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Minimal surfaces with partially free bounilary

l. Consider a configwation in Euclidean 3-space consisting of a sur-
face T and of a rectifiable Jordan arc I : {U : t(t) ; 0 <t <z} having
its end points on T, but no other points in common with 7 . Denote
by P the semi-disc in the (rr , o)-plane,

P:{u,u;uzla'(1,o}0},
by A'P and A'P its boundary portions {u,o; uzlaz: I , o } 0 }
and { u,u ; -l <,u < l, a :0 }, respectively, and by P' the domain
PU A'P .

A surface

§ : { E :t@,a) ; (u, u) e. P' )
is said to be bounded. by the configuration, or chain <f , T>, if its posi-
tion vector f(u,a) : {r(u, a), U(u, a), z(u, o) } satisfies the following
conditions:

i) t(u , a) e Co(P') .

ii) t(u , a) maps the arc 0'P onlo the open arc

l-: {t:t(t);0<t1n)
monotonically in such a way that

lim g(cos I , sin rl) : 6(0) , lim g(cos r9 , sin r9) : t@) ;
d++0 8+n-0

i.e. there exists a monotonously increasing continuous function t : t(O) ,

mappingtheinterval 0 < 8<n orrtotheinterval 0 <r<2, suchthat
1(cos r9 , sin tg) : 6(f(8)) .

iii) The relation lim,*- d,rlp(u", ts^)) : 0 holds for every sequence

of points (w , a^) in P' converging to a point o, A'P .

Here ilrlt) : inf,.., l6-tl denotes the dist'ance between the point
g and the surface 7.

Obviously, the convergence specified under iii) is uniform in the following
sen§e:

lim sup d,rlg(u, 2)l : 0 .

d+0 (u,0) € P'
0<sSid
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While thus the distance function dr}(u, a)] is continuous in F , the same
cannot generally be said. about the vector f(u ,a). In fact, the trace of
§ on 7 , i.e. the set of limit points on T for all sequences p(u^, a*) as

in iii) above, may well look quite bizarre. Examples illustratirrg such
contingencies can be found in [4], pp. 95-96, arrd [6], pp. 220-222.

We shall d.enote by I the collection of all surfaces

§ : { t, : t(u,u) ; (u,a) € P' )
bounded by the chain (J", ?) and havirrg finite (Lebesgue) area ,4(,S) ,

and by 2[ the subclass of such surfaces whose position vector belongs to
Cil(P') n Hie). Here Hie) is the pertinent Sobolev space insurirrg that
t@ , u) possesses square summable generalized first derivatives. On the
strength of basic theorems by E. J. McShane [1a] and C. B. Morrey [16]-
[I9] the area of a surface of class ?I can be expressed by the classical area
integral

,4 (§) ::-: lU" x E,l du dr:

Even if § does not belong to 2I , this forrnula is correct, provided that the
vector t(u , a) belongs to C,(Fiti) n ä;(PCI)) for each ö > 0 , where

P@ : {u,, ; uzi-az < L, a> sin ä },
and that ll"xg,l is summable over P. These facts and all further in-
formation needed concerning the Lebesgue €rre& can be found in the mono-
graphs by L. Cesari [2] and T. Rad6 [25].

Ifthe end points of l- can be conneeted orr 7 by a rectifiable Jordan
arc, then the solution of Plateau's problem for the resulting closed eontour
represents a surface of class ![. In 1938 R,. Courant proved that, when-
ever the class ?I is not empty, there exists in ?I a surface

§ : { t:t(u,a) ; (u,a) e. P' }
minimizing the value of Dirichlet's integral

Drlul _ da;

see [3], [4], pp. 87-96, [6], pp. 201*223, arrd for further results [7], [8],
[26]. The position vector of the solution surface has the following additional
properties:

f,{

* f,l ftl+rt)du

ii') The mapping of A'P
irr) t(u , u) , is harmonic

t?,: t:, , tuf,o : o'.

onto (n is topological.
in P and satisfies in P the conditions
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Naturally, there may be more than one solution.
Every one-to-one conformal transformation of P onto itself, leaving

the boundary portion 0"P invariant, leads to a new surface which is again
bounded by the chain (J-, ?) and whose position vector has the same
value of Dirichlet's integral. fn order to remove this ambiguity and in
order to guarantee that the conrrergence of the minimizing sequences on
which the existence proof is based does not fail due to a degeneration of
these conformal mappings, we shall stipulate as part of the definitions
of the classes I and !I that the vector t@ , a) maps the point (z , a) :
(0 , 1) of A'P onto the point il"12) . n'rom g(cos I , sin tg) : 6ft@))
we then conclude Lhat' t(nl2) : nl2 .

