Series A

I. MATHEMATICA

486

ON COMMUTATIVE LANGUAGES

BY

TIMO LEPISTÖ

Copyright (C) 1971 by

Academia Scientiarum Fennica

Communicated 13 November 1970 by Arto Salomaa

On commutative languages

1. Consider the alphabets

$$
I_{r}=\left\{x_{1}, x_{2}, \ldots, x_{r}\right\} \quad(r \geqq 1)
$$

and

$$
A_{\omega}=\left\{\alpha, \beta, \gamma, \alpha_{1}, \beta_{1}, \gamma_{1}, \ldots\right\}
$$

where $A_{(, \prime}$ is an infinite alphabet such that A_{ω} and each I_{r} is disjoint. The elements of $A_{(, \prime}$ are regular expressions, which denote, in the usual way (cf. [2], pp. 1--4), the languages over I_{r}. As usual we call some equation $\alpha=\beta$ valid if α and β denote the same language, i.e. $|\alpha|=|\beta|$. Let $\delta_{r}, r=1,2, \ldots$ denote the set of all schemas of valid equations between regular expressions over A_{ω} such that a valid equation always results whenever each letter of $A_{(, \prime}$ appearing in X or Y is substituted by some regular expression over I_{r}. The interseciion of all sets δ_{r} is denoted by δ_{ω}. It is proved (cf. [2], p. 128) that

$$
\begin{equation*}
\delta_{2}=\delta_{3}=\ldots=\delta_{(\prime)} \tag{1}
\end{equation*}
$$

and δ_{2} is properly included in δ_{1}.
In the following we consider commutative languages, i.e. we assume that the catenation is commutative. Thus the order of letters in a word does not matter, but only the number of occurrences of each letter. More specifically, let c be the operator defined for languages such that $c(L)$ is the language consisting of all such words which are obtained by permuting the letters in some word belonging to L.

For regular expressions X and Y, the equation $X=Y$ is said to be c-valid if and only if the languages $c(|X|)$ and $c(|Y|)$ are equal. Clearly, all valid equations are c-valid but not vice versa. Denote by C_{r}, $=1,2, \ldots$, the set of equations $X=Y$, where X and Y are regular expressions over A_{ω} such that whenever the letters of A_{ω} appearing in X or Y are substituted by some regular expressions over I_{r}, then the resulting equation is c-valid. We denote by C_{c}, the intersection of all sets $C_{r}, r=1,2, \ldots$ It is obvious that

$$
\begin{equation*}
C_{1} \supset C_{2} \supset C_{3} \supset \ldots \supset C_{\ldots} \tag{2}
\end{equation*}
$$

and

$$
\delta_{1}=C_{1} \partial_{r} \subset C_{r} \quad(r=2,3, \ldots) .
$$

The problem: are the inclusions in (2) proper or not (as in (1)) is presented by Salomaa (cf. [2], p. 142). In this paper we prove

Theorem. The inclusions in (2) are not proper, i.e.

$$
C_{1}=C_{2}=\ldots=C_{6,} .
$$

This problem is independently solved also by Linna in a recent paper [1], but his proof is essentially different from our proof.
2. Consider the proof of the above theorem. We first show that

$$
\begin{equation*}
C_{2}=C_{3}=\ldots=C_{1,} \tag{3}
\end{equation*}
$$

In order to prove (3) assume the contrary: there is an equation

$$
\begin{equation*}
X=Y \tag{4}
\end{equation*}
$$

which belongs to C_{2} but not to C_{ω}. This implies that there is a natural number $r \geqq 3$ such that (4) does not belong to C_{r}. Hence, there are some regular expressions over I_{r} such that the equation $X_{r}=Y_{r}$ resulting from (4) by substituting these regular expressions for letters of $A_{\text {o }}$ appearing in X or Y, is not c-valid. Without loss of generality, we may assume that there is a word P over I_{r} such that $P \in\left|X_{r}\right|$ and there is no word Q in $\left|Y_{r}\right|$ such that the number of the occurrences of x_{i} in Q is the same as the number of the occurrences of x_{i} in P for all $x_{i}(i=$ $1,2, \ldots, r)$.

