Series A

I. MATHEMATICA

472

A CONGRUENCE FOR THE CLASS NUMBER OF A CYCLIC FIELD

BY

TAUNO METSÄNKYLÄ

Communicated 9 April 1970 by K. Inkeri

A congruence for the class number of a cyclic field

1. Introduction. Let p be an odd prime and ζ a primitive p-th root of unity. In this paper we consider the subfields of the cyclotomic field F generated by ζ over the rational number field Q.

Put $p-1=a b$ with $1 \leqq b<p-1$ and denote by K the subfield of F whose degree over Q is a. Denote further by F_{0} and K_{0} the maximal real subfields of F and K, respectively. Then K and K_{0} are cyclic fields and, in addition, K is real ($K=K_{0}$) or imaginary depending on whether b is even or odd.

Moreover, suppose that the class numbers of F and K are

$$
H=H_{1} H_{2}, \quad h=h_{1} h_{2},
$$

respectively, where the first factors H_{1} and h_{1} are integers (the so-called relative class numbers of F / F_{0} and K / K_{0}) and the second factors H_{2} and h_{2} are the class numbers of F_{0} and K_{0}, respectively. It is known that H_{1} is divisible by h_{1} and H_{2} divisible by h_{2} (see, e.g., [2, p. 778] and [1, p. 219]).

Denote by r a primitive root $(\bmod p)$ and by r_{s} the least positive residue of $r^{s}(\bmod p)$. Define

$$
\psi(x)=\sum_{s=0}^{p-2} q_{s} x^{s}
$$

with integral coefficients $q_{s}=\left(r r_{s-1}-r_{s}\right) / p$. Carlitz [4] has proved that

$$
\begin{equation*}
\prod_{n=1}^{m-1} \psi\left(r^{2 n-1}\right) \equiv \pm H_{2} G^{\prime}(\bmod p), \tag{1}
\end{equation*}
$$

where $m=\frac{1}{2}(p-1)$ and G^{\prime} is an explicitly given integer (see [4], formula (2.16); note that the symbol G^{\prime} here stands for Carlitz's $C G_{0}^{-1}$). Furthermore, this congruence gives, because of a connexion between its left side and H_{1}, a congruence

$$
H_{1} \equiv \pm H_{2} G(\bmod p),
$$

where G is an integer ($[4, \mathrm{pp} .31-33]$; see (16) below). From this one can see, among other things, the well-known fact that $H_{2} \equiv 0(\bmod p)$ implies $H_{1} \equiv 0(\bmod p)$.

We shall generalize (1) as follows.

Theorem 1. If K is imaginary, then

$$
\prod_{n=1}^{u-1} \psi\left(r^{2 b n-1}\right) \equiv \pm h_{2} G_{b}(\bmod p)
$$

where $u=\frac{1}{2} a=(p-1) / 2 b$ and G_{b} is an integer (see (13) below).
Theorem 2. If K is real, then

$$
\prod_{n=1}^{a-1} \psi\left(r^{b n-1}\right) \equiv \pm h_{2} \bar{G}_{b}(\bmod p),
$$

where \bar{G}_{b} is an integer (see (15) below).

The proofs of these theorems are similar to that of (1). For $b=1$ we have $G_{b}=G^{\prime}$ so that theorem 1 contains the result (1) as a special case.

The theorems express a dependence between h_{2} and H_{1}, discussed in more detail in section 6 . Here we mention the following

Corollary. If K is a proper subfield of F, then $h_{2} \equiv 0(\bmod p)$ implies $H_{1} / h_{1} \equiv 0(\bmod p)$.

It should be mentioned that problems associated with the divisibility of the class numbers of cyclic fields are also investigated e.g. in [9] and [10] (see also references given in these papers).
2. A preliminary lemma. Let $f^{\prime}(x)$ denote the derivative of the function $f(x)$. In the following we shall write briefly $\left(f^{\prime} \mid f\right)(x)$ for $f^{\prime}(x) / f(x)$.