If ? is the boundary of a (bounded or unbounded) convex domain,
and if -l' Iies entirely in this domain, then also the solution surface is con-
tained in this domain. Generally, however, although the Jordan arc f
has only its end points in common with T , it is - even for the case of a
conlrex surface with J- on the outside - unavoidable that § permeates
T . If one prefers to think of the boundary surface as an impenetrable
object - &s seems natural in view of the experiments - then one would
be led to our investigation of the type initiated in [21]. Absolutely nothing
has been done yet irr this direction for the case at hand.

For the last three decades it has been a problem of great challenge to
study the regularity of the solution surface on its free boundary and the
nature of its trace. In this context, the search for minimal conditions on
the bounding surface 7 rrhich rrould guararrtee the contirruity of the trace
deserves particular attention. rt is also one of the main concefirs of the
present investigation.

If 7 is a plane, then that part, of the trace which corresponds to the
open arc 0"P is an analytic curve, and the solution vector t(u , u) permits
an analytic extension across A'P. This has been proved by R,. Courant
[6], pp. 218-220, and f. F. Ritter [26], p. G0. In rgbl H. Lewy [tB] con-
sidered. the case where ? is a closed orientable analytic surface and showed.
that, upon removal from the solution surface § of a portion having vanish-
ing area, a new surface §* of class 2[ can be obtained whose trace is an
analytic curve. Further remarks and results are due to R. Courarrt [5] and
S. Hildebrar:dt [10]. fn a recent paper [I1] \V. Jäger discusses the problem
for an orie:rtable differential geometric surface of class C2 which, if it is
not compact, satisfies a certain uniformitl condition. Using an interesting
comparison procedure he shorvs that the position vector of a surface in 2l
rvhich minimizes Dirichlet's integral has a Hölder continuous extension
to each dornain P., where
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while the IIölder constant depends on r ) the Hölder exponent can be

chosenuniformlyfor all r, 011/-1. Asamatter of fact, a detailed

analysis, given in [22], reveals that, every exponent p < ll2 can be achieved

in this way. Thus the part of the trace corresponding to the open arc

o,,P is a continuou§ curve, each compact subarc of it being Hölder con-

tinuous, and, incidentally, Lewy's transition from § to §* turns out, t'o

be unnecessary.
The methods which have been successful so far require, among other

things, that the normal vector of the bounding surface T have continuous

first derivatives and thus fail to be applicable if ? does not possess a

certain »starting regularity» - Cz at' least. If one wants to go further one

has to free oneself from the use of a coordinate system in which the surfaces

parallel to T play the role of coordinate surfaces. In the developments to
lolow we shall show that the Hölder continuity of the trace can be established

already for a bounding surface of class c1. Postponing to paragraph 3

below the precise definition of an admissible boundarv surface of class C1 -
closed. (i.e. compact) regular surfaces of class c1 imbedded in space are

examples of such surfaces - we formulate our theorem as follows:

Theorem 1. If T i,s an ad,mi,ssible boundary surface of class Ct , then

the soluti,on aector 2(u,a) (m'i,rui,mi,zi,ng Diri,chlet's integral in the class \{ )
has a cont'i,nuous ertension to each d,omain F,, o<r<1, belonging to

class Co'r(F,) , Here y 'i,s an arbitrarg ltos'i,tiae number smaller than 1 | (n'\/r)
: 0.2248 .

The Höld.er constant, depends on 7 and r , on the geometric properties

of the chain (J- , 7) , and on the solution vect'or t(u , a) .

our method of proof has to rely on a basic property of the solution sur-

face - its »least, area, propert)'» - l'hich, surprisingly, seems to have

escaped attention so far, although the correspondir.:g, but easier to demon-

strate, property of the classical solution for Plateau's problem is well

d.ocumented; see l9l, pp. 313-320, 1241, pp. 90-95, [6], pp' 116-1I7'
This property is expressed. bY the

Theorem 2. ?he areu, of a surface of class !{ rhose pos'i,tion aector

m,i,ni,mi,zes Diri,chlet's integral, (in this class) simttltaneou,sly represents the

m'inimum of the areas of all surfaces of class I .

