex domains

@".
Lemma 2. Let @": @"(a,b) be the class of all conaen domains Q

conta'i,n'i,ngthegtoi,nts a,b. If w liesoutsiile la,b), g e g" and, w € U2\f2,
then

(2,2) P(r.o, 6') - sup g(a ,b; Q) - g(a ,b i 9*) :
J2 e (sc

lw-alllw-bl
- log p_ b

The ertremal, ilomai,nis ahntf-plane Q, whosebound,ary I contai,nsthepoi'nt

w anil, subtends equal' amgles with segmmts lw,a),lw,b).
Proof. If A is a convex domain containing o, ,b and leaving w



(2.3)

Hence

(2.4)
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outside, there exists a half-plane ä containing J2 and such that w e ft H.
Since g(a ,b; 9) <g(a ,b; H) , it is sufficient to consider just the half-
planes ä with wefuä. Supposenowthat H istherighthalf-plane,
w:0, a:d,eio, 6-hrui(a+e). Here il,,h,a are real and fixed
(d,, h > o), whereas 0 has to be chosen so that g(det', 7r;@+ol ; ä) is

a maximum.
We have

z: (w - d,n'u)lw + cle-iu) , T,II - un;@*e)

max g(W , dr'u ; H) corresponds to

rnin lzl: *rrt lhr'* - d I I uri(uro\ + de-iu l-1 -

- \a bl (h + d)-' - la b', (lt,; al + 1p b l)-t

The extremal case occurs for 20 : - x , i.e. t'he normal of fr H at w

bisects the angle la,w,Öl . No$., the equality (2.2) follows immed.iately

from (2.3) and Q.\. A simply connected domain is called close-to-convex

if it is an image domain of a disk under a close-to-convex mapping, cf. [5].
A necessary and sufficient condition for .0 to be close-to-convex is that
Z'z\O is a union of closed rays not intersecting each other [2], [8]' We

say that the rays l, and l, do not intersect each other if ,1 n l, is either

empty, or it reduces to the origin of one of the rays.
We shall nov' evaluate the expression p(w , @') for the class @z of

close-to-convex domains.

Lemma 3. Let g' : 6" 1a , b7 be the

A contain'ingth,epoi,nts a,b.If I €g'

(2.5)
J)€tsl

A, * R, * 2f RrR,

clct ss of close-to-conaefr domains
cLnd weZ'\J2 then,

follows from the geometrical
a ray / containing the point'

ourselves to the domains
that w becomes its origin,

I
-- 2

log n3 3; - t(4, * Rr)' - 1ct, bizltrz

where Rr: lw - al , Rr: lw - bl .

The ertremal, d,omai,n Q- is the opten platte '€2 slit along a ray l- ema-

nating from w whi,ch subtend,s equal, angles with segments lw , a) , Lw , bf

and does not 'intersect the segme?Lt la , b).
Proof. If Q e gL and Lo e Z2\ Q , it

definition of A that there exists in %'\ J2

,u) . On the other hand", Q c Z2\l € gt and

g(a , b ; t52\l) . Ilence we may restrict
d) - Zr\, . By shifting / along itself so
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we increase g(a,b). Thus we may assume that O:'ä\1. and l-
is a ray emanating from w. we can take l- as the negative real axis
and rotate a,b round the origin, i.e. we may take tD:0,a: il,eir,

b : 1";@+"1 . After a transformation f : \/w we obtain the case already
considered. in Lemma 2. rn view of the conformal invariance of Green's
function we have by (2.2):

p(w, 6') - log {i+{i
I: 
rlog

l{ir-iatt firrtan1

d+h+2{tld
d+h-2{hdcoselz

In case of a maximum we may obviously assume that the ray l. does
not intersect the segment fa, ö] which means that 0 I u I n.

