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INTRODUCTION

One of the basic problenls in the theory of z-dimeusional quasiconformal
mappings is to determine u,hether or not t'ivo giveu honeolnorphic domains
can be mapped quasiconfolmallv onto each other. The problem is closely
relate d to the possibilit-1, of extending quasiconformal mappings of domains,
w-hich, in turn, has an immediate comrection l-ith the behavior of the
mappings near the boundzrries.

The mapping and ext'ension problems indicated have mostly been studied
in the special case lr-here, one of the domains is a ball. (See, for exarnple, the
pa,pers ill - t6l of Gehring or \-äistilä.) The reason for this is obvious.
Namel;., when n );,2, tliere is no analogue of the Riemann mapping
theorem, v,hich states that a plane domain can be mapped quasiconformally
onto a disc if and only if its boundarl,' is a connected set containing at least
two points, and which may be frequentl-v used rrhile discussing the boundary
extension of plane quasiconformal mappings.

The starting point of this thesis is, holevel, nrore general. For we will
study the boundary behal'ior of 'n-dirnerrsional quasiconlbrmal mappings
between domains aborrt rrhose l-roundaries l-e make hypotheses as'vr.eak as

possible. Our main interest rvill be directed to au examination of the exten-
sion of such mappings to and or.er tire boundaries. but at tirnes u'e 'lyill
also investigate the conditiotrs unclel l-hich t*-o horneomor'phic clornains
can be mapped quasiconforrnallv outo each other.

\trre begin in Section 1 b5- introducing the coucepts, associated with
the boundary of a domain, upon u.hich almost the entire subsequent theory
is essentiall), based. In Section 2 'vr.e studv, b1- rnezurs of clustel sets, the local
behavior of quasiconformal mappings ou the boundarl' of a domain.
Most of the next section deals rrith questions related to the global boundary
behavior of quasiconformal mappings. The developed theorv rvill then be
applied to quasiconformal rnappings of a ball in Section 4. tr'or example,
we characterize those domains D for s,hich everl- quasiconformal mapping
between D and a ball can be extended to a continuous mapping between
the closures. X'urthermore. b_v refining a result due to Gehring [2], v'e
show that a Jordan domain D in 3-space can be mapped quasiconformally
onto a, ball if and only if everv point in its boundary has a neighborhood
t/ such that U n D can be mapped quasieonformallv onto a ball. Some
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of our results suggest the investigation of the extent to which the presence

of a sharp edge in the boundary of a dornain destroys the smoothness

properties of the domain. The final section is devoted to this investigation.

Notation anil terminology. \Ye denote by fit the real number system

and by Rt: Rt U {* , - oo} its two-point compactification. Given two
real numbers a a'nd b, a<b, we let, (a,b) denote the open interval

{t:a<t<b} and la,b) the closed interval {t:a{t<b). Unless

otherwise stated, all point sets considered. in this paper are assumed to lie
in -8" : -8" U {*}, * } 2, the one-point cornpactification of the euclidean

??-space -8". n'or each point r € R" we let r; denote the d-th coordinate
of r, taken with respect to a fixed orthonormal basis ("r., . .. , e,). The

subspace n* : 0 of -8" will be identified with -8"-1. Sornetimes we shall
also use cylindrical coordinates (r , V , ") (polar coordinates (r , E) if
n:2) forapoint re R". Thismeansthat r>0, 0{E<2n, ze R"-2,
and *r:f cosVt rz:rsittq, fti:zi-z for 3<-i, {n. Eachpoint
r e R" will be treated as a vector with norm ,r'l : ("i + ... + *',)'t'.

Givenapoint re R" andanumber r;=0, u'elet B''(r,r) denote

the n-dimensional ball {y e R" : ly - rl < r} antl S4-1(c , r) its (n - l)-
dimensional boundary sphere kt e R" t]y -.r'l == i'1. \\'e will also employ
the atrbreviations

.8"(r) : B"(0, r) , B" : B'(1) ,

S"-r(r) : §"-1(0 , r) . §,,-r : §"-1(I) ,

n'here 0 denotes the origitr, arrd write

B"*(r) : {.r' € B"(i') : ,r,, ),0} , B', : Bi(l) .

For each set ,Oc -R" u'e let OE, -8, and C.o denote the boundary,
closure, and complement of .8, all takeu u-ith lespect to R". X'urther-
more,giventwosets -E and .F iu -R", r,'elet,'\r, denotethedifference
set {r:re E,rL.E) ancl d(E,I) theeuclideandistancebetween Z
and lI.

As a measure in -8" \r'e use the z-dirnertsional Lebesgue mea.srtre rnn,

where the subscript n may be omitted if there is no danger of rnisunder-
standing. The rneasure of a set Ec E" is defined as that of E\{oo}.
Obviously, trl,, is also defined for sets in la-dirnensional srnooth sub-

manifolds of R"', n' >n. We abbreviate ct.r,,: m"(§").
A neighborhood, of a set D is an open set, containing E. Ä ilomai,n is

an open connected non-empty set. The notation f : D--- D' includes the
assunrption that D and. D' are dornains in 8". A domain D is said to
be a ,forilan d,omai,n if AD is homeomorphie to S"-1. A ri,ng is a domain
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whose complement consists of two cotnponents. A continuum is a compact
connected set u,hich contains rnore than one point.

Let G be a subset of R". By a path in G we mean & continuous
mapping y : Å ---> G, where A is a closed interval of -81. Suppose also

that, E and -F are subsets of R". Then we let A(D ,I : G) denote the
familyofallpathswhichjoin E and. I in G; thatis,apath T:la,b)-->R"
is an element of A(E , I : G) if and only if one of its end-points y(a) , y(b)
belorgs to E, the other belongs to I, and y@e G for a<t<b.
Thelocus lyl of apath y:A-->.8" isthepoint set yÅ:{y(t):te /}.
Asubpathof apath 7 isarestrictionof y t'o aclosedsubinterval.Apath
family J^, is said to be mi,nori,zeil, by a path family J-, if every path of
I, has a subpath belonging to fz.

Suppose next that J- is a family of paths in 8". We let .E'(,t') denote
the family of all Borel functions p : R" -, A1 which are non-negative and
for which

I ndr> r
/'

for every rectifiable path y € -I'. The p-mod,ulu,s (p 2 t) of l" is then
defined as

r
Mo(f) : inf I Q, dm^ .

oer(r)oJ

If .P(l-) -0, we set Mr(I): oo. Thisoccursif andonlyif "1'contains
a constant path. To simplify notations, u.e write .L/(J") instead of M"(T)
and call it the mod,ulus of l.

We shall also use surface moduli of path families. Let § be an (z - I)-
dimensional smooth manifold in R". (In this paper, however, we need
only the cases where § is a plane, a sphere, or the lateral surface of a
right circular cylinder.) If .l' is a path family in §, we again denote b;'
7(J') the family of all non-negative Borel functions g : B -+ Ä1 for which
the line integral of g is greater than or equal to one along every rectifiable
path 7 € J-. The p-mod,ulus of I wi,th respect fo § is defined as

Mi,€) - inf
(/ € F(1')

aP dnt ,, -,

Let D and D' be tu'o domains
is said to be K-quasiconfornl,al, I
iuequalit;,

A lromeomorphism f , D --> D'
€, if it satisfies the double

!
in Ro.

<I{<

I
K turv)<tvrffn<Kr,t(r)
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for each path family T in D. Here /-l': {.f . y: y e J-}. (Sometimes the
factor -I{ in the above inequalities is replaced by K-', for example in
Gehrirg - Väisälä [a]. This is obviousl5, a matter of notation only.) A
homeornorphism / is said to be quasiconformal if it is K-quasiconformal
for some .K. The marimal d,i,lutation of /, denotedby K(f), is then defined
as the least r( for which / is 1{-quasiconformal. Finally, the domains D
and D' are called quasiconfarmally equi,aalent if there exists a quasi-
conformal mapping of D onto D'.

1. Classes of boundary points

We begin by defining a number of concepts allowing us to describe the
behavior of a domain at a boundary point. Then we give alternative
characterizations for some of these concepts and finaily determine relation-
ships betlr.'een them.

Recall that unless othervyise stated, all point, sets considered lie in E',
n,)2.

Definitions. Altogether we introduce seven properties. Sorne of them,
however, are nothing but natural generalizations of others. (Cf'. Yäisälä
[8, r7.5].)

I.l. Connectednessproperties. Let b be abouudarypoint of a dornain D.
(i) D is locully connecteil at b if there exist arbitrarily small neighborhoods

U of å such that U n D is connected.
(ii) , is m-connected,at b, m:I,2,..., if nt istheleastintegerfor

which there exist arbitrarilv small ueighborhoods U of b such that
UnD consists of m comporrents.

(iii) , is fi,nitely connecteil at, b if there exist arbitrarilv small neighbor-
hoods U of b such that a n D consists of a finite number of
components.

1.2. Rnmnx. Obviously a domain is locallv corurected at a boundarv
point if and only if it is l-connected at the point. Furthermore, rn-con-
nectedness always implies finite connectedness. The following example
shows that the converse is not true.

1.3. Exaiurr,n. Let (r , V , z) be the cylindrical coordinates in .8", and
tu

let r:8"\U-4, v'here Ai: {r : (r,q,z):0 1r /-tli, E: tf;.,

- lli < l"t afi,l. If m< oo, then D is re-connected at the origin b,



Rerrvro l{Är<r<r, Boundary behavior of quasiconformal rnappings

while if rn : @, then D is still finitely connected. at Ö, but no longer
m-connected for any int'eger m.

1.4. Quasiconformal collaredness.Leb b be a boundary point of a domain
D.
(iv) D is quasi,conformallg collared, at b if there exists a neighborhood U

of b and a quasiconforrnal mapping g:UfiD-->B^+ such that
lim g(r) : 0 and lim g-'(Y) : b.

11

x->b y-+0

(v) D is quas'i,conformall,y m-collared,at b, rn:1,2,..., ifthereexists
a neighborhood U of b such that U n D consists of m, corn-
ponents, Er, . . . , E^, for each of which there is a quasiconforrnal
mapping gr: Di --> B- with lim !i(r) : 0 and lim g;L(y) : $.

x-->b )'+ 0

1.5. Rnnanx. Obviously a domain is quasiconformally collared at a
boundary point if and only if it is quasiconformally l-collared at the point.
It is also evident that the half-ball Bi could be replaced in l.4byseveral
other domains, for example by the ball "B". The choice of the origin to be

the limit at b of the mapping in question is unessential as well. We have,
however, given a preference to the forrnulations in 1.4 because of certain
technical advantages.

1.6. Exmrpr,n. Let D be the domain inExample t.Swith afirrile m,
let (, , V , z) be the cylindrical coord.inates in -8", and let

Ei: Ia"(Ll*)

ir" Gl*)

["fln*e-1)/(2n*rl*
l*W 1)/( 2n * Llm - 1)

l*u1o rxp - Lli)

fl{r-(r,V,z):VelLl*,11} if i,-1,
)'m'"

Then 81, . . . , D* are the components of D 11 B"(llm). X'or *
(r, V,z) €Er set' ft(r) : (r,h;(g), z), where

htr(d :

if i -2r..,2r/1,.
Next for yeB"Qlm) let g(y):my. Then !i:!of; is a quasicon-
formal mapping of Dt onto the half-ball B" fl {r: r, > 0} with
limgl(r):0: limgtl(A). Ifence D is quasiconformally m-collared at
*+0 y*0
the origin.

1.7. Quasiconformal flatness anil accessibility. Let å be a boundary
point of a domain D.
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(vi) D is quasiconformally flat ab b if M(/(IL,X2:D)): q whenever
.P, and F, are two connected subsets of D with b e Frl' Fz.

(vii) ä is quasiconformally accessible from D if, given any neighborhood
U of b, there exists a continuum AcD and a number d >0
suchthat M(A(A,X:D)) ) ö vheneyer n is a connectedsubsetof
D with b€-F and InAa+A.

I.8. Rnmam. In Väisälä [8], »quasiconformally flat» is called »property
Pr» and the property of being »quasiconformally accessible» is similar to
»property Pr».

1.9. Exeupr,n. Let D again be the domain definedin 1.3. Arguments
similar to those to be presented in l.I7 and 1.I8 show that D is quasi-
conformally flat at the origin b if and only if m : l, and that b is quasi-
conformally accessible from D regardless of whether rez is finite or infinite.