Paragraph 2 is devoted to the demonstration of theorem 2- Admissible

boundary surfaces are defined in paragraph 3, and their pertinent, proper-

ties are discussed in paragraph 4. Paragraph 5 finally contains the proof

of theorem l.
tr'or simplicity's sake we shall avail ourselves also of the complex nota-

tion. Setting tD : tu, { 'i, u : g ei* we shall interchangeably write

t@,a), or t(w), or I(8, 8) - whichever is most convenient'

statements about the end points of the trace are possible if the Jordan
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arc T meets the surface 7 properly. These questions, as well as further
applications of our method, will be the subject of a subsequent investigation"

2. Let

§: {t:\@,a); (u,a)e P'}

be a surface of class I . For what follows we shall d.escribe a construction
leading from § to a surface

§: 1t,:\)(u,a); (u,a)e P' }

belonging to class ?I for which ,4(^9-) < DrLil <,4(S) . Theorem 2 will
thus be demonstrated.

zero and. set

S,: s[rTJ] : tt,:tt@,a); (u,u) €FGJ].

Obviously ,4(S") < r4(,S) . X'or fixed n the surface B, can be approxi-
mated by a polyhedral surface å with a Jordan domain as parameter set
in such a way that the Frdchet distance ll,S" , ål] satisfies the inequality
I],S", åll < Lln arrd that A(»") < A(5") | lln . By * fundamental
mapping theorem already proved bf. H. A. Schwarz ([27]; see also [l],
pp. 98-f02) å possesses a representation

å : { g : t1^(tr,, u) ; (u,a1 eF }
whose position vector is continuous in F and analytic in P with the
exeeption of the points on finitely many anal5rtic arcs subdividing P "
In the points of anal5,"ticity the relations

r*r: (+)" yg: 
or7tt.t \Au I ' 0u 0u

are satisfied. Therefore \1*(u , u) belongs to Co(P) n Hle) , and. A(E^) :
Drl\"1. We note that, due to the invariance of Dirichlet's integral, a
change of parameters induced by a conformal mapping of P onto itself
is still permissible

Since IlS" , åll < lln there is a horneomorphism a(w) of P onto
FGJ such that lD,@) -Vl@@))l <tln for w e F. Under this homeo-
morphism a certain connected subarc of 0P is mapped onto the arc

6'pG) : tu ,r; u2*a2: I , ,t) ) sin e, ).
We now carry out a conformal (or, if rrecess&ry, anti-conformal) mapping
of the semi-disc P onto itself which is so chosen that the above subarc
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goes oyer into the arc 0'P in suchawaythatthepoints w:\, 'tD:'i,
and. w : -L correspond to the points e'un , ,i , si('-'n\, respectively, of
7'pk). After this transformation there is a monotonously increasing
continuousfunction t:u(rl) rvhichmapstheinterval 0 <d ln onto
the interval e, ( r ! n-e. so that

l\^\e's) -g@h,(tt11 
: lt1,@t0) - t$"@))l .*

for 0 ! I ! n . Here we have set, t"(8) : t(r"(0)). The monotonously
increasing continuous function f"(8) maps the interval 0 < r? ( z onto
the interval "!,:t"(e,) St { t.(n-e^) --n-{o. It is possible that ei : g

Moreover, if we set

(u,,u) e P'
0<odsinr,

'!ve have
1

17,

Of course, lim,*- d,: 0 .

Havirrg determined the polyhedral surfaces 21 , 22, ' ' ' and having
obtained the monotone functions ,r(8) , tr(0) , ' ' ' , we observe that Helly's
selection principle guarantees the existence of a subsequence {r"r(?9)}
converging for 0 < 0 ! n to a rnonotone limit function f(8) . X'or simplic-
ity's sake this subsequerrce 'n-ill again be denoted by {f"(8)}. For a fixed
?9 in 0(8<z then

111U"(e"') 
: 

]Tå(r"(r)) 
: å(r(r))'

Let t?o be a fixed angle in 0 ( do < z and assul]1e that, the limits
,(80-0) and f(r9of 0) are different so that 0 < 1(10-0) < f(dof 0) < z.
Since the vector S@ provides a topological representation of .Z-, then

6(r('19o-0)) + A(r(?rb+0)). Remembering that Drlr)") </(S)+1 for n:
1,2,. .. , a well-known argument (see for instance [I5], pp. 722-72a)
now leads to a contradiction. Thus we see that the lirnit function t(8)
is continnous in 0 I0 I n . I]nder these circurnstances (see [23], Auf-
gabe 127 on p. 62) the convergence f"(8) ->t(B) rnust lce uniform in ever;r
closed subinterval of 0 ( I <n.

