ANNALES ACADEMIAE SCIENTIARUM FENNICAE

Series A

I. MATHEMATICA

449

REMOVABILITY THEOREMS FOR QUASICONFORMAL MAPPINGS

 $\mathbf{B}\mathbf{Y}$

SEPPO RICKMAN

HELSINKI 1969 SUOMALAINEN TIEDEAKATEMIA

doi:10.5186/aasfm.1969.449

Communicated 9 May 1969 by Olli Lehto and K. I. VIRTANEN

KESKUSKIRJAPAINO HELSINKI 1969

.

Removability theorems for quasiconformal mappings

1. Introduction. In this paper we shall study the following removability question: Let D and D' be domains in the euclidean n-space \mathbb{R}^n , $n \geq 2$, let $E \subset D$ be closed in D, and let $f: D \to D'$ be a homeomorphism which is locally K-quasiconformal in D-E for some K, which means that for every $x \in D - E$ there is a connected neighborhood U of x such that $f \mid U$ is a K-quasiconformal mapping [8, p. 20]. We ask for conditions on E and on the restriction $f \mid E$ which imply the quasiconformality of f. A special case for n = 2 of this situation is considered in [5, Theorem 3] which implies that f is quasiconformal mapping g of a domain $G \supset E$.

The set E is called an exceptional set if f is always a K-quasiconformal mapping. One of the main results which give conditions for the exceptionality is that the set E is exceptional if E is of σ -finite (n-1)-dimensional Hausdorff measure [9, 35.1], [3, Corollary 5]; for the case n = 2see also [7], [1], and [4, Satz V.3.2]. We shall give answers to the given problem in the other direction. It turns out (Theorem 1) that the condition mentioned above, namely the existence of a quasiconformal mapping gof a domain $G \supset E$ such that $f \mid E = g \mid E$, implies the quasiconformality of f even if no further assumptions are made on E. We shall also in Theorem 2 establish another form where the assumption on the restriction $f \mid E$ is weakened but E is assumed to be connected or locally connected. In these results the maximal dilatation of f is in general greater than K.

2. Notation. Throughout this paper D and D' are domains in \mathbb{R}^n and $n \geq 2$. If $A, B \subset \mathbb{R}^n$, d(A, B) denotes the euclidean distance between A and B. For $x \in \mathbb{R}^n$ and r > 0 we set $B^n(x, r) = \{y \in \mathbb{R}^n | |y - x| < r\}$ and $S^{n-1}(x, r) = \{y \in \mathbb{R}^n | |y - x| = r\}$. We also use the abbreviations $B^n(r) = B^n(0, r)$ and $S^{n-1}(r) = S^{n-1}(0, r)$. If $f: D \to D'$ is a homeomorphism, if $x \in D$, and if $0 < r < d(x, \partial D)$, we set

$$L(x, f, r) = \sup_{|y-x|=r} |f(y) - f(x)|,$$
$$l(x, f, r) = \inf_{|y-x|=r} |f(y) - f(x)|.$$

The linear dilatation of f at x is

$$H(x, f) = \limsup_{r \to 0} \frac{L(x, f, r)}{l(x, f, r)}$$

The k-dimensional Lebesgue measure is denoted by m_k . The (n-1)-dimensional measure of the unit sphere $S^{n-1}(1)$ is ω_{n-1} .

3. We start with a simple distortion result for quasiconformal mappings. Let v be an increasing function of the interval $[1, \infty)$ into itself and let $\varphi: A \to R^n$, $A \subset R^n$, be an injective mapping. We say that φ has *local v*-bounded distortion if for every $x \in A$ there is an s > 0 such that $x_1, x_2 \in A$ and $0 < |x - x_2| \le |x - x_1| < s$ imply

$$\frac{|\varphi(x_1)-\varphi(x)|}{|\varphi(x_2)-\varphi(x)|} \leq v\left(\frac{|x_1-x|}{|x_2-x|}\right)$$

Lemma 1. Let $f: D \to D'$ be a K-quasiconformal mapping. Then there exists an increasing function $v: [1, \infty) \to [1, \infty)$ depending only on n and K such that f has local v-bounded distortion.

