ON THE NONEXISTENCE OF PERFECT 4-HAMMING-ERROR-CORRECTING CODES

BY

AIMO TIEÄVÄINEN

HELSINKI 1970
SUOMALAINEN TIEDEAKATEMIA

Communicated 13 November 1970 by K. Inkari
On the nonexistence of perfect 4-Hamming-error-correcting codes

1. Introduction. Let \(K = GF(q) \) be the finite field of \(q = p^r \) elements where \(p \) is a prime. Let \(V \) be the vector space \(K^n \). For \(a \in V \), let \(||a|| \) be the number of nonzero components of \(a \). The sphere of centre \(a \) and radius \(e \) is defined as the set

\[
B(a, e) = \{ x \in V \mid ||x - a|| \leq e \}.
\]

A subset \(C \) of \(V \) is called a perfect (or close-packed) \(e \)-(Hamming-)error-correcting code if

(i) \(\bigcup_{a \in C} B(a, e) = V \)

and

(ii) \(a \in C, b \in C, a \neq b \) implies \(B(a, e) \cap B(b, e) = \emptyset \).

The dimension \(n \) of \(V \) is called the block length of \(C \).

A perfect \(e \)-error-correcting code of block length \(n \) is called trivial if \(e = n \) (one-word code) or if \(q = 2 \) and \(n = 2e + 1 \) (repetition code of two words). For every \(q \), there is an infinity of nontrivial perfect 1-error-correcting codes. Nontrivial perfect \(e \)-error-correcting codes with \(e > 1 \) are known only for \(e = 2, q = 3, n = 11 \), and \(e = 3, q = 2, n = 23 \). Both of them are called Golay codes (see [3], pp. 302–309). It was proved in 1968 or earlier (see [4], [1], [2] and references in [1]) that there are no unknown perfect 2-error-correcting codes for \(q \leq 9 \). In his paper [5] van Lint proved the nonexistence of unknown perfect \(e \)-error-correcting codes in cases \(e = 2 \) and \(e = 3 \) for all \(q \). The purpose of this note is to extend that result to the case that \(e = 4 \). We shall hence prove the following

Theorem. There are no nontrivial perfect 4-error-correcting codes over finite fields.

2. Lemma. In the proof of this theorem we shall use the following

Lemma. If a nontrivial perfect \(e \)-error-correcting code of block length \(n \) over \(GF(q) \) exists then the polynomial
(1) \[P_e(x) = \sum_{i=0}^{e} (-1)^i \binom{n-x}{e-i} \binom{x-1}{i} (q-1)^{e-i}, \]

where

\[\binom{x}{i} = x(x-1) \ldots (x-i+1)/i!, \]

has \(e \) distinct integral zeros among 1, 2, \ldots, \(n-1 \).

This lemma, which is due to Lloyd [6] in case \(q = 2 \), is here in the form in which van Lint gave it in [5].

3. Proof of Theorem. Assume the contrary: there exists a nontrivial perfect 4-error-correcting code with block length \(n \) over \(GF(q) \). Because the case \(q = 2 \) has been considered by van Lint (see [5], p. 399) and because the trivial perfect codes are excluded, we may suppose that \(q \geq 3 \) and \(n \geq 5 \).

By the equation (1)

\[24 q^4 P_4(x) = x^4 - A_1 x^3 + A_2 x^2 - A_3 x + A_4 \]

where

\[A_1 = 4n - 6 - (4n - 16)q^{-1} \]

and

\[A_4 = 24 q^4 \sum_{i=0}^{4} \binom{n}{4-i} (q-1)^{4-i}. \]

On the other hand, van Lint ([5], the eq. (2.2)) has shown that there exists a positive integer \(k \) such that

\[\sum_{i=0}^{4} \binom{n}{4-i} (q-1)^{4-i} = q^k. \]

Furthermore, we know that

\[x_1 + x_2 + x_3 + x_4 = A_1 \]

and

\[x_1 x_2 x_3 x_4 = A_4 \]

where \(x_1, x_2, x_3 \) and \(x_4 (x_1 < x_2 < x_3 < x_4) \) are the zeros of \(P_4(x) \). A combination of the equations (6), (3), (4) and \(q = p^r \) gives the result

\[x_1 x_2 x_3 x_4 = 24 q^{(4-4)p^r}. \]
In the rest of this paper we shall show, by means of some easy but rather lengthy calculations, that the number \(X = (x_1 + x_2 + x_3 + x_4)/x_4 \) is, by (7), considerably smaller than 4 and, moreover, that this result with the inequality \(x_1 \leq n - 1 \) and with the equations (5) and (2) leads to a contradiction.

If \(p = 2 \), one of the numbers \(x_i \), say \(x_j \), is of the form \(3 \cdot 2^i \), the others are powers of 2. If \(j = 1 \), \(X \leq 31/16 \); if \(j = 2 \), \(X \leq 17/8 \); if \(j = 3 \), \(X \leq 5/2 \); if \(j = 4 \), \(X \leq 13/6 \). Consequently \(X \leq 5/2 \) for \(p = 2 \). Hence

\[
A_1 \leq 5(n - 1)/2.
\]

On the other hand, it follows from the equation (2) and from the inequality \(q \geq 4 \) that

\[
A_1 \geq 4n - 6 - (4n - 16)/4 = 3n - 2.
\]

The inequalities (8) and (9) imply \(n \leq -1 \) which is impossible.

If \(p = 3 \), \(x_1x_2x_3x_4 \) is of the form \(8 \cdot 3^x \). If one of the factors \(x_i \) is divisible by 8 then \(X \leq 7/3 \). If one factor is divisible by 4 and another by 2 then \(X \leq 5/2 \). In the case that only one of the \(x_i \)'s is not divisible by 2 we find the result \(X < 2 \). Using the inequalities \(X \leq 5/2 \), \(x_4 \leq n - 1 \) and

\[
x_1 + x_2 + x_3 + x_4 \geq 4n - 6 - (4n - 16)/3
\]

we get the impossibility

\[
5(n - 1)/2 \geq (8n - 2)/3.
\]

If \(p = 5 \), \(x_1x_2x_3x_4 \) is of the form \(2^3 \cdot 3 \cdot 5^x \) and therefore one of the factors is of the form \(2^3 \cdot 3 \cdot 5^x \) and the others are of the form \(2^3 \cdot 5^x \). Using this result it is possible to see that \(X \leq 79/25 \). Hence we get the impossibility

\[
79(n - 1)/25 \geq (16n - 14)/5.
\]

If \(p \geq 7 \), we may see that \(X \leq 25/8 \). This implies the inequality

\[
25(n - 1)/8 \geq (24n - 26)/7
\]

which is impossible since \(n > 4 \).

Note added December 7, 1970. Prof. J. H. van Lint announced to me to-day that he has recently extended his result to the case that \(e = 4 \) (Nonexistence theorems for perfect error-correcting codes, to appear in the proceedings of the A.M.S. Symposium in Algebra and Number Theory 1970) and even to cases \(e = 5, e = 6 \) and \(e = 7 \) (On the nonexistence of perfect 5-, 6- and 7-Hamming-error-correcting codes over \(GF(q) \). — Report 70-WSK-06, Technological University Eindhoven). His method differs considerably from that of this paper.
References

Printed December 1970