Lemma. Denote

$$
f_{w}(x)=\left(1-x^{r^{w}}\right)\left(1-x^{-r^{w}}\right), \quad g_{w}(x)=f_{w+1}(x) / f_{w}(x),
$$

where w is an integer. Then

$$
\zeta\left(g_{w}^{\prime} / g_{w}\right)(\zeta)=2 r^{w} \sum_{s=0}^{p-2}\left(q_{s-w}-t\right) \zeta^{r^{s}}
$$

with $t=\frac{1}{2}(r-1)$.
Proof (cf. [7, p. 125]). We begin with the relation

$$
\begin{equation*}
(1-\zeta)_{s=1}^{p-1} s \zeta^{s}=-p \tag{2}
\end{equation*}
$$

that can be easily verified. From this it follows that

$$
(1+\zeta) /(1-\zeta)=-1-2 p^{-1} \sum_{s=0}^{p-2} r_{s} \zeta^{s}
$$

Making the substitution $\left(\zeta: \zeta^{r^{w}}\right)$ and applying the result to

$$
\zeta\left(f_{w}^{\prime} \mid f_{w}\right)(\zeta)=-r^{w}\left(1+\zeta^{r^{w}}\right) /\left(1-\zeta^{r^{w}}\right)
$$

we obtain

$$
\zeta\left(f_{w}^{\prime} \mid f_{w}\right)(\zeta)=r^{w}\left(1+2 p^{-1} \sum_{s=0}^{p-2} r_{s} \zeta^{w+s}\right)
$$

This yields further

$$
\zeta\left(g_{w}^{\prime} / g_{w}\right)(\zeta)=r^{w}\left(r-1+2 p^{-1} \sum_{s=0}^{p-2}\left(r r_{s-1}-r_{s}\right) \zeta^{r^{w+s}}\right)
$$

so that, by definition of q_{s} and because of

$$
\sum_{s=0}^{P-2} \zeta^{s}=-1
$$

we have

$$
\zeta\left(g_{w}^{\prime} / g_{w}\right)(\zeta)=r^{w}\left(2 \sum_{s=0}^{p-2} q_{s} \zeta^{w+s}-(r-1) \sum_{s=0}^{p-2} \zeta^{r^{s}}\right)
$$

From this it is seen that the assertion of the lemma is true.
3. Relation between the fundamental and circular units. Consider first the case of imaginary K. Then b is odd and a even, $a=2 u$.

Put

$$
\begin{align*}
e(\zeta) & =\left\{\prod_{k=0}^{2 b-1}\left(1-\zeta^{k u+1}\right) /\left(1-\zeta^{k u}\right)\right\}^{1 / 2} \\
& =\left\{\prod_{k=0}^{b-1} g_{k u}(\zeta)\right\}^{1 / 2} \tag{3}
\end{align*}
$$

where by the exponent $\frac{1}{2}$ is meant the positive square root (for $g_{k u}(\zeta)$, see the above lemma). The numbers

$$
e\left(\zeta^{r^{i}}\right) \quad(i=0, \ldots, u-2)
$$

are the circular units (Kreiseinheiten, cf. [2, p. 461] or [5, p. 23]) of K_{0}. We denote by Δ the regulator of this unit system, i.e.

$$
\Delta=\left|\operatorname{det}\left(\log e\left(\zeta^{i+n}\right)\right)\right| \quad(i, n=0, \ldots, u-2)
$$