Denote by a_{i} the number of the letters x_{i} in the word $P(i=1,2$, $\ldots, r)$ and consider the following function f mapping the set $W\left(I_{r}\right)$ into the set $W\left(I_{2}\right)\left(W\left(I_{r}\right)\right.$ denotes the set of all words over $\left.I_{r}\right)$:

$$
\begin{gathered}
f\left(x_{1}\right)=x_{1}^{p^{r-1}} x_{2}, \\
f\left(x_{2}\right)=x_{1}^{p^{r-2}} x_{2}, \\
- \\
f\left(x_{r}\right)=x_{1} x_{2}, \\
f(\lambda)=\lambda, \\
f\left(P^{\prime} Q^{\prime}\right)=f\left(P^{\prime}\right) f\left(Q^{\prime}\right), \text { for all } P^{\prime}, Q^{\prime} \in W\left(I_{r}\right):
\end{gathered}
$$

where the prime p is so chosen that

$$
\begin{equation*}
p>a_{1}+a_{2}+\ldots+a_{r} . \tag{5}
\end{equation*}
$$

If α is a regular expression over I_{r}, then α_{f} is defined to be the regular expression over I_{2}, obtained from a by replacing each letter x_{i} by $f\left(x_{i}\right)$, $i=1,2, \ldots, r$. Thus, if Q is an arbitrary word belonging to $W\left(I_{r}\right)$, then

$$
\begin{equation*}
f(Q) \in\left|\alpha_{f}\right| \text { if } \quad Q \in|\alpha| \tag{6}
\end{equation*}
$$

Let us denote by b_{i} the number of the letters x_{i} in the word $Q\left(\in W\left(I_{r}\right)\right)$. Consider the system

$$
\begin{gather*}
a_{1} p^{r-1}+a_{2} p^{r-2}+\ldots+a_{r}=b_{1} p^{r-1}+b_{2} p^{r-2}+\ldots+b_{r} \tag{7}\\
a_{1}+a_{2}+\ldots+a_{r}=b_{1}+b_{2}+\ldots+b_{r} \tag{8}\\
a_{i} \geqq 0, \quad b_{i} \geqq 0 \quad(i=1,2, \ldots, r) \tag{9}
\end{gather*}
$$

We can show that this system has only one solution $b_{i}=a_{i}(i=1,2, \ldots$, r). Indeed, if the system has another solution, it then follows from (8) that there exist t and $k(t>k)$ such that

$$
\left\{\begin{array}{l}
a_{t} \neq b_{t} \\
a_{k} \neq b_{k} \\
a_{i}=b_{i} \text { if } i<t \text { and } i>k
\end{array}\right.
$$

Hence, by (7),

$$
p \mid\left(a_{k}-b_{k}\right) \text { or } a_{k}=b_{k}+v p(v \neq 0)
$$

If $v>0$, this yields, by (9),

$$
\sum_{i=1}^{r} a_{i} \geqq a_{k} \geqq p
$$

contradicting (5). On the other hand, if $v<0$, we have again a contradiction with (5), because

$$
\sum_{i=1}^{r} a_{i}=\sum_{i=1}^{r} b_{i} \geqq b_{k} \geqq p
$$

We have thus showa that only the words in which the number of the letters $x_{i}(i=1,2, \ldots, r)$ is exactly the same as in P can be mapped by f to the words in which the number of $x_{i}(i=1,2)$ is the same as in $f(P)$. It then follows, by (6),

$$
f(P) \in c\left({ }_{f}\left|\left(X_{r}\right)\right|\right) \text { and } f(P) \notin c\left(\left|\left(Y_{r}\right)_{f}\right|\right)
$$

Hence (4) does not belong to C_{2}. This is a contradiction. Therefore the equation (3) holds true.

Finally we prove that

$$
\begin{equation*}
C_{\mathbf{1}}=C_{\mathbf{2}} \tag{10}
\end{equation*}
$$

The proof is about the same as in the preceding case. However, we must choose the homomorphism f in the different way:

$$
f\left(x_{1}\right)=x_{1}^{p}, \quad f\left(x_{2}\right)=x_{1}^{q},
$$

where the distinct primes p and q are so chosen that $p, q>a_{1}+a_{2}$. The above system (7), (8), (9) must now be replaced by the system

$$
\left\{\begin{array}{l}
a_{1} p+a_{2} q=b_{1} p+b_{2} q \tag{11}\\
a_{i} \geqq 0, \quad b_{i} \geqq 0(i=1,2)
\end{array}\right.
$$

If the system has another solution than $a_{1}=b_{1}, a_{2}=b_{2}$, then $a_{1} \neq b_{1}$, $a_{2} \neq b_{2}$ and

$$
p\left|\left(a_{2}-b_{2}\right), q\right|\left(a_{1}-b_{1}\right) .
$$

This implies that $b_{2}>a_{2}$ and $b_{1}>a_{1}$, contradicting the system (11). Consequently the system has only one solution $a_{i}=b_{i}(i=1,2)$ and we can conclude in the same way as in the precedig case that (10) holds true. Our theorem is thus proved.

University of Turku
Technical University of Tampere.

References

[1] Linna, M.: The set of schemata of c-valid equations between regular expressions is independent of basic alphabet Ann. Univ. Turku. Series A I
[2] Salomat, A.: Theory of Automata International Series of Monographs in Pure and Applied Mathematics, Vol. 100. Pergamon Press 1969.

