Series A

I. MATHEMATICA

485

ON THE NONEXISTENCE OF PERFECT 4-HAMMING-ERROR-CORRECTING CODES

BY
AIMO TIETÄVÄINEN

Copyrght © 1970 by
Academia Scientiarum Fennica

Communicated 13 November 1970 by K. Inkeri

On the nonexistence of perfect 4-Hamming-error-correcting codes

1. Introduction. Let $K=G F(q)$ be the finite field of $q=p^{r}$ elements where p is a prime. Let V be the vector space K^{n}. For $\mathbf{a} \in V$, let $\|\mathbf{a}\|$ be the number of nonzero components of a. The sphere of centre a and radius e is defined as the set

$$
B(\mathbf{a}, e)=\{\mathbf{x} \in V \mid\|\mathbf{x}-\mathbf{a}\| \leqq e\}
$$

A subset C of V is called a perfect (or close-packed) e-(Hamming-)errorcorrecting code if
(i) $\bigcup_{\mathbf{a} \in C} B(\mathbf{a}, e)=V$
and
(ii) $\mathbf{a} \in C, \mathbf{b} \in C, \mathbf{a} \neq \mathbf{b}$ implies $B(\mathbf{a}, e) \cap B(\mathbf{b}, e)=\varnothing$.

The dimension n of V is called the block length of C.
A perfect e-error-correcting code of block length n is called trivial if $e=n$ (one-word code) or if $q=2$ and $n=2 e+1$ (repetition code of two words). For every q, there is an infinity of nontrivial perfect l-errorcorrecting codes. Nontrivial perfect e-error-correcting codes with $e>1$ are known only for $e=2, q=3, n=11$, and $e=3, q=2, n=23$. Both of them are called Golay codes (see [3], pp. 302-309). It was proved in 1968 or earlier (see [4], [1], [2] and references in [1]) that there are no unknown perfect 2 -error-correcting codes for $q \leqq 9$. In his paper [5] van Lint proved the nonexistence of unknown perfect e-error-correcting codes in cases $e=2$ and $e=3$ for all q. The purpose of this note is to extend that result to the case that $e=4$. We shall hence prove the following

Theorem. There are no nontrivial perfect 4-error-correcting codes over finite fields.
2. Lemma. In the proof of this theorem we shall use the following

Lemma. If a nontrivial perfect e-error-correcting code of block length n over $G F(q)$ exists then the polynomial

$$
\begin{equation*}
P_{e}(x)=\sum_{i=0}^{e}(-1)^{i}\binom{n-x}{e-i}\binom{x-1}{i}(q-1)^{e-i} \tag{1}
\end{equation*}
$$

where

$$
\binom{x}{i}=x(x-1) \ldots(x-i+1) / i!
$$

has e distinct integral zeros among $1,2, \ldots, n-1$.

This lemma, which is due to Lloyd [6] in case $q=2$, is here in the form in which van Lint gave it in [5].
3. Proof of Theorem. Assume the contrary: there exists a nontrivial perfect 4-error-correcting code with block length n over $G F(q)$. Because the case $q=2$ has been considered by van Lint (see [5], p. 399) and because the trivial perfect codes are excluded, we may suppose that $q \geqq 3$ and $n \geqq 5$.

By the equation (1)

$$
24 q^{-4} P_{4}(x)=x^{4}-A_{1} x^{3}+A_{2} x^{2}-A_{3} x+A_{4}
$$

where

$$
\begin{equation*}
A_{1}=4 n-6-(4 n-16) q^{-1} \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
A_{4}=24 q^{-4} \sum_{i=0}^{4}\binom{n}{4-i}(q-1)^{4-i} \tag{3}
\end{equation*}
$$

On the other hand, van Lint ([5], the eq. (2.2)) has shown that there exists a positive integer k such that

$$
\begin{equation*}
\sum_{i=0}^{4}\binom{n}{4-i}(q-1)^{4-i}=q^{k} \tag{4}
\end{equation*}
$$

Furthermore, we know that

$$
\begin{equation*}
x_{1}+x_{2}+x_{3}+x_{4}=A_{1} \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
x_{1} x_{2} x_{3} x_{4}=A_{4} \tag{6}
\end{equation*}
$$

where x_{1}, x_{2}, x_{3} and $x_{4}\left(x_{1}<x_{2}<x_{3}<x_{4}\right)$ are the zeros of $P_{4}(x)$. A combination of the equations (6), (3), (4) and $q=p^{r}$ gives the result

$$
\begin{equation*}
x_{1} x_{2} x_{3} x_{4}=24 p^{(k-4) r} \tag{7}
\end{equation*}
$$

In the rest of this paper we shall show, by means of some easy but rather lengthy calculations, that the number $X=\left(x_{1}+x_{2}+x_{3}+x_{4}\right) / x_{4}$ is, by (7), considerably smaller than 4 and, moreover, that this result with the inequality $x_{4} \leqq n-1$ and with the equations (5) and (2) leads to a contradiction.