Proof. Assume $x \in D$. Choose s > 0 such that $f\bar{B}^n(x,s) \subset \bar{B}^n(f(x),t) \subset D'$ for some t. Let $0 < |x_2 - x| \le |x_1 - x| < s$ and set $\alpha_i = |f(x_i) - f(x)|$, i = 1, 2. Assume $\alpha_2 < \alpha_1$ and let Γ' be the family of curves which join the boundary components of the ring $A' = \{y \mid \alpha_2 < |y - f(x)| < \alpha_1\}$ in A'. Then the *n*-modulus $M(\Gamma')$ of Γ' equals $\omega_{n-1}/(\log (\alpha_1/\alpha_2))^{n-1}$ [8, p. 5, 7]. For the *n*-modulus of the curve family $\Gamma = f^{-1}\Gamma' = \{f^{-1} \circ \gamma' \mid \gamma' \in \Gamma'\}$ we get by [9, 11.7] (see also [2, Theorem 4]) the estimate

$$M(\Gamma) \geq \varkappa_n \left(\frac{|x_1 - x|}{|x_2 - x|} \right)$$

where $\varkappa_n: (0, \infty) \to (0, \infty)$ is a decreasing function which depends only on *n*. Since *f* is *K*-quasiconformal, $M(\Gamma) \leq K M(\Gamma')$. Hence

$$\frac{|f(x_1) - f(x)|}{|f(x_2) - f(x)|} \le \exp\left(\left(\frac{K\omega_{n-1}}{\varkappa_n \left(\frac{|x_1 - x|}{|x_2 - x|}\right)}\right)^{1/(n-1)}\right) = v\left(\frac{|x_1 - x|}{|x_2 - x|}\right),$$

and the lemma is proved.

The main step is the following lemma (cf. [5, Lemma 3]).

Lemma 2. Let $E \subset D$ be closed in D and let $f: D \to D'$ be a homeomorphism which is locally K-quasiconformal in D - E and such that $f \mid E$ has local v-bounded distortion for some v. Let E_0 be the set of points $x \in E$ such that for every integer j there exists an integer $k \geq j$ such that $(B^n(x, 1/k) - B^n(x, 1/2k)) \cap E = \emptyset$. Then (a) $m_n(E_0) = 0.$

(b) There exists a $c < \infty$, depending only on n, K, and v, such that H(x, f) < c if $x \in D - E_0$.

Proof. Since no point of E_0 is a point of outer density for E_0 , $m_n(E_0) = 0$ [6, p. 129].

To prove (b) it suffices by [9, 34.2] to show that a uniform bound exists for H(x, f) for points $x \in E - E_0$. Let $x_0 \in E - E_0$. By performing similarity transformations we may assume that $x_0 = f(x_0) = 0$. There exists an integer k_0 such that $(B^n(1/k) - B^n(1/2k)) \cap E \neq \emptyset$ for $k \geq k_0$. Since $f \mid E$ has local v-bounded distortion, there exists an s > 0 such that if $x_1, x_2 \in E$ and if $0 < |x_2| \leq |x_1| < s$, then

$$\frac{|f(x_1)|}{|f(x_2)|} \le v\left(\frac{|x_1|}{|x_2|}\right).$$

Now let r be such that $0 < r < \min(d(0, \partial D), s, 1/k_0)/8$ and such that $\overline{B}^n(L(0, f, r)) \subset D'$. We set

$$\begin{split} &L_r = L(0, f, r), \ l_r = l(0, f, r), \\ &A_1 = \{x \mid r < |x| < 2r\}, \ A_2 = \{x \mid r/2 < |x| < r\}, \\ &H_1 = \{x \mid 2r < |x| < 8r\}, \ H_2 = \{x \mid r/8 < |x| < r/2\}, \\ &F_i = \bar{A}_i \cup \bar{H}_i, \ i = 1, 2, \\ &r_1 = \sup_{x \in E \cap F_i} |f(x)|, \ r_2 = \inf_{x \in E \cap F_i} |f(x)|. \end{split}$$

We shall make use of the fact that the sets $\bar{A}_1 - f^{-1}\bar{B}^n(r_1)$ and $\bar{A}_2 \cap f^{-1}B^n(r_2)$ do not meet E.

Assume $L_r > r_1$ and let $z \in fS^{n-1}(r)$ be such that $|z| = L_r$. There exists $\tau_1 > 1$ such that the line segment $J = \{ \imath z \mid 1 \le \tau \le \tau_1 \}$ is contained in $f\bar{A}_1$ and such that $\tau_1 z \in fS^{n-1}(2r)$. Assume $r_1 < \sigma < L_r$ and let Γ be the family of curves which join $f^{-1}J$ and $f^{-1}S^{n-1}(\sigma)$ in $\bar{A}_1 - f^{-1}B^n(\sigma)$.