The following abbreviated expression n'ill be used throughout the paper:
If a domain has one of the properties (i) - (vii) at each boundary point,
it is said to have the property in questiorr otL the bound,ary.

Alternative characterizations. We u'ill norry describe alternative ways of
defining some of the concepts (i) - (vii). For example, we show, r,ith a
view to the study of cluster sets in Section 2,how tlie topological concepts
(i) - (iii) can be defined in terms of sequences of points.

1.10. Theorem. G'iaenadomain D and,aboundary ,point b, tltefollowing
statements are equ'iualent :
(1) D fs m-connected, at b.

(2) There euists a ne,i,ghborhood U of b such that U n D consists of m
components each of wh,ich i,s locally connected, at b.

(3) There erist arbitrari,ly small neighborhoods U of b such that U n D
consists of m, comgtonents ear,h of which i,s locally connected, at b.

$) There erist arb,itrari,ly small neighborhoods U of b such that U n D
cons'ists of m comytonents, the bound,ary of euch conta,ining b.

(5) m i,s the least integer for wh,ich the follouing cond,i,tion hold,s: If
(är,u) , ..., (b,*+r,t") are rn + L sequences of points i,n D conuerging
to b and, i,f U i,s a nei,gltborhood, of b, tlten there erists a comltonent of
U n D which conta,ins subsequences of tuo di,fferent sequences.

exists a neighborhood. tl of
nents, Er,. ,E*,, andthat

?n-connected at b. By tlie definition, there
b such that U n D consists of nl, compo-
V n D has at least tn components whenever
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V c U is a neighborhood of Ö. We claim that evety E;,'i : 1,...,ffi,
is locallv connected at ö. Obviously, Ö is a boundary point of each domain
E;. If some Ei, say 81, is not locally connected at, ä, there exists a
neighborhood Urc U of b with lV n Er containing at least two corn-

ponents whenever W c U, is a neighborhood of b. But then W n D
has at, least rn + | components for all such neighborhoods W', which
contradicts the tn-cottrrectedness propefiy of D at' b,

(2) > (3):Let, U and 8r,...,8* beasaboveandlet W beaneigh-
borhood of b. Since E;, i :1 , . . . ,nt,, is locally connected at Ö, for
each f there is a neighborhood U;c W of ä such that Uii Ei is

connected. Then Ux:(Urn...n U;U(UrnEL) U... U (U^n.E*) is

a neighborhood of b, Li* c Tl', and U* fi D consists of components

[JrnEr,...,fl^nE^. Since VnD ]ras at least rn components

whenever Y c LI* is a neighborhood. of b, lve see as above trhat' Ut{1 Ei,
i, : 1,...,n1,, is locally connected at b.

(3) + (a): This implication is trivial.
(a) > (5): Lel tl be aneighborhood of ä andleb Y c U beaneigh-

borhood of b suchthat YnD consists of components .8r,,..,8^ fot
which be OEt, i:L,.. ,ffi..Next let' (är,u) ,...,(boar,r) be p{L
sequences of points in 1) converging to b. If p Z m, then at least one

Ei contains subsequeuces of tlvo different §equences mentioned above.

These subsequences ale thus corrtained in a single component, of U fi D.
Consequently, if. mo is the smallest trumber for which the condition in (5)

holds, then m' {m. To prove that rzio ) rr. oue only need choose for
i:1,...,m, a sequence (ä,,r) in such a 'wav that br,1"e E; for all il
and br.*-->b as lc--->q.

(5) > (1): Assume that (5) holds but (i) does not. Then, by what, was

proved. above, D cannot be p-«'onnected at b for any p, L 4p {m'
Thus there exists a neighborhood Lt of b such that Y n D contains
points of at least rn + l different components of I/ fl D whenever I/
is a neighborhood of b. Assttrne, for cotrvenience, that b * q. X'or

'i,:1,...,nx+l choose a poitrt bi.keDnB"(b,lifu) sothatif i+ j,
then br,6 and bi,t, k:1,2,..',1:1,2,.'., belong to different
components of UnD. The sequences (Ö,,*) ,...,(b^+r,r) converge to
b, but the condition in (5) is uot satisfied. contrary to the hypothesis.

The proof is thus complete.

The next theorem offers an analogue of Theorem 1.10 in case of finite
connectedness. Since its proof follows the same reasoning as that of Theorem
1.I0, being even simpler, it maY be omitted' (See also Väisälä [8,Theorem
17.71.)

l3
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1.11. Theorem. Giaen a d,ornai,n D and, abound,ary poi,nt b, the following
statements are equiualent:
(l) D i,s fi,ni,tel,y connected, at b.

(2) There erist arbitrari,ly small neighborhoods U of b such that U n D
covtsi,sts of a finite number of comgtonents, the bound,ary of each canta'i,ning

b.

(3) There eri,st arbitrari,ly smal,l nei,ghborhoods U of b such that U n D
cons'i,sts of a finite number of components each of which is finitel,y connected,

at b.

(+) If (b*) is a sequence of points 'in D conaergi,ng to b and, if U i,s a

nei,ghborhood, of b, then at least one of the components of U n D contai,ns

a subsequence of (b*).

The next theorem is a quasiconformal analogue of Theorem 1.10. Its
simple proof also may be omitted.

1.12. Theorem. Giaen a d,omai,n D and, a bound,ary Ttoi,nt b, the following
statements are equi,aalent:
(1) .D 'i,s quasiconformal,ly m-collared at b.

(2) There exists a nei,ghborhood, U of b su,ch that U n D consists of m
components each of which is quasiconformally collared, at b.

{3) There erist arbitrari,ly smal,l, neighborhoods U of b such that U n D
cons'ists of m comytonents each of which is quasiconfornr,ally collared' at b.

({ There erist arbitrarily smal,l neighborhood,s U of b such that U n D
cons'ists rf m components, 8r,. . . )

quctsiconformul mapp'irlg Si : Ei -->
lim g;'(y) - b.
;1'-+ 0

E^, fo, eu,ch ,f which there is a

1.13. RnuenN. In the statement (a) of Theorem 1.12, if the requirement
concerning the existence of the limits of gi and g, ' is replaced by the
mere requirement b e OE;, then gi has a limit äj at b, 'rhich, observing
that Ei is locally connected at b, can be proved essentially in the same

way as in the case where the image domain is 8". (See, for example, the
proof of Väisälä [6, Theorem I].) However, gr' may fail to possess a

limit at b:. This is seen, for example, by considering the domain
@

D:Bi(2)\[,f 16, where Ip:{r:(r,g):0 1r {.I, E:llk\, at,Lhe
h:t

point b : er.

Among the concepts (i) - (vii) introduced above, the quasiconformal
flatness and accessibility properties are not readily perceived, particularly
the latter. We will nexb show that the choice of a continuum is of secondary

L4
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consideration in the definition of quasiconformal accessibility (see 1.7).

That is,givenadomain D, apoint beAD, andacontinuum AcD,
the point b either is or fails to be quasiconformally accessible from D,
independently of. A. (It is therefore justified. to use the expression »ä is
quasiconforrnally accessible from D»» without explicit reference to any
continuum.) In order to prove this, we must establish a strengthened version
(Lemma 1.r5) of the following well-known result: If /. and .4.* are two
disjoint connected cornpact sets in R", then l[(A(A , Ax : R")) > O

provided that neither A nor -24.* degenerates into a single point. X'or this
purpose, an auxiliary lemma is needed.

1.14. Lemma. Let ao and' alo be two gtoints in a, d'omai,n D and, let

Do be a subd,oma'in of D containing ao anil a'0. Then there eri,sts a homeo'

morphism f : D -- D such that f i,s quasiconformal,'in D, f(or) : a|o, and,

f(*):r for r€D\Do.

Proof . Without restriction it may be assumed. thal ao * a * alo. Let'
Lo be a polygonal arc with successive vertices d,sta1 t...,ap,ai loining
ao and a| in Do. We will first construct a homeomorphism fo:D->D
so that lo is quasiconformal in D, fo(an) : ar, and. fo(r) : * for
r e D\Do.

Let 0 < do < d(Lo , ADo)lrl\tz. Petforming a preliminary similarity trans'
formation,we may assume that ao : doen and a, : dre^ with 0 4do4dr.
Denote

C : {r: 0 ( lr - rnanl 1do, 0 I r^ I drl dr},

C' : tL:0 ( lr - frnaol Sdo- frn, 0 1r^ 1d],
C":{n:0 ( lr -roaol 1d,o(r^-do)ldp dolr,n{ ilo*ilr),

and set

if n eD\C,

if n e C\(C'U C') ,

fo@) - . dL-do
fr+-, frnan if freC',

ao

. dL-dn
ryJ- * u 

@o*dr,- frn)€n if fre c"t4) t 
d,

Then /, is a piecewise differentiable homeomorphism of D onto itself
wilh foD: D. A simple calculation shows lhut fo is (dr/do)"-1-quasi-

15

er'' 

ilr - cl
,r, )- - ao 

@ @ :r"n en',,) en.^r , 
do
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as desired.

such that f, is quasiconformal in D, fr(")
f ,(or) : ai+t where &p. t : (r'0. The mapping

f -fo" "'o,f,J

then satisfies the conditiotrs of the lemma,.

fo@)--n for rer\Dn,

lromeomorphism fi:D*D
- r: for r e D\Do, and

is quasiconformally
fs satisfied: Giuen
D . tlt ere erists &

u,heneuer F i,s a

1.15. Lemma. If A and, A* are ttL,o continu,a in a d,omai,n D, then

M(A(A,A*:D))>0.

Proof. We may assume Lhat A n A* : fr andlhat D * R", for other-
wise M(/(A , A* :D)): oo or the assertion is a w-ell-knor.r'n result. Choose
points ane A, a,* eA*, so that lor- o*tt: d,(A,A*), and set

2r : min {d(A , A*) , d(A* , AD) , y?; d(. , a*)) .

l{ext choose a point ai e A17x wibh d(ai , n*) : r' and a subdomain
D, of D with are Ds, a[e .Do, AfiCDo*A, and A*nDo:A. ff f
is a mapping of the preceding lemrna, then S"-r(ax ,t) meets both /-4
and fA* : A* for r < t < 2r. Sirrce B"(o* ,2r) c D, v'e obtain, by
Väisälä [8, Theorem 10.12],

l[(11(A , A* : D)) ] c,,log 2lK(f) ,

v,here c, ) 0 is the rz-modulus of the famil;, of all paths joining eo and

- eo in B"-1, and u,here K(f)< oo is the maximal dilatation of f in D.
The lemma is thus proved.

We are now in a position to preseut a str:otrger form of the definition of
quasiconformal accessibilitv.

1.16. Theorem. I boundfrry poi,nt b of a clonia[n D
il,cce.qsible from D i,f and only i,f the follorcing eonditiort,

any ne'ighborhood, tl ,f b and any conti,nuum Å * in

co?Lnected subset ,f D u)ith b e F a,ntl -F n AL' =! g.

Proof.It evidently suffices to prove the necessity part. Let A* be an
arbitrary continuum in D, let U be a neighborhood of ö, and let -4
and ö be the quantities appearing in 1.7.(vii), the definition of quasicon-
formal accessibility, corresponding to the neighborhood U. We have to
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find a constant ö* > 0 for which the modulus condition in the present
theorem is satisfied.

Assume first that, A fl A* : A, and, for convenience, that a 4. A.
Let

4r : min {d@ , A*) , d(A , aD)} ,

let Ar, . . . , Ao be a finite covering of L by closed balls with centers
aie A, ,i,: I,...,p, and radii r, and let

(1.16.1) M(rr) : öt,

where f! : /(Ar,A*: D). By Lemma 1.15, each ä; )0. We claimthat

(1.16.2) ä* : 3-"min{d/p, är,.. ., öp,c,,log2},

'w-here cn)0 is as defined in Väisälä [8, (l0,tl)], can be chosen for the
desired positive constant.

Nowlet I beaconnectedsetin D suchthat ä€F and XnAU + A.
Set

I : /(A,I :D), fr: Å(At,F : D), l* : Å(A*,I :D).

Since the modulus is a monotone and subadditive function,

ö < M(t) < M@(ö A,, t: D)) < ) rg,l .

