ANNALES ACADEMIAE SCIENTIARUM FENNICAE

Series A

I. MATHEMATICA

472

A CONGRUENCE FOR THE CLASS NUMBER OF A CYCLIC FIELD

 $\mathbf{B}\mathbf{Y}$

TAUNO METSÄNKYLÄ

HELSINKI 1970 SUOMALAINEN TIEDEAKATEMIA

.

doi:10.5186/aasfm.1971.472

Communicated 9 April 1970 by K. Inkeri

KESKUSKIRJAPAINO HELSINKI 1970

•

A congruence for the class number of a cyclic field

1. Introduction. Let p be an odd prime and ζ a primitive p-th root of unity. In this paper we consider the subfields of the cyclotomic field F generated by ζ over the rational number field Q.

Put p-1 = ab with $1 \leq b < p-1$ and denote by K the subfield of F whose degree over Q is a. Denote further by F_0 and K_0 the maximal real subfields of F and K, respectively. Then K and K_0 are cyclic fields and, in addition, K is real $(K = K_0)$ or imaginary depending on whether b is even or odd.

Moreover, suppose that the class numbers of F and K are

$$H = H_1 H_2, \quad h = h_1 h_2,$$

respectively, where the first factors H_1 and h_1 are integers (the so-called relative class numbers of F/F_0 and K/K_0) and the second factors H_2 and h_2 are the class numbers of F_0 and K_0 , respectively. It is known that H_1 is divisible by h_1 and H_2 divisible by h_2 (see, e.g., [2, p. 778] and [1, p. 219]).

Denote by r a primitive root (mod p) and by r_s the least positive residue of $r^s \pmod{p}$. Define

$$\psi(x) = \sum_{s=0}^{p-2} q_s x^s$$

with integral coefficients $\,\,q_{s}=(rr_{s-1}-r_{s})/p$. Carlitz [4] has proved that

(1)
$$\prod_{n=1}^{m-1} \psi(r^{2n-1}) \equiv \pm H_2 G' \pmod{p},$$

where $m = \frac{1}{2} (p - 1)$ and G' is an explicitly given integer (see [4], formula (2.16); note that the symbol G' here stands for CARLITZ'S CG_0^{-1}). Furthermore, this congruence gives, because of a connexion between its left side and H_1 , a congruence

$$H_1 \equiv \pm H_2 G \pmod{p}$$
,

where G is an integer ([4, pp. 31-33]; see (16) below). From this one can see, among other things, the well-known fact that $H_2 \equiv 0 \pmod{p}$ implies $H_1 \equiv 0 \pmod{p}$.

We shall generalize (1) as follows.

Theorem 1. If K is imaginary, then

$$\prod_{n=1}^{\frac{u-1}{2}} \psi (r^{2bn-1}) \equiv \pm h_2 G_b \pmod{p},$$

where $u = \frac{1}{2}a = (p-1)/2b$ and G_b is an integer (see (13) below).

Theorem 2. If K is real, then

$$\prod_{n=1}^{a-1}\psi\left(r^{bn-1}
ight)\equiv\pm\,h_2ar{G}_b\ (\mathrm{mod}\ p)\ ,$$

where \bar{G}_{h} is an integer (see (15) below).

The proofs of these theorems are similar to that of (1). For b = 1 we have $G_b = G'$ so that theorem 1 contains the result (1) as a special case.

The theorems express a dependence between h_2 and H_1 , discussed in more detail in section 6. Here we mention the following

Corollary. If K is a proper subfield of F, then $h_2 \equiv 0 \pmod{p}$ implies $H_1/h_1 \equiv 0 \pmod{p}$.

It should be mentioned that problems associated with the divisibility of the class numbers of cyclic fields are also investigated e.g. in [9] and [10] (see also references given in these papers).

2. A preliminary lemma. Let f'(x) denote the derivative of the function f(x). In the following we shall write briefly (f'|f)(x) for f'(x)/f(x).

Lemma. Denote

$$f_{w}(x) = (1 - x^{r^{w}}) (1 - x^{-r^{w}}), \quad g_{w}(x) = f_{w+1}(x)/f_{w}(x),$$

where w is an integer. Then

$$\zeta(g'_{w}/g_{w})(\zeta) = 2r^{w} \sum_{s=0}^{p-2} (q_{s-w} - t) \zeta^{r^{s}}$$

with $t = \frac{1}{2}(r-1)$.