Next we derive a positive lower bound for the *n*-modulus $M(\Gamma)$ of Γ . Let r < t < 2r and set $S = S^{n-1}(t)$. Then $S \cap f^{-1}J \neq \emptyset$. We show that also $S \cap f^{-1}S^{n-1}(\sigma) \neq \emptyset$ holds. To prove this we first note that $\overline{H}_1 \cap E \neq \emptyset$. There is therefore a point $u \in \overline{B}^n(r_1) \cap f\overline{H}_1$. The line segment $\{\lambda u \mid 0 < \lambda < 1\}$ meets fS. The assertion then follows from the fact that fS has points in both components of the complement of $S^{n-1}(\sigma)$. We now choose a point $y \in S \cap f^{-1}J$. Since y does not belong to the nonempty closed set $S \cap f^{-1}S^{n-1}(\sigma)$, there exists an open half space M such that $y \in M$, $M \cap S \subset S - f^{-1}S^{n-1}(\sigma)$, and $\overline{M} \cap S \cap f^{-1}S^{n-1}(\sigma) \neq \emptyset$. Denote by Γ_t the family of curves $\gamma \in \Gamma$ which lie in $\overline{M} \cap S$.

For the *n*-modulus $M_n^{\mathcal{S}}(\Gamma_t)$ of Γ_t with respect to \mathcal{S} the estimate $M_n^{\mathcal{S}}(\Gamma_t) \geq b_n/t$ holds where $b_n > 0$ is a constant which depends only on n [9, 10.2]. If $\varrho: \mathbb{R}^n \to [0, \infty]$ is a Borel function such that

$$\int\limits_{r} arrho \ ds \geq 1$$

for every rectifiable $\gamma \in \Gamma$, we have

$$\int\limits_{S} \varrho^n \, dm_{n-1} \ge M_n^S \left(\Gamma_t \right)$$

by definition. Hence

$$\int \varrho^n dm_n \ge \int_{A_1} \varrho^n dm_n = \int_r^{2r} \left(\int_{S^{n-1}(t)} \varrho^n dm_{n-1} \right) dt$$
$$\ge \int_r^{2r} \frac{b_n}{t} dt = b_n \log 2 .$$

This gives $M(\Gamma) \ge b_n \log 2 > 0$.

On the other hand, the ring $B^n(L_r) - \overline{B}^n(\sigma)$ separates J and $S^{n-1}(\sigma)$. Consequently, $M(f\Gamma) \leq \omega_{n-1}/(\log(L_r/\sigma))^{n-1}$ [8, p. 7] where $f\Gamma = \{f \circ \gamma \mid \gamma \in \Gamma\}$. Let D_1 be the component of D - E which contains $f^{-1}J$. Then every curve of Γ lies in D_1 . Since $f \mid D - E$ is locally K-quasiconformal, $f \mid D_1$ is K-quasiconformal, and we have $M(\Gamma) \leq K M(f\Gamma)$. This gives $b_n \log 2 \leq K \omega_{n-1}/(\log(L_r/\sigma))^{n-1}$. Hence

$$rac{L_r}{r_1} \leq \exp\left(\!\left(\!rac{K\,\omega_{n-1}}{b_n\log 2}\!
ight)^{\!\!1/(n-1)}\!
ight) = a_n$$

Similarly one proves $l_r/r_2 \ge a_n^{-1}$.

Let $x_i \in E \cap F_i$ be such that $|f(x_i)| = r_i$, i = 1, 2. Then $|x_1|/|x_2| \le 64$. Finally we obtain the estimate

$$rac{L_{\mathsf{r}}}{l_{\mathsf{r}}} \leq a_n^2 \, v(64)$$
 ,

which proves (b).

Theorem 1. Let $E \subset D$ be closed in D and let $f: D \to D'$ be a homeomorphism which is locally K-quasiconformal in D - E for some K. Suppose that there exists a quasiconformal mapping g of a domain $G, E \subset G \subset D$, such that $g \mid E = f \mid E$. Then f is quasiconformal. *Proof.* By Lemma 1, f | E has local v-bounded distortion where v depends only on n and on the maximal dilatation K(g) of g. By Lemma 2, there exists a set $E_0 \subset E$ of measure zero such that $H(x, f) < c < \infty$ for $x \in D - E_0$ where c depends only on n, K, and K(g). By an n-dimensional version of [8, Lemma 6.3], f is differentiable almost everywhere. If f is differentiable at $x \in D - E_0$, $|f'(x)|^n \leq c^{n-1}|J(x, f)|$ where f'(x) is the derivative and J(x, f) the Jacobian of f at x. We shall show that f is ACL [8, p. 15]. The quasiconformality of f then follows from an n-dimensional version of [8, Theorem 6.11].