Thus for some i, say i : I, 
i:r ;:1

(1.16.3) M(fr) > ölp .

We must show- that M(f*) > ö*. It is sufficient to consider the case

where A* n I : A, for any path family containing a constant path
has infinite modulus.

Choose p€.E'(J"*). If
?,

(r.16.4) lsar>r- or lsdt>L-J- -B J- -3

foreveryrectifiatrle nr'*n,, € l,, T\e ff, tfrur, 39 e,P(l-J or 39 € I(If).
This implies

r(1.16.5) I q" dm > 3-n min {//(l:r) , Mgf)) .

J
nn

Assume now that there exist rectifiable paths h e Ir. and 7f e J-f
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for which (1 .1 6.4) is
Let RL be the rir:g
Since q € -F'( T*),

( 1.1 6.6)

for eYery rectifiable path d.L

meet.q both lyrl and lzf I

not true. Suppose first that
r<lr ell2r andset 4L

I n B"(or,2r) : g.

- Å(lyrl ,lzf I :Ar).

f - I
I gds >r
J3

e År. Thus 3g € ?Ur). Since eyery §"-'(a, ,t)
for r < t < 2r and since B" (a, , 2r) c D,

(1.1 6.7) \-"cn log 2

according to Väisälä [8, Theorem 10.12]. Suppose finally that -tr'n
B^(ay,zr) t' 0. Let -Bf be the ring 2r< lr - cr,l.<4r andset lf :
/@,lyfl :fif). Taking into account the fact that beF, we see that
also in this case (1.16.6) holds, with af in place of *r, for every rectifiable
path uf e/{. Hence we conclude as above that (1.16.7) holds. Con-
sequently, since q € .E'(.1'*) was arbitrary and since either (f .f 6.5) or
(I.16.7) is true, we obtain Mg*) ) ö* by combining (1.16.1) - (I.16.3),
as desired.

In the preceding argument we assumed that, A f\ A* : A. If. A
meets A*, we ma,y choose a continuum .4f c D\(-4 tl A*) and apply
the above procedure first to the continua A , -4f , and then to Af , A*.
This completes the proof of the theorem.

Interrelations. We conclude this section bv investigating relations
between the concept. (i) - (vii). Some trivialities have been pointed out
in earlier remarks. We now present some less trivial relationships.

1.I7. Theorem. Let D be a d,omain which i,s quasiconformally m-collared,
at a boundary point b. llhen
(1) D is m-connected, at b.

(2) D 'is quasiconformal,ly flat at b i,f and, only if DL : L.

(3) ä ,i,s quasi,conformally access,i,ble from D.

Proof. (l) follows from Theorems 1.10.(4) and 1.12.(a). The sufficiency
part of (2) is proved like the corresponding assertion in Theorem 17.10 of
Väisälä [8], while the necessity part of (2) can be deduced from (1) and
from the next theorem. Thus it remains to establish (3).

X'or this, Iet U be a neighborhood of b. By Theorem 1.L2.(4), we
can find a neighborhood VcU of ä suchthat VnD consistsof ra
components, E1 , . . . , E^, for each of which there exists a quasiconformal
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mapping gi: Ei-> B| with M*{*): ,, 
H 

g;'(a): b. By the latter

limit condition, we may choose a number r ,0 I r I l, so that the distance
betlveen g;rB\(r) and 0V is positive for each i. Denote by -[' the
segment frt:...:frn r:0, rl2<fi. <.r, andby I t1,.e unionofthe
sets 9111'. Next let A c D be a continuum u'hich contains 1. We will
show that the modulus condition in 1.7.(vii), the definition of quasiconformal
accessibility, is satisfied by this A and by d: b"\og2lK, where b, is
a positive constant depenfing onl5, on n and where K : max K(g).

No'r,r,' let -ä' be a connected set in D with å € -F and p Å=å1i + O.
Since li* lr@) : O for each i, the origin belongs to the closure of

g,(E;i.F') for at least one ,i. X'ix such d and set

f' : Å(glttn A) , gi(Ei n .F') : Bi).
If glEti A) intersects gt(Eti 7), then M(l'): q, and there is
rrothing to prove. Otheru'ise choose g e FQ'). Frorn the choice of r and
A and from the connectedness of -F 'rl.e infer that every hemisphere
§"(r) : §r"-1(r)n Bi rneets both §/E;ft A) and g,(.E;i E) fr:r
rl2 < t< r. Since plB*(l), the restriction of o to S1(t), belongs to the
family l(l'(t)) u'here f'U) : Å(gt(E; fi A), Qt(E; i 7) : S-;(f)), \4re

obtain

br Fubini's theorem and b.v Yäisälä [8. Theorem 10.2]. Hence M(l') ]
b"log2. tr'inally, the monotoneitv of the rnodulus and the K-quasicon-
formality of g; imply

l[(A(A, E : D)) > f,I(g,' f') > b, logzlK,

thus cornpleting the proof of (3).

1.18. Theorem. Let D be a donto.irt. ultich is both quasiconformally fla,t
and, fini,tely connected, at a boundary point b. Tlten D i,s locally connecteil
at b.

Proof. Suppose, contrary to the assertion, that D is not locally con-
nected at b. Performing a preliminarv inversion if necessary, we ma,v
&ssume that b * a. Since D is finitell' connected at ö, there exists,
by Theorem 1.1L(3), a neighborhood Lr of ö such that U n D consists

19

/rr

J rlt .\ - (t)

of components E, ,
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at b. Let il:il,(b,0U). Again by Theorem l.ll, there is fot 'i,:L,2
a connected set -F'r C &113,"(b,dlz) with b €-Fr. Denote

T : /(It, Ir: D) ,

/ : Å(§ -l(b , dl2), r§"-1(å , d,) : R) ,

where R is the fing il,l21 lr - bl < d'. Since the path family .l- is

minorized by the far:rrily A, we obtain

MV) < M(/) :ar,-r(log 2)'-" < q .

3ut this contradicts the hypothesis that D is quasiconforrnally flat at ä.

The theorern is thus proved.

ft is generally a laborous task to find out, by direct use of the definitions,
whether a given domain D has the implicit properties of being quasi-

conformally flat and accessible at sotne boundary point b. fn many
circumstances it is, however, easy to verify that, D is quasiconformally
m-collared at b for sorne integet m (as an example, see 1.6), in which
case the conclusions concerning quasiconformal flatness and accessibility
follow from Theorem 1.17. As another example we next present, a simple

geornetric condition which implies quasiconforrnal m-collaredness for
ry\,: I oT flL:Z.

1.19. Theorem. Let b + q be a bound,ary poi,nt of a domain D and,l,et

e be a un'it uector. Suppose that b has a nei,ghborhood tl such that
§ : [/ f|OD i,s homeomorphic to B-r, and, supptose that for each pai,r of
poi,nts b1 ,b, 'i,n S, the acute angle whi,ch the segruent brb, malces wi,th e

is neaer less than a )0. Then
(1) D ris quasiconformally collared, at b i,f b e AD.

(2) D 'i,s quasi,conformally l-collared, at b i,f b e AD.

&
Proof.Let, T be the (z - l)-dimensional hyperplane through Ö which

has e as its normal. By hglotheses, there exists a neighborhood V c U
of ä such that every point r € 7 has a unique repleserrtation ofthe form
n:sltne, where s€§ and L3RL. Let gt:§-+7 betheorthogonal
projection and for r e V set g(r) : p(s) | t,e. B1' tlie z-dimensional
analogue of Corollar), 5.1 in Gehrirrg - Yäisälä l1), g is a quasiconformal
mapping. Since g(Zfl§)c T, there exists a neighboi'hood. WcV of
ä such Lhat g maps each of the two compouents of I'f\S onto a half-
ball. If b e AD, one of these two components coincides with W n D,
and D is thereby quasiconformally collared at b. Otherwise, the compo-

nents of I4\S are the sarne as those of lY n D, in which case D is

quasiconformally 2-collared at b. The proof is complete.
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1.20. RnlreRKS aND couNrERExÅMpLES. (f ) In Theorem 1.17, quasicon-
formal collaredness is not a necessary condition for quasiconformal flatness
or accessibility. The domain , : E"\{ö} serves as a counterexample.
More generally, by methcds similar to those used in the proof of Theorem
Ll7 one can show that, a domui,n D has the quasi,conformal, fl,atness and,
accessibi,li,ty progterties at a boundarg point b + a i,f there etists a posi,ti,ae
number r .such that A"-2(5"'1(b, » n AD) : 0 (,S"-'(ö, q n AD : g i,f
n : 2) for almost eaery t € (0 , r). Here An_, is the (z - 2)-dimensional
Hausdorff measure.

(2) In Theorem 1.18, quasiconformal flatness does not alone imply local

connectedness. Bor example, the domain A : ,A|12;r. l] Zn, where Ik
[:I

is as defined in Remark 1.13, is quasiconformally flat, but not locally con-
nected, at points ta1, 0 <r< 1.

(3) In Theorem I.19, the arrgle condition is superfluous when n :2.
tr'or if U n AD is an open Jordan arc, there is a neighborhood V c U
of b such that 7\äD consists of two simply connected components, and
therefore the requirements in the definition of quasiconformal collared.ness
are readily seetr to be satisfied. On the contrary, if n ) 3, then, as we
shall see in Section 5, the other hypotheses of the theore,m imply, in fact,
neither quasiconformal flatness nor accessibility.

2. Cluster sets

In the present section we studl- the local boundarS, behavior of quasi-
conformal mappings. This will be done in terms of the properties possessed
by the sets of all their limit points. \\-e therefore introduce the following
topological concept:

2.1. Cluster set. Let f be a mapping of a domain D into E" and let
ö be a point in 0D. The cluster set C(f , ä) of f at b is the set of all
points b' e R" for which there exists a sequence (än) in D such that
b*->b and f(b*) ->b'. Alternatively, C(f ,b) : l1T(l fi D) where U
runs through all neighborhoods of b. The cluster set C(/ , E) of / on a
non-empty set .Oc 0D is defined as the union of the sets C(/,b), b eE.

2.2. R,nmrnx. Obviously, C(f ,b) is a non-empty compact set, /
has a limit at b if and only if C(f ,b) reduces to a single point, and
C(f ,b) c AfD if / is a homeomorphism.
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Cluster sets and topological properties. We begin by considering cluster
sets at points where a given domain has one of the topological properties
(i) - (iii), defined in 1.1.

be

(r)
(2)

(3)

2.3. Theorem. Let f : D ---> D' be a quas'iconformal m,appi,ng and, let D
m-connecteil at a bound,ary point b. Then the followi,ng holds:
C(f ,b) contai,ns at most m components.
If C(f ,b) cotfiai,ns eractl,y m, comgtonents. Cr,...,C^, there etist
arbitrari,ly small nei,ghborhood,s U of b ruith, U fi D consisti,ng of m
conl,ponents, 8r,..., E^, such that Ct : C(fiEt,b), i : 1,...,rn.
In particular, ,if Ct: {b:}, then b, : tim f E,\r).

(4) If D' is quasiconforru,atty ftat at euery eriir, "f Cff,b), then C(f , b)

conta'ins at least m, points.
(5) C(f ,b) eithercontai,nsatmost m,-| poi.nt,.s.tlu,asiconformallyaccessible

from D', or consists of m points.
(6) If D' has the quasiconformal, flatness anrl u{ce,ssi.bi,lity properti,es at euery

poi,nt of C(f ,b), then C(f ,b) contoins eraotly ru gtoints.
(7) If U i,s a neighborhood of b witlt L| n .D consisting of components

8r,...,8* anil if b' is a,poirtt, qu,ctsicort.fortn.ctlly accessible from D',

Proof.(r) By the statement (3) of Theorem l.l0 and Or;;" definition
of C(f , b), there exists for each positive integer tr; a neighborhood U*
of ö such that Un*rc (/6, Ukn D consists of m, comporrents, say
8,r,..., En,,k, E,,u.t,C E,,o fot ,i: I ,... . nt, irnd

c(f , b) :-- iE,.u

The assertion follorvs now frorn the fact, that for etrch i, the set 
!rlU,.*,

as an intersection of a contracting sequence of contirrua, is either a con-
tinuum or a point.

