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A congruence for the class number of a cyelic field

1. Introduction. Let p» be an odd prime and { a primitive p-th root
of unity. In this paper we consider the subfields of the cyclotomic field F

generated by ¢ over the rational number field @ .
Put p — 1 =ab with 1 <b <p — 1 and denote by K the subfield

of F whose degree over @ is @ . Denote further by F,; and K, the maxi-

mal real subfields of F and K , respectively. Then K and K, are cyclic

fields and, in addition, K is real (K = K,) or imaginary depending on

whether b is even or odd. '
Moreover, suppose that the class numbers of F and K are

H=HH,, h=hh,,

respectively, where the first factors H, and h; are integers (the so-called
relative class numbers of F/F, and K/K;) and the second factors H, and
h, are the class numbers of F, and K, respectively. It is known that H,
is divisible by %, and H, divisible by h, (see, e.g., [2, p. 778] and [1, p.
219)).
Denote by # a primitive root (mod p) and by 7, the least positive
residue of »* (mod p). Define
P
=2 ¢

-2
5=0

p (x)

with integral coefficients ¢, = (rr,_, — r,)/p . CaARLITZ [4] has proved that

m—1

(1) 1Ty (™) = & Hy@' (mod p) ,

n=1

where m =% (p — 1) and G is an explicitly given integer (see [4],
formula (2.16); note that the symbol G’ here stands for CarriTz’s CGy h.

Furthermore, this congruence gives, because of a connexion hetween its
left side and H,, a congruence

| Hy =+ HyG (mod p),
where G is an integer ([4, pp. 31—33]; see (16) below). From this one can
see, among other things, the well-known fact that H, = 0 (mod p) implies

H, =0 (mod p).
We shall generalize (1) as follows.
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Theorem 1. If K <is imaginary, then

u—1

[ Tw @™ ") = + hyG, (mod p),

=1

where w = Y a = (p — 1)/2b and G, is an integer (see (13) below).

Theorem 2. If K is real, then
a—-1
T_-I; v (Tb"_]) = &£ hyG (mod p) ,

where G, is an integer (see (15) below).

The proofs of these theorems are similar to that of (1). For b =1 we
have @, = G’ so that theorem 1 contains the result (1) as a special case.

The theorems express a dependence between h, and H,, discussed in
more detail in section 6. Here we mention the following

Corollary. If K is a proper subfield of F , then h, = 0 (mod p) implies
H,/h; = 0 (mod p).

It should be mentioned that problems associated with the divisibility
of the class numbers of cyclic fields are also investigated e.g. in [9] and [10]
(see also references given in these papers).

2. A preliminary lemma. Let f'(x) denote the derivative of the func-
tion f(z). In the following we shall write briefly (f’'/f) (x) for f'(z)/f(x) .

Lemma. Denote

w

fol@) = (1 —2™) (1 —277) . go(2) = fur(0)/ful@) .
where w is an integer. Then

p—2

C@ulg) (8) = 27 2 (@ — 1) -
with t =% (r — 1).
Proof (cf. [7, p. 125]). We begin with the relation
p—_\l
(2) (1—=02s=—p
s=1

that can be easily verified. From this it follows that
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a+o/u—9=-1—%f§mw

Making the substitution ({ : ™) and applying the result to
Sfalf) () = — (L 4+ & [ (1= 27)
we obtain
p—2
Sfulfa) () =11 4 2p7 3 ).
s=0

This yields further

wts

—2
Cgllg) () =7 = 1+ 2073 (rry = 1) )

so that, by definition of ¢, and because of

we have
’ P~2 w--s p—2 S
£(9./9.) (8) = 7°(2 Zoqsi' —(r—1) ZO ).
From this it is seen that the assertion of the lemma is true.

3. Relation between the fundamental and ecircular units. Consider
first the case of imaginary K . Then b is odd and @ even, ¢ = 2u .
Put

@) ={TT (1= 2 a = ey
(3) b1
={hmwxawu

where by the exponent } is meant the positive square root (for ()
see the above lemma). The numbers

ef’) 6=0,...,u—2)

are the circular units (Kreiseinheiten, cf. [2, p. 461] or [5, p. 23]) of K,
We denote by A the regulator of this unit system, i.e.

