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Minimal surfaces with partially free boundary

1. Consider a configuration in Euclidean 3-space consisting of a sur-
face T and of a rectifiable Jordan arc ' = {y = 3(¢); 0 =t <z} having
its end points on 7', but no other points in common with 7'. Denote
by P the semi-disc in the (u , v)-plane,

P={wu,v; u4+*<<1l,v>0},

by o'P and 0"P its boundary portions {u,v; u?4+v*=1, v>0}
and {w,v; —1<<u<<1l, v=0},respectively, and by P’ the domain
PUOP.

A surface

S={r=z1w,v); (u,v) €L}

is said to be bounded by the configuration, or chain <(I", T, if its posi-
tion vector r(w,v) = {a(u,v),y(uw,v).z(uw,v)} satisfies the following
conditions:

i) g(u,v) € CUP).

ii) r(w,v) maps the arc 9P onto the open arc

I' ={rx=3t;0<t<m}
monotonically in such a way that

lim g(cos ¥ ,sin¥) = 3(0), lim g(cos ¥ ,sinP) = 3(xn);

G>+0 S>7—0
i.e. there exists a monotonously increasing continuous function t = #(9),
mapping the interval 0 < ¢ < z onto the interval 0 < ¢ < 7, such that
L(cos & ,sin F) = (D)) .

iii) The relation lim drt(4, , v.)] = 0 holds for every sequence

of points (#.,v,) in P’ converging to a point on P,
Here di[xr] = inficp Jt—1t| denotes the distance between the point
¢ and the surface T .
Obviously, the convergence specified under iii) is uniform in the following
sense:
lim sup dg[z(w,v)] = 0.

6—>0 (uv)€ P’
I<vsd
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While thus the distance function d;[g(% , v)] is continuous in P, the same
cannot generally be said about the vector yg(w,v). In fact, the trace of
S on T, ie. the set of limit points on 7' for all sequences r(u.,v.) as
in iii) above, may well look quite bizarre. Examples illustrating such
contingencies can be found in [4], pp. 95—96, and [6], pp. 220—222.

We shall denote by & the collection of all surfaces

S={r=zyw.v); (w,v) EP'}

bounded by the chain <{I',7> and having finite (Lebesgue) area A(S),
and by U the subclass of such surfaces whose position vector belongs to
CYP’)N Hy(P). Here H,(P) is the pertinent Sobolev space insuring that
r(u,v) possesses square summable generalized first derivatives. On the
strength of basic theorems by E. J. McShane [14] and C. B. Morrey [16]—
[19] the area of a surface of class A can be expressed by the classical area
integral

A(S) = / /lguxxr%du dv .

P

Even if S does not belong to U, this formula is correct, provided that the
vector g(u,v) belongs to CO(PY) N HyPY) for each 6> 0, where

PO = fy. v; w2 <1, v>sind},

and that |r.xy.! is summable over P . These facts and all further in-
formation needed concerning the Lebesgue area can be found in the mono-
graphs by L. Cesari [2] and T. Radé [25].

If the end points of I' can be connected on 7' by a rectifiable Jordan
arc, then the solution of Plateau’s problem for the resulting closed contour
represents a surface of class 2. In 1938 R. Courant proved that, when-
ever the class 9 is not empty, there exists in A a surface

S={r=zrw,v); (v,v)€EP}

minimizing the value of Dirichlet’s integral

1
Delx] = 35 / f (tatr) du dv;
P

see [3], [4], pp. 87—96, [6], pp. 201—223, and for further results [7], [8],
[26]. The position vector of the solution surface has the following additional
properties:

ii’) The mapping of @'P onto (I') is topological.

iv) gz(w,v) is harmonic in P and satisfies in P the conditions
=1, L =0.
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Naturally, there may be more than one solution.

Every one-to-one conformal transformation of P onto itself, leaving
the boundary portion 9P invariant, leads to a new surface which is again
bounded by the chain (I',7) and whose position vector has the same
value of Dirichlet’s integral. In order to remove this ambiguity and in
order to guarantee that the convergence of the minimizing sequences on
which the existence proof is based does not fail due to a degeneration of
these conformal mappings, we shall stipulate as part of the definitions
of the classes € and A that the vector r(u,v) maps the point (u,v) =
(0,1) of 9P onto the point 3(w/2). From x(cosd,sind) = 3({®))
we then conclude that #(n/2) = =/2.