Now, la - 612: d,2 * h2 - 2hd cos&: (d + h), - zhd(L f cosor);

hence \/(d + h), - la - U, : 2{tA cos af 2 and finally

p(w, 6') :*ros h+d+z{td
h+d-{@+d)r-tp-b,

With d : &, h: Rz we obtain the desired result. We can prove easily
in an analogous manner

Lemma 4. Let @*: 6*(o ,b) be the class of al,l d,omai,ns Q starlike
withrespectto u amilcontaining b. If w liesoutside la,bf , O e @* anil
w e7.z\12 51"n

(2.6) p(w,@*) - sup {g(a,b; O): Q € @*, ?reZ\O}:

-,os t+:# . /Wff -,1 : o- "*n ffi'
The ertremal d,ornai,n f. is the open plane 'tz slit along a ray l,* enta-
nati,ng from w whose prolongation contains the point a .

Due to symmetry of p with respect to -8, , -8, v-e have also

plw , @*(a, ä)l : plw , @*(b , a)) .

3. AN EXTREMAL PROBLEM FOR SIMPLY CONNECTED DOMAINS

We shall be now concerned with a counterpart of Lemmas 2-4 for
general simply connected domains. We prove the following

Theorem 1. Let @: @(a,b) be the class of all simply connecteil d,o-

mains Q containi,ng the points a ,b . If ).(r) is the moilular function anil
to i,s the unique soluti,on of the equati,on
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(3.1)

{ 3.4)

( 3.5)

contained, in the fund,amental, d,omain B of )"Q) then the mari,mal aalue

p(w , @) of Green's function g(o ,b; Q) for O € @ such that u e Z\O
satisfies

{3.2)

where

(3.3)

p\.o , 6) - - lrg v-L(+ im zo) ,

u(r)-*K({L-r,)lK(r)
is the mod,ulzs o/ /\[0 , rf . The ertremal il,omai,n O- for whi,ch the upper
bound, (3.2) is attained, is a slit d,omain 't'\C* , the slit C. being the imaqe

of the segment [0 , å] und,er the g-functi,on of Weierstrass wi,th period,s

l rTo.
Proof. Suppose tlnat Q € 0 and zrl € .ä2\O . After a suitable trans-

lation we may achieve a * b I w :0 . Consider the family f' of all
,closed, rectifiable curyes situated in ,f) and separating a ,b from fr Q .

It is well known that the modulus mod -l-' of the family -1" satisfies

mod f' - a(e-s1

where g : g(a,b;9), cf. [3].
Consider now the family l- of all closed, rectifiable curves separating

a , b from ru and. such that the curves of both families l' , I are homo-
topic with respect to 'äz\16 ; b ; w\ . Let 5a be the elliptic function of
Weierstrass with periods I , z (im z > 0) which are chosen so that
u): at: {r(+l , a: er: g(ir),b: es: {d(+(l * z) ). The corre-
sponding value r is a solution of the equabion

at-ez b a,
4t \ u

lulTl 
- 

-:

'Y\vf eL- ez u 
- 

a'

.1 being the elliptic modular function.
The equation (3.5) has a countable number of solutions z5, . There is

also a countable number of homotopy classes .l'r of closed curves separating
a,b from w. If rr is a suitably chosen solution of (3.5) then

(3.6)

cf. e.g. [1], p. 56.

mod l*: åi* rkt

All the solutions of (3.5) are congruent to each other with respect to
the subgroup Mo of the modulartransformations z' : (ar { b)(m + d)-L
with a : d: I (mod 2), c :b :O(mod2), ad -bc : l.

Let B be the fundamental region of ,l w.r.t. Mo , i.e.
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To get B we add that part of fr-B where rez{O and imz}0.
There exists a unique solution zo of (3.5) contained in .8, cf.l4l, p. 176.

The subgroap Mo is generated by the transformations

To:r*2,?t:tl(l-2r),
cf. ibid., p. 176. The transformation fi @r ?;b: ("t')o) gives for a
suitably chosen integer fu a point z with lre zl ( t and does not change
im z.

Hence we may consider only those J-* which correspond to lre r*l I I.
Suppose now that z lies in the strip lre zl ( 1 outside B , i.e. z satis-
fiesoneof theinequalities lz+*l <$. thenthepoint { :t(LT2r1-r
lies in B, whereas imr': ilT 2t)zi^zlimz. Thus among all
z* which satisfy (3.5) the point zo with maximal imaginary part can tre
taken as the unique solution of (3.5) contained in B . We have l' c | : l*
for some k, hence by (3.4) and (3.6)

which implies s-s ) y-L(f imzr) , or

for any simply connected domain () with u e 'Z\O . We now construct
an extremal domain Q. for which the sign of equality in (3.S) is attained.

