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1. Introiluction

The theory of quasiconformal mappings in the euclidean z-space has
been quite extensively studied dunng the last ten years. Ilsually, a quasi-
conformal mapping is assumed to be a homeomorphism. For fi : 2, there
exists also a theory of non-homeomorphic quasiconformal mappings. See

Lehto-Virtanen [3, Kapitel VI] and Kiinzi [2, Kapitel 5]. These mappings
are often called quasiconformal functions (not mappings). Some authors
call them pseudoanalytic functions, but this terrn has been used by Bers
in a different sense. We prefer the word guasi,regular, and do not make any
distinction between the words »mapping» and »function». It is fairly easy
to generalize several function-theoretic results for 2-dimensional quasi-
regular mappings, thanks to the following factorization theorem: Every
2-dimensional quasiregular mapping ca,n be represented in the form g o fu

where h is a quasiconformal homeomorphism ar.d g is a complex analytic
function.

Higher dimensional quasiregular mappings, under the name »mappings
with bounded distortion», have been considered by Re§etnjak since 1966
in a series of important papers [15, 16, 17, 18, 19, 20]. (See also Callender

[2].) He uses &n analytic definition which will be given in 2.20. He also
hints at a geometric definition in [6, p. 629]. The purpose of this paper is
to give several equivalent characterizations for quasiregularity. These are
based on the linear dilatations and on the capacity ofa condenser. The last
concept, defined in Section 5, is a generalization of the modulus of a ring
domain. Some of these results are new also for n : 2. fn Section 8, we
give some applications. For example, u,'e show that the branch set of a non-
constant quasiregular mapping has measure zero.

2. Preliminary results

2.1. Notation and, termi,nology. The real number system is denoted by
Rt and its two-point compactification At U { co , - oo} by å, . W" l"t
R" , n ) 2 , denote the euclidean m-space, and -8"*1 will be identified with
thesubspace fin:0of -8". For r€-8" wewfite r:frLaL+...*rneo
where a1 7 . . . t ao are the coordinate unit vectors of .8" . For each set
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A c R" u,e let CA , Ä , OA , and int,4 denote the complement, closure,

boundary, and interior of A , all taken with respect' to R" . Furthermore,
d,(A) is the diameter of A. Given two sets A and B ilrt. R" , d(A , B)
is the distance between A and B , ,4 \ B is the set-theoretic difference
of A arid B, and A+B isthesetofallpoints d,+b suchthat o€.4
and ö€.B. Given re R" and r20, weleb B"(r,r) denotetheopen
ball {ye&"lly-rl<-r}, and § -t(u,r) the sphere 08"(r,r). We
shall also employ the abbreviations

8"111 : B"(0,r), Bo : B"(l), ,s"-'(r) : §"-r(0,r) , §'-t : ,s"-r(l).

The Lebesgue measure of a set A c R" will be written as nx"(A) ,

or simply as m(A) if there is no danger of misunderstanding. m"(A) is

also defined for sets in z-dimensional spheres and linear submanifolds of
R'' , n'> z. The Lebesgue integral of a function / over a set .4 c l?"
is written as

Itdmn

.t

Ior I f@) dm^(r) ,
J

where the subscript, n may again be omitted. We set Qo: m.(B^) and
@n-r : n!)^ : m.- 

'I§ 
-'). The linear measure Ar(A) of a set A c R"

is defined as follows: For f ) 0 let

A"(A) - d(A;)

over all countable coverings {Ar, Ar, . . .} of A such that d(At) < t
Then

tL(A) : lyn,tnl 
: 

:]f /Ii@).

A c R" is a Borel set, Bor.4 denotes the class of all Borel subsets of A .

