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Introrluction

The customary hierarchy of formal language families Z(i) consisting
of languages oftype'i,'i, : 0, l, 2, 3, is obtained by imposingrestrictions
on the form of productions. A natural generalization is to impose restrictions
also on the use of productions as done in defining matrix grammars, [],
programmed grammars, [6], ordered. grammars, [4], probabilistic gramma,rs,
p0], or periodically time-variant grammars, t9]. A common idea is that
not every derivation leading from the initial symbol to a terminal word is
acceptable, but rather there is a control device which lets through acceptable
derivations only.

A convenient uniform way of describing restrictions on the use of pro-
ductions is to introduce a control language C for a grammar G, 137, 177,

f121, ll4l. The notion of a control set in [5] is essentially different. The
control language C is a set of finite strings of productions of G, referred
to as control word.s. The language generated by G with control language
C is the subset of the language generated by G, consisting of words which
possess at least one derivation whose string of productions belongs to C.
Thereby, two interpretations of control u'ords are possible. In the narrow
or non-checking interpretation, each letter of a control word has to be
applied. fn the broad or checking interpretation, one may specify some
productions such that, whenever they occur in a control word and are not
applicable at, the corresponding step of the derivation, then we ma,y morre
to the next production in the control rrord.

In this paper, we study language families ,t(d , j ,0) and :Z1d , i , t7
generated by type 'd grammars with type , control language, where
0 <i,,j <3. The numbers 0 and I in the last argument place refer to
non-checking and checking interpretation, respectively. Since the case

i : 2 is separated into two subca,ses, we obtain altogether 40 language
families. However, most of them coincide with some of the families Z(i).

Definitions and a survey of results are given in Section l. Sections 2

and 3 deal with families where the core productions are context-sensitive,
i.e., i: I. ft is shown that every languageinthefamily '-1(1 ,3,1) is

context-sensitive. This is a generalization of the results in [3] and [12]
concerning the family 4(l ,3, 0), as well as the result concerning context-
sensitive programmed grammars in [6]. It is then shown that
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(1) :{(L,z,I) -q,$,2,o)
and that every language in this family is recursive. ft remains an open
problem whether or not the farnily occurring in (1) contains properl5r the
family of context-sensitive languages.

fn Section 4, we investigate the family

(2) =t1z,e,o)
obtained using context-free core productions (including productions rvith
the empty word on the right side) with a regular control language under
non-checking interpretation. An operation characteristic for this family
is introduced and its properties studied. A result, concerning a subfamily
of (2) is obtained. ft is known, [6], [7], that if in (2) 0 is replaced by I, the
resulting family equals s41O;. However, the size of the family (2)remains
an open problem.

1. The families .Z(i 
, j ,k). Let G : (I* ,Ir, Xo, F) be a phrase

structure gramma,r, where 1^- is the set of nonterminals, -I, the set of
terminals, Xo the initial symbol and .F' the set of productions. Derivations
according to G, the language L(G) generated by G, as well as type d

(d : 0 , | ,2 ,3) grammars in the hierarchy obtained by imposing restric-
tions on I, are defined in the usual fashion, cf. [11, pp. 164-169]. The
family of tgre rl languages (i: 0,1,2,3) is denoted by :t(».

Let

(3) {fr.,.-.,f"}
be a set of distinct labels for the productions in "F and a,ssume that -F,
is a subset of (3). Let

(4) Xo:Po*Pr=...+P,,r21,
/j(o) lig fil,-r1

be a derivation according to G, where for each a', 0 < d < r, the pro-
duction labeled by fitE is .8, -+ §, and either

(i) there exist Q, and, Q, such that 4: QLRIQ, and P;+r: QrS,Qr,
or else

(ii) .8, is not a subword of Pr, rtt»eP, and P, : P;+t.
Then the word

liplfls'y. . ..4r'-rl

over the alphabet (3) is termed, a control woril of the derivation (a).
Thus, a control word of a derivation indicates which productions have

been applied in the derivation. Thereby, »applying» a production / either
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me&ns actual rewriting according to f (cf. point (i) above), or checking

that such a rewriting is not possible and that f e I, (cf. point (ii)). For
productions in the set -ä'- 1r, onlv the alternative (i) is possible.

Let C be a language over the alphabet (3). Then

Lc(] , rr)(5)

is defined to be the subset of L(G) consisting of u'ords which possess at
least one derivation whose control rvord is in C. (5) is refemed to as bhe

language generated by the pair (G , Er) with the control language C.