Proof (cf. [7, p. 125]). We begin with the relation

(2)
$$(1-\zeta)\sum_{s=1}^{p-1}s\zeta^s = -p$$

that can be easily verified. From this it follows that

$$(1 + \zeta) / (1 - \zeta) = -1 - 2p^{-1} \sum_{s=0}^{p-2} r_s \zeta^{r^s}.$$

Making the substitution $(\zeta : \zeta^{r^{w}})$ and applying the result to

$$\zeta(f'_w/f_w)(\zeta) = -r^w(1+\zeta^{r^w})/(1-\zeta^{r^w})$$

we obtain

$$\zeta(f'_w/f_w)(\zeta) = r^w(1 + 2p^{-1}\sum_{s=0}^{p-2} r_s \zeta^{r^{w+s}}).$$

This yields further

$$\zeta(g'_w/g_w)(\zeta) = r^w(r-1 + 2p^{-1}\sum_{s=0}^{p-2} (rr_{s-1} - r_s) \zeta^{r^{w+s}})$$

so that, by definition of q_s and because of

$$\sum_{s=0}^{p-2} \zeta^{r^s} = -1$$
 ,

we have

$$\zeta(g'_w/g_w) \ (\zeta) = r^w (2\sum\limits_{s=0}^{p-2} q_s \zeta^{r^{w+s}} - (r-1) \sum\limits_{s=0}^{p-2} \zeta^{r^s}) \ .$$

From this it is seen that the assertion of the lemma is true.

3. Relation between the fundamental and circular units. Consider first the case of imaginary K. Then b is odd and a even, a = 2u.

Put

(3)
$$e(\zeta) = \left\{ \prod_{k=0}^{2b-1} \left(1 - \zeta^{r^{ku+1}}\right) / \left(1 - \zeta^{r^{ku}}\right) \right\}^{\frac{1}{2}} \\ = \left\{ \prod_{k=0}^{b-1} g_{ku}(\zeta) \right\}^{\frac{1}{2}},$$

where by the exponent $\frac{1}{2}$ is meant the positive square root (for $g_{ku}(\zeta)$, see the above lemma). The numbers

$$e(\zeta^{r^{i}}) \quad (i = 0, ..., u - 2)$$

are the circular units (Kreiseinheiten, cf. [2, p. 461] or [5, p. 23]) of K_0 . We denote by Δ the regulator of this unit system, i.e.

$$arDelta = |\det (\log e(\zeta^{r^{i+n}}))| \quad (i, n = 0, \ldots, u-2).$$

Let $\varepsilon_j(\zeta)$ $(j = 1, \ldots, u - 1)$ be a system of positive fundamental units of K_0 ; then the regulator of K_0 is

 $R=|\det{(\log{arepsilon_j}(\zeta^{r^n}))}|\quad (j=1\,,\ldots\,,u-1\,;\;\;n=0\,,\ldots\,,u-2)\,,$ and it is known that

$$h_2 = \varDelta / R$$

(see, e.g., [2, pp. 461-462]). By writing

(4)
$$e(\zeta^{r^{i}}) = \prod_{j=1}^{u-1} \varepsilon_{j}(\zeta)^{r_{ij}} \quad (i = 0, \ldots, u-2)$$

where the r_{ij} 's are rational integers, we further get for h_2 an »integral» expression

(5)
$$h_2 = \pm \det(r_{ij})$$
 $(i = 0, \ldots, u - 2; j = 1, \ldots, u - 1).$

Now, consider (4) with a fixed *i* as an equation in the field *F*. Replace ζ by an indeterminate *x* and note that the equation thus received holds for $x = \zeta, \zeta^2, \ldots, \zeta^{p-1}$. Hence we have

$$e(x^{r^{i}}) + (1 + x + \ldots + x^{p-1}) \Phi(x) = \prod_{j=1}^{u-1} \varepsilon_{j}(x)^{r_{ij}},$$

where $\Phi(x)$ is a polynomial with rational integral coefficients. After differentiating logarithmically, multiplying by x and setting $x = \zeta$ we obtain

(6)
$$r^i \zeta^{r^i}(e'/e) (\zeta^{r^i}) + M_i \sum_{s=1}^{p-1} s \zeta^s = \sum_{j=1}^{u-1} r_{ij} \zeta(\varepsilon'_j/\varepsilon_j)(\zeta) \quad (i = 0, \ldots, u-2),$$

where $M_i = \Phi(\zeta) / e(\zeta^{i})$ is an integer of F. (Cf. [8, pp. 3-4].)