A neighborhood of a point fi or a set' A is an open set containing r
A. A domain is an open connected non-empty set. The notation

G --> R' includes the assumptions that G is a domain in -8" and that
is continuous. If f :G-.R", AcG and A€R', welet N(y,f ,A)
the number (possibly infinite) of points in A fi f-'(y) . We set I{(f , A)
sup.l[(y,f ,A) oYer AeR".
Giverr a domain G c R", we let .I(G) denote the family of all domains

D such that D is a compact subset of G. If f :G->R", D e J(G),
and y e CflD, then p(y , f , D) is the degree (topological index) of the
triple (A ,f , D) U4, p. 1251. Suppose t'hal r € G has a corurected neigh-
borhood DeJG) suchthat Dnj-t171x'1):{r}. Therr p(l@),f ,D)
is independent of the choice of D , and is denoted kty i,(r , f) .

inri
i:1

If

or

f:
f
:
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The ri'h partial derivative of a mapprng / : G --> R" is denoted by
Ai . If all partial derivatives of / exist at a point r e G, the formal de-
rivative of. f at fr is the linear mapping f'(u):R"-->R", defined by
f'(r)u:a,f(r),I<,i,{n. If / is differentiable ab r, f,]Ilen f'(r) is
the derivative of /, that is,

f@ * h) : f(r) * f'(*)h { lhle(r,h)

where e(r,h) -->0 as h-->0. The Jacobian of. f a"t u ls denoted by
J(r ,f) .

If T : R" --> R" is a linear mapping, rye set

lrl : 
ä1T 

tr"i ,4r) : min lTrl

If U is an open set in -8" , r,re let Cr(U) denote the class of all p times
continuously differentiable functions u: U --> RL , and CÅ(U) the class
of all ueCP(a) whosesupport sptz isacompactsubset of U. Afunc-
tion in CiP) will be identified in a natural way with a function in CP,(R"),

which vanishes in CU .

Suppose that f : G -> -8" . The branch set B, of / is the set of all
points of G at which / fails to be a local homeomorphism. / is open if the
image of every open set in G is open in -8". / is light if for every U e R' ,

l-'(A) is totally disconnected. / is discrete if for every g e R" , f-r(y) is
discrete, that is, consists of isolated points. / is sense-preserving if
p(y,f ,D)> 0 whenever De"f(G) and yefD\/aA./issense-revers-
ing if p(y,f ,D) < 0 for all such triples (y,f ,D). I satisfies the
condition (Ä/) if the image of every set of measule zero has measure zero.

A continuum is a compact connected non-empty set. A ring is a domain
A c R" such that ,6" \ A has exactly trro components, where E" is the
one point compactification of -8" .

2.2. Quasi,add,i,tiae set functi,otts. LeL [i be an open set in -8". A map-
ping E : Bor [/ ---' A, i. said to be a q-quasiadd,i,tiae set function, g 2 L,
if the following conditions are satisfied for all Borel sets in [/:

(1) E@)>0.
(2) AcB implies e@)<c@).
(3) V@) < a if A is compact.
(4) If AL , . . . , A* are disjoint and if At C A, then

From (4) it follows that the same inequality is true for an infinite se-
quence of disjoint Borel sets Ar, Ar, . . .

lr

i:1
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The ugryter and lower der'iuat'iaes of a g-quasiadötive set function I at'

a point * e U are defined as follows:

v

where A runs through all

'(*):- ,r§ 
r,ä1, mt,

'(*): l'*,äi| ^ffir,
open cubes and open balls such that x e Q c U

v

2.3. Lemma. Suptpose that E is a q-quasi,ad,il'iti,ae set functi,on'i'n o'n open

set U . Then
(l) E' and, E' are Borel functi,ons.
(,2) V'@)<qV'@)<@ a.e.

(3) Ior each open set V c U ,

The proof fot q: I is given in [14, pp. 204-209]' The proof for t'he

general case is completely analogous. The definition of [14] for the deriva-

tives g' , E' i* slightly different from ours, because the sets Q are in [14]

assumed to be cubes. However, this makes no difference in the proof of
2.3, since the vitali covering theorem holds for the family of all closed

cubes and closed balls.