\Me now assert that ,(+0) : 0 and t(t-}) : 1 . I'or the proof of
the first limit relation assume that, on the contrar)-, l(+0) : fo ) 0 , but
certainly to { nl2 since t^(nl2) : "12 for n" : L,2, " ' . Then drlt(to)l
>0 and therefore drtt\(O))lZp,> 0 for 0<8<txlz. The circle
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of radius ö, 0<öq1, intersectstheboundary AP intwopoints
arr(d) : l-ä and wr(ö) : siq@) , where ?r(ä) : 2 arc sin (ö/2) . An
argument going back to H. Lebesgue ([12], p. 388; see also [6], pp. Il,
l0l-103, and [28], pp. 33I-332) now tells us the following: For every ä ,

0<ö41, and every n-1,N,... there is a number ä, in ö<
ö" < \/i such that

ltt

IogÖ

Here ,7(ä) 
= 

f)',,

{tg
/::

or, for ö':.:- ex"ll (-2 Mlil )

fn view of the
of 0 < 0 {n
we arrive at, a
same way.

Denote b_v

F , ord has on
of g"(u) :

== 'r?(ä,) 
= 

S( V ö) . Combining our inequalities we find

dr[E(f (8"))]

rlrl\"( I - ö")l + i D"( I - d") - \)^(rto")l,

+ l\*(e'l") - 6(t^(,r,,))l + it(t"(,9")) - E$k\"))l

11/tlcl,,t;+ r+;+jtu"(8")) t(t(0"))l
tos 

ä

+

tt = 
2 tl, -i- _ -r- EQ"(,r")) - SU@»l "

utriform eonvergelrce t"(0) + t(0) in compact subintervai§

\,,(u) the vector u-hich is harmonic in P , continuous in
AP the same values as g,(u') . \\-e summaruze the properties

1

for 0<0<t and ?t,- I,2,

The monotone function f(r9) is continuous in 0

principle,

t"(0) + t(0) is uniform in
lforeover, by Dirichlet's

I
I-t. n

DoLiÅ { Dufu"l <,4(§)
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The remainder of the proof of theorem 2 consists in the step-by-step

demonstration of the following facts:
1) The vectors g,(w) ure uniformly bounded in every compact subset

of P . This follows from the uniform boundedness of the Dirichlet integral
in conjunction with the fact that

Iq-,(e'd)l < lD"(r'') -E(r"(8))l +la(t(8))l
I

= ;+ la(r"(8))l

< I + max l3(l)l .

2) A subsequence of the rl"(w) - we call it, at once again {g"(ru)}

- converges in P to a harmonic vector g(ru). The conver.gence is uniform
in every compact subdomain of P . This is a consequence of llarnack's
theorem.

3) The sequence {$"(ru)} converges on 0'P to a limit vector. The

convergence is uniform on evely compact subarc of 0'P. Thisfollowsfrom
the uniform conrrergence t"(O) "'> t(0) .

4) A subsequence ofthe previous sequence - again deuoted by {U"(,)}

- converges uniformly in every compact subset of P' : P n A'P -

The limit vector, of course, is $(m) . This can be proved. using a classical

d.evice due to H. Lebesgue; see 1121, pp. 386-388.
5) If 0 is a compact subdomain of P , we have

Dolb) : timDattJ < liminfD"[bJ <,4(B).

Thus D*$l<1(,S).
6) Tf {w} is a sequence of points in P' convelging to a point on

a"P, thert

limd,fg(w)l : 0.
J'+@

This is demonstrated. by a method of R. Couraut: see [+], pp. 89-91, and

t6l, pp. 203-205.
We have now established that 9(u) is the position vector of a surface

S : t t:\@); * e!' ) of class !I which is bouncled by the chain

<f , T> and that 1(S) < ,4(S) . Theorem 2 is proved.

3. Let T be a differential geometric regular surface of class cl . con-

sider an interior point to of T , and choose a coordinate system in which

to becomes the point (I ,0, 0) and the plarre r : 1 the tangent plane

to T at, ts. Then ?hasalocalrepresentation r:f(y,z). Thefunction
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f(y , ") is continuously differentiable and satisfies the relations "f(0 , 0) : I,
.fr(0, 0) : f,(0, 0) : 0 . We now introduce spherical coordinates (r, n, §)
in the usual way setting

fr: rsirro(cosp, A: rsinasinp t z: cose.