Given the points a.b,w with o + ö + to: A (whichmaybeachiev-
ed after a suitable translation), v'e find the solution z0 : s0 + ih e B
of the equation (3.5).

The function

(3.7 )

(3.e)

]imzo

u-exp
maps the parallelogram

[1, I + rof are identified

exp(niq); - exp(ni,q),

2n'iC- exp2ni(€ + irt)

P - [0, 1, I + ro , ro7 rrhose sides [0 , rol ,

* ; * ro; +G + ri correspond to ,tL - I ;

resp. We take now r e (0 , 1) such that

/\lO , r) conformally onto the annulus AL:
so that z:0,T correspond to 1,t,-

resp. The points of AL correspond to the lower
If we identify in l\[0 , r] the opposite edges

a(r) :

and ma p the ring domain

exp (n 'i q) ) exp (n i, q) ,

half of P in the (-plane.
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of the slit [0 , r] which correspond,s to the identification of points on

Lirr,l{.*ro| symmetric with respect to +(l f zo) then the resulting
transformation

z -> ( -'-> W - pG ; L, ro) - p(e)(3.10)

(3.11)

Ir'rom (3.9)

(3.12)

maps 1 : 1 conformally the unit disk / onto the W-plane slit along the
arc C- where C- is the image of [0 , 1] under 5a(() . Obviously the
images of [0 , t] ,lt, 1l und.er K) are identical and equal C, .

The fact Lhat g is an even elliptic function of order 2 implies the uni-
valence of the resulting mapping, also cf. l7l p. +7. The points on lzl : I
correspondingto u: 1, -l and (:0,$, resp. give the end-points of
C. in the W-plane, i.e. the points p(0) : @ , g(+) : w , whereas
z : O e,u, : exp(z i, ro) <-+ C : ä ro<-+ W : {r(+ xo) : a,
z: re%: - exp(z i ro)<-+ C: +l + z.)<-> W : pttl * zo) ): å.

The family of closed curves situated in / and separating 0 , r from
fu / has the modulus a(r): ]im zo according to (3.9). On the other
hand, by the conformal invariance of Green's function

g(a,b;22\C,) - g(0,r;A)- -logr
and (3.1 1) the equality

follows by eliminating r .

Theorem I is proved.
A related extremal problem v'as investigated. by Schiffer [11] who

solved. it in a different x'a5' by variational methods; also cf. 1121.

4. THE DETERMINATION OF KOEBE SETS

Given zoe / consider the class llt:')lt(zo) of functions analytic
and univalent in the unit disk / which satisfl. the conditions

(4.r) "f(0) 
:0, f(zo):1.

If f e1?t then A : f@) € 6(0, 1) where O(0 , l) is the class of all
simply connected domains containing 0, I With each f ec'l'n we
can associate a domain Q:fU) e@y where y - - log lzol which is
an obvious consequence of the conformal invariance of Green's function.

Conversely, if O € 6, then Q can be mapped on / conformally so
that q(0) : 0, g(l) : eo, where - log 16ol : z . Hence zo: ei§ Co

for suitably chosen B and g-t(e-i? z) e M .

Thus
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nfu) -na
f e()'1L@,) t? € Gt/

where y - - log lzol .

The above considerations as well as Lemma I yield
Theorem 2. TheKoebeset X(ln): nf@ for the ctass 1|t:9'/L(zol

o! functions analytic and, uniaalent m tn['ir#,t d,isk A subject to the normal-
'ization (a.l) ds the ima,ge set of B n H(r) unil,er the mappi,ng p: ll),Q) ,
where r:lzol ,H(r):{z:imt12v(r)}, u being d,efi,ned,by (Z.Z); },
i,s the elliptic moilular function, anil, B i,s i,ts funil,amental reg,i,on.

The set Xfy\ is symmetric with respect to the point w : I and, is a
simgily connecteil Jorilan ilomai,n for 0<r<2-112. For 2-rl2 z-r<l
the set X(Vll) ,i,s a uni,on of two congruent, d,isjoi,nt, si,mply connecteilJord,an
domains.