It suffices to prove that f is ACL in G. To show this, let Q be an open *n*-interval such that $\bar{Q} \subset G$. Let $P: \mathbb{R}^n \to \mathbb{R}^{n-1}$ be the orthogonal projection. For each Borel set $A \subset PQ$ we set $Z_A = Q \cap P^{-1}A$ and $\psi(A) = m_n(fZ_A)$. By Lebesgue's theorem, the set function ψ has a finite derivative $\psi'(y)$ for almost every $y \in PQ$. Furthermore, g is absolutely continuous on Z_y and $m_1(E_0 \cap Z_y) = 0$ for almost every $y \in PQ$. Fix $y \in PQ$ such that all these three conditions are satisfied. By symmetry, it is sufficient to prove that f is absolutely continuous on \overline{Z}_y .

Let F be a compact subset of Z_y . Since g is absolutely continuous on Z_y , since $g | E_0 = f | E_0$, and since $m_1(E_0 \cap F) = 0$, we have $\Lambda_1(f(E_0 \cap F)) = 0$ where Λ_1 is the 1-dimensional Hausdorff measure. Hence $\Lambda_1(fF) = \Lambda_1(f(F - E_0))$. Let k_0 be an integer such that $0 < 1/k_0 < d(F, \partial Q)$. For each integer $k \ge k_0$ we define the set F_k of points $x \in F$ such that 0 < r < 1/k implies $L(x, f, r) \le c \ l(x, f, r)$. For every $k \ge k_0$ for each integer $k \ge K_0$, we have

$$F - E_0 \subset \bigcup_{k=k_0}^{\infty} F_k = \hat{F}$$

and one can prove the inequality (see [9, (31.3)] and [1, p. 10])

(1)
$$\Lambda_1(fF)^n \le \alpha \ c^n \ \psi'(y) \ m_1(F)^{n-1}$$

where $\alpha < \infty$ is a constant which depends only on *n*. Consequently, also $\Lambda_1(fF)^n$ has the right hand side of (1) as an upper bound. After this a simple limiting process shows that f is absolutely continuous on Z_y . The theorem is proved.

Theorem 2. Let $E \subset D$ be connected or locally connected and closed in D. Let $f: D \to D'$ be a homeomorphism which is locally K-quasiconformal in D - E for some K. Suppose further that $f \mid E$ has local v-bounded distortion for some v. Then f is quasiconformal.

Proof. The set $E_0 \subset E$ defined in Lemma 2 consists in this case of isolated points only, and $D - E_0$ is a domain. By (b) in Lemma 2 and by [9, 34.1] $f \mid D - E_0$ is quasiconformal. But E_0 is removable [9, 17.3], and the theorem is proved.

7

Ann. Acad. Sci. Fennicæ

Remark. If φ has local v-bounded distortion for some v, it does not necessarily follow that φ is a restriction of a quasiconformal mapping. This is shown by an *n*-dimensional version of the example presented in [5, p. 388]. Hence the condition on $f \mid E$ is in this sense weaker in Theorem 2 than in Theorem 1.

University of Helsinki Helsinki, Finland

References

- 1. GEHRING, F. W.: The definitions and exceptional sets for quasiconformal mappings. - Ann. Acad. Sci. Fenn. A I 281 (1960), 1-28.
- 2. —»— Symmetrization of rings in space. Trans. Amer. Math. Soc. 101 (1961), 499-519.
- 3. —»— Rings and quasiconformal mappings in space. Trans. Amer. Math. Soc. 103 (1962), 353-393.
- 4. LEHTO, O. and K. I. VIRTANEN: Quasikonforme Abbildungen. Springer-Verlag, 1965.
- 5. RICKMAN, S.: Quasiconformally equivalent curves. Duke Math. J. 36 (1969), 387-400.
- 6. SAKS, S.: Theory of the integral. Hafner Publishing Company, 1937.
- 7. STREBEL, K.: On the maximal dilation of quasiconformal mappings. Proc. Amer. Math. Soc. 6 (1955), 903-909.
- 8. VÄISÄLÄ, J.: On quasiconformal mappings in space. Ann. Acad. Sci. Fenn. A I 298 (1961), 1-36.
- 9. -»- Lectures on *n*-dimensional quasiconformal mappings. Van Nostrand, to appear.

Printed October 1969