If T is the boundary of a (bounded or unbounded) convex domain,
and if I' lies entirely in this domain, then also the solution surface is con-
tained in this domain. Generally, however, although the Jordan arc I'
has only its end points in common with 7', it is — even for the case of a
convex surface with I" on the outside — unavoidable that S permeates
T'. If one prefers to think of the boundary surface as an impenetrable
object — as seems natural in view of the experiments — then one would
be led to our investigation of the type initiated in [21]. Absolutely nothing
has been done yet in this direction for the case at hand.

For the last three decades it has been a problem of great challenge to
study the regularity of the solution surface on its free boundary and the
nature of its trace. In this context the search for minimal conditions on
the bounding surface 7' which would guarantee the continuity of the trace
deserves particular attention. It is also one of the main concerns of the
present investigation.

If T is a plane, then that part of the trace which corresponds to the
open arc ¢"P is an analytic curve, and the solution vector y(u , v) permits
an analytic extension across @"P . This has been proved by R. Courant
[6], pp. 218—220, and I. F. Ritter [26], p. 60. In 1951 H. Lewy [13] con-
sidered the case where 7' is a closed orientable analytic surface and showed
that, upon removal from the solution surface S of a portion having vanish-
ing area, a new surface S* of class A can be obtained whose trace is an
analytic curve. Further remarks and results are due to R. Courant [5] and
S. Hildebrandt [10]. In a recent paper [11] W. Jiger discusses the problem
for an orientable differential geometric surface of class €2 which, if it is
not compact, satisfies a certain uniformity condition. TUsing an interesting
comparison procedure he shows that the position vector of a surface in A
which minimizes Dirichlet’s integral has a Holder continuous extension

to each domain P, , where

P,={u,v; w2 <2, v >0}, 0<r<1,
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While the Holder constant depends on 7, the Holder exponent can be
chosen uniformly for all 7, 0 <r < 1. As a matter of fact, a detailed
analysis, given in [22], reveals that every exponent § < 1/2 can be achieved
in this way. Thus the part of the trace corresponding to the open arc
?"P is a continuous curve, each compact subarc of it being Holder con-
tinuous, and, incidentally, Lewy’s transition from § to S* turns out to
be unnecessary.

The methods which have been successful so far require, among other
things, that the normal vector of the bounding surface T have continuous
first derivatives and thus fail to be applicable if 7' does not possess a
certain »starting regularity» — C? at least. If one wants to go further one
has to free oneself from the use of a coordinate system in which the surfaces
parallel to 7' play the role of coordinate surfaces. In the developments to
follow we shall show that the Holder continuity of the trace can be established
already for a bounding surface of class €. Postponing to paragraph 3
below the precise definition of an admissible boundary surface of class C' —
closed (i.e. compact) regular surfaces of class C! imbedded in space are
examples of such surfaces — we formulate our theorem as follows:

Theorem 1. If T is an admissible boundary surface of class C', then
the solution vector t(w ,v) (minimizing Dirichlet's integral in the class A )
has a continuous extension to each domain P,, 0 <r <1, belonging to
class C*(P,). Here y is an arbitrary positive number smaller than 1 [ (7 1/2)
= 0.2248 .

The Holder constant depends on y and 7, on the geometric properties
of the chain <(I", T, and on the solution vector g(u ,v).

Our method of proof has to rely on a basic property of the solution sur-
face — its »least area property» — which, surprisirgly, seems to have
escaped attention so far, although the correspondirg, but easier to demon-
strate, property of the classical solution for Plateau’s problem is well
documented; see [9], pp. 318—320, [24], pp. 90—95, [6], pp. 116—117.
This property is expressed by the

Theorem 2. The area of a surface of class A whose position vector
minimizes Dirichlet’s integral (in this class) simultaneously represents the
minimum of the areas of all surfaces of class £ .

Paragraph 2 is devoted to the demonstration of theorem 2. Admissible
boundary surfaces are defined in paragraph 3, and their pertinent proper-
ties are discussed in paragraph 4. Paragraph 5 finally contains the proof
of theorem 1.

For simplicity’s sake we shall avail ourselves also of the complex nota-
tion. Setting w = w4+ iv = pe” we shall interchangeably write
1(u,v), or g(w), or g(o,?) — whichever is most convenient.