If G is a t5,pe d grammar and C a type y' language, we sa,y that (5) is

a type (i, , j , t) language. If, furthermore, the set -F. is the empty set fr
(i.e., the application of a production / always me&ns actual rewriting
according to f), then we say that (5) is of type (i,,i,0). Thereby, j
ra,nges through the numbers 0 , I ,2 ,3, and ri ranges through the numbers

0,1,2,2 - 1.,9. The difference between the types 2 and 2 - 1 is

that productions of the form X -+ ,i,, 'rvhere /, is the empty word, are

allowed in tyle 2 - 1 only if x is the initial symbol and does not occur

on the right side of any production, whereas all context-free productions

are allowed, in type 2. (It is well known that the generative capacity of
gra,mmars of types 2 and 2 - 1 is the same. Hov'ever, it is not the same

for grammars with a control language.)
If 11 : b, we are dealing with the narrow or notr,-checki,ng interpretation

of control word.s. Otherwise, we speak of the broad, ot checki,ng interpretation.
The family of languages of the tpe (d , i , k) is denoted by

(6) :t(i,J ,k).
fhus, by definition, there are 40 language families of the form (6). How-
ever, m&ny of them coincide. By definition (cf. also B,emark I in [7]), the
following inclusions are obvious, for all i , i ,lc , \ ,;i;

(7) 4(t) c z((i, , j ,tc) ,

(8) 4(j) c*(i,,j,k),
(e) 4(i,,j,qcee$,i,r),
(10) 4(i,j,k)c4(i,,h,k) if i2tr,
(1r) 4(i,,l,k)crZ(L, j,l§) if i,>i, andnotboth i,:2 and. L:r.
In (ll) it is understood that 3>2 - l'>2 > I > 0. The aclditional

assumption concerning d and ri1 is necessary because, as will be seen belorv,

:t(z, 3 , 1) - se (0) a,nd e{(L, 3 , 1) - 
q.0)

;l
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X'or the definition of programmed, grammars, ntat*ir grantmars and,
period,i,cal,ly time-aar,i,ant gra,nxnxars the reader is referred to [6], [l] and
[9], respectively, or to [7]. The family of languages generated by programmed
grammarswithtype ,i, coreproductions (d:0 ,1,2,2 - )",8) isdenoted
by 

"(i,, 
r). If, in addition, all failure fields are empty, the corresponding

family is denoted by 90,0). The notations 1?1(i,,ft) and %1i,k'1 arc
used for the families generated by matrix graillmars and periodically time-
variant gra,mmars. Thereby, as in the definition of the family (6), k : I
indicates the broad sense of the application of productions, whereas t§ : o
indicates the narrow sense.

we now give a summ€Lry of the known inclusions between the families
introduced. It is fairly easy to prove (cf. [Z]) that, for ull ,i, and lc,

%(i, ,lc) g c')l?-(i 
, k) c t?(i ,k) c >-t(i ,3 , k)

It is established in tgl that

(r2)

(r 3)

(14)

(15)

(16)

for d : 2,2 - )t and k : O,l. (fn fact, $,'e are going to see that the
equations (13) hold true for all values of i and k.) The following relations
are established in [6]:

=Z(2) 
c 9(z t,k) c =ZG), k-: o, t,

where c d.enotes proper inclusion.
Remark 1. The programmed grammars defined in 16] operate under

so-called »leftmost interpretation», i.e., alrrays the leftmost occurrence of
a string is rewritten. However, (14) - (16) hold true also if an arbitrary
occurrence of a string may be rewritten. This is the »free interpretation»
of [6]. In this paper, as well as in [7], the programmed gramrnars are assumed
to operate under free interpretation.

It is obvious by Church's Thesis that the family (6) equals the family
Z1O; whenever z : 0 or j : 0. ft is shorvn in [1a] and, independently,
in t3l that

( 17) ,tQ,t,0) -*Q)
Remark 2. In the proof of (17), it is essential that the type B core

productions include productions of the form X --> Y, where X and y
are nonterminals. rf such productions are excluded and the resulting type
is denoted by 3r, we obtain
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4(gr,l , o) : :Z(l) .

Such a distinction between types 3 and 3, does not lead into different
language families if the control language is of type 0, 2 or 3.