(2) Again by Theorem 1.10.(3), there exist arbitlalil-v small neighbor-
hoods U of b u,ith UnD consistingof ;ri components, 8r,...,8^,
each of which is locally connected at ö. Since Cl(f Et,b), i - I ,. ..,ffi,
is connected by virtue of (I), we conclrrcle, pr,rssiblr by relabeling, that
Ct: C(flU;,b).

(3) follov,s from (2).
(a) W'e may a,ssume that tn ) 2, for otherl-i-,re there is nothing to

prove. Composing / u,ith an auxiliary itiversiotr if necessary, \ye m&y
further assume that b g a. Let, [/ be a neighbor]rood of ö with each
of thecomponents, 8r,...,8^, of UO D beinglocallyconnectedat b.

tn .x-'

UN
i:1 ,r -.1
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Set d : d'(b, äU). Again by'I'heorern 1.10.(3), there is for d: 1,...,nl
a connected set ?i c Ei n B"@ , dl2) u'ith b e F, Denoting fi.j :
l(nt,11:D), 1<i< j S'm, and appealing to the argument, given in
the proof of Theorem 1.18, r,r,e otrtain

l,IQt"j) { r0,,-,(log 2)1- " < oc .

If C(f ,b) cortaired at r:o-st ttt - L points, therc'would exist integers ti

and j,l<,i,< j<ra, and apoint cin C(f,b) suchLhat cef?,nlPi.
But since fI; and /X; a,r'e c,onuected sets in D' and since .Z)' is quasi-
conformally flat, at c.

M(f I',.i) : lll(iJ(f?t,fI1: D')): oo ,

rryhich contradicts the quasieonformality of / and proves that C(f ,b)
contains at lea,st na points.

(5) Suppose, conttary to the assertion, that C(f , b) contains m I I
distinct points b1,..., öi,n1 and that åi ,...,b; are quasiconformally
accessible from D'. In order to avoid technical difficulties \\'e assurne, as

we obviously mav, that both b and each bj , l:1,... ,m I l, are
finite points.

Let 2r - fliin l,b', b',, I :< i < j I nt, f- l,
A' C D'. B), Theorern 1.16. there exists for each

arld choose a continuum
t- 1j...,ffi, aconstant

II(J(A',F':D'))) ö;

u,henever -F" is a corrnectedsetitr /)' tith öj € F' and 7" n /S"-l(b',,r) *
A. Let

' 
:,1",.r1'-'' ' cl : d(A ' aD) 

'

where A:f-|A'. Theri d ar:d d alebothpositive. For j:1,... ,rn+1
choose a, sequence (b1,*) in D so that bj,r-b, f(b1,1)-->b'1. Fix €,

0 ( e < d. Since D is nr.-connected at b, there exists, by Theorem
I.10.(5), a, component -F of B"(b,e) fl D and integers i and j, I <i,<
j <m f l, such that 7' contains subsequences of (b,,n) and (ä;,1). Set

X':fI , f :A@,n:D), l':,tr(A',F':D'). Since.n" isconnected
and F' contains the points b', und bj ,

On the other hancl,
Å(5"-'(0 , e), §n-'(0 , d) :

the path famill- f is

O). f'lonsequently,

Åt(t') { ({)ri , (,"* 3)'-"

rninorized by the familr-
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These inequalities for M(l') and, M(T) must hold for all e, 0 ( e 1d.
Letting e'+ 0 leads to the desired contradiction.

(6) follows from (4) and (5).
(7) By Theorem 1.10, we may assume that each Er is locally con-

nected at ä. The method used in the proof of (5) then shows that b' :
limflEl(r). Thus ö' : lim/(r), and the proof is cornplete.

x-.>b x-+b

proposition (2) of which
immediate consequenceto

in

The next theorem,
in the sequel, is an
Tlreorem 2.3.

will be frequently referred
of propositions (1) and (5)

2.4. Theorem. Let f : D -> D' be a quasi,conformal magryti,ng and, let D
be locally connecteil at a bound,ary point b. Then the followi,ng hold,s:
(I) C(f ,b) ,i,s ei,ther a continuum or a poi,nt.
(2) If there i,s a poi,nt b' i,n C(f ,b) which i,s quasi,conformally accessi,ble

from D', then b' :lrnf(").

An argument similar to that employed in the proof of Theorem 2.8.(4)
yields the following result:

2.5. Theorem. Let f : D -> D' be a quasiconformal mapping and, let D
be fini,tely connecteil at a bound,ary point b wi,thout being m-connected, for
ang 'integer m. If D' i,s quasi,conformally flat at euery point of C(f ,b),
then C(f ,b) i,s i,nfini,te.

2.6. Rmnem. Propositions (1) - (3) in Theorem 2.8 hold for every
continuous mapping, as is evident from their proofs. The same is true of
the first statement in Theorem 2.4.

Cluster sets and quasiconformal properties. \fe next consider cluster
sets at points where a given d.omain has one of the quasiconformal properties
(iv) - (vi), defined in I.4 and 1.7.

2.7. Theorem. Let f : D --> D' be a quasiconforrnal mappi,ng and, let D
be quas,iconformally m-collareil, at a bound,ary point b. Theru, ,in add,ition
to the statements of Theorem 2.3, the followi,ng holds:
(l) C(l,b) contains at most m points at whi,ch D' is finitely connected,.
(2) C(f ,b) contains eractly m po,i,nts i,f D' is locally connecteil, at eaery

poi,nt of C(f ,b).
(3) If D' i,s fini,tely connectedateuerypointof C(f ,b), i,f U i,s aneighbor

hooil, of b with UnD cansi,sti,ng of comtponents 8r,...,8*, and
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if there'is a gtoint b' belonging to C(flE;,b) for 'i,: | ,. , . ,n'1, then

b' : limf (r).
x+b

Proof. (1) Suppose, contrary to the assertion, that' D' is finitely con-

nected at m * t distinct points bi, . . . ,b'**, of C(f ,b). Composing /
with an auxiliary inversion if necessary, we may assume that each bj + a,
J :L,...,m*r. Let 2d,:minlb: -b;1, r < i, <i <m*r, and

choose for x:1,... ,m * I a sequence (bi,r,) in D so ihat' bi,u-->b,

f(b,,r,)---bj. Since D' is finitely connected at' b',, there exists, by virtue
of 

"Theorem l.rr.(4), a, component X', of D'n B"(b; ,ill2) which contains
a subsequence of (f(\,1,)). Thus b; eF;, and it follows that

Ll[(A(E't , E', : D')) ( a.r,-r(log 2)'-" < o

whenever L<i<j1m*1.
On the other hand, since D is quasiconformally m-collated at b,

t'here exists, by Theorem 1.12.(2), a neighborhood U of b such that
U n D consists of n't' components, Dr, . . . , E*, each of which is
quasiconformally collared at, b. Next, since the set Fi : f-Ui,
j:1,..,,ffi*L, is connected and beF1, and since each Elb

I : | , . . . , n't,, is quasiconformally flat at b accord'ing to Theorem l.l7 .(2),

thereexistintegers 'i,, j, andl, L <i, <i <rt,+!, | <l <m, fotwhich

l[(A(It, \: D)) > M(/(F,i E1 ,/'1l' &: Ei): @ .

This contradicts the quasiconformality of /.
(2) Local connectedrress implies finite connectedness; hence, by (l),

C(f ,b) contains at, rnost, rza points. lVe thus claim that C(f ,b\ contains

at least rr points. The case m: I is immed.iate, because C(f ,U + A.

Suppose tlnat m)2 andflnaf Cff,å) contains at most m-L points.

LeL U and Er, , . . , E* be as above. By Theorem 1.17.(1), each E;,

i:!,.., )n't,2 is locally connected at b. Thus, by Theorem 2.4.(l),
C(flDt, b) reduces to a single point. Consequently, there exist integers z

and j, t < d < j 1*, and a point b'e C(f ,b) such that,

limfl0;(x) : $' :tryfink) .

On the other hand, D' is locally connected at, Ö' and, by virtue of
Theorem f.17.(3), b is quasiconformally accessible from D. Hence, by
Theorern 2.4.(2), b : 

l*,f-t(y). 
w" rnay therefore choose a neighborhood

V' of b' such that T/' n D' is connected and f-'(V'n D')C U. But

f-](V' n D') is also connected and must thus be included in one of the
components E; and. Ei. This is a contradiction.
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(3) By Theorem 1.I2, we ma,y assume that each Ei is quasiconformally
collared at ö. The method used in the proof of (t) then shows that b, :
lrmflD{r). Thus b' :fuf(*), and the proof is complete.

2.8. Bpuam. rn the proof of proposition (1), it wourd have beensuffi-
cient, to assume, insteadof quasiconformal rza-collarednessof D at b, that
rn represents the greatest integer for which the following condition
is satisfied: There exist connected sets 11 , . . . , X^ in D with
beFrn...nF^ such that M(/(It,11 :D))<a whenever
t<i< j<m. In the case rtu:l this yields the following result
(Theorem 17.13 of Väisälä [S]):

2.9. Theorem. Let f : D -> D' be a quasiconforunal mapping and, tet D
be quasiconformally flat at a bound,ary poi,nt b. Then C(f ,b) contains at
most one point at which D' is fini,tely connecleil,. In particular, if D, i,s finitely
connecteil at euery poi,nt of C(f ,b), then f has a l,imi,t at b.

2.10. Rnnanx. observe the following difference between Theorems
2.4.(2) and 2.9: Let f : D ---> D' be a quasiconformal mapping and let
b eAD, b' eCff,b). Tf D is locally connected at ä and if b, is quasi-
conforrnally accessible from D', then b':Mf(*). on the other hand,

if D is quasiconformally flat (or collared) ar b and if D' is finitely con-
nected (or locally connected) at b', then / need not neeessarily possess
a limit at b. This is seen, for example, by choosing B" for D, the
n-dimensional analogue of the domain described in Gehring - väisälä [4,
10.7] for D', the origin for b', and lim/-t(y) for b. fndeed, C(f ,b)
consists of the segment nt: ...: *"-::0, 0 < c, { I.

3. Boundary extension

rn the present section we study the global boundarv behavior of quasi-
conformal mappings. This, however, is closely related. to the rocar one.
Accordingly, we shall begin by considering the possibility of extending
quasiconformal mappings to one boundary point.

Väisälä proved in [6] that if a domain is locally connected on the
boundary, then every quasiconformal mapping of it onto a bail can be
extended to a horneomorphism between the closures. rn the middle part of
the section we discuss the same extension problem for domains more general
than a ball. (The extension of a quasiconformal mapping to a continuous
mapping between the closures of the d.omains in question rvill not be dealt

2fi
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with before Section 4, and there only in the special case where one of the
domains is a ball.) This section will be concluded v'ith an investigation of
the extension of quasiconforrnal mappings over boundary surfaces.

Extension to one boundary point. Let f : D ---> D' be a quasiconformal
mapping and ö apoint in 0D. Theorems 2.3.(7),2.4.(2),2.7.(3),and2.9
provide certain conditions under which / has a limit at ä, and under
which / therefore can be extended t'o a continuous mapping of D U {ä}.
trVe consider now aspects pertinent to our demand that this extended
mapping be a homeomorphism.

3.1. Theorem. Let b and, b' be bound,ary points of domains D and,

D', respectiaely, and, let f : D U {ö}-+ D'U {b'} be ahomeomorphi,smwhich
isquasiconformalin D. If D hasanyoneof theproperties (i)-(vii) at b,

then D' has the sanxe property at b'.

Proof. (i) Local connectedness: A special case of (ii).
(ii) m-connectedness: Let U' be a neighborhood of b'. By hypotheses,

there exist a neighborhood V of b and a neighborhood V' of b' such
that V n D consists of tn components, say 8r, . . . ,8^, that
f(V n D) c Li', that V' c fi', and that f*'(V' 11 D') c V. Then
W' : V' U f(V n D) is a neighborhood of b', Il" c U' , and lV' l1 D' :
f(V n D) consists of m components,namely fUr,...,fE*. Consequently,
D' is nt'-conttecled at b' for some ra', I {m' ( zn. Considering like-
u,ise the inverse mapping /-1, u.e conclude m I m'.

