ANNALES ACADEMIAE SCIENTIARUM FENNICAE

$S_{\text{eries}} \, A$

I. MATHEMATICA

486

ON COMMUTATIVE LANGUAGES

ΒY

TIMO LEPISTÖ

HELSINKI 1971 SUOMALAINEN TIEDEAKATEMIA

.

doi:10.5186/aasfm.1971.486

Copyright © 1971 by Academia Scientiarum Fennica

Communicated 13 November 1970 by ARTO SALOMAA

KESKUSKIRJAPAINO HELSINKI 1971

•

On commutative languages

1. Consider the alphabets

$$I_r = \{x_1, x_2, \ldots, x_r\} \ (r \ge 1)$$

and

$$A_{\omega} = \{ lpha , eta , \gamma , lpha_{1} , eta_{1} , \gamma_{1} , \ldots \}$$
 ,

where A_{ω} is an infinite alphabet such that A_{ω} and each I_r is disjoint. The elements of A_{ω} are regular expressions, which denote, in the usual way (cf. [2], pp. 1–4), the languages over I_r . As usual we call some equation $\alpha = \beta$ valid if α and β denote the same language, i.e. $|\alpha| = |\beta|$. Let δ_r , $r = 1, 2, \ldots$ denote the set of all schemas of valid equations between regular expressions over A_{ω} such that a valid equation always results whenever each letter of A_{ω} appearing in X or Y is substituted by some regular expression over I_r . The intersection of all sets δ_r is denoted by δ_{ω} . It is proved (cf. [2], p. 128) that

(1)
$$\delta_2 = \delta_3 = \ldots = \delta_{\omega}$$

and δ_2 is properly included in δ_1 .

In the following we consider commutative languages, i.e. we assume that the catenation is commutative. Thus the order of letters in a word does not matter, but only the number of occurrences of each letter. More specifically, let c be the operator defined for languages such that c(L) is the language consisting of all such words which are obtained by permuting the letters in some word belonging to L.

For regular expressions X and Y, the equation X = Y is said to be c-valid if and only if the languages c(|X|) and c(|Y|) are equal. Clearly, all valid equations are c-valid but not vice versa. Denote by C_r , $= 1, 2, \ldots$, the set of equations X = Y, where X and Y are regular expressions over A_{ω} such that whenever the letters of A_{ω} appearing in X or Y are substituted by some regular expressions over I_r , then the resulting equation is c-valid. We denote by C_{ω} the intersection of all sets C_r , $r = 1, 2, \ldots$. It is obvious that

$$(2) C_1 \supset C_2 \supset C_3 \supset \ldots \supset C_{\omega}$$

and

$$\delta_1 = C_1 \ \delta_r \subset C_r \ (r = 2, 3, \ldots)$$
.

The problem: are the inclusions in (2) proper or not (as in (1)) is presented by SALOMAA (cf. [2], p. 142). In this paper we prove

Theorem. The inclusions in (2) are not proper, i.e.

$$C_1 = C_2 = \ldots = C_{\omega} \, .$$

This problem is independently solved also by LINNA in a recent paper [1], but his proof is essentially different from our proof.

2. Consider the proof of the above theorem. We first show that

$$C_2 = C_3 = \ldots = C_{\omega} \,.$$

In order to prove (3) assume the contrary: there is an equation

$$(4) X = Y$$

which belongs to C_2 but not to C_{ω} . This implies that there is a natural number $r \geq 3$ such that (4) does not belong to C_r . Hence, there are some regular expressions over I_r such that the equation $X_r = Y_r$ resulting from (4) by substituting these regular expressions for letters of A_{ω} appearing in X or Y, is not *c*-valid. Without loss of generality, we may assume that there is a word P over I_r such that $P \in |X_r|$ and there is no word Q in $|Y_r|$ such that the number of the occurrences of x_i in Q is the same as the number of the occurrences of x_i in P for all x_i ($i = 1, 2, \ldots, r$).