Statements about the end points of the trace are possible if the Jordan
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arc I" meets the surface 7' properly. These questions, as well as further
applications of our method, will be the subject of a subsequent investigation.

2. Let
S={r=yu,v); (u,v) €EP}

be a surface of class € . For what follows we shall describe a construction
leading from S to a surface

S = {r=0w,v); (u,v)€P}

belonging to class A for which A(S) =< Dp[h] =< A(S). Theorem 2 will
thus be demonstrated.

Let & > e > -+ be a sequence of positive numbers converging to
zero and set

S, = S[PE] = {r=y,v); (u,v) GJT:,.)}_

Obviously A(S,) = A(S). For fixed » the surface S, can be approxi-
mated by a polyhedral surface X, with a Jordan domain as parameter set
in such a way that the Fréchet distance (S, , X, satisfies the inequality
8., 2. < 1/n and that A(X,) < 4(S,) + 1/n. By a fundamental
mapping theorem already proved by H. A. Schwarz ([27]; see also [1],
pp. 98—102) 2, possesses a representation

S ={r=v.u.v); (u,v)€EP}

whose position vector is continuous in P and analytic in P with the
exception of the points on finitely many analytic arcs subdividing P .
In the points of analyticity the relations

/ \

MaF [ . .
(Em) - (%) © du dw

are satisfied. Therefore y).(u ,v) belongsto COP)N HY(P), and A(Z,) =
Dp[y.] . We note that, due to the invariance of Dirichlet’s integral, a
change of parameters induced by a conformal mapping of P onto itself
is still permissible. _
Since |8, , 2,]] < 1/n there is a homeomorphism w(w) of P onto
P guch that [Da(w) — Ylo(w))] < 1/n for w € P . Under this homeo-
morphism a certain connected subarc of 9P is mapped onto the arc

P = {u,v; uite? =1, v >sine, }.

We now carry out a conformal (or, if necessary, anti-conformal) mapping
of the semi-disc P onto itself which is so chosen that the above subarc
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goes over into the arc 9'P in such a way that the points w=1, w =1,
and w = —1 correspond to the points ein g, T respectively, of
9'Ptn) . After this transformation there is a monotonously increasing
continuous function 7 = 7,(¢) which maps the interval 0 < ¢ <=z onto
the interval &, <1 < a—¢, so that

. . , 1
9a(€”) — p(e™ )| = [ha(e”) — 5(tn(0)]| < -

for 0 <9 <=n. Here we have set t,(9) = {(7.(9)) . The monotonously
increasing continuous function ¢,(9) maps the interval 0 <& =< x onto
the interval &, = t,(e.) =t = ln(7—&a) =7—e,, . It is possible that &, = 0
or ¢ = 0. In any event, however, & =e =--- and & =g = -
Moreover, if we set

dn = sup dqly(u,?)],

(u,v) € P’
0 <v<sin £n

we have
1 N
d1[9a(w)] = drlh(@(@))] + [9a(w) —Ylo(w)) = do+ - for w€d'P.
Of course, lim,  d,= 0.
Having determined the polyhedral surfaces X, 2,, --- and having
obtained the monotone functions t,(9), t,(#), - - -, we observe that Helly’s

selection principle guarantees the existence of a subsequence {,;(9)}
converging for 0 =< J =< = to a monotone limit function #) . For simplic-
ity’s sake this subsequence will again be denoted by {£.(7)}. For a fixed
# in 0 <P <m then

limya(e”) = lim 3(1.(9)) = 5(1(7)) -

Let ¥, be a fixed angle in 0 << Jy < 7 and assume that the limits
1(9,—0) and #(9y+0) are different so that 0 = #(J,—0) < {(J,+0) = =.
Since the vector 3(f) provides a topological representation of I', then
3(t(99—0)) == 3(t(9,+0)) . Remembering that Dp[y.] = A(S)4-1 for n =
1,2,---, a well-known argument (see for instance [153], pp. 722—724)
now leads to a contradiction. Thus we see that the limit function #(})
is continuous in 0 < & < @ . Under these circumstances (see [23], Auf-
gabe 127 on p. 62) the convergence f,(J) — #(J) must be uniform in every
closed subinterval of 0 <9 < =.