(iii) X'inite connectedness: The proof is similar to that of (ii).
(iv) Quasiconformal collaredness: A special case of (v).
(v) Quasiconformal zz-collaredness: Let LT be a neighborhood of b

such that UnD consists of n't, components, 8r,...,8^, foreachof
which there exists a quasiconformal nrapping gr: E; --> B* with
lim g;(r) : o, limgl1(y1:6. Choose a neighborhood V' of b' with
r-> b y-+ 0

f-'(V'11 D')cU. X'or i:1,...,nl set E,:f8,. Theu U':
V' U EiU . . . U E^ is a neighborhood of b' rrith U' n D' consisting
of components Zi ,. . . ,8;. Set l : f',8, and h,: gi.fi'. Since fol
each ,i,, h,(E:): u\, y:,h,(r): r, ,r* h,'(y):b" and since h, as a

composed mapping of two quasiconformal mappings is itself also quasi-
conformal, D' is quasiconformally zz-collared at b'.

(vi) Quasiconformal flatness: Let I, and -Fj be two connected sets
in D' with b' e F; n ,Fj. Set Fr: f-Fr, xz : f-rl;, I : z1(Ir , Fr: D),
f' : /(ni , I'r: D'). By hyaotheses, -t', and -F, are connected sets in D
lvith b €Frn -Fr. Ttrus I\IQ): co, which implies M(l'): a.
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(vii) Quasiconformal accessibility: Let U' be a neighborhood of b,,
let U be a neighborhood of ö witln f(U OD)c U', andtet, A and d
be as in l.7.(vii), the definition of quasiconformal accessibility. we sho'lv
that in the same definition, A' : lA and ölK(f) may be chosen for the
qnantities corresponding to the domain D', the point å', and the neigh-
borhood U'. To this end, let I' be a connected set in D' such that
b' e F' and J|' n AU' + A. By hypotheses, the set -F : f-rT' is con-
nected, beF, and InAU*A. Hence l[(/(A,I:D))]ö, which
implies M(/(A' ,I' : D')) > ölK(f). The proof of the theorem is thus
cornplete.

3.2. RrrranKs. (1) Theorem 3.1 shows that all of the properties (i) -(vii) are quasiconformal invariants. The first three of these are, in fact,
topological invariants.

(2) Theorem 3.1 does not apply to every continuous mapping which is
quasiconformal in D. To se: e'this, let f be a quasiconformal mapping of

D : 82 onto D' : E'\U 1o where 1* is as defined in Remark l.IB,

and let b' : etl2. ft is not difficult to find a point b e AD for v'hich
limf(r):b'. The domain D has all of the properties (i) - (vii) at b,
*+å
while D' has none of these at b'.

(3) In Theorem 3.1, if / is continuous, and quasiconformal in D, and
if D and D' possess any one of the properties (i) - (vii), except (iv) or
(v), at b and ö', respectively, then / need not necessarily be a homeo-
morphisrn, as is readily seen by means of examples. However, if / preserves
either (iv) or (v), then it is a homeomorphism, as the proof of the next
theorem will show.

3.3. Theorem. Let f : D ---> D' be a quasiconforma,l magryting and, let D
be quasi,conformally m-collared, at a bound,ary point b. Suppose that U i,s

a nei,ghborhood, of b, appearing i,n the d,efi,ni,ti,on of quasiconformal m-col-
lq,reilness (see 1.4), 8r,...,8* be,i,ng the comltonents of U n D. Then f
can be efiend,ed, to a homeomorphism of D U {b} if attd only if D' i,s quasi,-
conformally m-collared, at soyne poi,nt belongi,ng to C(f ')Et , b) fo,
'i:1,...,nL.

Proof. The necessity of the condition was established in Theorem B.l.
X'or the sufficiency, let b' be the point of 0D' at which D' is quasicon-
formally m-collared and which belongs to C(flUt, b) foli: I,...,nL.
Since D is zrz-connected at ö and since ö' is quasiconformally accessible
from D' (Theorem I.L7), f can be extended to a continuous ma,pping of
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D U {b} onto D' U {b'} according to Theorem 2.3.(7).In order to prove

that this extended mapping is a homeomorphism, we must show that
b:limf-L(y).

y-b'
If m : 1, the assertion follows directly from Theorem 2.4.(2), because,

again by Theorem 1.L7, D' is locally connected at b' ar..d Ö is quasi-

conformally accessible from D. Assume next that m ) 2, and., for con-

venience of notation, that b # oo. Since b' : Mf(*), we can use Theorem

1.12.(3) to find a neighborhood U of b and a neighborhood U' of b'

such that fPnD)CU', UfiD consistsof components "8r,...,8^,
TJ' n D' consists of components Gl , . . . , G'^, each ä; is quasiconformally
collared at b, and each G: is quasiconforrnally collared at' b',

'i,:1,...,!rL. Let d: d,(b ,0U), and choose for each 'i a connected

set, 7; c Din B"(b,dl2) rrith b e Fr Appealing to the argument given
in the proof of Theorem 2.3.(4), we infer that M(|r,,) < a whenever
t<i< j<m. Here Ti,j:/(Ft,11:D). Accordingly, since b'ef?t
foli:1,...,vn and since each G: is quasiconformally flat at b'

(Theorem I.17.(2)), the sets fI; and' ff; must belong to different com-

ponents of (J' n D' whenever i, + j. Thus b e C(f-t)G:, b') for each rl.

Tlreorems l.l7 and 2.3.(7) now imply that b:limf't(y), as desired.

As an immediate corollary we obtain v-b'

3..{. Theorem. Let f : D'--> D' be a Emsi,conform,al magsping and, let D
be qua,si,conformally collared, at o boundary point b. Then f can be ertend,ed,

to o, homeomorphis'm of D U {b} if ancl, only if D' is quasi,conformally

collared, at son'te point of C(f ,b).

Extension to the whole boundary. \Ie no'n' proceed to investigate the
horueomorphic extension of a quasicouformal mapping to the entire
boundary. Before establishing our maiu theorem in this subsection, namely
a generalization of Theorems I and 2 in \-äisälä [6], 'ire state v'ithout proof
a simple topological lemma which describes the relatiotr between the local
and the global boundary extension. Witli a view to the discussion in Section
4, 'where not only the homeomorphic but also the continuous extension
of a quasiconformal mapping to the rvhole boundary will be dealt with, we

formulate the lernma as follows:

3.5. Lemma. Let f : D --> D' be a homeomorphism. Then

(l) f can be extended, to a conti,nuous maytyting f : D -- D' if anil only i,f
lim f (r) erists for eaery b e 0D.
x+b
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(2) f can be ertended, to a homeomorph,ism f* , D --- D', if ancl only if
lim /(r) and, lim f-L(y) erist for euery b e AD , b' e AD, .
*+b y-b'

3.6. Theorem. Let f : D --> D' be a quasiconformal mapping and, tet D
be locally connecteil on the bounilary.
(l) Il D is quasi,conformally collareil, on the boundary, then f can be ertenderl,

to ahomeomorphi,sm, f* , D --> D' i,f and only i,f D' also is quasiconformally
collareil, on the boundary.

t2) If D i,s quasiconformally flat on the bound,ary, then f can, be ertend,ed,
to a homeomorphism f* : D --- D' if and, only if D' also is locally
connected, and, quasiconformal,ly flat on the bound,ary.

(3) If D has the quasiconformal accessibi,lity property on the boundary, then

f can be extend,ed, to a homeom,orphism f* t D ---> D' if and, only if D,
also 'is locally connecteil and, has the quasiconformal accessi,bility progterty
on the bound,ary.

Proof. (l) is an immediate corollary of Theorem 3.4 and Lemma 8.5.(2).
Propositions (2) and (3) follow from Theorems 2.4.(2), 2.9. J.t, and Lemma
3.5.(2).

As an application we show that domains of certain tr-pes are not, quasi-
conformally equivalent.

3.7. Theorem. Let D be a ilomain whi,ch is locally connecteil on the
bound,ary.
(L) If D i,s not quasiconformally collared, at euery poi,nt of 0D, then it cannot

be mapped, quasiconformally onto any d,omain which i,s qu,usdconformally
collared on the bound,ary.

(2) Il D d,oes not haae the quasi,conformal flatness a,nd, accessibility properties
at euery poi,nt of 0D, then i,t cannot be mapped, quasiconfortnally onto
any d,omai,n which hus both of these properties on the boundary.

Proof. (I) If f : D --> D' is a quasiconformal mapping and if D, is
quasiconformally collared on the boundary. rve malr use Theorems 1.17,
2.4.(2), and 2.9, in conjunction r+"ith Lemma 2.5.(2), to infer that / can be
extended to a homeomorphism l* , D -- D'. Thus, bv Theorem 9.6.(i),
D is quasiconformally collared on the boundary.

(2) The assertion follows from Theorems 2.4.(2). 2.5. 8.6.(2), 8.6.(g),
and Lemma 3.5.(2).

3.8. Rnurnxs. (1) Lernma 3.5 as well as Theorems 3.6.(t) and 8.6.(8)
remain valid if one insists that the hypotheses concerning boundary points
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be satisfied at every point of any sets E c 0D, C(f , E)c 0D'. The same

is not true of Theorem 3.6.(2) (see the example in 2.I0).
(2) It is not knovt to the writer if Theorem 3.6 holds without the

additional assumptions, that is, if a quasiconformal mapping between two
domains rrhich are Iocally connected on the boundaries is always extendable
to a horneomorphism between the closures. The same question remains
open also in case of Jordan domains. For plane Jordan domains, hou'ever,
as is very well known, the extension is possible.

Extension over boundary surfaces. We conclude this section by in-
vestigating the possibility of extending quasiconformal mappings oYer

quasiconformal spheres. A set § is said to be a quasiconformal, sphere if
there exists a quasiconformal mapping / of a domain D r § with /§ :
§"-r. From a result due to Gehring [2] it follows that D can actually be

chosen to be the entire space ,R". We generalize Theorem 3 of Yäisälä [7]
to ra dimensions. The proof u'e u-ill give also applies to the case 7L : 2

and is slightl;' different from that of Yäisälä.

3.9. Theorem. Let f : D -- D' be a quasi,conformaL mapping and, bt AD

arusi,st of a quasi,conJormal sphere S and, of a compact set (ptossi,bfu A) rtot

nteeting S. Denote by D, the component of CS for whi,ch D fi Dr: g
undby S' theclusterset C(f ,S). Then f canbeertend,ed,toaqu,asiconformal
mappi,ng of D U B U Dr i,f and, only if S' 'i,s a quasiconformal, sphere.

Proof . The necessity of the condition is trivial. For the sufficiency, assume

that §' is a quasiconformal sphere. \\-e s-ill first, shov'that there is a neigh-
borli<-rod U of S, a neighborhoocl f;' of §', and a quasiconformal
mapping h,: U ---> U' such that h(r) : f(x) for x e U i D. Then 'we

apply Theorem 2 of Gehring [2].
Since D and D' are quasiconforrnallv collared at all points of § and

S', respectively, f can be extended, b)' Rernark 3.8.(I), to a homeo-

morphism f*,DU§+r'U§'. For 0(rr1\1@ let R(rr,rr)
denote the spherical ring B"(rr)\8"(rr). Then, by virtue of hvpotheses,

there is a neighborhood Y' of §' and a quasiconformal mapping
g' :'[" --->R(112,2) such that g'(Y'n D'): -rB(l ,2). Similarly, there is
aneighborhood. Lr of § anda quasiconformal mapping g iU -->R(L12,2)
suc:h that, S@nD):-B(l ,2) and fgnD)cl''. Forr€§"-r U RG,2)
set ./r(r) : g' " f* " g-r(r). Then /, is a houreomorphism of §"-1 U -E(1 , 2)

onto g' " f*(Li O D), and it is quasiconfolmal in -B(1 , 2). \Ve can there-
fore extend å by reflection to obtain a quasiconformal mapping /, of
R(1 2,2) onto a domain Gc R(llz ,2). Set U' : g'-\G and h -
g'-L " fz" g. Then U' is a neighborhood of rS', and h: U -> U' is a

quasiconformal mapping agreeing with / in U n D.