Let $\varepsilon_{j}(\zeta)(j=1, \ldots, u-1)$ be a system of positive fundamental units of K_{0}; then the regulator of K_{0} is

$$
R=\left|\operatorname{det}\left(\log \varepsilon_{j}\left(\zeta^{r^{n}}\right)\right)\right| \quad(j=1, \ldots, u-1 ; n=0, \ldots, u-2)
$$

and it is known that

$$
h_{2}=\Delta / R
$$

(see, e.g., [2, pp. 461-462]). By writing

$$
\begin{equation*}
e\left(\zeta^{r^{i}}\right)=\prod_{j=1}^{u-1} \varepsilon_{j}(\zeta)^{r_{i j}} \quad(i=0, \ldots, u-2) \tag{4}
\end{equation*}
$$

where the $r_{i j}{ }^{\prime}$ s are rational integers, we further get for h_{2} an mintegral» expression

$$
\begin{equation*}
h_{2}= \pm \operatorname{det}\left(r_{i j}\right) \quad(i=0, \ldots, u-2 ; j=1, \ldots, u-1) \tag{5}
\end{equation*}
$$

Now, consider (4) with a fixed i as an equation in the field F. Replace ζ by an indeterminate x and note that the equation thus received holds for $x=\zeta, \zeta^{2}, \ldots \zeta^{p-1}$. Hence we have

$$
e\left(x^{i}\right)+\left(1+x+\ldots+x^{p-1}\right) \Phi(x)=\prod_{j=1}^{u-1} \varepsilon_{j}(x)^{r_{i j}}
$$

where $\Phi(x)$ is a polynomial with rational integral coefficients. After differentiating logarithmically, multiplying by x and setting $x=\zeta$ we obtain

$$
\begin{equation*}
r^{i} \zeta^{i}\left(e^{\prime} / e\right)\left(\zeta^{r^{i}}\right)+M_{i} \sum_{s=1}^{p-1} s \zeta^{s}=\sum_{j=1}^{u-1} r_{i j} \zeta\left(\varepsilon_{j}^{\prime} / \varepsilon_{j}\right)(\zeta) \quad(i=0, \ldots, u-2) \tag{6}
\end{equation*}
$$

where $M_{i}=\Phi(\zeta) / e\left(\zeta^{4}{ }^{i}\right)$ is an integer of F. (Cf. [8, pp. 3-4].)
The second case where K is real is fully analogous to the above case. Here, one need only replace u by $a=2 u$ everywhere in this section and, in addition, b by $\frac{1}{2} b$ in (3).
4. Proof of theorem 1. We turn back to the case where K is imaginary, and consider the equation (6).

Put $\lambda=1-\zeta$ and let $d_{i}(i=0, \ldots, u-2)$ be rational integers such that

$$
M_{i} \equiv d_{i}(\bmod \grave{i})
$$

Since $p=\varepsilon \lambda^{p-1}$, where ε is a unit of F, we have by (2)

$$
\sum_{s=1}^{p-1} s \zeta^{s} \equiv 0\left(\bmod \lambda^{p-2}\right) .
$$

Consequently

$$
\begin{equation*}
M_{i} \sum_{s=1}^{p-1} s \zeta^{s} \equiv d_{i} \sum_{s=0}^{p-2} r_{s} \zeta^{s}(\bmod p) \tag{7}
\end{equation*}
$$

Making use of our lemma we infer from (3) that

$$
\zeta\left(e^{\prime} \mid e\right)(\zeta)=\sum_{k=0}^{b-1} \sum_{s=0}^{p-2} r^{k u}\left(q_{s-k u}-t\right) \zeta^{r^{s}}
$$

and, further.

$$
\begin{equation*}
\zeta^{-r^{i}}\left(e^{\prime} \mid e\right)\left(\zeta^{i}\right)=\sum_{s=0}^{p-2} \sum_{k=0}^{b-1} r^{k u}\left(q_{s-i-k u}-t\right) \zeta^{r^{s}} \quad(i=0, \ldots, u-2) . \tag{8}
\end{equation*}
$$