Providedthenumber ö, 0 < d < l,ischosensmallenough,theconnected
portion of 7 containing the point (1 , 0 , 0) and lying within the spatial
cone defined by la-nlZl <-ö, Ipl <d has a representation E-
R*(o , §) !l*(" , §) . Here Ut*(o , §) denotes the unit vector

It*(n,p) : { sina cos p, sina sinp, cosa } .

R*(o , §) is a continuously differentiable function satisfying R*(nl2 ,0)
: I . It can be obtained by elimination from the identity

?(n,§,fi*) -.8*sin acosB -f@* sinasin §,R* cosa) : Q

for which Xu-@fT, 0, 1) : t . A simple computation shows that

I

Therefore, given any positive number c, ö can be chosen so small that

Ilnl
RI'@,f) +.1rr* RffL(a, fr) < cz for 

l" - rl. u, IBI < d.

We now set e : sin ö and. consider the three-dimensional region B -
B(lo , c; e) defined. by the inequalities

lnl
l-e ( r ( lfe, la- 2] ( arcsine, iBl < arcsine.

This region contains the ball (*-l)' * yz * z2 < e2, and we can use in
it the spherical coordinates r , e , § instead of the Cartesian coordinates
fr,U,?. X'or the inverse functions r(r,y,z), x(u,g,z), §(r,y,z)
we have

r LI,\

I

Every point p:{r,y,z\ in B has a unique representation of the
form

e-;, p - o

grad

grad

grad
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LQ]. ft(u)

r.vhere

A(U) : A*(* (* ,

,?(U) :- !t*(* (* ,

are continuously differentiable.

y,z)),P(*,a,2))
a,z),§(*,a,2)),
Iu I - R(u)

etc. and therefore

It\
a?, + a', + ai < (oI' * ,rrl *o§')((grud a)2 f sin2 a (grad fiz)

{ 2c2lul_, < 2c2 (L_e)_z .

Given the number c - for reasons to become clear later we shall
alwayschoose 0<c<ll2 - everyinteriorpoint t of T isforasuitable e,
0(e{1, the center of a domain B(!,c;e) in rvhich the above
inequalities for the functions R*(n , p) and -B(g) are valid. The special
coordinate system introd.uced in the definition of B(t, c ; e) rvill be called
a distinguished coordinate system associated with the point t .

If 7 is a closed (i.e. compact) differential geometric regular surface
imbedded in space, then the number € c&n be chosen uniformly for all
points of T . As a matter of fact, this property is the precise condition
of admissibility for the surface T .

Definition. The surface T i,s an ad,mi,ssible bound'ary surface of cl,ass

Cr if i,t has the follow'ing Ttroperties:
i) Ior eaery point t of T there is an open sphere K containing t and,

a function g(il :g(t ,y ,z) e Ct(K) ttith non-a^cr,nishing grad,ient such

that the statements t e K, g(t) : 0 and p e T fi K o,re equ'iualent.
ii) Gi,aenanynumber c)0,there'isanumber e:e(c) , 0(e{I

- the same for all poi,nts of T - such that eaery point t of T 'i,s the center

of a regi,on B(t , c ; e) as defined, before. In a distinguishecl coord,'inate systetn,

assoc'i,ated, with t the connected, part of T containing t ctncl conta'ined, i,n the

cone d,efined, by la - nl2l < arc si,n e , lBl < arc sin, e has the reltresenta-

tion f.: R*(a , §)ft*(o , §) where

I
R*' + 

rin? oRä' I c2 .

Every point p in B(t , c i e) , in particular ever)' point in the ball

lg-tl < r , has the representation U : [A(U) f 2(U)] y](U) in which
A(t) , ,1(g) and $|(p) are continuously differentiable.

L2
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4. LeL T be an admissible boundary surface of class C1 and consid.er

a vector t(u , a) which has continuous first derivatives in a domain Q ,
satisfyirrg there the relations t":t?,, tuqo:0 and mapping Q infio a

domain B(t,c; e) . After subjecting the vector t(u,a) to an orthogonal
transformation with constant elements we may work in a distinguished
coordinate system associated with the point t. Ilsing the abbreviations
R(u , a) : R(U(u, o)) etc. we have

t(u,a) : lH(u,a) + )"(u,u)f Ut(u ,u) .