3r
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Now let O', be the component of CB' which does not meet D,.
Applying Theorem 2 of Gehring [2] to the domains D, and D'r, to the
neighborhoods U and U', and to the mappings SIU n D, and g lU'i Di,
respectively, we find neighborhoods U, of S : ODr, U', of S' : ADr,
and quasiconformal mappings hr: Dr--> 8", h'r: D', --> 8", such that
hr(r) : g(r) for r e Uri D, and h!r@) : g'(r) for n e Uln Dt. The
same theorem applied to the domain 8", to the neighborhood g(tj O Llr),
and to the mapping hi " h " h,l'lgg n UJ n B" yields a neighborhood
W of §,-r and a quasiconformal mapping hr:B"-+-B" such that hr(r):
h!r"h.hl'(*) for reWnB". Set

f(*) if ne D,

f*(*) if ,r€§,
lL'L-' o hz. hr(*) if fr e DL

Then / is the desired extension of /.
By repetition of the above argument u,'e obtain the following result:

3.10. Theorem. Let f :D-->D' be a quasi,conformal, magtping q,nd let
AD consist of a fini,te number of d,isjoint quasiconformctl spheres. Then f
can be ertend,ed, to a quasi,conformal nragryting j t R" --- E" if and, only if atso
the components of 0D' are quasiconformal spheres.

4. Quasiconformal mappings of a ball

In order to apply and illustrate the results of Sections 2 and 3, many
of lghich are not always apparent, because of their fairlv general nature,
in this section we restrict our discussion to quasiconforrnal mappings betu'een
two domains one of which is a ball. We begin br- corrsidering cluster sets of
a quasiconformal mapping f : D -+ B" and the correspondence of the
boundaries induced by /. we postulate, for example. a condition u'hich
describes the behavior of D at a point b e aD and l{rich is both necessar.y
and sufficient that the cluster set of f at b contain exactlv ziz points
(nt,:L,2,...). We also characterize those domains D fot.n-hich either
f or 1-t (or both) admits an extension to a continuous mapping bettr-een
the closures.

In the latter part of the section we discuss the possibilit;r of mapping
a domain quasiconformally onto a ball. As our main result there, we shor\,,
eliminating a superfluous condition in a result due to Gehring l2l, that, a,

Jordan domain D in Es can be mapped quasiconformally onto BB if

it*l:I
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and only if every point in 0D has a neighborhood [/ such that U n D
can be mapped quasiconformallv onto -83.

Cluster sets anil boundary extension. In the following two theorems
we summarize a number of results related to those presented in Sections
2 and 3. (See also Gehring [3, Theorem l] and Väisälä [6].)

be
(1)

4.1. Theorem. Let f : D -> B" be a quasiconformal mappi,ng and, let
AD. Then
C(f ,b) reiluces to a single point, i,.e., f has a li,mi,t at b and, therefore
can be ertend,ed, to a continuous mapp,ing of D U {b}, i,f and, only if D
'is quasi,conformal,ly flat at b.

(2) C(f ,b) reil,uces to a single poi,nt with b the cluster set qf f-t at that
po'int, i.e., f can be extend,ed, to a homeomorpthism of D U {b}, if and, onl,y
if D has the quasiconformal flatness anil, a,ccessibi,li,ty properties at b.

(3) C(f ,b) contains eractly m ptoi,nts, m:2,3,.. ., if and, only if rn
is the greatest ,integer for which th,e follouing cond,ition holds: There emist

connected, sets Ir,...,F^ in D ui,th beFrn...nF^ suchthat
M(A(PI,I1 : D)) I a wheneuer I < ? < j <m.

(4) C(f , b) i,s infi,ni,te if and, only i,f the cond,i,tion in (3) holds for eueru posi,tiae
integer m.

(5) Inparticular,i,f D is m-connecteilat b, m:1,2,..., then C(.f ,b)
canta'ins eractly m points.

(6) Inparti.cular',if D isfinitelyconnectedut b wi,thoutbeing m-connecteil,

for any ,integer tn, tltett, C(l ,b) is infini,te.

Proof. Because (5) and (6) can be deduced from Theorems 1.17, 2.3.(6),
and 2.5, it is unnecessary to show that thev are special cases of (1) - (4).
The necessity part of (2) follows, for example, from Theorems 1.17 and 3.4,
whereas its sufficiency part is due to proposition (I) and Theorem 2.a.Q).
Since (f ) is equivalent to (3) wrth m : I and since (3), combined with
(I), implies (4), ib remains to verify (3) for eyer)- positive integer m.

X'ix such m. To prove the sufficiencv part, note that C(f ,b) contains
at most rz points by virtue of Theorem 2.7.(L) and Remark 2.8. We thus
claim that C(f ,b) contains at least rz points. The argument parallels
the one given in the proof of Theorem 2.3.(4). Since C(f ,b) * fr, it is
sufficient to consider the case m),2. If C(.f ,b) contained at most
m - L points, there would exist connected sets Ir, Ej in D and a point
c in C(f ,b) such that be F,nF,, lI(/(Et,Fi:D)) ( @, and
cellrn Fi. But this is impossible, because Bn is quasiconformally
flat at c.

X'inally, to prove the necessity part, suppose that C(f ,b) consists



:]4 Ann. Acad. Sci. Fennicrce A. I. 481

of rer distinct,points bi,...,b^. Let, Ir,,..,Fo be connected.setsin
D with be FLn...nF, such that M(Å(XI,I1:D)) ( oo whenever
L <i, <j < p. If ? ) m, we concludeasabove that M(lffni,,fni :.B")) :
oo for some i, + j. Consequently, the greatest number for which the
condition in (3) holds cannot exceed rza. On the other hand, in view of
Theorem 2.7.(L) and Remark 2.8, it can neither be less than m. The theorem
is proved.

4.2. Theorem. Let f : D --- B" be a quasiconformal mappi,ng. Then
(l) f can be ertended, to a continuous rnapp,ins i , D -, B" i7 and, onty i,! D

'is quasiconformally flat on the boundary.
(2) l-, can be ertend,ed, to a cont,inuous mapping i-, : 8," --- D i,f and, only if

eaery point ,i,n 0D is quasi,conformall,y accessible from D.
(3) /-t can be ertendrcd to a continuous maryping i-L : B" --, D if and, only

i,f D i,s fdni,tely connected, on the bound,ary.

$) f can be ertend,ed, to a homeomorphisrn f* , D --> B" if and, only i,f D
i,s locally connected, on the bound,ary,

{5) f can be extend,ed, to a homeomorphi,sm f* , D --- B" if ard, only i,f D
,is a Jord,an d,oma,i,n which is quasiconform.ally collarecl on the bound,ary.

(6) f can be ertended to a quasiconformal map,ping i: R" -., R" tf and, only
i,f AD ,is a quasi,confarmal sphere.

Proof. Propositions (t), (5), (6), and the sufficiency parts of (2) and
(3) follow from Theorems 4.1.(1), 3.6.(1), 3.10,2.4.(2), and2.9, (plus Theorem
1.17 and Lemma 3.5), respectively. A direct proof for (4) is given in Väisälä
[6]. The result can also be deduced from Theorems 3.6.(I) and 8.7.(t) in
this paper. Thus it remains to establish the necessitv parts of (2) arrd (B).

In order to do this for (2),1et i-r: B" -- D be eorrtilluous. let b e OD,
let U be a neighborhood of ö, and let A:/-13'11 2). \Ye rnust, find a
positive number ö such that l[(/(A ,I : D)) >_ ö rrhener-er ? is a
connected set in D rryith ö € -F and F n AU + 0. For this, let V' be
a bounded neighborhood of the compact set C(/ , ö) t-ith .f-r(Y' n B") c tl.
Because of tire continuitv of i-r, such a neighborhoocl cau be chosen. Set
r : d,(C(f ,b) , Ay'). Since each point of 08" is quasiconformallv accessible,
we infer from Theorem I.16, on the basis of s1-tnrnetrr', that there exists
a positivenumber ö' suchthat, M(/(fA ,fI : B")) ) ö' l-heuerer flv c B"
is a connected set ryhose closure contains a point ö' € ,S'-i for rvhich
fi fi S"-L(b' ,r) * 0. Consequently, ö'lK(f) serr'es as the desired number
ä.

n'inally, in order to prove the necessity part of (3), let ft, b, and
[/ be as above, and let (ä*) he a sequence of points in D converging
to b. fn view of Theorern 1.11.(4), it is sufficient to find a component
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of Lr n D which contains a,

converging subsequence (b;)
subseqrrence of (br). To this end, choose a

of (f (bu)) and let b' - limbi. BY h;r-

pothesis, b - lim f-'(y)" Thus
y*b'

J-> oo

there exists a number r7 0 suchthat

f-r(B" n B"(b' , r)) c tJ. But since f-'(8" l1 B"(b' , r)) is connected, it
must be included in a single cornponent of a n D. Consequently, this
component contains a subsequence of (Ö*). The proof is complete.

4.3. ExEupr,m. The domain described in Gehring - Väisälä [4, 10.7] is

quasiconforrnally flat, but not locally connected, on the boundary. Any
quasiconformal mapping of it, onto a ball can therefore be extended to
a continuous mapping, but not to a homeotnorphisrn, between the closures.

Mapping theorems. The Riemann mapping theorem states that' a plane

domain D can be mapped quasiconformally onto .B2 if and only if äD

is a connected set which contains at least two points. This geometric con-

dition is necessary but not sufficient for a domain D c R", n ) 3, to be

quasiconformally equivalent to 8". tr'urthermore, in contrast, to the case

n : 2, in higher dimensions one cannot generally conclude u'hether or
not a domain D is quasiconforurally equivalent to B' by looking only
at 0D, In [2] Gehring showed, however, that to draw such a conclusion

one need only look at the part of D rrear OD. That is, a domain D c fr,"

can be mapped quasiconformally onto B" if and only if äD has a neighbor-
hood [/ such that U n D can be mapped quasiconformally into Bo

wilh 0D correspondingto 03". This characterization is of global nature.
It is therefore natural to seek for a local characterization. In the rest of
this section we investigate local conditions for those domains that possess

certain connectedness properties on the boundaries so as to be quasicon-

formally equivalent to 8". We begin with a necessarv condition, and then
show in one special case that this condition rvill also be sufficient.

4.4. Theorem. Let D be a domain' surh that for each point b e AD, D
is m(b)-connected, at b for some positic-e integer m(b). If D is quas'i,con-

formatly equiaalent to 8", then D 'i,s quasiconformally m(b)-collareil at b.

Proof. Let f : D --> B" be a quasiconformal mapping and ä a point
in 0D. By hypothesis, D is ra-connected at Ö for some integer m. We
must find a neighborhood U of b as in 1.4.(v), the definition of quasi-

conformal aa-collaredness.
By Theorem 4.1.(5), C(f ,b) contains exactly zrz points, b'r,...,b;.

X'or ,i,:1,...,n't, set Di:8"fip"(b'r,r), where r)0 is so small
that D; nfr;:b if jIk. Next, for each d let, h,:Ei->B\ be a
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quasiconformal mapping with limhl(y):0, lim hr'("): äj. X'inally, set

E,:f-,8! andchooseaneighborhood Z of ö so that f(VnDcUE:.
Then (J:VUEL.J...l)E^ is a neighborhood of b, UnD 

"o'rr1.t.of components Er,.,.rE^, and gi:hi"flUi is a quasiconformal
mapping of Ei onto B|. Since åj :limflfl,(r) and b:ljm{-l(il by

virtue of Theorems 2.3.(3) and 2.9, respectively, it follows that lim gi(r) : g
and lim g,'(z):b. The proof is thus complete. x+b

fn the case where m(b) : I for each point ö € äD, Theorem 4.4 (or
Theorems 4.2.(4) and a.2.(5)) provides a slightly strengthened version of
Theorem 3 in Väisälä [6]:

4.5. Theorem. Let D be a d,omai,n whi,ch i,s locally connected, on the
bound,ary and, quasiconformal,ly equi,aalent to 8". ?hen D ,i,s a Jordan d,omai,n
whi,ch is quasi,conformall,y collured, on the bound,ary.

4.6. Rnuenr. Gehring showed in [2, Theorem 4] that a Jordandomain
D c Es is quasiconformally equivalent to BB if it is quasiconformalrv
collared. on the boundary in the follov,ing stronger sense: Each point
b e aD has a neighborhood u such that there exists a quasiconformal
mapping g : U fi D ---> 83* which can be extended, to a homeomorphism
g* : (J fi D --+ 83+ U 3,2. From an aesthetical point of view, and also for
the purpose of obtaining analogous results for domains more general than
Jordan domains, it would seem desirable to remove the requirement on
the extendability of g in the above condition. rn the next theorem n'e
show that this really can be done. rn order to make clear that in B-space
the necessary conditions given in Theorem 4.5 arc also suffieient, x,e for-
mulate the result as follows:

4.7. Theorem, Let D c Et be a d,omain which is locctlly connecteil, on
the boundary. Then D can be mapped, guasi,conformally onto Bs if and,
only i,f the following conil,i,tions are sati,sfi,ed,:

(t) D is a Jord,an d,oma,i,n.