The second case where K is real is fully analogous to the above case. Here, one need only replace u by a = 2u everywhere in this section and, in addition, b by $\frac{1}{2}b$ in (3).

4. Proof of theorem 1. We turn back to the case where K is imaginary, and consider the equation (6).

Put $\lambda = 1 - \zeta$ and let d_i (i = 0, ..., u - 2) be rational integers such that

$$M_i \equiv d_i \pmod{\lambda}$$
.

Since $p = \varepsilon \lambda^{p-1}$, where ε is a unit of F, we have by (2)

$$\sum_{s=1}^{p-1} s\zeta^s \equiv 0 \pmod{\lambda^{p-2}}.$$

Consequently

(7)
$$M_i \sum_{s=1}^{p-1} s \zeta^s \equiv d_i \sum_{s=0}^{p-2} r_s \zeta^{r^s} \pmod{p}$$

Making use of our lemma we infer from (3) that

$$\zeta(e'/e)(\zeta) = \sum_{k=0}^{b-1} \sum_{s=0}^{p-2} r^{ku} (q_{s-ku} - t) \zeta^{r^s}$$

and, further,

(8)
$$\zeta^{r^{i}}(e'/e)(\zeta^{r^{i}}) = \sum_{s=0}^{p-2} \sum_{k=0}^{b-1} r^{ku} (q_{s-i-ku}-t)\zeta^{r^{s}} \quad (i=0,\ldots,u-2).$$

We now write

$$\zeta(arepsilon_j'/arepsilon_j)(\zeta) = \sum_{s=0}^{p-2} c_{js} {\zeta'}^s \quad (j=1,\ldots,u-1) \ ,$$

where the c_{js} 's are rational integers, and substitute this with (7) and (8) into (6). Thus we get

(9)
$$\sum_{s=0}^{p-2} \sum_{k=0}^{b-1} r^{i+ku} (q_{s-i-ku}-t) \zeta^{r^s} + d_i \sum_{s=0}^{p-2} r_s \zeta^{r^s} \\ \equiv \sum_{s=0}^{p-2} \sum_{j=1}^{u-1} r_{ij} c_{js} \zeta^{r^s} \pmod{p} \quad (i=0,\ldots,u-2) .$$

Comparing coefficients we can then conclude that the following rational congruences hold:

(10)
$$\sum_{k=0}^{b-1} r^{i+ku} (q_{s-i-ku} - t) + d_i r_s \equiv \sum_{j=1}^{u-1} r_{ij} c_{js} \pmod{p}$$
$$(i = 0, \dots, u-2; \ s = 0, \dots, p-2).$$

The next step consists of multiplying both sides of (10) by $r^{(2bn-1)s}$ $(n = 1, \ldots, u - 1)$ and summing over s. By virtue of

$$\sum_{s=0}^{p-2} r^{(2bn-1)s} \equiv 0 \pmod{p} ,$$
$$\sum_{s=0}^{p-2} r_s r^{(2bn-1)s} \equiv \sum_{s=0}^{p-2} r^{2bns} \equiv 0 \pmod{p}$$

this yields

(11)
$$\sum_{s=0}^{p-2} \sum_{k=0}^{b-1} r^{i+ku+(2bn-1)s} q_{s-i-ku} \equiv \sum_{s=0}^{p-2} \sum_{j=1}^{u-1} r_{ij} c_{js} r^{(2bn-1)s} \pmod{p}$$
$$(i = 0, \dots, u-2; \quad n = 1, \dots, u-1).$$