We also set h(u,'t)) : + Q|" + f?,)-' ft",p,,Tc)z so that 0 I h(u,a) { L .

Lemma. The fol,lowing inequal,iti,es hold,:

| / 2c\2
t'" + t3 < t\V L-h + trt) Gl+ r:) ,

»t'- + sJti 
= :1t1 (rl + r:) .

J t,p,f

Proof . Since the vector !t is orthogonal to !t, and !t, , we find

t!* : (R" * l,), + (A + l), ft'" ,

t3 : @" + k)'+ (E + D',n:" ,

f'fo : (R" + ]1") (R, + ).,) + (R + 1)'9?, !?, '

The relations g] : f?, , t,f, : 0 imply

[(fr"+ 1")'*(R,+ ).,)z)2: l(.R, * )"")' - (.B,+ )',)')'+1(R"+ ).")'(R,* )*)'
: (.E + ir t(!?1 - »t:), + 4 (!t" n,)21

: (a + 
^)ol9t'"+ 

!?:), - 4 (tt"x9?,)21 .

Now

It,xS|, : (autltl + p"Itfr)x(cv,It} a p,, ltf )

: (a" p, - x, p") Ilj x ltff
: (a, B, - x" B") sin a !?

and.

0(o , §) 0(A , z) ä(.. , B) 0(z , r) A@ , F) 0(r , y)
^. D -. A __:-_i___ r --l l--r("P'-O(uPu: 

a@ Aa@a - a@.t')atu,u)- ak-ilo(u,r)
I | - 0(y , z) -O(z , u) cos* ä(r , y)'l: 
,";"ot P at" a f stn P a@ a + .ir., aet al

1: 
h lz.l1r o, 

(f'' 
' u' ' 't) 

'
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Therefore

;1-8" * X,), * (4, + 1,)'f, : (R + 1.)n t(yl: + n?,), - 4 ltlu (t,,t,,It)'l
: (.8 * l)n (n?" + ,t:), _ 4 (t,,t,,ll)2 .

Substitution into the identity

t,+t,: (R,* Ä,), + (R, + ),,), + (a + 1)r(tJt?"+ y|:)

leads to the followirrg two equations:

(A, + t,)2 + (R, + ),)' : f,rr-.O' (t:- + d) ,

n1- + 'tt : r# G:- + t)) .

From

2lR,),,+ R,1,1 < o(t?,+ t:) +!Wl"+ ail , o < o ( r,
and

Rt- + R?, < (Ri + R, + R:) (d,+ ri) < iJ C" *,l
we find

(r-o) (t?, + 
^i) = f,o-ut (u?, + *,t. (:-r) @,, + Ri)

t I t-o4c2)<zltt-h)+;Vl (r;+rl)

or

t"?,+ t, =ilryr__,.#) 
(r,, - r;) .

With the choice o :Zcl(2c+ltl\/I=) rr-e finall; obtain

^?.+ 
li =i('v;n *T,)' (rl + u:) .

The lemma is proved.

5. Let C(wo; g) denotethedomain {*; *e P,lw-wol aq} a,nd

introduce the abbreviation



JouexNps C. C. Nrrscuo, Minimal surfaees with partially free boundary 15

Dtt i uo, sr :, | | (E'* + E;)
C(u,o; g)

In vier,v of a well-known lemma of C. B. Morrey

rem 1 is a consequence of the follorviog assertion:

Let y am,d, r be arbitrary numbers subject to

such that

lp of the Fourier
,'B) about, wo)

follor,r,s simply li'ith the he

(using polar coordinates (q

1n
uroo +:,q" (on cos ?? B -r- b*

rt oo

Sna2"q ./-t \
2 n:L

lnYn .o

(;l ,2,"

duda.

([20], pp. 134- 135) theo-

we proceed. to prove this assertion. Let

11
{/rL+%

1l
r[, +

11-T*{,
\'l 21 +1)nt, 

sothat

and choose e so small that e < e(c) and

I-c I 2c\
,*=v"t/z\t-=/'

Ilere,(c)isthenumberappearin,ginthedefinitionoftheadmissible
boundary surface ? . Select a number ö, 0 < ä < (1-r)/2' so that

, I ltul + rlr ductu I ;u- .