By (9) - (lI), (13), (14) and (17), the family (6) equals the family
Z1O; for each of the following 26 triples (i, , X , k):

(0,0,0), (0,0,I), (0,1,0), (0,1,r), (0,2,0), (0,2,1),
(0,3,0), (0,3,1); (1,0,0), (1,0,1), (2,0,0), (2,0,1),
(2-1,0,0) , (2- i,0,1) , (3,0,0) , (3,0,1); (3,1,0) , (3,1,I) ,

(2 - 1, 1,0), (2 - ),,1,L), (2,1,A), (2, 1, 1), (1, I,0), (I, I, 1);

(2,3,t), (2,2,t).
In the next section, it will be shou,n that

(18) :t1t ,t,0) : ,/(L ,3, r) : *(t) .

(This result concerning ,(.(L ,3 ,0) rvas established also in [3] and l1+].)
Accordirrg to [7],

(r9) 412 ,5,0) : :t1Z ,2, 1) : *(Z) ,

(20) =f15,2,0) :'..((3,2,1) :4(2).
By (t8) - (2O) and the lisb of 26 families, only the following 8 families

may be different from the families :Z(i,):

(2L) =t(2 -.e , 3 ,0) ,:8(Z - ), ,3 , t) ,9t(2 ,3 , 0) , 
'e(2 

,2 ,0) ,

4(z - ).,2,a) ,:{(z - )",2 ,L),4(L,2,o),:Z1t ,z ,t1 .

It follows by (t5) and (13) that both of the families

(22) ={(2 - ,a , 3 , 0) and. ez(Z - ). ,3 , r)

properly contain the family of context-free languages and are properlv
contained in the family of context-sensitive languages. Ii will be shoxtr
that

':21t , z, o) : tt(t ,2 , L)

(this equation is denoted by (t) in the introduction).
The notion of an abstract .family qf languages, abbreviated AFL, is

defined as in [5]. Using the results of [7], the following theorem can be

obtained. (In fact, the proof of the assertion concerning the closure of
'4(z - ]' ,3 ,l) under restricted homomorphism requires a slight modi-
fication of the methods of l7l. We will present it in detail in aforthcoming
paper about scattered context languages.)
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Theorem l. Each, of the fami,lies (21) is closed, und,er each of the following
operat'i,ons: ttn'i,on, catenation, restricted, homomorph,ism, ,i,ntersecti,on with
regular languages and, )"-free regular substi,tuti,on. Iurthermore, the fami,l,i,es

(23) *(Z - 1,3,L), 1(Z - ],,2,r), 
'{Q,2,0)

are closed, und,er catenati,on closure. Consequently, eaoh of the fami,lies (23)
i,s an AIL.

ft is an open problem v'hether or uot the families (21) other than those
in (23) are closed under catenation closure and, consequently, whether
or not they are AFL's. Some of the families (21) are closed, under some
additional operations like intersection, srrbstitution and arbitrary homo-
morphism.

2. The family :t1t , t , t''1. By (z) and (9),

(24) tt(t) c:{(t ,3, 0) c 1z(r , 3 , t) .

lMe will now establish the equations (18). Thus, regular control languages
do not increase the generative capacity of context-sensitive grarnmars,
not even under the broad interpretation of control words.

A grammar with the end marker lf and, derivations of the form

#xo#-#Pr#,'...-#P,#
is defined in the usual fashiorr, [1 1, p. 202].'Ihe notion of a control language
is extended to concern gra,mma,rs u.ith an end marker.

Lemma. Any language of the fortn, L,(G,A), where C ,i,s regular
(contert-free) und, G a contert-sensiti'"-e gram,?nar uith an enil, m,arker,
belongs to the fami,ly ,{.(l ,3 ,0) (r{(r ,:l ,0)).

The proof of the Lemma, beirrg sirniiar to t'he corresporrding proof
concerting context-sensitive grammars, [Il, pp. 202-203], is omitted.
fn fact, the only additional information needed is the result that the
family of regular (context-free) languages is closed under regular sub-
stitution.

We will now prove that

{25) '-.t(L ,3, 0) : '-l-(1 , 3 , l) .