We now write

$$
\zeta\left(\varepsilon_{j}^{\prime} / \varepsilon_{j}\right)(\zeta)=\sum_{s=0}^{p-2} c_{j s} \zeta^{r^{s}} \quad(j=1, \ldots, u-1)
$$

where the $c_{j s}$'s are rational integers, and substitute this with (7) and (8) into (6). Thus we get

$$
\begin{align*}
& \sum_{s=0}^{p-2} \sum_{k=0}^{b-1} r^{i+k u}\left(q_{s-i-k u}-t\right) \zeta^{s}+d \sum_{i} \sum_{s=0}^{p-2} r_{s} \zeta^{s} \\
\equiv & \sum_{s=0}^{p-2} \sum_{j=1}^{u-1} r_{i j} c_{j s} \zeta^{r^{s}}(\bmod p) \quad(i=0, \ldots, u-2) . \tag{9}
\end{align*}
$$

Comparing coefficients we can then conclude that the following rational congruences hold:

$$
\begin{gather*}
\sum_{k=0}^{b-1} r^{i+k u}\left(q_{s-i-k u}-t\right)+d_{i} r_{s} \equiv \sum_{j=1}^{u-1} r_{i j} c_{j s}(\bmod p) \tag{10}\\
\quad(i=0, \ldots, u-2 ; s=0, \ldots, p-2) .
\end{gather*}
$$

The next step consists of multiplying both sides of (10) by $r^{(2 b n-1) s}$ $(n=1, \ldots, u-1)$ and summing over s. By virtue of

$$
\begin{aligned}
\sum_{s=0}^{p-2} r^{(2 b n-1) s} & \equiv 0(\bmod p) \\
\sum_{s=0}^{p-2} r_{s} r^{(2 b n-1) s} & \equiv \sum_{s=0}^{p-2} r^{2 b n s} \equiv 0(\bmod p)
\end{aligned}
$$

this yields

$$
\begin{gather*}
\sum_{s=0}^{P-2} \sum_{k=0}^{b-1} r^{i+k u+(2 b n-1) s} q_{s-i-k u} \equiv \sum_{s=0}^{p-2} \sum_{j=1}^{u-1} r_{i j} c_{j s} r^{(2 b n-1) s}(\bmod p) \tag{11}\\
(i=0, \ldots, u-2 ; n=1, \ldots, u-1) .
\end{gather*}
$$

Here, the double sum on the left can be written in the form

$$
\begin{aligned}
& \sum_{k=0}^{b-1} r^{i+k u} \sum_{s=0}^{p-2} r^{(2 b n-1)(s+i+k u)} q_{s}= \\
& \sum_{k=0}^{b-1} r^{2 b n(i+k u)^{p-2} \sum_{s=0}^{p} r^{(2 b n-1) s} q_{s} \equiv b r^{2 b n i} \psi\left(r^{2 b n-1}\right)(\bmod p)}
\end{aligned}
$$

Defining, in addition,

$$
C_{j n}=\sum_{s=0}^{p-2} c_{j s} s^{(2 b n-1) s} \quad(j, n=1, \ldots, u-1)
$$

we see that (11) reduces to

$$
\begin{gathered}
b r^{2 b n i} \psi\left(r^{2 b n-1}\right) \equiv \sum_{j=1}^{u-1} r_{i j} C_{j n}(\bmod p) \\
(i=0, \ldots, u-2 ; \quad n=1, \ldots, u-1) .
\end{gathered}
$$

From this, using (5) and denoting

$$
\begin{aligned}
& D=\operatorname{det}\left(r^{2 b n i}\right) \quad(i=0, \ldots, u-2 ; n=1, \ldots, u-1) \\
& C=\operatorname{det}\left(C_{j n}\right) \quad(j, n=1, \ldots, u-1)
\end{aligned}
$$

we get that

$$
\begin{equation*}
b^{u-1} D \prod_{n=1}^{u-1} \psi\left(r^{2 b n-1}\right) \equiv \pm h_{2} C(\bmod p) \tag{12}
\end{equation*}
$$