(2) Eaery poi,nt ,i,n AD has a nei,ghborhood, U such that U n D aan be
mapped, quas,iconformally onto B3.

Proof. The necessity part follows from Theorem 4.5. rn order to prove
the sufficiency part, we only need show that, D is quasiconformally collared
on the boundary in the sense stated in Remark 4.6.

For this purpose, fix a point, b e AD. By (2), å has a neighborhood
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U such that there exists a quasiconformal mapping g : u fi D'-> B3*.

Since each point of aB3* is quasiconformally accessible from 83* (Theorem

1.17.(3)) and since U n D is locally connected at b, lim 9(r) exists

according to Theorem 2.4.(2).We may assume, without 
"ät'"iction, 

ttut
lim g(*) : 0. Next, since B| is quasiconformally flat at the origin (Theorem
x-b
f .f 7.(2)), since C(g-1,0) is connected (Theorem 2.4.(l)), and since U n D
is locally connected, a fortiori, finitely connected at each point of U n AD,

Theorem 2.9 implies lhat b: ,ji g-|(y). Choose r, 0 1r 1l' so that

öt

C (g-t , B'(r)) c U n AD. Arguing as

point c' e B2(r), lim g*L(y) - c exists
above we conclude that for everY
and that c' - lim g(r). Set,

!-->c'

Y - g-tB'*(r) U C(g-' , B'(r)) U CD

Then 7 is a neighborhood of b and giV n D can be extended to a homeo-

morphism (SV nD)*:V n D-- B3*(r)U B2(r). Composing (glV n D)*
with the mapping ä, defined by h(y) : Ulr, we obtain a homeomorphism

of V fi D onto B}+U Bz which is quasiconformal in 7 O D. The proof
of the theorem is thus complete.

Gehring showe d in [f] that a quasiconformal rnapping / : D -+ Bs can

be extend,ed to a quasiconformal mappin1 f ,E'+83 if and only if D
is a Jordan domain rvhose exterior is quasiconformally equivalent to 83.

Together with the previous theorem this ;-ields:

4.8. Theorem. A domai,n D c Rs can be mappecl onto Bs by means of
a quasi,conformal ma,pgting of RB if and, only if D is a Jordan d,omai,n and,

euiry Ttoi,nt dn OD has a nei,ghbmhood, IJ such that U n D and, t] ll CD

can be mapyted' quasi,conformally onto 33.

4.9. Rnnmnrs. (1) It is not known rvhether the z-dimensional analogue

of Theorem 4.7 is true for n ;' 3, but it is 5'ell kloryn that the analogue

holds in the case n :2. (Indeed, the condition (2) can be disregarded

in the plane.)
(2) It is not known whether the z-dimensional analogue of Theorem

4.8 is true for m ) 3, but it is well knorvn that the analogue is false in the
CAS9 h:2,

4.10. Exanrrr,p. Let D c Rs be a Jordan dornain for which the simple

angle condition of Theorem t.l9 is satisfied at every boundary point. Then

D can be mapped quasiconformally onto .B3. Moreover, each such quasi-

conformal mapping can be extended to a quasiconformal mapping of the
whole space.
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5. Quasicontormal riilges

The results of Sections 3 and 4 indicate that the smoothness (together
with the similarity) of the boundaries usually determines whether tv'o given
domains can be mapped quasiconformally onto each other, and, if such
a mapping exists, whether it can be extended to or over the boundaries.
Theorem 1.19 offers a simple geometric condition which (combined rrith a
topological condition) implies that the boundary of a domain D is »quasi-
conformally smooth» in a neighborhood U of a point of 0D; that is, D
(as well as a component of CD has the quasiconformal collaredness,
flatness, and accessibility properties at all points of 0D O [/. This poses
a question concerning the properties of D at the boundary points for
which this geometric condition is not satisfied. fn Remark 1.20.(3) r.e
observed that the condition is immaterial for plane domains, and claimed,
without any conclusive proof, that such is not the case in higher dimensions.
We shall now state arguments to support this assertion. through a detailed
examination of the domains rvhose boundaries contain sharp edges. For the
sake of clarity, v-e rvill restrict ourselves to 3-space R3, although the
ensuing results ean be carried over to z?-space Rn, n ) 8, .u-ithout

difficulty.

5.1. Quasiconformal ridges. Generalizing Gehring - Väisälä [4, 10.9]
rve say that a point set B in EB is a quasiconformal g-rid,ge if there exists
a quasiconformal mappirg Å of EB which sends S onto

Bo : {, : lrrl : g@),0 I r, I a, lnsl <b},
where d I @, b I q, and the function g is subject to the follorving
restrictions:

1o. g is continuous in [0, ef ,g(0) -0, and g\t) > 0 for
01u<a.

(5. 1 .1) g' is continuous and non-decreasirg in ({} , a)

lim g'(u)- 0 .

u->0

The pre-image of the set

Eo: {r i frr: frz: 0, ia'r] < ö}

under /. is called the edge of §. (By Theorem 1.19.(2) in this paper and
by Theorem 10.5 in Gehring - Väisälä [4], the domain fit\So is quasi-
conformally 2-collared at each point of Br\% but at no point of Eo.
Thus, by Theorem 3.1, the edge of § does not depend on the choice of

2"

30
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the mapping /r.) A set § is called a quasi,conformal ri,d,ge if it is a quasi-
conformal g-ridge for somo function g satisfying (5.I.1).

A domain D c Rt is said to have a quasiconformal ridge in its boundary
if somepoint, Q?AD hasaneighborhood U suchthat S:UIAD
is a quasiconformal ridge with Q as a point of its edge. Let fo:,8 -*Es
be a quasiconformal mapping with /o§ : §0. Then there exists a constant
c>0 suchthateither f;'(t"r)eD for 0<r<c or flt(tel)€CD for
0 < , < c. The ridge § is said to be outward, il,irecteil, in the first case and
intoarcl d,i,rected, in the second case.

A domain D whose boundary contains a quasiconformal ridge § is
evidently locally connected at each point of ,S, irrespective of whether §
is outv-ard or inward directed. Hence, with regard to the concepts (i) -
(vii) introduced in Section 1, only the quasiconformal properties (iv), (vi),
and (vii) are of interest in relation to the properties of D at, the points of
S. By virtue of Theorems 1.19.(1) and 3.I, D is quasiconformally collared
at all points of B other than edge-points. lYhether this is also the case at
edge-points depends on the d,'irection of § with respect to D.

5.2. Theorem. A d,oma'in D c Ra whose boundary contains a quasi-
conformal rid,ge S is quas'i,conformal,ly collareil at the ed,ge-gtoi'nts of S i,f and,

onl,y i,f S 'i,s 'i,nward, d,i,rected,.

Proof . Since BB and .B3* are quasiconformally equivalent, the necessity
part follows immediatel3' from Theorem I0.5 of Gehring - Yäisälä [a].
Conversely, assume that S is int-ard directed. Let' fo be as in 5.1. By
Theorem I0.7 of Gehring - Väisälä [{], there exists a domain G, locallv
connected on the boundary and quasiconformallv equivalent, to .B3, and
an open set, U, such that U f1 foD : U l1G and So : ÅS : U (1 AfoD :
D n AG. Theorem 4.5 then implies that G, and a fortiori foD, is quasi-
conformally collared at, every point of Su. Aecording to Theorem 3.1, the
sane is true of D at the points of §. The proof is cornplete.

A domain D whose boundary contains an inrvard directed quasi-
conformal ridge § has all the three quasiconfornral properties at, the edge-

points of § (Theorem 1.17). The situation is different if § is outward
directed, not merely in view of quasiconforrnal collaredness but with
regard to the quasiconformal flatness and accessibility properties as well.
For, as will soon be seen, whether or not D has these latter properties at
the edge-points depends on the sharpness of §.

5.3. Theorem. Let D C Es be a d,omai,n whose bound,ary conta'i,ns an
outward, directed, quasi,conformal g-ridge S.
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(l ) A necessery

points ,f S

(5.3. 1 )

(2) A suffi,cient
points ,f ,S

(5.3.2)

condition fo, D
'is the eristence ,f

d ,12

{ lnor',-

to be quasiconformully flat at the edge-

q)r-zdpdr - co .

cond'ition fo, D to be quas'icon,formally flat ctt the ed,ge-

d nl2

!(!,0
Proof o/ (t). Suppose that (5.3.1) is not true for any positive number d.

We want to show that D is quasiconformally non-flat at every edge-

point Q of B. In view of Theorem 3.1, we may assume § to be the ridge
§o irr 5.1. ft obviously suffices to prove the assertion forthepoint Q: g.

I'or f)0 let

C(t) : {* : (r, V, rz) : r I t, itt.- I t) .

where ('r , E , rs) are cylindrical coordinates in .BB with the polar angle
q being measured from the positive half of the r*-axis. Choose fo ) 0

so that

alld set

yL: Dno\o) n {r-

f -A(Ir,fr:D).

Since each path of f has a
F z or the lateral surfaces of
Corisequently,

subpath which joins either
aCU) and aCeh) in D n

n-ith (.) € Fl n Fr, \\'e onll.Since FL and Fz are conlrected sets in D

Ir
l; 

if neDnCQto)\(C(/o)

q(r) := i v <t
I

[0 otherwise.

tlre sets ?t and
C(zto), Q € r(f).

40



Reruo l{Är<r<r, Boundary behavior of quasiconfbrrnal mappings 4L

trVith antithesis this implies Mg) < oo and thereby proves (1).

Proof of (2).Suppose that (5.3.2) holds. \\re must show that D is quasi-
conformally flat at every edge-point Q of §. Because of the quasiconformal
invariance of this property, it is sufficient to verif}r the validity of the
modulus condition in 1.7.(vi), the definition of quasiconformal flatness, in
the case of the ridge § : §o and the point Q :0.

Let E, and E, be two line segments lying one in the positive half and
one in the negative half of the rr-axis with the origin as their common
end-point. Choose fn ) 0 so that

iSo n C(ro) : AD n CQo) ,

ac(/o) nE,*b, i:1,2,
(5.3.3) s'(t) <t .

X'or r>0 set

I.(l) : J(Er, Er: D n aC(r)) .

As the first step u.e shox- that

Zto ;r12 g(r sin r;.)

MV) 
= ! ddm < 1 

[ I {,*d,rd,ed,r
Zto jr l:

i 
'-'= 

-o
fr{!ct't(l-r(,)l > ( * I s(f sin q)-r 2 trl,, 

)\.t
0

(5.3.4)

for every , € (0, r0).

X'ix such ä and let qe,F'(J-,(l)). For each u€(-f ,1) define a
rectifiable path y,: [0 , z] --+. D fi aC(t) by setting

y,(u) : (t , tr, , ag(u)) ,

r.vhere the same cylindrical coordinates har-e been used as in the proof of
(1). Since y" e I'nQ) and since g'(t) < I b;- (5.1.1) and (5.3.3), Hölder's
inequality gives



= 
r I s's(ä sin vlrde ( | tQ,i* r1-ttz6r)z .

Integrating *itf, ,"1p"" t to a yi"ldr'
l*nl2

f e'd,*,= J 
o, | ,'ottsine)td'er-(^ ls(äsin e1-th6r)-2 ,

1C(t) -l o o

and (5.3.a) follows.
I{ow let .x', and ?, be two arbitrary connected sets in D such that

0 €F, f1 F* let, fo be as before, with /i in place of Ei, and for f > 0

set

42 Ann. Acad. Sci. Fennicree A. r. 494

f(il - /(Ir, Ir: D n aC@) '

As. the second and cnrcial step we show that

Mxc('\(To(t))
(5.3.5) Mgc(t\g(t)) > n, '

for every ,€(0,ro).
Fix such f. We may assume that IQ@) I A, for otherwise (5'3'5)

follows trivially. Let q € -f'(J-(r)). If
rr(5.3.6) lsdu>-

i"

for every rectifiable path yoe fo(t), then 39 €-f'(l"o(t)), r,r'hich implies

f Mac«r1_Io(r))

,J 
* *""'- 27

Suppose now that, (5.3.6) is not true for some rectifiable path yo e -l-o(r).