We now assert that #(4+0) =0 and {(x—0)= 7. For the proof of
the first limit relation assume that, on the contrary, #(+0) = t, > 0, but
certainly t, =< @/2 since f(,(n/2) = /2 for n=1,2,---. Then d[3(f)]
> 0 and therefore d;[3(t¥)]=pu>0 for 0< d <x/2. The circle
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of radius 0, 0 <0 <1, intersects the boundary 9P in two points
wy(0) = 1—0 and wy(0) = €, where () = 2arcsin (§/2). An
argument going back to H. Lebesgue ([12], p. 388; see also [6], pp. 11,
101—103, and [28], pp. 331—332) now tells us the following: For every 4,
0<d<1, and every n»=1,2,--- there is a number 6, in 6 =<
0n =4/0 such that

M

Du(l=00) —vu(en)| = 7, M = [2a(A(S)+1)]"".
logg

Here 9(0) = 0. == 8(0.) = 9(y/9) . Combining our inequalities we find

w = de[3((9.))]
= dp[9a(1—=04)] + Da(1—04) — ha(e’n)!
+ a(e) — 3(ta(90) )+ [3(ta(8n)) — 3(t(0))]
) LM
= d, -+ E + 1 I ; + ké(tn(ﬁn)) - 5(“19"))1
logg
or, for 0 =exp (—2M/u),
4
o= 2dy = = 3(ta(0n)) — 3(HD)] -

n

In view of the uniform convergence f,(9) — t() in compact subintervals
of 0<d# <a and the fact that 9(0) = 9, = 9(/5) for n=1,2,---
we arrive at a contradiction. The relation #(7—0) = = is proved in the
same way.

Denote by y.(w) the vector which is harmonic in P, continuous in
P ,and has on 9P the same values as 1),(«) . We summarize the properties
of Ya(w):

. 1
Wa(e'”) — 3(ta(9))] < - for 0<¥<zx and n=1,2,---.

The monotone function #() is continuousin 0 < # < z and has the limits
t((+0) =0, #rn—0)==. The convergence ¢t,(9)— () is uniform in
every compact subinterval of 0 < J < z. DMoreover, by Dirichlet’s
principle,

1
Dp[9a] = Dply.] = A(S) + o
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The remainder of the proof of theorem 2 consists in the step-by-step
demonstration of the following facts:

1) The vectors §),(w) are uniformly bounded in every compact subset
of P . This follows from the uniform boundedness of the Dirichlet integral
in conjunction with the fact that

Da(e”)] = [9ale”) — 3(t(D)] + [3(ta())]

1 N
o T 3(ta(9))]

fIA

= 1+ max [3(f)].
0<t<

2) A subsequence of the {.(w) — we call it at once again {p.(w)}
— converges in P to a harmonic vector ij(w). The convergence is uniform
in every compact subdomain of P . This is a consequence of Harnack’s
theorem.

3) The sequence {y).(w)} converges on 9P to a limit vector. The
convergence is uniform on every compact subarc of 9'P. This follows from
the uniform convergence ,(3) — (1) .

4) A subsequence of the previous sequence — again denoted by {(Ya(w)}
— converges uniformly in every compact subset of P’ = PNa'P.
The limit vector, of course, is fj(w). This can be proved using a classical
device due to H. Lebesgue; see [12], pp. 386—388.

5) If @ is a compact subdomain of P, we have

Dy[y] = lim D[] = liminf Dply.] = A(S).
Thus Dp[h] < A(S).

6) If {w;} is a sequence of points in P’ converging to a point on

d"P , then

lim dy[5()] = 0.

jo>o
This is demonstrated by a method of R. Courant: see [4], pp. 89—91, and
[6], pp. 203—205.

We have now established that §(w) is the position vector of a surface
8 = {r=0w); w€P} of class ¥ which is bounded by the chain
(I', Ty and that A(E) < A(S). Theorem 2 is proved.

3. Let T be a differential geometric regular surface of class C'. Con-
sider an interior point t, of 7', and choose a coordinate system in which
t, becomes the point (1,0,0) and the plane z = 1 the tangent plane
to T at t,. Then 7 has a local representation @ = f(y , z) . The function
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f(y , 2) is continuously differentiable and satisfies the relations f(0, 0) = 1,
f5(0,0) = f(0, 0) = 0. We now introduce spherical coordinates (r,« , f5)
in the usual way setting

x = rsinacosf, y = rsinasinf, 2z = cosx.