By QQ and the Lemma, it suffices to prove that any language -L of the
form

(26) L:L6(G,81), Ft+O,
u,here

(27) G:(1*,-fr,Xc,Jr')

Ann. Acad. Sci. I-ennicre
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is a context-sensitive gramma,r and C is regular, satisfies the equation

(28) L : L6,(G1, A) ,

for some context-sensitive grammar G, with the end marker # and
regular language Cr

A grammar G, and control language C1 satisfying (28) will now be

defined. The set of nonterminals of G, is the union

r*u {#} u {[o, f]1" e INU Ir ,l e \) .

'Ihe terminal alphabet of G, is .[r, and the initial symbol Xo.

Consider a production P * Q, labeled by I e Xr,. Assume that
P:frr...frr, r2l, where eac]n & is aletterof .Ir,,U.Ir. 'Wedenote

by A1 the set consisting of all productions

1",fl§-eL§,ff , o(,peINUIr, ot{n1,

l*r,flp * ni§,ff , § e I*U I, - {rr},
l*r, fl*rfr --> xrlrr, flp, § € I * U Iy - {rr},

lrr, fJr, . . . n,-r B --> rrlrr, fl . . . n"t §, § e I * U 1,7 - {r,),
arrd by Ey t'he set consisting of all productions

l",fl#-->e#, if notboth r:t and a:nL,
lor,f|orff -- xras#, o e INU Ir, r ) 2,

lorrflar. . . d,-rfi -- aru2. . . &,-r#, ore -fI- U -fr, r ) 2.

tr'urthermore, let .B7 consist of the productions

#o*#1" ,fl, a e Inu Ir.
The production set, of G, is the union of l' and the sets Ay, 81 and Ey,

where / ranges over -Et.

Having completed the definition of Gr, \ye no'!v introduce a regular
substitution q on the elements of -t' by

If if f eF-\,
vff) : llu ornlAr)Er ir r eEt.

Thereby, W(Ai stands for the set of all words (including ),) over Ay.

We now d"efine

(29) Ct: q(C) .



Ann. Acad. Sci. Fennicre A. I. 479

Then Q is regular and (28) holds true. In fact, the definition of g
makes it possible, for productions / € -Er, either to rewrite according to
/ or check that f is not applicable. X'or the latter purpose, one begins
with a production in 87 and introduces a nonterminal la, fl. Productions
in Ay are then applied to move nonterminals of this form towards the
right end, where they can be eliminated by Ef. If P appears as a sub-
word, no production in Ey ca:n become applicable, and the derivation
terminates. This completes the proof of the equation (25).

According to [3] and [14],

:{1t1 : *(t ,3 , o) .

consequently, the equations (1s) hold tme. Taking into account the in-
clusions (12) and the results concerning ordered grammars in [7], we ma,y
state the following theorem. The second and third sentences of the theorem
have been established also in 16] and [4], respectively.

Theorem 2. Regul,ar control languages d,o not ,increase the generatiue
capacity of contert-sensitiae granulle,rs, not eaen und,er the broad, interptretution
of control worils. A language generateil by a programmed contert-sensitiue
granxnx&r ,i,s contert-sensiti,ae. A langugage generated, by an ord,ered contert-
sensitiue gra,nxnlari,s contert-sensit,i,ue. A language generated, by a contert-
sensitiue matr'ir grq'rnntar is contert-sensitiue. A language generatecl, by a
p eri,odically tim,e -a ariant contert - sens,it,ia e grammari,s contert-s ensiti,a e.

3. The family l1t,z,t1. trVe will first establish the following
Theorem 3. Ior a contert-sens,itiue gramnxa,r with a contert-free control

language, the broad, 'interpretation of control words does not increase the
generatiae power, ,i.e., the equation (l) holds true.

Proof. The inclusion

Z(t ,2 , o) c:t$, 2 , t)

follows by (9). The reverse inclusion is established exactlv as the corre-
sponding inclusion in the proof of equation (25) in Section 2. fn fact, by
the Lemma, it suffices to prove that any language of the form (26), where
(27) in context-sensitive and c context-free, satisfies the equation (2g),
for some context-sensitive grammar G, with an end marker and context-
free language cr. The grammar G, and the substitution q are defined
exactly as in Section 2, and C, is defined by (29). Then C, will be context-
free, whence Theorem 3 follows.