2.4. Normald,omai,ns. Givenamapping f :G->-8", adomain DeJ(G)
is said to be a normal, doma,i,m of / if faD : afD . A normal, neighborhood

of apoint r€G isanormaldomain D suchthat Dnf-'(f(r)):{n)'
we shall use the concept of a normal domain only for open mappings.

In this case, we have always ofDcfaD, and the condition f1Dc 7fD

me&ns that / defines a closed mapping D ->fD. The definition of why-
burn [2g] for a normal domain is slightly more restrictive since he also

demands Lhat;, f defines an open mapping D --> fD. It is not difficult to
show that, for discrete open mappings, the domains U(*,f ,r) , which

will be defined in 2.8 a^nd used throughout the paper, satisfy this addi-

tional condition, but we shall not, use this fact.
If D is a normal domain of an open mapping ,f , then fD n IAD - A '

flence, p(y,f ,D) is constant for g efD. This constant' will be denoted

bv p(f ,D).

t,
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2.5. Lemma. Suppose that f : G -> R^ 'i,s open, that U c R" 'i,s a

iloma,i,n, and, that D i,s a component of f'a such that D e J(G) . Then D
isanormalilomai,n, fD:U, and, Ue JffG).

Proof. Since / is open, AfDcfAD. Next assume y eflD. Then
y:f(r) for some re 0D. Now r{f-tg, since otherwise D would
notbeacomponentof f-try. Thus, yeU)fD. Hence AelD\/D:
/r\ lD: AlD. Consequently, D is a normal domain. Furthermore,

fiDna:A. Thus fD:UnlD is both closed and openin U,
whence fD:U. X'inally, A:fD is a compact subset of. fG, i.e.,

a eJffG).

2.6. Lemma. Suppose that f : G ---> R" d,s open anil' that D i,s a normal,

d,omain"f f .If E i,seitherafutma'i,noracontinuumin fD, then f *opu
eaerA conxponent of D n f-tg onto E . Xurthermore, 'if X i,s a compact

subset of fD , then D n 1-rV is comltact.

Proof. The case where .E is a domain follows from 2.5. If E c fD is

compact, then D n |-tg : D n 7-rg is compact. Moreover, / defines

a,n open mapping D n f-tg -> E (127, (7.2), p.l47l). If E is a continuum,
every component of D n f-tg is mapped onto E by 127, (7.5), p. f aSl.

2.7 Lemma. (Path l,i,fti,ng). Suppose that f : G ---> R" is light and open

and, that DcG is a normal ilomai,n. Buppose also that §:lo,bl->fD
is apath,that a 

=r0<b, 
and,that ro€D suchthat f(ro):§(to). Then

there 'is a path *:la ,b)--> D such that a(tn\ : ro anil, f " a: p .

Proof . Considering the restrictions of B to [a , fo] and [fo , b] sepa-

rately, wemayassumethat lo isanendpoint,say fo: a. Set l:la,b),
J':§I , and J:Dll-'J'. Therr J and J'arecompact,and f
defines an opell mapping J-->J'. Defirre g:J x I->J'x 1by g(r,t)
:(f(r),t) and fu:I->J'xI by §'(t):(P(t),t). Then s is a

light open mapping, and prl is an arc. By a result of Whyburn 127, (2.1),

p. 186] there is an arc Joc J X 1 such that (xo,a) e J and such that
,r maps Jo homeomorphically onho PrI . Set a : P o (glJo)-'o p, where

P:JxI-->J istheprojection.Then *(äo):/o &nd f "u:F.

2.8.Notati,on. lf. f :G-->E",reG, and r)0, thenthe r-com-
ponent of f-LB"(f(m),r) is denoted by U(n,f ,r).

2.9. Lemma. Brytpose that f : G -> R" is disuete and, open. Then
limd(U(u,f ,r)):0 foreaery n e G . If U(r,f ,r) eJ(G), then U(r,f ,r)
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'i,s anormal d,omai,n and, fU(n,f ,r): B"(f(r) ,r) eJff@)). nurthermore,
for euery poi,nt r e G there ,i,s a posi,ti,ae number o* such that the followi,ng
cond,,i,tions are satisi,fed, for 0 { r 4 on :

(l) U(r,f ,r) ,i,s a normal nei,ghbourltooil, of rc .