{7{.'r'u

Nowconsiderapoint, wo:ilo*iaoin P,' tr'or or)ä and' 0<s<ö
we have

DLU ) ws, Ql

Ilere the first inequalitY
pansion for the Yector t

u(e ,8') -
from which

Dlt ) as, ql - (s', + b3)

ö2" toi + bil

sin za f)

D rlt7.

ex-

DIU i wo, öl
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DIU t zDo, pl . Dlt ) uo, ao*Ql -. (D(un*g) 
,

rvhere w'e have set,

From these inequalities the following conclusions can be drawl: The limits

lim g(uo+r"'") : f', lim g(uo*rei§) : p"
d++0 8+z*O

tf f
(D(r) :, J on J lvuk,8)lz pd,o,

00

now using polar coordinates about the point w : ,uo on O"P and where

1

iVt(e,B)i': t\,+7r'r.
Since Dr[g] < oo , the d.eriva tive @'(r) "*il* fo, almost all r in 0 < r
< 2 ä and is equal to

n

1t
<D'(r) : 

z J,Vt{r, 0)'2rd0 .

Our next aim is to show ttut'tfr" function @(r) satisfies for almost all
r in uo<r < oof ö the differential inequality

2 y <D(r) ! r @'(r) .

For the proof by contradiction consider a value r in uo<r <arf ä for
which @'(r) exists and r@'(r)azy@(r). X'or 0<19'<8" <n we
then have
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exist. E' and 6" are points on the surface 7. All points pluo + r eie)

for 0 < I 4n are contained in the ball lE-1'l ( e and, therefore, in
the region B(t' , c; e) . For the next estimates we shall use a distinguished
coordinate system associated_with the point g' .

Thecomparison surface § : {U:i(*); we P' } with the position
vector

for

for

(/' , T>. The vector
w eC(uo;r) r'e have

r,t) e C(uo; r)

Lc€P'\C(uo;r)

i(u) is iinearl5,

[ [rv,o)+s

I u('')

obviously is bounded by the chain
absolutelv continuous in P f"or

I
U-tq , ?9) -= i 1(r , B') $t(, , 0) ,

r,,(g ,8) : lu,,(r , o') + ; ,t,,(r, ,)]

so that

l'^ I

tn(r',0)l __ ll Å,V,0)ctt
lJl
l0,u

rn
I

lt
J

{r\ 'r-ul J;\c\ )

rU ,o)1ft? , B)

a(q , 'fr) x 8,,(Q , fi) -- L i@ , 8)1r,, .t)

l$ou-

!t(r ,t))+ lr,,, o) +i A(, ,ol] lt,, \r , r))

I
, 0) 

I 
!t(, , ,9) x !t,,(r , i))

o

+12(r
^i
,l

, ',,) I

IYU(r , ,1) 
i

dfi
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i p i o r-o
lrllr

o r- o

r\rr\'

Therefore

r I-{-e I 2c'\ f
t't)' 

{2 I__e\ 
o

and

f r l-.l.-e I 2c \/ | \2

,_

tv//rt,tO

a I-t-e I 2c \

Arrother integration vield.s

Now

ir/(§) -:-- D*\.(,,,,1[u1 + I d,g I iurx!,, clT

{{
From the minimrzLng property of the surface S it follou-s that

@ 
iry I_i-e I 2c\

or, remembering the definition of c and t ,

2y@(r) 
= 

r@'(r).



Dlt,;wo,Ql ( DIE;uo, ao*sl 
= (T)"r,0, for oo { Q ( ö.

We have now dealt with the cases ?ro 2 ä ancl 0 ( ao ( g ( d. X'or
the last case 0 < g <ao{ ö a combination of the preceding inequalities
gives
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This is a contradiction to our initial assumption r0'(r) 12 )t@(r). Thus
we have to aband.on this assumption. R,ather, the inequality

2y@(r) < r@'(r)

must hold for almost all r in ao 1r < oof ö.
Int'egrating this differential inequality between the limits r : ao* Q

and r:ao*ö, we obtain

@(,0*s) 
= (ffi)"@(oorö) = 

(T)"r,rr,

and. therefore

I o\2, I a\',
Dlt,; wo, sl = (% ) Dlt uo, ,,1 

= \* ) 
Dlp; uo ,2 aol

= (;)"(3r')" D,ttt < (Ti' D,tt7.

Setting M : (21»'t Drlt), r,r,e have in all cases

DW;wo, Q) { M Q" for woeP,, 0 ( q < ö.

Our assertion and, with it, theorem I is proved.
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