A= (det (loge(@ ™) @Grn=0,...,u—2).

Let ) (=1,...,u—1) be a system of positive fundamental
units of K,; then the regulator of K, is
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R = {det(logsj(g’“))i G=1,...,u—1; n=0,...,u—2),
and it is known that
hy=A4|R

(see, e.g., [2, pp. 461—462]). By writing

i ul i . -
(4) el =TT&0)" (=0,....,u—2)

j=1

where the r,'s are rational integers, we further get for h, an »integraly
expression
(5) by = H4-det(ry) (1=0,...,u—2; j=1,...,u—1).

Now, consider (4) with a fixed ¢ as an equation in the field F . Replace
¢ by an indeterminate @ and note that the equation thus received holds
for @ = ¢,2,...."". Hence we have

@)+ (1ot ...+ ) d (@) =T] g,

where @(x) is a polynomial with rational integral coefficients. After
differentiating logarithmically, multiplying by 2 and setting x = [ we
obtain

O T @)+ MS S = S rllefe)D) =0, u =),

where M, = @ (&) [ ¢(Z") is an integer of F. (Cf. [8, pp. 3—4].)

The second case where K is real is fully analogous to the above case.
Here, one need only replace v by a = 2u evervwhere in this section and,
in addition, b by 1b in (3).

4. Proof of theorem 1. We turn back to the case where K is imagi-
nary, and consider the equation (6).

Put 2=1—C andlet d; 1 =0,...,u — 2) be rational integers
such that
M;,=d, (mod 7).
Since p = eA?~', where ¢ is a unit of F, we have by (2)
p—1
> 80 =0 (mod i*7?).
s=1

Consequently
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p—1 p—2 s
(7) M, > st =d; > r(" (modp).
s=1 s=0
Making use of our lemma we infer from (3) that

Ile Z Z qs ku — ) gfs

and, further.

. . p—2b-1 . )
®) )= 2 (i — DT =0, u—2).
5=0 k=0
We now write
14 P‘ .
C(sj/ej)(é Z C,SC (j=1,....u—1),

where the ¢;,’s are rational integers, and substitute this with (7) and (8)
into (6). Thus we get

p—2 b—1 S p—2 s
z z fAku qs i—ku T ) é—f + d'i z Ts;r
s=0 k= s=0
(9) p—2 u—1
=> >yl *(modp) (t=0,...,u—2).
s=0 j=1

Comparing coefficients we can then conclude that the following rational
congruences hold:

b—1 u—1

(10) >R — 1) dir, _ZIU . (mod p)
k=0
(t=0,....,u—2; s:O,...,p~2).

The next step consists of multiplying both sides of (10) by pEbn=hs

(m=1,...,u— 1) and summing over s. By virtue of

p—2
Z r(2bn—1)s = 0 (mod p) s
s=0

P o S oo
S g =% " =0 (mod p)
s=0

s=0

this yields

p—2b-—-1 p—2u—1
itk 2bn—1 n—
(ll) ZO kz()T e )qu_l ku = z z ’UC]S'( 2bn=3)e (mOd p)
s s=0j=1

(6=0,....,u—2; n=1,...,u—1).

Here, the double sum on the left can be written in the form
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b—1 p—2

i+ku 2bn—1)(s+i+ku .
z r Z P )s+i+ )qs —
k=0 s=0

b—1 . p—2 .
z r2bn(l+ku) Z 7,,(2l'm.—!.)sqs p— erbm, w (r2bn—1) (mod p) .
k=0 s=0
Defining, in addition,
PE
C,-n=gocj,r( D Gim=1,...,u—1)
we see that (11) reduces to
u—1
br®iy (K"t = 3 1,0, (mod p)
j=1
(t=0,...,u—2; n=1,...,4—1).