(2) U(* ,f ,r\ : a@ ,f , o*) fi f-tB"(f(*) ,r) .

(3) 7U(r,f ,r): U(r,f ,o*) n,f-'§"-'(,f(r),r) i,f r 1o*.
(4) Ca@ ,f ,r) ,i,s connecteil.
(5) CAp ,1 ,r) i,s connected.

(6) If O < r < s ( o,, then U(,u,f ,r)c U(r,f ,s), and, U(r,f ,s)
\ D(, ,f ,r) ,i,s a ri,ng.

Proof. Given reG and e)0, choose a neighborhood W of r
such that WeJG),d,(W)1e, and Wn7-t171r)):{z}. Then
U(r,f ,r\CW for 0<r< d,(f(r),fAW). Hence d,(U(r,f ,r))-+0 as
r-->O. If U(*,f ,r)eJ(G), it, follows from 2.5 that U(r,f ,r) is a
normal domain and that fU(*,f ,r): B"(f(r\,1eJffG).

The first part of the proof implies that r has a normal neighborhood D .
'W'e choose o, such that 0 1o* <d,(f(r) ,flD) and such that (I(r ,f ,o*)
C B"(r,t)C D for some , > 0. To verify the properties (1)-(6)
we mayassumethat 0 <r < o,. Set U : U(r,f ,r),Uo: U(r,f ,on),
and 7 : fU : B"(f(*), r) . The condition (l) is clear by what was proved
above. Since Uollf-L(f(r)) : {r}, (2) follows from 2.6. Suppose next that
ze Uofif-'ay. Since / is open, every neighborhood of z meets f-rTr .

By (2), this implies ze e. Thus ze Otl, whence Uon|-r6ycAU.
On the other hand, fAU :7fa : AV implies 7LT c Uoftf-rav, and
(3) is proved.

Since Uc B"(r,t)c D, there is exactly one component D of CI/
whichmeets CD. Weshowthat E:CU. Set.[':CU\Z. Since
Dnf-l(f(r)):{r}, it follorvs from 2.6 tlrrat U-Dfif-ry. Hence

fI does not meet 7. Since / is open, AfI c fAX c fAU : OV. Sinee

fl is bounded, fn c AY . Since / is open, int -F' : 0 . Setting Ut: CE
wethus have t7, : A . Hence fUrc inLfj : V, rvhichimplies fE c V.
This proves I : A . Thus, CU :.8 is connected.

If x,,UeCO, thereis I suchthat r (rr(o* andsuchthat r,Ae
CU(r,f ,rr)c CU. Hence (5) follows from (4).

The relation A@,f ,r)c U(r,f ,s) follows from the last, statement
of 2.6. By (4), the components of the complement of A: U(r ,1, §)\
O1r,f ,r1 are A@,f , r) and CtJ(r,f , §). By (5) and the Phragmdn-
Brouwer theorem [1, p. 359), A is connected. Thus ^4 is a ring.

2.I0. Corollary. If f : G --> R" ,i,s di,suete and, open, then euery poi,nt
,i,n G has arbi,trarily small normal, nei,ghborhooil,s.



O. Ilanr:ro, S. Rrcxivraw and J. \rÄrsÄrÄ, Definitions for quasiregular 11

2.II. Lemma. If f , G -> R" i,s ilisorete anil, open. dim By 4n - 2 .

This important result u'as proved by Öernavskii [3, 4]. Another proof
is given in [25]. It implies that G \ .B1 is corurected. Henco i,(r,f) hasa
constant value, either f I or -1, in G\Bf . In the first case / is

sense-preserving, and in the second case sense-reversing. X'or convenience,

we shall restrict ourselves in this paper to sense-preserving mappings. This
is obviously an unessential restriction.