Choose a point ai€Xin ACO), i,: | ,2. Then ar* a2. because EV(t))
was assumed to be non-empty. Consid,er first the case u'here a, and a,
both lie outside l7ol, the locus of yo. Define a mapping / from cylindrical
coordinates (r , V , rr) t'o orthonormal coordinates (Jr , J2 , 13) b)'

_ 
f(r,g,nz) - (r,rr,r(nl2 - g)) .

Then / carries D n AC@ onto the closure of a plane domain

G(t) c X(t) : {r: xr: 7) .

Moreover,

(5.3.s) Mtr@ffr): ulc{r1r1
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for each path family .f- in D n aC1t1. Let a! : f(o,), i. : T ,2, and

2t'o : 7 " yo. Obviously oi, e ]y'rl. Next choose a point b', e iy'r1 so that
its rr-coordinate is equal to that of a',, and set ci : f\er), t, : f( - t"r),

r;(t) : tt({ci} , {c2) : G(t)) .

B;* (5.1.1) and (5.3.3), for each i there exists a path family-

f:(t) c a({"}, {b',} : G (t))

rvhich is similar to l";(r). Thus, by virtue of \'äisälä [8, Theorem 8.2] and
by (5.3.8),

(5.3. e)

Next let f 'U) - f I'(t) and

Q' € -F'( f'(t)). Since (5.3.6) is

),0, it follows that

(5.3.1t))

u'here the infima
,Hence either 3 q

(5,3. I 1)

define a function
for t: e G(t) and
false also with o'

Q' : X(f) -'A1 b;r setting
g'(r) :--- 0 othet'tvise. Tlien
and T', in lr,lace of q and

o\-er all rectifiable paths yi € f;(t) ,),; € f r(t).
or 3 Q' e F €:(f )). In each cåse

,' 71'.1c(ti(4(f ))

t-
t'i,i

Ifl

2

/,1
I

inf I o'rls
Ir-tl

1' , ir!,

are taken
' e ?(ri(f))

r
I a\d tn,,
IU

0c(r)

by (5.3.e).
In the prece dirrg argument rl,-e assumed that both of the points a, and

a, lie outside lZol. If one, say ar, belongs to l;,0', then the right hand
inequality in (5.3.10) is valid, and (5.3.I1) therebl'follou.s. Note that
',yrl cannot contain both ru, and a2, because (5.3.6) 1\-as assumed to be

false. All in all, since q € -F'(J-(f)) l-as arbitralr- and since either (5.3.7)
or (5.3.1I) holds, rye obtain (5.3.5), as desired.

To complete the proof, set f : Å(Ft. Fr: D). \\-e must' show that
1I(I): a. If ?rn Iz+ A, the assertiou follou-s trivialll'. Other.wise
ehoose p € X(1"). Since p'i1C(t) € -f(I(a)) for' 0 <, < ro,

to to .zrl
/' r' f I f /i' \-2

.l ,,0*,, J 
o, 

.l e,d*,>;:; I \ ls(rsin v),,,td,{) dt: q
i, tr oöpy d' o

by X'ubini's theorem in cylindrical coordinates, by (5.3.5), by (5.3.4), and
b5, (5.3.2). Hence M(f) : @, and the proof of (2) is complete.
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5.4. Theorem. Let D c Es be a d,oma,i,n whose bound,ary contains an
outwaril, d,irected, quasiconfarmal, g-rid,ge S. Then the ed,ge-poi,nts of S are
quasiconformally accessible from D if and only i,f there erists a number
d>0 suchthat

(5.4. I )
fdut_

r a" 
--(+)"'J s(u)'t'

rls

Proof of the necessify. Suppose that (5.4.1) is not true for any positive
number d. We 'w'ant to show that everv edge-point Q of S is quasi-
conformally non-accessible from D. As in the proof of the preceding
theorem, we maJr, without loss of generality, restrict our consideration to
the ridge §:80 and to the point 8:0. Choose r ) 0 so that

§o O B3(2r) : AD fi B3(2r) ,

let A be a continuum in D, and fix a positive number d. To prove the
assertion, it suffices to find a connected set P c D q-ith 0 € F,
I fi S2(r) t' A, and M(/(A ,l : D)) I ö.

To this end, choose €,0 (e(min {2r,d(A,AD)}, so that

(5.1.2)

t)

rt1 -DnBr?)n{r:rL<els}
f-/(A,F:D),

and define a function o: -RB -- ilr- as follou-s:

(5.4.3)

Now set

I

r

max[],f#r)"']
0

if ne DnBzprl n {t::rr(e1s},

otherlvise .

Since every path of J- has a subpath .which joins either the spheres S2(r)
andS2(2r) ortheplanes h:els and rr:e in OnBtprlfi{r:rr.--e},
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we infer, by taking (5.4.3) into account, that q € X(l'). Consequentll',
by @.a.2) and by (5.4.3),

twe)<[p,d*<+iT'f ( u \3/2-
J - J J J \r6re(r"J) drritrrtlrr*

e/"00

nt(D i Btlzrl O {r: r, { e})--r

.,,(*)" i#r,+ff.a
"/"

This proves the necessity part of the theorem.

Proof of the suffi,ci,ency. Suppose that (5.a.1) holds. We must show that
every edge-point Q of § is quasiconformally accessible from D. Because

of the quasiconforrnal invariance of this property, it is again sufficient, to
consider the ridge § : §o and the point, Q :0.

Let IJ be a neighborhood of the origin. For I ] 0 set

?'(t) : {x : ir;', I t, i : 1,2,3}.
Nextchooseanumber r,0(r1d,, sothat V(zr)c ti and

Sofi Y(2r) : aD fi V(2r) .

By the condition 3' in (5.1.1), we m&v choose another number s , 0 ( -c < ?',

so that

(5.4.4)

Fiua,llv set

(5.4.5)

u'here

(5.4.6)

s(s) s (r)

s 
*--- 

2t'

1r
I t2

At

A2

A

l/

[..r':s,r2 {;i:,

{r : .r', - ?'^ .

ArU A»

, l)2- (]

a g(r') l2

;rr 1

ir,, l

{r},
(ri,

ss
,LN ,K

\z
rtz ,yr, 

I
(1 * g'(u,)zla)3t4 g(u)-
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85. (5.1.1) and (5.4.1), K is finite and ö therefore positive. \\re u.ill shov.
that the modulus eondition in 1.7.(vii), the definition of quasiconformal
accessibility, is satisfied by the above A and ä.

For this, let, -F beaconnectedsetin D with 0 €F and I n AU + g.
lVe claim that M(f) > ö, where

f:/@,F:D).
\\'e may assume that Ai F : b, for otherwise there is notl-ring to
prove. Set

X(,) : {x : rr: sy ,

Z(t):{r:rr:/}.
Then at least one of the followirg two conditions holds:

1. X(r) O Z(s) meets I for sl2<t<s.
9. Either Z@nV@) meets l for 0<f <s or Z(t)AI'(.s) rneet-q

-F for -s(r<0.
ll'e rnust prove that in each case LIIV) > ö.

Case l. Let g e IQ). For every t e @12, s) there exists a closed <lise
B c D n X(r) of radius less than S@)IZ such that B meets both p
and ,4,. Thus

Case 2. Assume, for example, that Zft) n T'G) meets t- for er-ery
fe(0,s). Set

Cl : {" ; 0 < r, I r, irrl< S("ii),2 ..r'u : r.)j,

l'o: Å(Az, {o} : G) .

ls the first step we show that Mzr{0)11-o) > O.

ito

I f,tmr> | o,d.mr> --:-
lu, I - 2ts(s)

by Väisälä [5, Theorem 3.5]. Integratir:g u-itir 1.€sl)€ct to t ancl irsing
Fubini's theorem we obtain

,as
I

t s'lz x(r)
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Let e e .F(J-r). For each u € (- ll2,ll2) define a rectifiable path
y,:10.r)---G by

y"(u) : (u , ag(u) ,0) .

Then yu Q ls, ancl Hölder's inequality yields

ir, =l J no, )' 
: ( I rr,as(u), o)(I + ,,s'1u1,1,r,6u)'

,u 
, 

O,

< 
J e'o@a" ( I g ! uzs' (u)z1tr+ nlultrz au)z .

Integrating v'ith respec , ," i, and taking (5.4.6) into account u,e obtain
112 

to(u\du ) !
)-[ 

e,d*,r- I o, f ,'"., . - 1i .

z(0) - rl2 0

Since this holds for every A e -d'(l'o), we have

(5.4.i) lw'uto)1f; > |
K'

tr'or the second and crucial step, set

f(t):/(Ar,?:D11 Z@).

We will now shoul, with the aid of (5.4.7), rhat l[!(')Q(t)) > I/1( for each
l€(0,s).

Fix such L choose apoint p:(p,,pz,t) of Ifl 7(s), andset

(5.4.8) k :i--e'
r

Since p. { s and iprl < g@), it follorvs frorn (5.4.8), frorn the condition
2' in (5.1.1). and from (5.4.4) that

ko(r\ - (r' - p)90) p$(r) g(r)(5.4.e) 2 +',pzl <tr .-;:;
Defining a conformal affine mapping f : Z(0) --> Z(t) by

.f("):krlp,
we thusseethat /(0) : p, and,if r:(r,n2,0) €GiAr, Lhen J@):
@i , *1, f), where ri : kr * h: r by (5.a.S) and where l"ll < kg{r)12 1
lprt < g(r)12 by (5.a.9). Consequently,
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4:{f oy:)tel-o}c J-(t) .

From Theorem 8.2 in Väisälä [8], from (5.4.7), and from (5.1.8) it then
follows that

Åt{t't1r(q) > M?o(r;) Mzr{ol (]-r)(5.4.10)
I

aTr) tl
I

>k

ils desired.
To complete the proof, let

f e,a*,r- | o, f e,a*,> yz,oqrpll I ar r_ *
R' 0 z(t) 0

Together with (5.a.5) this implies MQ) > d. The proof of the sufficiency
part, and thus of the whole theorem, is complet'e.

5.5. Exerupr,ns. (1) Let, D be a domain u,hose boundarv contains an

outward directed quasiconformal ridge S defined b1'the functiou s@) :
uP, p ) l. Then D is not quasiconformally flat at the edge-points of §.
Contrary to this, the edge-points are quasiconformally accessible from D
if andonlyif l<p<2.

(2) The function S@): ulllogul, 0<-u <112, defines an outward
directed quasiconformal ridge in such a way that the corresponding domain
has the quasiconformal flatness and accessibility properties at the edge-
points.

(3) The first example implies that there exist ridges such that the edge-
points are quasiconformally accessible from the corresponding domain,
although the domain is quasiconformally non-flat at the edge-points. We
finally show that there also exist ridges such that the domaiu is quasicon-
formally flat at the edge-points, although these points are quasiconformally
non-accessibie 1}om the domain. X'or this purpose. let g\r) : u,t log ul,
9*(u): u2, and

q € .P(r). Since ajz(t) e F(r(f)) for
theorem arld b1' @.4. 10),

g(r sin d-tn 16r)-' a,

c :tlT

It{ , I*(g* ,

r
J
b



Rerryro l{Är<r<r, Boundary behavior of quasiconformal mappings 49

D:fine a function g : [0 , ll2) --> RL as follou.s:

g* (zc) if af;* < u, I o{*_, ,

s(u)

g*(a{1,ar) + g'(arr)(u - afr*) if a,f;r,+r { u I orn ,

0 if u- 0.

Then the conditions 1o-3o in (5.1.f) are satisfied with 9 andll2 in place
of g and o, exceptthat, §'(u) doesnotexistfor u:ot, k:2,3,....
However, it is clear in what m&nner j canbe modified to produce a function
which does not suffer from this deficiency. Since I(0 ,0 , ll2) : a :
I*(d ,0 , Ll2), we conclude from Theorems 5.3 and 5.4 that this modified
function defines a quasiconformal ridge in such a way that the corre-
sponding domain is quasiconformally flat tt the edge-points. although
these points are quasiconformally non-accessible from the domain.

University of Helsinki,
Helsinki, Finland

University of Michigan,
Ann Arbor, U.S.A.
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