From this, using (5) and denoting

D=det (™) ((=0,...,u—2; n=1,...,u—1),
C=det(C;,) (jym=1,...,u—1),
we get that
u—1
(12) DT Ty (™) = 4 hyC (mod p).
n=1

The determinant D, being of Vandermonde type, equals, except for
sign, the product of all 7* — #*" where 1 <i<n <wu — 1. Hence

D == 0 (mod p), and we may set
(13) G, =b"""D7'C (mod p) .

Combined with (12) this proves theorem 1.
We remark that the numbers D! and C, occurring in (13), of course
depend on b, i.e., on the subfield K in question.

5. Proof of theorem 2. Let the field K be a real one. Then we see,
by the final statement of section 3, that (8), and further (9) and (10) hold
with b replaced by 4b and u replaced by a. We multiply both sides
of this new (10) by 7"~ (n =1,...,a — 1) andsumover s. Proceeding
as in the proof of theorem 1 we finally arrive at

a—1
(14) (36D U p (") = 4 hyC (mod p) ,

where
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D = det (™), = det (C},) Z ¢, o

(i=0,...,0a—2; j,nm=1,...,a—1).
As before, D == 0 (mod p) . Thus, by setting
(15) G, =2"""""D7'C (mod p)

we see from {14) that theorem 2 is proved.

6. Residues of H, and h, (med p). As is well-known,

H = (1" ﬁ2p—1
n—1

T§Z(2n —1)s ,
0

§==

where Z is a primitive (p — 1)-th root of unity. (See, e.g., [5] or [6, pp.
377,430]. In the literature the expression of H;, as regards the sign, is
frequently incorrect.) Furthermore, if K is a proper imaginary subfield
of F, then

= (— 1)“2]—[ (2p)~ Z 7 ZEn b

(see, e.g., [2, pp. 461,776]).

Assume now that r is a primitive root (mod p?) so that +™ + 1 is
divisible by p but not by p2% When studying the residues of H, and A,
(mod p) one has to observe that

p—2
(2 = 1) pt 3 rZ =y () (mod p),

where v is any integer and p a prime ideal factor of p in the (p — 1)-th
cyclotomic field Q(Z). From this it can be easily deduced that

m

H,=2"" TT "1 (mod p) ,

n=1

and further, as shown in [4, p. 32],

(16) H, = — 22—“ﬁ p (**71) (mod p) .
Analogously, we find that

(17) hy = 2" ]'[ (=) (mod p)

and

(18) Hyfhy = — 270" 4 1) TTy (*") (mod p)

n
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where the last product contains those u (#**~') from (16) that do not occur
in (17).

Now h,, the class number of K, is by theorem 1 related with the
product of those (™~ ') from (16) where 2n — 1 is of the form 2bn; — 1
(ny =1,...,u — 1). Since these (™ ') occur also on the right side of
(18), we see that our corollary is true in the case of imaginary K .

On the other hand, if K isreal, then h; = 1 and, by (16) and theorem
2, hy, =0 (modp) implies H; =0 (mod p), so that the corollary is
proved also in this case. — Note that the latter case is trivial in view of
the previously known facts about class numbers, mentioned in section 1.
Indeed, if h, is divisible by p, then so is H, and hence also H, .

We finally recall that, for n =1,...,m — 1, » (*"~') = 0 (mod p)
if and only if B,, = 0 (mod p), where the B;’s are the Bernoulli numbers in
the even suffix notation (see [6, pp. 431—432]). This together with (16)
gives the known criterion, due to KvMMER [7], for the divisibility of H,
by p. It is seen from (17) that an analogous criterion for A, reads as follows:
h, 1is divisible by p if and only if the numerator of at least one of the
Bernoulli numbers B, 1.1 (n = 1,...,u) is divisible by p. (Another
proof for this is presented by CArLITZ in [3].) Moreover, applying theorems
1 and 2 we find that if %, is divisible by p, then so is the numerator of
atleastone By, (n =1,...,u— 1) or B, (n =1,...,a — 1)according
to whether K is imaginary or real.

University of Turku
Turku, Finland
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