2.12. Lemma. Suppose that f : G ---> R" is sense-preserai,ng, d,i,screte,

and, open.
(I) If DeJ(G), then N(y,f ,Dl=p(y,f ,D) forall yeCf1D,

and, N(y,f,D):p(y,f ,D) for AeCfGD U(DnBl))'
(2) If D i,s a normal d,omai,n, N(f , D) : p(f , D) .

(3) If AcG'i,scompact, N(f ,A)<q.
(4) Euerygtoi,nt *e G hasanei,ghborhooil V suchthati,f U isanei,gh'

borhood, of r and, if U c V , then N(f ,U): i(r,f)'
(5) r € By i,f and, only if i,(r , f) 2 2 .

Proof. (1) Let yeCfAD and let Dnf*'(y):{r:r'.'.,r*}. Then

tt(y ,f , D) : 9,r@, ,fl .
j:1

Since f is sense-preserving, i,(ri,f)21. Thus p(y,f ,D)>k:
I{(y ,f , D). If y eCfQDU (Dn Bi) , every i(r;,.f) : I in the above

sum, and rve have p(y,f ,D): N(A,f ,D).
(2) By [5, 2.2f, dimfBy{n-2 ( ra. Hencethereisapoint y €/D\

fBr. By (I), p(f ,D):p@,f ,D):N(y,f ,D) <x(.f,D). On the
other hand, (1) implies that l{(z,f ,D) < p(f ,D) for all ze Cf1D.
Hence, p(f , D) : N(f , D) .

(3) By 2.9, A can be covered by a finite number of normal domains

Dr, . . . , Do. Using (2) we obtain

N(f ,A) =år,r,D,):Zp(f,D,)( 
oo.

(4) 8y2.9, z hasanormalneighborhood V. Tf U c tr/ isaneigh-
borhood of r, thereisanormalneighborhood 7, of r suchlhat Vrc U .

Then (2) implies i,(x ,f): frff , Vr) ! N(f , U) < 1r(/ , V) : i(, ,f) .

(5) follows from (a).

2.13. Remarlc. Since a light sense-preserving mapping is discrete and

open 122, p. 333], we could replace the words »sense-preserving, discrete,
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and open» by »sense-preserving and light» throughout the paper. Ho$'ever,
we shall not, do this, because it is essential that our mapptngs are discrete
and open, while sense-preservation is assumed mainly for the sake of
convenience.

2.14. Lemma. Suppose that f : G --> R" is sense-preseraing, tliscrete,
anil, open, and, that f i,s d,ifferentioble at roe G. Then J(ro,f)ZO. ty
roe 3.1, J(ro,"f) :0. If A ,i,soBorelseti,n G and,i,f f i,sil,ifferentiable
a.e.'in A, then

(2.15) J (* , f) d,nt(x) IV(y ,f , A) dm(y)

Proof. If J(ro,f) I 0 , then d(*o,f): sgrr J(ro,l) by [ta, (68).
p. 3321. Since / is sense-preserving, J(ro,l) ) 0 . By 2.12, i,(r ,f) > Z

for re By. Thus J(ro,f):0 if r6e By. The inequality (2.15) can be
derived from general integral inequalities (see [14, p. 260]), but it can also
be proved directly as follows. 'W'e express .4 \ Bf as a union of disjoint
Borel sets Ar, Az , . . . such that each Ai, is contained in a domain
D;c D in which / is injective. Since (2.15) is well known to be true for
homeomorphisms and since "I(r ,.f) : 0 a.e. in A n Bf, we obtain

sl
Rn{

f
I

I J(r , f) dm(n)
J

r
-J

l?n
J

r

J
Ai

r
- lJ(r.f)dm(n)

J/\B/

r: 
J);1.(y,f ,A,)

2.16. AOL-mappings. Let R?-' be the subspace of R" defined b5,
fri : 0, and let Pi: R" --- R?*t be the orthogonal projection. Suppose
that U is an open set in R". A mapping g : U ---> A- is said to be ACL
if g is continuous and if for each open z-intewal Q such that Q c U .

g is absolutely continuous on almost every line segment in Q , parailel to
the coordinate axes. More precisely, if .E; is the set of all points : e PtQ
such that g is not absolutely continuous on Qn P,'(r), then m^_r(E,)
:0,1<i{n. An A0l-mapprng has partial derivatives a.e. ff these
are locally Zp-integrable, p 21, g is said to be ACLp.