Here, the double sum on the left can be written in the form

$$\sum_{k=0}^{b-1} r^{i+ku} \sum_{s=0}^{p-2} r^{(2bn-1)(s+i+ku)} q_s =$$

$$\sum_{k=0}^{b-1} r^{2bn(i+ku)} \sum_{s=0}^{p-2} r^{(2bn-1)s} q_s \equiv br^{2bni} \psi (r^{2bn-1}) \pmod{p}.$$

Defining, in addition,

$$C_{jn} = \sum_{s=0}^{p-2} c_{js} r^{(2bn-1)s}$$
 $(j, n = 1, ..., u-1)$

we see that (11) reduces to

$$br^{2bni} \psi \left(r^{2bn-1}
ight) \equiv \sum_{j=1}^{u-1} r_{ij} C_{jn} \pmod{p}$$

 $(i=0\,,\ldots,u-2\,;\;\;n=1\,,\ldots,u-1)\,.$

From this, using (5) and denoting

$$egin{aligned} D &= \det{(r^{2bni})} & (i=0\ ,\dots,u-2\ ; \ n=1\ ,\dots,u-1\)\ ,\ C &= \det{(C_{jn})} & (j,n=1\ ,\dots,u-1)\ , \end{aligned}$$

we get that

(12)
$$b^{u-1}D\prod_{n=1}^{u-1}\psi(r^{2bn-1})\equiv \pm h_2C \pmod{p}.$$

The determinant D, being of Vandermonde type, equals, except for sign, the product of all $r^{2bi} - r^{2bn}$, where $1 \leq i < n \leq u - 1$. Hence $D \equiv 0 \pmod{p}$, and we may set

(13)
$$G_b \equiv b^{1-u} D^{-1} C \pmod{p} .$$

Combined with (12) this proves theorem 1.

We remark that the numbers D^{-1} and C, occurring in (13), of course depend on b, i.e., on the subfield K in question.

5. Proof of theorem 2. Let the field K be a real one. Then we see, by the final statement of section 3, that (8), and further (9) and (10) hold with b replaced by $\frac{1}{2}b$ and u replaced by a. We multiply both sides of this new (10) by $r^{(bn-1)s}$ $(n = 1, \ldots, a - 1)$ and sum over s. Proceeding as in the proof of theorem 1 we finally arrive at

(14)
$$(\frac{1}{2}b)^{a-1}\bar{D}\prod_{n=1}^{a-1}\psi(r^{bn-1})\equiv \pm h_2\bar{C} \pmod{p},$$

where

$$ar{D} = \det{(r^{bni})}, \ \ ar{C} = \det{(ar{C}_{jn})}, \ \ ar{C}_{jn} = \sum_{s=0}^{p-2} c_{js} r^{(bn-1)}$$

 $(i = 0, \dots, a-2; \ \ j, n = 1, \dots, a-1).$

As before, $D \equiv 0 \pmod{p}$. Thus, by setting

(15)
$$\bar{G}_b \equiv 2^{a-1}b^{1-a}\bar{D}^{-1}\bar{C} \pmod{p}$$

we see from (14) that theorem 2 is proved.

6. Residues of H_1 and h_1 (mod p). As is well-known,

$$H_1 = (-1)^m 2p \prod_{n=1}^m (2p)^{-1} \sum_{s=0}^{p-2} r_s Z^{(2n-1)s} ,$$

where Z is a primitive (p-1)-th root of unity. (See, e.g., [5] or [6, pp. 377,430]. In the literature the expression of H_1 , as regards the sign, is frequently incorrect.) Furthermore, if K is a proper imaginary subfield of F, then

$$h_1 = (-1)^u 2 \prod_{n=1}^u (2p)^{-1} \sum_{s=0}^{p-2} r_s Z^{(2n-1)bs}$$

(see, e.g., [2, pp. 461,776]).