Theorem 4. Eaery language i,n the fami,ly Ag, Z, l) is recurs,iae. Con-
sequentl,y, the famil,y 41t , Z , t1 i,s properly i,nctud,eil i,n the famity =€(0).Proof. By Theorem 3, it suffices to prove that every language in the
family =/(l ,2 , 0) is recursive. Assume that

10
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lr,here

L - Lc(G,g),

G - (/"- ,1, , Xo,l) , I - INU I' ,

is context-sensitive and C is context-free.
We note first that, for any word Q over I, the collection of all control

u'ords (under narrow interpretation) corresponding to derivations according
to G of the form

(30) Q - ... => Q

constitutes a regular language, denoted by R(G , Q), which can be

effectively constructed from G and Q. This can be shown by the following
argument. Each intermediate u,ord in a derivation (30) is of the same
length a,s 8. We now construct a finite directed graph possessing a nod.e

for each word of lg (Q) over 1. tr'or each Q, and Q2 (not necessarily
distinct), there is an edge, labeled by f, from the node labeled by 0,
to the node labeled by Q, exactly in case Qt directly yields Q, by an
application of the production /. (Note that multiple edges are possible.)
The node labeled by Q is the only initial and the only final node. Then
R(G , Q) is the language represented by this graph and, hence, regular.

It now follows that, for any word P over Ir, the collection of control
rvords frf, . .f" of derivations of P (according to G)

(3r) Xo:Po;rr;Pz=...>Pu:P, u2I,

is a regular language Rr(G , P). For there is only a finite set E of
derivations (31), where the words P; ate distinct, [11, pp. l7l-172].
Let (31) be an element of E. We define

Pi: 
{

R(G , P,_,){/,} if R(G , P,_1) + g 
,

{f,} , otherwise
, 1,L)

and form the catenation grq2. . . pu. Then -Br(G , P) is the (finite) union
of these catenations, corresponding to different elements of E.

To decide, whether or not a given word P over 1, belongs to L,
we first form the language Rr(G, P). By [11, pp. 183-184], the inter-
section

cnAr(G,P)(32 )

is context-free and, consequently, its emptiness is decidable. P e L if
and only if the intersection (32) is not empty. This completes the proof.

l1



12 Ann. Acad. Sci. Fennieue A. I. 4ig

Remark 3. It is an immediate consequence of Theorem 4 and the in-
clusion (1r)thatthefamilies 1(2 - )",2,0) and 4(Z - A,Z,t) &re
recursive. By complexity theory, one can strengthen Theorem 4 to the
form: The family Ag , z, 1) is properly included in the family of recursive
languages. ft remains an open problem whether or not this family properly
includes the family of context-sensitive languages.

4. The family -'{.(2,3,0). According to (13) and (t4),

=Ap,B, t): =Ae),
However, no nontrivial results are known about the size of the famil3-
'1(2 ,3, 0). fntuitively, the presence of I in the last argument place corre-
sponds to jump instructions of Turing machines. Consequently, the replace-
ment of I by 0 should considerably decrease the size of the family.

fn derivations of languages in the family ,4(Z,g,O), the essential
thing is the number of nonterminals rather than their mutua,l order. This
leads us to the following definitions.

Two rryords P and Q over an alphabet I are termed. letter-egui,aalent
if, for each r e I, botrh P and Q contain the same number of occurrences
of r (i."., P is obtained from A by a permutation of letters). Tlr-o
languages L, and, L, over I are termed letter-equivalent if, for ea.ch
Pl e LL, there is a letter-equivalent Pz e L2, and vice versa.

X'or the notion of the ind,er of a context-free grammar, the reader is
referred to [8] or [13]. The notion is readily extended to pairs (G , C),
where G is a context-free gramma,r and C a regular control language.
It should. be noted that although the index of G is finite, the index of
(G , C) may still be infinite, for some regular C. A simple example of this
is providecl by G consisting of the productions

h: Xo ---t XoXo , f2: Xs---> tt:

(where r is the only tre1*iral) and c defined by the regular expression
tr fr.

It is .n'ell-knovrr that, for each context-free language, there is a letter-
equivalent regular language. This result is now extended to concern a sub-
family of 

"t(2, 
3 , 0).

Theorem 5. ?or each language of fi,nite i,nd,er in, the fami,ly tf,,(Z, B, 0),
there ,is a letter-equiaalent regular language.