Suppose fhat, f : G --> R" is a discrete open mapping and that Q e J(G)
is a,n z-interval. X'or each Borel set A c PQ we set EIA , Q) :
tru(f (8 n Pt 1A)). Then A r-> Et(A, 0) i* a q-quasiadditive set function,
where q-N(f ,Q) < @ by 2.12. Hence, by 2.8, its upper derir.ative
Ei@ ,0 is finite for almost er,ery z e PrQ .
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2.17. Lemma. Suppose that f :G-->R" ,i,s d,isuete and, open anil, that

for euery d,omai,n D e JG) there i,s a finite constant C, such that
hk(2.r8) (Zd(fa,))" < c"vi@ ,q (>mr(Åi))-,

j:L j:r

wheneaer Q i,sanopen n-,i,nteraali,m D,l<i {n,z€P;Q, anil, /1 ,...,
Å* o,re d,i,sjoi,nt closed, subi,nteraals ol I n Pr'(r) . Then / is ACL".

Proof. This lemma is a generalization of a result of Agard [1]. The
following proof is essentially due to him.

Leb Q e J(C) be an open n -interval. A simple limiting process shows
that (2.f8) is true whenever År,...,/6 ara non-overlapping subintervals
of Qn P,'("). Thus / is ACL. To prove that f is ACL", it suffices to
show, by symmetry, that lä"/1" is integrable over @ .

Choose an integer 7o such that 0 < lbo < d(8, äG) and set
Ltj

s(r) : @"f(r)|,si@) : + I s@lte") d.t .

-rfi
Then Si@) is defined for almost every r e Q and for all j I jo . We
first show that g1---> g a.e. in Q . It is well knowrr lhat g is measurable,
in fact, g is a Borel function (Saks [21, p. 170]). Hence, the function
(r,t)r->g(rlte") is measurable in Q x 1-t1i,lb). By n'ubini's theo-
rem, this implies that gi is measurable. \4/rite I : Qo x J , where

Qo : P"Q is an open (z- l)-interval and J : (o, ö) is an open l-interval.
Then almost every z e Qo has the property that, tr->f(2, f) is absolutely
continuous for t e @-Lbo,b+lbo) . For such z , Lebesgue's theorem
implies that gi@ , t) ---> g(z , t) for almost every t e J . From X'ubini's
theorem it follows that lim inf gi@) : g(r) : lim sup g;(r) a.e. in A .

Thus ,gi + g a.e. in Q .

Again by Futlini's theorem, almost ever.,r,

gi@ ,'u) --> g(z , u) for almost every z € 0o

Ij(E): p"(E ,Qo x (u-rlj ,%+tb))

for all Borel sets Ec Qo and for j Z jo. Then the set, functions li are
q-quasiadditive for q : N(f , D) where D : Qo x (a-lljo,b*lbo) .

If F',{z) < a, it follows from (2.18) that the function tr->f(z,t) is
absolutely continuous on lu-llj,u+lbl and that its total variation is
not greater than 1C"Fr(z)(zli)n-I)1/E . Consequently,

u e J has the property that
Consider such IL , and set

U+Lfi

l+ | Q-r('
u-rE

gi@ , 1L)n :
\n

, t)i (tt) < crFi@)j12 .
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atingfntegr

(2.19)

r

J si@

Qo

over z e Qo and using 2.3 we obtain

,u)"dmn-L@) <+Cr8'j?i(00) - tCrq'i*ff(Qo x (u-Lb,u*Lb»)

For each Borel set E c J set y(E) : m(f(Qo x E)) . Then rp is a
q-quasiadditive set function in "f . As j -+ oo , (2.19) implies by tr'atou's

lemma

I g@ , u)" ilm^-r(z) { c"q2tp'(u) .