Proof. According to our previous remarks i<()ll): 
o&r, with

logr.In view of Lemma l and Theorem I n !2:{w:p(w,@\
o€07

< yj : {w :im ro(w) I 2 a(r)). Thus q(w) € B n H@). Moreover, %(w)
satisfies (3.5) with a:0, b: l, i.e. ),(ro): lfw, or y;: ll).Q6).
This shows Lhat w eX.PlL), iff w: ll),Qo) with zo eB fi H(r).

We now prove the symmetry property.
To this end it is sufficient to show that | - *o e?<PlL) &s soon as

w, e'X(?/L) .

Suppose that 4 e B n H@) satisfies wo: l),(r))-1. Obviously one
of thepoints zoT 1, say zr, alsobelongsto Bfl11(r) .Since ).ftrfl)
: l(ro)lU'ko) - ll : l(tt), we have wr: p"Qr))-r:[,i(zo)]-l[,1(zo) - 1]
: t - uto eK.1c)'ll\ .

Supposenowthat u(r)) å, o" r<2-rt2. Thentheimageof BnM(r)
is a Jordan domain whose boundary has the parametric representation

(4.2)

(4.3)

If u(r) ({, or r)2-rt2, thentheset BO[- L+2ia(r),Llziv(r))
is a union of three segments. If r , t, are the end-points of the intermediate
segment then [2, : rl0 - 2 ,)) e Mo and hence l(zr) : X(r) which me&ns
that the image under ll)" of lr,q) is a closed Jordan curve. Similarly
the images of the remaining two segments set up a corrgruent Jord.an curve.
Theorem 2 is proved.

A slightly more general case of functions with normalization (f.2)
reduces to the case just considered by the transformation W : (w - a)l
(b-a).

We now apply Lemma I in a similar way as before with 0 : @' ,

6 , O' resp. and obtain in view of Lemma 2_ 4 the following theorems.
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Theorem 3. Let 1'11"(zo , e , b) be the cl,ass of all, conaer mappi,ngs f
of the unit d,i,slc / subject to the normali,zation (1.2). The Koebe set
Xfl'lt"1zo , a , b)7 is the el,l,ipse

{w : lw - el + lw - bl < la - blll"ol}.

Theorem 4 [10]. Let c)'|l*(zo,a,b) be the class of al,l mapytings f of
the unit d,i,sk / subject to the normalizati,on (I.2) and, starlilce wi,th respect
to a. The Koebe set ?<L?lt*(zsta zb)l is the el,lipse

{w : lw - al + l* - bl < *1" - bl(lzol + lzol-1)}.

Theorem 5. Let 911L (zo , a , b) be the closs of all close-to-aonaen rnry-
pi,ngs of the unit ili,sh A subject to the normal,i,zation (1.2). The Koebe set
'Xy'7?tL(zr,a,b)l has the form

fir* Rr*2{RrR,
A, * Rz- [(4, * Rr)z - la - b'flrrz

where Rr: lw - e't , Rr: lw - bl .

Obviously X('l'11\ has wo: $1a a b1 as a centre of symmerry.
Moreover, woe'Xf)'ltL) iff lzol q2-Llz. It is easily verified that for
lzol q 2-rt2 the set Xflnl) is a Jordan domain and for lzol > 2-rt2 it
is a union of two disjoint Jordan domains containing a and ä , resp.

We conclude with an interesting consequence of Theorem 2. Since
the reflections with respect to the real axis and the straight line through
0 , zo yield again a mapping of the class 9ll , we see that the real axis,
as well as the line re * : l'z are lines of svmmetry of ?( (c)lZ) . This
implies that [0, I] cX f)ll), if 0 < iro' 12-rt2. H:ence we deducethe
following Conor,r,eny. If f is regular and, uniaalent in the unit d,i,slc L
and, z1 ,zre \ are suoh that the hyperbolicd,istance h(21 ,zz) ( ar tanh
(2-'t') then the image d,om,ai,n f (A) contcr,ins the straight line segment wi,th
enil points f(zr) ,f(zr) . The canstant ar tanh (2-tlz; is best gtossible.

M. Curie - Sklodowska Universitv
Lublin, Poland

{*,
-2, I n t-zlipat 
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