Assume now that r is a primitive root (mod p^2) so that $r^m + 1$ is divisible by p but not by p^2 . When studying the residues of H_1 and h_1 (mod p) one has to observe that

$$(rZ^{v}-1) p^{-1} \sum_{s=0}^{p-2} r_{s}Z^{vs} \equiv \psi(r^{v}) \pmod{\mathfrak{p}},$$

where v is any integer and \mathfrak{p} a prime ideal factor of p in the (p-1)-th cyclotomic field Q(Z). From this it can be easily deduced that

$$H_1 \equiv 2^{1-m} p(r^m + 1)^{-1} \prod_{n=1}^m \psi(r^{2n-1}) \pmod{p} ,$$

and further, as shown in [4, p. 32],

(16)
$$H_1 \equiv -2^{2-m} \prod_{n=1}^{m-1} \psi(r^{2n-1}) \pmod{p} \,.$$

Analogously, we find that

(17)
$$h_1 \equiv 2^{1-u} (r^u + 1)^{-1} \prod_{n=1}^u \psi (r^{(2n-1)b}) \pmod{p}$$

and

(18)
$$H_1/h_1 \equiv -2^{u-m+1}(r^u+1)\prod_n \psi(r^{2n-1}) \pmod{p},$$

where the last product contains those $\psi(r^{2n-1})$ from (16) that do not occur in (17).

Now h_2 , the class number of K_0 , is by theorem 1 related with the product of those $\psi(r^{2n-1})$ from (16) where 2n - 1 is of the form $2bn_1 - 1$ $(n_1 = 1, \ldots, u - 1)$. Since these $\psi(r^{2n-1})$ occur also on the right side of (18), we see that our corollary is true in the case of imaginary K.

On the other hand, if K is real, then $h_1 = 1$ and, by (16) and theorem 2, $h_2 \equiv 0 \pmod{p}$ implies $H_1 \equiv 0 \pmod{p}$, so that the corollary is proved also in this case. — Note that the latter case is trivial in view of the previously known facts about class numbers, mentioned in section 1. Indeed, if h_2 is divisible by p, then so is H_2 and hence also H_1 .

We finally recall that, for $n = 1, \ldots, m-1$, $\psi(r^{2n-1}) \equiv 0 \pmod{p}$ if and only if $B_{2n} \equiv 0 \pmod{p}$, where the B_i 's are the Bernoulli numbers in the even suffix notation (see [6, pp. 431-432]). This together with (16) gives the known criterion, due to KUMMER [7], for the divisibility of H_1 by p. It is seen from (17) that an analogous criterion for h_1 reads as follows: h_1 is divisible by p if and only if the numerator of at least one of the Bernoulli numbers $B_{(2n-1)b+1}$ $(n = 1, \ldots, u)$ is divisible by p. (Another proof for this is presented by CARLITZ in [3].) Moreover, applying theorems 1 and 2 we find that if h_2 is divisible by p, then so is the numerator of at least one B_{2bn} $(n = 1, \ldots, u - 1)$ or B_{bn} $(n = 1, \ldots, a - 1)$ according to whether K is imaginary or real.

University of Turku Turku, Finland

References

- ANKENY, N. C., CHOWLA, S., and HASSE, H.: On the class number of the maximal real subfield of a cyclotomic field. - J. Reine Angew. Math. 217 (1965), 217-220.
- [2] BEEGER, N. G. W. H.: Über die Teilkörper des Kreiskörpers $K(e^{2\pi i/l^h})$. Proc. Akad. Wet. Amsterdam 21 (1919), 454–465, 758–779.
- [3] CARLITZ, L.: The first factor of the class number of a cyclic field. Canad. J. Math. 6 (1954), 23-26.
- [5] HASSE, H.: Über die Klassenzahl abelscher Zahlkörper. Berlin (1952).
- [6] HILBERT, D.: Theorie der algebraischen Zahlkörper. Jber. Deutsch. Math.-Verein. 4 (1897).
- [7] KUMMER, E.: Zwei besondere Untersuchungen über die Classen-Anzahl und über die Einheiten der aus λ-ten Wurzeln der Einheit gebildeten complexen Zahlen. – J. Reine Angew. Math. 40 (1850), 117–129.
- [8] METSÄNKYLÄ, T.: Congruences modulo 2 for class number factors in cyclotomic fields. — Ann. Acad. Sci. Fenn., Ser. A I 453 (1969).
- [9] Yoкor, H.: On the class number of a relatively cyclic number field. Nagoya Math. J. 29 (1967), 31-44.
- [10] YOKOYAMA, A.: On the relative class number of finite algebraic number fields.
 J. Math. Soc. Japan. 16 (1967), 179-184.

Printed July 1970