The determinant D, being of Vandermonde type, equals, except for sign, the product of all $r^{2 b i}-r^{2 b n}$, where $1 \leqq i<n \leqq u-1$. Hence $D \equiv 0(\bmod p)$, and we may set

$$
\begin{equation*}
G_{b} \equiv b^{1-u} D^{-1} C(\bmod p) \tag{13}
\end{equation*}
$$

Combined with (12) this proves theorem 1.
We remark that the numbers D^{-1} and C, occurring in (13), of course depend on b, i.e., on the subfield K in question.
5. Proof of theorem 2. Let the field K be a real one. Then we see, by the final statement of section 3, that (8), and further (9) and (10) hold with b replaced by $\frac{1}{2} b$ and u replaced by a. We multiply both sides of this new (10) by $r^{(b n-1) s}(n=1, \ldots, a-1)$ and sum over s. Proceeding as in the proof of theorem 1 we finally arrive at

$$
\begin{equation*}
\left(\frac{1}{2} b\right)^{a-1} \bar{D} \prod_{n=1}^{a-1} \psi\left(r^{b n-1}\right) \equiv \pm h_{2} \bar{C}(\bmod p) \tag{14}
\end{equation*}
$$

where

$$
\begin{gathered}
\bar{D}=\operatorname{det}\left(r^{b n i}\right), \quad \bar{C}=\operatorname{det}\left(\bar{C}_{j n}\right), \quad \bar{C}_{j n}=\sum_{s=0}^{p-2} c_{j s} r^{(b n-1) s} \\
(i=0, \ldots, a-2 ; j, n=1, \ldots, a-1)
\end{gathered}
$$

As before, $D \neq 0(\bmod p)$. Thus, by setting

$$
\begin{equation*}
\bar{G}_{b} \equiv 2^{a-1} b^{1-a} \bar{D}^{-1} \bar{C}(\bmod p) \tag{15}
\end{equation*}
$$

we see from (14) that theorem 2 is proved.
6. Residues of H_{1} and $h_{1}(\bmod p)$. As is well-known,

$$
H_{1}=(-1)^{m} 2 p \prod_{n=1}^{m}(2 p)^{-1} \sum_{s=0}^{p-2} r_{s} Z^{(2 n-1) s}
$$

where Z is a primitive $(p-1)$-th root of unity. (See, e.g., [5] or [6, pp. $377,430]$. In the literature the expression of H_{1}, as regards the sign, is frequently incorrect.) Furthermore, if K is a proper imaginary subfield of F, then

$$
h_{1}=(-1)^{u} 2 \prod_{n=1}^{u}(2 p)^{-1} \sum_{s=0}^{p-2} r_{s} Z^{(2 n-1) b s}
$$

(see, e.g., [2, pp. 461,776]).
Assume now that r is a primitive root $\left(\bmod p^{2}\right)$ so that $r^{m}+1$ is divisible by p but not by p^{2}. When studying the residues of H_{1} and h_{1} $(\bmod p)$ one has to observe that

$$
\left(r Z^{v}-1\right) p^{-1} \sum_{s=0}^{p-2} r_{s} Z^{v s} \equiv \psi\left(r^{v}\right)(\bmod \mathfrak{p})
$$

where v is any integer and \mathfrak{p} a prime ideal factor of p in the $(p-1)$-th cyclotomic field $Q(Z)$. From this it can be easily deduced that

$$
H_{1} \equiv 2^{1-m} p\left(r^{m}+1\right)^{-1} \prod_{n=1}^{m} \psi\left(r^{2 n-1}\right)(\bmod p)
$$

and further, as shown in [4, p. 32],

$$
\begin{equation*}
H_{1} \equiv-2^{2-m} \prod_{n=1}^{m-1} \psi\left(r^{2 n-1}\right)(\bmod p) \tag{16}
\end{equation*}
$$

Analogously, we find that

$$
\begin{equation*}
h_{1} \equiv 2^{1-u}\left(r^{u}+1\right)^{-1} \prod_{n=1}^{u} \psi\left(r^{(2 n-1) b}\right)(\bmod p) \tag{17}
\end{equation*}
$$

and

$$
\begin{equation*}
H_{1} / h_{1} \equiv-2^{u-m+1}\left(r^{u}+1\right) \prod_{n} \psi\left(r^{2 n-1}\right)(\bmod p) \tag{18}
\end{equation*}
$$

where the last product contains those $\psi\left(r^{2 n-1}\right)$ from (16) that do not occur in (17).