If $p=2$, one of the numbers x_{i}, say x_{j}, is of the form $3 \cdot 2^{\alpha}$, the others are powers of 2 . If $j=1, X \leqq 31 / 16$; if $j=2, X \leqq 17 / 8$; if $j=3, \quad X \leqq 5 / 2$; if $j=4, X \leqq 13 / 6$. Consequently $X \leqq 5 / 2$ for $p=2$. Hence

$$
\begin{equation*}
A_{1} \leqq 5(n-1) / 2 \tag{8}
\end{equation*}
$$

On the other hand, it follows from the equation (2) and from the inequality $q \geqq 4$ that

$$
\begin{equation*}
A_{1} \geqq 4 n-6-(4 n-16) / 4=3 n-2 \tag{9}
\end{equation*}
$$

The inequalities (8) and (9) imply $n \leqq-1$ which is impossible.
If $p=3, x_{1} x_{2} x_{3} x_{4}$ is of the form $8 \cdot 3^{\alpha}$. If one of the factors x_{i} is divisible by 8 then $X \leqq 7 / 3$. If one factor is divisible by 4 and another by 2 then $X \leqq 5 / 2$. In the case that only one of the x_{i} 's is not divisible by 2 we find the result $X<2$. Using the inequalities $X \leqq 5 / 2, x_{4} \leqq n-1$ and

$$
x_{1}+x_{2}+x_{3}+x_{4} \geqq 4 n-6-(4 n-16) / 3
$$

we get the impossibility

$$
5(n-1) / 2 \geqq(8 n-2) / 3
$$

If $p=5, x_{1} x_{2} x_{3} x_{4}$ is of the form $2^{3} \cdot 3 \cdot 5^{\alpha}$ and therefore one of the factors is of the form $2^{\beta} \cdot 3 \cdot 5^{\gamma}$ and the others are of the form $2^{\delta} \cdot 5^{\varepsilon}$. Using this result it is possible to see that $X \leqq 79 / 25$. Hence we get the impossibility

$$
79(n-1) / 25 \geqq(16 n-14) / 5
$$

If $p \geqq 7$, we may see that $X \leqq 25 / 8$. This implies the inequality

$$
25(n-1) / 8 \geqq(24 n-26) / 7
$$

which is impossible since $n>4$.
Note added December 7, 1970. Prof. J. H. van Lint announced to me to-day that he has recently extended his result to the case that $e=4$ (Nonexistence theorems for perfect error-correcting codes, to appear in the proceedings of the A.M.S. Symposium in Algebra and Number Theory 1970) and even to cases $e=5, e=6$ and $e=7$ (On the nonexistence of perfect 5 -, 6 - and 7 -Hamming-error-correcting codes over $G F(q)$. Report 70-WSK-06, Technological University Eindhoven). His method differs considerably from that of this paper.

References

[1] Alter, R.: On the nonexistence of close-packed double Hamming-error-correcting codes on $q=7$ symbols. - J. Comput. System Sci. 2 (1968), 169-1.76.
[2] -»- On the nonexistence of perfect double Hamming-error-correcting codes on $q=8$ and $q=9$ symbols. - Information and Control 13 (1968), $619-627$.
[3] Berlekamp, E. R.: Algebraic coding theory. McGraw-Hill (1968).
[4] Cohen, E. I.: A note on perfect double error-correcting codes on q symbols. Information and Control 7 (1964), 381-384.
[5] van Lint, J. H.: On the nonexistence of perfect 2-and 3-Hamming-error-correcting codes over $G F(q)$. - Information and Control 16 (1970), 396-401.
[6] Lloyd, S. P.: Binary block coding. - Bell System Tech. J. 36 (1957), 517-535.