Proof. Assume that L : Lc(G ,A), where G : (I*,1r, X0,I) is
context-free and C regular and, furthermore, the index of (G, C) equals
a natural number k. n'or a word Q over INL) Ir, we denoteby d(0)
the worcl obtained by erasing all terminals in Q, and by 7(Q) ttre word
obtained by erasing all nonterminals in Q. Consequently, for any rrord
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P e L, there is a derivation (31) with frfr' ' 'f, e C an{ ö(Pr) { k'

i : 0, . . ., U, By the assumption, C is accepted. by a finite determinist,ic

automaton (f , 3 , se , §1 ,9), where n is the alphabet' § the state

set,, so the initial siate, §, the final state set and E the transition

function.
consider the (finite) collection of words over -I,y with length 

= 
k.

we choose one xepresentative from each class of letter-equivalent words,

and denote the resulting set by E. we now construct a finite directed

graph possessing a nodelor each element of the product set .EX§. There

i* *r, "ag" 
e from the node labeled by (0, , s.) to the node labelecl by

(Qz , sz) lwh""" the Q's and s's are not necessarily clistinct) if and onl5r

if ;h"; is a production X -+ P, labeled by /, in 'E such that each of tlie

following "*ditior* 
is satisfied: (i) X occurs in Qi (ii) Q, is letter-

equivalent to a word obtained ftom Q1 by replacing some occurrence of

X O, ä(P); (iii) V@t , f) : sz. Furthermore, e is labeled by y(P)'

(I{ote that Lultipf" Lag"* are possible.) The node labeled by (Xo , so) is

iriti*i in the g"uph, urld 
"u"tt 

node labeled by (i , sr), where s, € §''

is final. Let

{Prr... rPrn}

be the collection of all words over -r7 appearing as labels of the edges e,

and .L, the language represented by our graph' It is easy to verify that

.L, is leiter_equivalent to z. x'urthermore, -L, is regular o.',er the alphabet

(33) arrd, consequently, regular over Ir" Hence, Theorem 5 follows'

As arr immediate corollary we obtain the follorving

Theorem 6. Eaery language oaer a one-letter alphabet whi,ch belon'gs to

the fanti,ly :!(2 ,3 , O) and, possesses a fini'te 'i'ndex is regular'

Theorem 6 is a special case of the folloiving

conjecture. The family ..t(2 , 3 , O) corrt,ains no nonregular languages

oYer one letter.
Remark 4. To prove this conjecture it' suffices, by (I3)' to consider

matrix grammars. To point out, some of the d.ifficulties involved in a proof,

let us consider a context-free matrix grammar

Gru : ({X},{r}, X, Mr,..., Mo),

rdere ea,ch M; is a finite sequence of i(i) prod'uctions

X->Pr,X-Pr," ',X*Pitq

r3

(33)

(34)

(For simplicity, we have assumed that there is only one nonterminal.)

Denote

c(i - lg (ä(PrPr...P;1,;)) - i(r) )bi - lg (y(PtPr" ' P;1,1))
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If Mi is applied
terminal \Irord P,

(35)

we obtain
, k, in a derivation leading to a

(36)

It follou's by the theory of systems of linear Diophantine equations that
the languag" L, consisting of all rryords r;, with o defined by (36), for
some nonnegative solution

k

I a.,i

i: I

k

i:L

(37) (y, , , Un)

of (35), is regular. The language L(G*) generated by G* is a subset of Lr.
But it may be a proper subset of Lr. This is due to the fact that although
a; is positive, in applying Mi lhe number of X's may still decrease if
there are some productions X ---> ), beginning the sequence (34). Con-
seqrrently, every solution (37) of (35) does not lead toaword r, in L(G*),
and the difference LL - L(GM) may be nonregular. The problem is quite
the same in the general case where there are more than one nonterminals.

Remark 5. Stotskij, [4], has shown that the languaqe

{a^b"ll<rn, 1<n!2'}
belongs to the family :l(Z - 1 ,3 , 0) and, hence, to the family '-t(2 ,Z , o)
but it is not letter-equivalent to any regular language. Consequently, by
Theorem 5, there are languages of infinite index in the family '-/:(2 ,3 , O).

Ifthe above conjecture is true, there are no such languages over one letter.
We have seen (Theorem 1) that the family t!(2, Z, 0) is closed under

a number of operations. Following Stotskij, [14], we shall norv introduce
another operation which is typical for this family.

The quasi-intersection of a language -t, rvith a language Lr, in symbols,
LLn Lz is the subset of Z, consisting of all words P, such that there is
a letter-equivalent word P, in L2.