,l
Integrating orer u € "I and using 2.3 we obtain

I

I g" d* < C"f"PV) : Coqam(fQ) < oo '
J
a

Thus g" is integrable over Q .

2.20. Quasi,regular mappings. A mapping f : G --> R" is said to be

quas'i,regular if / is ACL" and if there exists a constant K >- I such that

(2.21) lf'@)|" < KJ(*,f)

a.e. in G. The smallest K > L for which this inequality is true is called

the outer d,ilatation of / and denoted by Koff) . If f is quasiregular, then
the smallest K > T for which the inequality

(2.22) J(* ,f) < Kl(f'(r))"

holds a.e. in G is called tlne inner d,i,latati,on of / and denoted by K,(f).
The marimal d,ilatati,on of / is the number K(f): max (Kr(/) , Koff)).
Tf K(f) < K , / is said to be K-quasiregular. If / is not quasiregular, u-e

set Koff): K,(f): K(f): a .

The above definition is a natural generalization of the analytic definition
for quasiconformal mappings 1241. A sense-pre§erving mapping is -K-quasi-

conformal if and only if it is a K-quasiregular homeomorphism'
It is not true that every ACl"-mapping which satisfies (2.22) is quasi-

regular.X'orexample,theprojection /(z) : ntar satisfies (2.22)w'ifh K: l,
since "I(r ,f) : l(f'(r)) : 0 everywhere.

The above definition has been used by Callender [2] and Re§etnjak [f5]
in a slightly different form. In their definition (2.2I) is replaced by

[ i otfl@)z)"'' ! nntzKJ(x ,f) ,
i:l j:I

(2.23)
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where K is sometimes replaced by Kn or by K"t2. Let, K"(f) be the
smallest K >- I for which (2.23) holds a.e. 'Ihen it is easy to show that

(2.24) K"(f) {_ Koff) { nnnK"(f)

and that these inequalities are the best possible. n'urthermore, we have
the inequalities

(2.25) Koff) < K,(f)-, , K,(f) ! Ko(f)-, ,

which also are the best possible.

2.26. Lemma. Let f : G --> R" be a quas,i,regular mappi,ng. Then
(1) f i,s either constant or sense-presera,i,ng, di,screte, and open.
(2) f is d,ifferentiable a.e.
(3) f satisfi,es the cond,iti,on (N) .

These important results are due to Re§etnjak [fG, f8].

2.27. Lemma. Suppose that f : G -> R" is quas,iregular. Then f,(r) : O

a.e. ,i,ru B1. Moreoaer, m(fB) :0 .

Proof. We may assume thab f is not constant. By 2.14, J(r ,f) : O

a.e. in "B1. Hence lf'@)l :0 a.e. in By. From [14, Lemma 3, p. BG0]
it follows that

Hence m(fB) :0 .

2.28. Lemma. Suppose that f : G --> R" is a non-constant quasiregular
ma,pping anil, that euery po,int rlzr, G \ By has a neighborhood, tl su,ch that
RoU lU) ! a, Kr(f lU) <b . ?hen Koff) I a, K,(f) {b .

Proof. By 2.27, f'(r):0 a.e. in By. Hence, the inequalities (2.21)
and (2.22) are automaticall;, satisfied in By.

3. Path families and quasiregular mappings

3.1. Suppose that .4 is a subset of R". By * pathin A we mean a
continuous mapping y : A --> *4 where / is a closed interval in .81. If
-l- is a family of paths in -8" , we let X(,1') be the family of all non-negative
Borel functions g : -8" --+ -81 such that

15

fr
I N(y,f ,Blclnt(y)- lJ(*rlt
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r

/s

for every rectifiable y € J- . The modulus of

p€r(lr)

f is the rumber

dm.