Provided the number 6, 0 << § < 1, is chosen small enough, the connected
portion of 7' containing the point (1,0, 0) and lying within the spatial
cone defined by |x — z/2] <d, |B] <0 has a representation p =
R¥(x, B) W¥(x, ). Here N*(,p) denotes the unit vector

N*e,B) = {sinaxcos f,sinwsinf,cosw }.

R*(x , 8) is a continuously differentiable function satisfying R*(z/2,0)
= 1. It can be obtained by elimination from the identity

F(x,p,R*) = R*sinx cos f — f(R*sinxsin f, R* cosx) = 0

for which Fge(w/2,0,1) = 1. A simple computation shows that

T
R¥ 4 R =0 for a=3, f=0.

sin? o
Therefore, given any positive number ¢, ¢ can be chosen so small that

id

BRGLp) < & for n—g <8, BI<0.

B
'ROL (“>18)+Sin2“ B
We now set ¢ =sin d and consider the three-dimensional region B =
B(ty, ¢;¢e) defined by the inequalities

24
1—e < r < 1+e, “—E[ < arcsine, || < arcsine.

This region contains the ball (x—1)2 4 3> 4+ 2> < ¢, and we can use in
it the spherical coordinates r,x,f instead of the Cartesian coordinates
x,y,2. For the inverse functions r(x,y,z), x(x,y,2), Bx,¥y,2)
we have

grad 7(x 'Y z) = SE*(O‘ s ;8) s
1
grada(e,y,2) = Wi, ),

1
N3 (x, ) -

rein2o " P

grad f(x, 9 ,2) =

Every point ¢ ={x,y,2} in B has a unique representation of the
form
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r = [R() + A@x)] N)
where
R(x) = R¥*(x(x,y,7),Bx,y,7),
9}(g) = 9}*(0&(1} Y Z) ) ‘3(1' Y z)) s
Ar) = [x| — R(x)

are continuously differentiable.
We have R, = R¥x. -+ R} p. etc. and therefore

R+ R+R = (R;f? + R;Q) ((grad o) -+ sin« (grad B)?)

sin2

=227 = 262 (1—¢)2.

Given the number ¢ — for reasons to become clear later we shall
always choose 0 << ¢ << 1/2 — every interior point t of 7' is for a suitable &,
0 <<e<<l, the center of a domain B(t,c;e¢) in which the above
inequalities for the functions R*(x, ) and R(x) are valid. The special
coordinate system introduced in the definition of B(t, ¢ ;&) will be called
a distinguished coordinate system associated with the point t.

If T is a closed (i.e. compact) differential geometric regular surface
imbedded in space, then the number & can be chosen uniformly for all
points of 7. As a matter of fact, this property is the precise condition
of admissibility for the surface 7.

Definition. The surface T is an admissible boundary surface of class
Ct 4f it has the following properties:

i) For every point t of T there is an open sphere K containing t and
a function ¢) =g(x,y,z) € CYK) with non-vanishing gradient such
that the statements ¢t € K, g(x) =0 and t €T N K are equivalent.

ii) Given any number ¢ > 0, there is @ number ¢ = e(c), 0 <e <1
— the same for all points of T — such that every point t of T is the center
of a region B(t, c;¢) as defined before. In a distinguished coordinate system
associated with t the connected part of T containing t and contained in the
cone defined by |x — 7/2| < arcsine, || <<arcsine has the representa-
tion t = R*(x, ) N*¥(x,p) where

*2 %2 < 2
B+ sinzocRﬁ =

Every point ¢ in B(t,c;e¢), in particular every point in the ball
lt—t] < e, has the representation r = [R(r)+ A(r)] N(r) in which
R(x), Mx) and N(x) are continuously differentiable.
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4. Let T be an admissible boundary surface of class C* and consider
a vector z(u,v) which has continuous first derivatives in a domain ¢,
satisfying there the relations y> =1, 1,1, = 0 and mapping @ into a
domain B(t,c;e). After subjecting the vector z(u,v) to an orthogonal
transformation with constant elements we may work in a distinguished
coordinate system associated with the point t. Using the abbreviations
R(u ,v) = R(x(u ,v)) etc. we have

t(w,v) = [R(u,v) + Au,v)] N, v) .