It follows that quasi-intersection is associative but not commutative.
ft is cornmutative in the sense that the Ianguages Z, d t, and Lzn LL
are letter-equivalent. The intersection of two languages is contained in
their quasi-intersection. Quasi-intersection is idempotent and distributive
over union, both from the left and from the right.

Theorem 7' The family 4(2 ,3 , A) ,i,.s closed, und,er quas,i,-intersection.
Proof. Consider two languages
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L : Lc(G , @) and L' : Lc,(G' , A) ,

where C and C' are regular, and

G : (I*,Ir , Xo,I) and G' : (I'N,I; , X; ,I')
are context-free grammars such that ly(l Iy,: ff. Denote

Ir: {rrlr e IrU I;}
and let, for each P eWgNU Ir), & b" the word obtained from P by
replacing each letter r e Iy by the corresponding indexed letter r.. Let,

.F', b* the set obtained from -E by replacing the right side P of every
production by Pr. The labels of the productions are left unaltered. in the
transioion from -n' to /r.

Consider a labeled production

f : X ---> UtUz. . . U,, y, e I'*lJ I',

in -d". Let' yt, , . . . , Ait" be the letters of I', on the right side (fr > 0).
Then / is replaced by the sequence of labeled productions

fo:X-ö(AtAz...U,),
fi: (y,,)r "-> ui, ,

f* : (Y+\+ A;* .

The replacement is made for every f e E', and the resulting set of pro-
ductions is denoted by Ir. (If the original production is /: X --> X, it,
is replaced by å : X ---> ),.) Let C, b" the language obtained from C'
by replacing each letter / by the correspond.ing catenation /. ...frfr.
trVe introduce a new initial symbol Io and the labeled product'ion

go i Yo --- Xo X's .

ft is easy to see that

(38) L fr L', : Ls"(G2, A) ,

where

Gr: (Iy U 1; U /, U {%} , rrU I; , Yo,{go)U XLU F2)

and.

c,: {s} ccr.

In fact, we obtain first the collection of words of the form PrXi, where
P e L. The indices I and the nonterminal Xi are eliminated if and only

I5



Ann. Acad. Sci. Fennicie A. I. 47 {)

if a r,vord letter-equivalent to P belongs to L'. This proves (38) and
Theorem 7.

Remark 6. Some full ABL's, for instance, tZ@) and l(z) are not
closed under quasi-intersection. This follows because

(a*b*c*1rt 11aba1*abc) : {e"b"c" ln > T} .

Remark 7. Theorems 5 and 7 have been established for the family
.1(2 

- 1,3,0) by Stotskij, [13], [Ia]. The above proof of Theorem 7

remains unaltered for any of the first six families (21).

Remark 8. We have pointed out that the family '!.(2 ,3 ,0) equals
the family of languages generated by programmed grammars rvith context-
free core productions and empty failure fields. A more general type, called
an a,ppeara,nce d,nswer,ing contexb-free programmed gra,mma,r, has been
introduced in [2]. However, it is easy to see that this generalization pos-
sesses the same generative capacity as context-free programmed grammars
with arbitra,ry success and failure fields.

Remark 9. X'riant, [3], has considered gra,mmars which, in addition
to a control language, have restrictions on the use ofproductions obtained
by generalizing the ordering of productions, l4l. Thereby, the application
of productions is understood in the narrow sense. ft is an open problem
to generalize the results to the case rvhere the application is understood
in the broad sense.

5. Conclusion. The following two tables summarize the results con-
cerning the mutual relations between the families 9t (d , l , k) and. '/1i,1.
(In addition, cf. (7) - (11).) Thereby, 9{ denotes the family of recursive
languages.

,4 
- =Z(i , j, o)

0

I
2

21
3

:z - 4(o)
4 ::{(o)
:/ -:{Q)*:4(o)
:z - :/(0)

4-u(o) I
4 : Ze) e{(L)

4: *@ 
=Z(2)*-49 4e)

4: 7(o) :Z

: Z(o)

c 4c"<
l- <?\- €
c ={c ?i

-4(z)

1: *e)
.-t: 4(t)
4(2) c :{
:/(z) c :t c:LQ)
ez: *(g)

I{i
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j
d

In our estimation, the most interesting open problems &re (i) to charac-

terize the family *(2 ,3, 0) and (ii) to determine whether or not :l(l) :
'--[,(t ,2 , o).

University of Turku
Finland
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