Denote by a_i the number of the letters x_i in the word P (i = 1, 2, ..., r) and consider the following function f mapping the set $W(I_r)$ into the set $W(I_2)$ ($W(I_r)$ denotes the set of all words over I_r):

f(P'Q') = f(P')f(Q'), for all $P', Q' \in W(I_r)$,

where the prime p is so chosen that

(5)
$$p > a_1 + a_2 + \ldots + a_r$$
.

If α is a regular expression over I_r , then α_f is defined to be the regular expression over I_2 , obtained from α by replacing each letter x_i by $f(x_i)$, $i = 1, 2, \ldots, r$. Thus, if Q is an arbitrary word belonging to $W(I_r)$, then

(6)
$$f(Q) \in |\alpha_f| \quad \text{if} \qquad Q \in |\alpha| .$$

Let us denote by b_i the number of the letters x_i in the word $Q(\in W(I_r))$. Consider the system

(7)
$$a_1p^{r-1} + a_2p^{r-2} + \ldots + a_r = b_1p^{r-1} + b_2p^{r-2} + \ldots + b_r$$
,

(8)
$$a_1 + a_2 + \ldots + a_r = b_1 + b_2 + \ldots + b_r$$
,

(9)
$$a_i \ge 0, \ b_i \ge 0 \ (i = 1, 2, ..., r).$$

We can show that this system has only one solution $b_i = a_i$ (i = 1, 2, ..., r). Indeed, if the system has another solution, it then follows from (8) that there exist t and k (t > k) such that

$$\left\{egin{array}{ll} a_t
eq b_t \ , \ a_k
eq b_k \ , \ a_i = b_i \ ext{if} \ i < t \ ext{and} \ i > k \ . \end{array}
ight.$$

Hence, by (7),

$$p \mid (a_k - b_k) \text{ or } a_k = b_k + \nu p \ (\nu \neq 0) \ .$$

If $\nu > 0$, this yields, by (9),

$$\sum_{i=1}^{r} a_i \ge a_k \ge p$$

contradicting (5). On the other hand, if $\nu < 0$, we have again a contradiction with (5), because

$$\sum_{i=1}^r a_i = \sum_{i=1}^r b_i \ge b_k \ge p \; .$$

We have thus show, that only the words in which the number of the letters x_i (i = 1, 2, ..., r) is exactly the same as in P can be mapped by f to the words in which the number of x_i (i = 1, 2) is the same as in f(P). It then follows, by (6),

$$f(P) \in c(f|(X_r)|)$$
 and $f(P) \notin c(|(Y_r)_f|)$.

Hence (4) does not belong to C_2 . This is a contradiction. Therefore the equation (3) holds true.

Finally we prove that

(10)
$$C_1 = C_2$$

The proof is about the same as in the preceding case. However, we must choose the homomorphism f in the different way:

where the distinct primes p and q are so chosen that p, $q > a_1 + a_2$. The above system (7), (8), (9) must now be replaced by the system

(11)
$$\begin{cases} a_1 p + a_2 q = b_1 p + b_2 q, \\ a_i \ge 0, \ b_i \ge 0 \ (i = 1, 2). \end{cases}$$

If the system has another solution than $a_1 = b_1$, $a_2 = b_2$, then $a_1 \neq b_1$, $a_2 \neq b_2$ and

$$p \mid (a_2 - b_2), \ q \mid (a_1 - b_1).$$

This implies that $b_2 > a_2$ and $b_1 > a_1$, contradicting the system (11). Consequently the system has only one solution $a_i = b_i$ (i = 1, 2) and we can conclude in the same way as in the precedig case that (10) holds true. Our theorem is thus proved.

University of Turku Technical University of Tampere.

References

- [1] LINNA, M.: The set of schemata of c-valid equations between regular expressions is independent of basic alphabet Ann. Univ. Turku. Series A I
- [2] SALOMAA, A.: Theory of Automata International Series of Monographs in Pure and Applied Mathematics, Vol. 100. Pergamon Press 1969.