We also set h(u,v) = 4 (12 + 1) 2 (1., %, » N)? so that 0 = h(u,v) = 1.
Lemma. The following inequalities hold:

1 2c\?
L L 5(\/1—1@%-?) (e + 1) 5

€N+ N = -

Proof. Since the vector M is orthogonal to N, and N., we find
te = (Ru4 22+ (B + 22N,
o= (R + AP+ (R4 22N,
Ll = (Bu 4 A) (B + Z) + (B 4+ 42 Na N, .
The relations r} =1>, 1.5, = 0 imply
[(Ru+ 2u)? + (R + 2P = [(P ) — (B 4 2P+ 4 (Ru 4 22 (B 4 2
= (R )4 [(M2 — 92 + 4 (I, )2
= (R + A[O0 + M) — 4 (Mux N2 .

Now
NuX N = (o0 NE + fu NF) X (NE + o NY)
= (%u fe — & fu) NEXNF
= (u fo — % fu) sin o N
and
APy .z O(x.P)o(.x) O, p)o(x,y)
Xb— P = B S 0) T az, a) du, ) Al y) B, 0)
1 oy , 2) ~ 0(z,2) cosxd(x,y)
= |0/ o(u,v) +Sm’88(u,v) +sinx o(u , v)
1

= - ; (Tu s 2o, M) .

[z ]? sin &
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Therefore

[(Bu + 2+ (Bo + LPP = (B + D[N + NP — 4 5] (w1, N
= (B4 20 (M + WP — 4 (0, N2

Substitution into the identity
Lo+ 2 = (Bu 4 AP 4+ (B + AP+ (B 4+ 22 (N + N)

leads to the following two equations:

1

From

1
2[R+ Rede| S0 (B4 K)+—(Bi+R), 0<o<1,

and
2 2 202 9
R+ R < (RI+ R+ R) (i +1)) = P (e +12)
we find
. 1 1
(o) (5 + ) = 500 (2 453 + (1) B B
<1{ kJ—l—G4C2J2’2
= 9 (1— ) I T 2,2 (},u—-‘gv)
or
p 22<1[1_h a2
u—[_ v = 9 1__0‘_1_0,@%2 (gu_x'gzv)'

With the choice ¢ = 2¢/(2¢ 4+ |g| 4/1—h) we finally obtain

1 — 2¢V’
Tut i §—2—<\/1—h+ﬁ> (ra + 1) -

The lemma is proved.

5. Let C(w,; 0) denote the domain {w; w € P, jw—w, <o} and
introduce the abbreviation
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1
Dlx 5wy, 0] = 5//(zi+z;)dudv-
C(w,30)
In view of a well-known lemma of C. B. Morrey ([20], pp. 134—135) theo-

rem 1 is a consequence of the following assertion:
Let y and r be arbitrary nwmbers subject to the restrictions 0 <y <<

1(m4/2), 0<r<1l. Then there are positive constants 6 <1 and M
such that
Dlx;w,, 0] = Mo” forall wy€P,, 0<o<9.

We proceed to prove this assertion. Let

11— yma/2 b 1 1 1( 1)
CT 214 yaq2 so that «’M/51+26_2y+“\/§>%

and choose ¢ so small that ¢ =< ¢(c) and

2¢

> ya/2 .
1fe = yay2 (1 T l—e)
Here £(c) is the number appearing in the definition of the admissible
boundary surface T . Select a number 0, 0 < 6 < (1—r)/2, so that

1
(EZ J"— gi) du/ dv e :/—'z 82 .

1—e¢

[N

uz-v? <1
0<v<<26

Now consider a point w, = uy + ¢ ¢y in Pr. For v, =96 and 0 << o <9
p o 0 0 ) 0

we have
0 2 Q‘ 2y
Dl ; wy, 0] = (5) D[z ;s wp, 0] = <3> Dplx] .

Here the first inequality follows simply with the help of the Fourier ex-
pansion for the vector ¢ (using polar coordinates (o, 9) about w, )

1 w0
1o, 9) = 5 + > 0" (an cos n § - by sinn D)
n=1
from which
@ , R
Dlx;w, 0] = 5 2, ne* (@ + b

(&2 Sno @6 = (2] D30, 1.
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Assuming now that 0 <<y, << d and v, << o << 6, we have
DIt swy, o] = Dlx;uy, vte] = Pv+o),

where we have set

1 T
D(r) = §/d9/lV2(9>0)329dﬁ,
0 0

now using polar coordinates about the point w = u, on 9"P and where

1
Ve N =1+ -

<

Since Dp[r] << oo , the derivative @’(r) exists for almost all » in 0 < »
<26 and is equal to

1
D'(r) = ;/ Nz, 9)2rdo.

Our next aim is to show that the function @(r) satisfies for almost all
7 in vy <r <<w,+0 the differential inequality

2y D(r) = r D'(r).