Now h_{2}, the class number of K_{0}, is by theorem 1 related with the product of those $\psi\left(r^{2 n-1}\right)$ from (16) where $2 n-1$ is of the form $2 b n_{1}-1$ ($n_{1}=1, \ldots, u-1$). Since these $\psi\left(r^{2 n-1}\right)$ occur also on the right side of (18), we see that our corollary is true in the case of imaginary K.

On the other hand, if K is real, then $h_{1}=1$ and, by (16) and theorem $2, h_{2} \equiv 0(\bmod p)$ implies $H_{1} \equiv 0(\bmod p)$, so that the corollary is proved also in this case. - Note that the latter case is trivial in view of the previously known facts about class numbers, mentioned in section 1. Indeed, if h_{2} is divisible by p, then so is H_{2} and hence also H_{1}.

We finally recall that, for $n=1, \ldots, m-1, \psi\left(r^{2 n-1}\right) \equiv 0(\bmod p)$ if and only if $B_{2 n} \equiv 0(\bmod p)$, where the B_{i} 's are the Bernoulli numbers in the even suffix notation (see [6, pp. 431-432]). This together with (16) gives the known criterion, due to Kummer [7], for the divisibility of H_{1} by p. It is seen from (17) that an analogous criterion for h_{1} reads as follows: h_{1} is divisible by p if and only if the numerator of at least one of the Bernoulli numbers $B_{(2 n-1) b+1}(n=1, \ldots, u)$ is divisible by p. (Another proof for this is presented by Carlitz in [3].) Moreover, applying theorems 1 and 2 we find that if h_{2} is divisible by p, then so is the numerator of at least one $B_{2 b n}(n=1, \ldots, u-1)$ or $B_{b n}(n=1, \ldots, a-1)$ according to whether K is imaginary or real.

University of Turku
Turku, Finland

References

[1] Ankeny, N. C., Chowla, S., and Hasse, H.: On the class number of the maximal real subfield of a cyclotomic field. -- J. Reine Angew. Math. 217 (1965), 217-220.
[2] Beeger, N. G. W. H.: Über die Teilkörper des Kreiskörpers $K\left(e^{2 . \pi i} l^{\boldsymbol{h}}\right)$. - Proc. Akad. Wet. Amsterdam 21 (1919), 454-465, 758-779.
[3] Carlitz, L.: The first factor of the class number of a cyclic field. - Canad. J. Math. 6 (1954), 23-26.
[4] -»- A congruence for the second factor of the class number of a cyclotomic field. - Acta Arith. 14 (1968), 27-34.
[5] Hasse, H.: Über die Klassenzahl abelscher Zahlkörper. Berlin (1952).
[6] Hilbert, D.: Theorie der algebraischen Zahlkörper. - Jber. Deutsch. Math.Verein. 4 (1897).
[7] Kummer, E.: Zwei besondere Untersuchungen über die Classen-Anzahl und über die Einheiten der aus λ-ten Wurzeln der Einheit gebildeten complexen Zahlen. - J. Reine Angew. Math. 40 (1850), 117-129.
[8] Metsänkylä, T.: Congruences modulo 2 for class number factors in cyclotomic fields. - Ann. Acad. Sci. Fenn., Ser. A I 453 (1969).
[9] Yokor, H.: On the class number of a relatively cyclic number field. - Nagoya Math. J. 29 (1967), 31-44.
[10] Yokoyama, A.: On the relative class number of finite algebraic number fields. - J. Math. Soc. Japan. 16 (1967), 179-184.