For the proof by contradiction consider a value r in v, <7 < w,+0 for
which @'(r) exists and » @'(r) <2y D). For 0 < <9 <a we
then have

t(uy + 1€’y —x(uy +re”) 2 = /&‘,»(Uo ~ ey do

a9”

< (ﬁ”—ﬁ’)/g%(uo 4 r ey dy

9’
9

1
= (005 / ()R d g

P

9’

Sar®(r) < 2xy d(r) < .

From these inequalities the following conclusions can be drawn: The limits

lim g(u, +re’) = 1', lim p(u, + re?) = 1"

P—>+0 J—>7—0
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exist. ' and g” are points on the surface 7'. All points g(u, + 7€)
for 0 <@ <z are contained in the ball |r—1'| < & and, therefore, in
the region B(x', c¢;¢). For the next estimates we shall use a distinguished
coordinate system associated with the point y’.

The comparison surface S = {f = y(w); w € P’} with the position
vector
- _ l {R(ﬂr ,O0) + = Alr, 3)| N(r,9) for w € Cluy ;)
t(w) = (e, 9) = ]
L

1 (w) for w € P\ Cl(uy;7)

obviously is bounded by the chain {I',7). The vector I(w) is linearly
absolutely continuous in P . For w € C(u,;r) we have

1
Z;g(() s 19) = 7 }.,(7‘ s 19) %(T ’ 19) s

Lo, #) = Ry, 9) + 5 ylr, ﬁ)} N(r, 0) + [R(r,m +§z.<r,ﬁ>} R, )

so that

Alr, 9) {R(r L0 =AM, 29)] N(r, ) x Ny(r, ).

= Vi, 9| = Vi, 9)|

i, 9)] = f/w,ﬁ) a

IIA
—
<
=
oy
<>

n
5

< L<1+ 20)/,7;«(;‘,19)50119.
2 1-60

Finally, since R(r,9) = 1 4 4/2ce and ¢ << 1/2,
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[ i 0 r—o
R 9)+ A 8) = T IRGLO) + A, 9]+~ R 0)
R (Vo Y

A

IA
f

Therefore

_VIV? |/IVE7‘ 9)| dd

and

A

/;7I_ T do r  l-+te (1_1_ 20></ (r, ) Z9>2
LXLldd = 5 7= 7 , T, ) di
y 24/2 1—¢ 1+¢

a l4ef 2¢ )\ |/
< - . Iy (r 2
et 1—6);/ T 92 dd
7w 1-4e 20) )
= % . <1T1—8, D(r) .

Another integration yields
; 2
/dQ/Ii,Xialdt? l_i<1;'_°'> r ().
: 42 1— S 1l—e
0 0

A(S) = Dp cgnlt] + D) ,

Now

A(g) - DP\C(uo:r)[g] +/d9/ iigxi’r. dﬁ
0 0

From the minimizing property of the surface S it follows that
_ n l4e ( 2 c) @
I o s
T 42 1—¢ Tl T ()
or, remembering the definition of ¢ and e,

29 D(r) =< r D'(r).

D(r)
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This is a contradiction to our initial assumption » ®'(r) <21 ®D(r). Thus
we have to abandon this assumption. Rather, the inequality

2y O(r) = r D'(r)
must hold for almost all » in vy <7 <9y+96.

Integrating this differential inequality between the limits r = v,+ o
and r = vy+0J, we obtain

vot0\7 2 o\
D(vy+90) = T Dyplx]

@(UO_‘_Q) g <v0+6'

and therefore
2 0\
Dlx;wy, 0] = Dlx;u,vte] = (7) Dplx] for vy <o <<9.

We have now dealt with the cases vy = 6 and 0 << v, << o9 < . For
the last case 0 << p =< v, < § a combination of the preceding inequalities
gives

sz 92-,
D sy, g = (2] Dixsug,wd = (2] Dixswg, 20
! 0

2y

= (&) (2 bty = (22) Dt

v
Setting M = (2/9)* Dp[x], we have in all cases
Dlx;wy, 0] = Mo” for wy€P,, 0<<o<9.

Our assertion and, with it, theorem 1 is proved.
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