Suppose tbat I isafamilyof pathsinadomain G andthat /:G->R"
isamapping.Thenthefamily fl ofallpaths f oy,ye T, iscalledthe
image of f under /. If f : G --> G' is a K-quasiconformal mapping,
it is well known [23] that

Mg)lK<tulffn<KM€)
for every path family f iL G. We conjecture that the right hand in-
equality is true also for K-quasiregular mappings. As yet,, we have been

able to prove it only in special cases, for example, if n :2 or if Bl: b .

The left hand inequality need not be true for non-homeomorphic quasi-

regular mappings, as is seen from the follorving counterexample: Let f
be the family of all horizontal segments which join the'i'ertical lines Re z

:0 and Rez: I in the complex plane -82. If f :R2-+-82 istheana-
lytic function f(z\ : e', we have M(T) : oo , IUI(f f) : 2n - Hou-ever,

we c&n establish the following inequality:

lQn
I?r&

3.2. Theorem.
that A'isaBorel
patlts 'in A ,

Proof . Set

Suppose tltat f , G -> R" i,s a quo,siregxLl(r?' nla,pping clnd,

trg) . lr(/, A)K o(,f)ilrffr)

lf (*+h,)-f (*)l

lht

for r e G. Thus L(*,f): lf'(r)l whenever / is differentiable at n.
It is easy to see thal r r> L(r,,f) i. a Borel function.

Suppose that g' e Pffn. Define g: R" ->A' fy setting

s(r) : s'(f(r))L(r ,f)

for r€.4 and p(r) :0 for zeCA. Lel lo bethefamilyof allrecti-
fiable paths y € l- such that / is absolutely continuous orl 7 . By this
we mean that if 70 is the parametrization of y by means of its path length,



then / o 70 is absolutely continuous. By a result of X'uglede ([6] or [23,
p. 16l), M(Td : M(f). X'rom the formula concerning change of variables
in integrals it follows that

rr
lad.s> I o'd,s)t
I - -t,

for all I e lo. Thus 0 € X(l-o) . A more detailed proof is given in [26].
Hence we obtain

rr.Mq): M(To) t I p" dm : I e'(f(r))"L(* ,l)" il'rn(x)
JJ

Rna
I

< Koff) I e'ff@))J(r,fld,m(r).!
Since / is ACL", J(r ,f) is integrable over eyery domain D e J(G). Thus,
the transformation formula in [14, Theorem 3, p. 364] yields

tl
I p'ff(*))"J(r ,f) ilm(r) : I e'(y)"N(y ,f , A n Q d,m(y)
JJ

^/
The theorem cited above is forxnulated in [ta] for finite-valued func-

tions, but we ma,y apply it to min (h , Q'") and let then fr -+ oo . Since

D e JG) is arbitrary, rre obtain

M(I) 
= 

N(f , A) u"ffi 
{ Q'* itnl .

lln

Since this holds for every g' e Xfff), the theorem follows.
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4. The metric definitions

4,1. Notation. Let I : G ---> -8" be discrete and open, and let r e G .

If 0 < r <il(r, 0G), we denote

l(r,f ,r)- inf lf(y)-f@)1,
l*-vi:"

L(r,f,r): suP lf@)-f@)l: sup l/(y)-/(r)i.
l*-yl:. lx-yltt
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If 0 < r <d,(f(r), AfG), we denote

t*(* ,f ,r) : 
,.]ff,r,"r1*-"i 

,

L*(r , f , r) : §uP l*-"1 : sup ir-zl .

zeOU(x,f,r) ,ei@,f,,)

Recall that U(*,1, r) is the r-component, of f-rB"(f(r),rJ .

4.2. Defi,ni,ti,on. Let f :G->.8" be discrete and open. If reG, we
call

H(* , f) :--

the l'inear dilatation of f at n ,

H*(* , f) -

L(*,f , r)
lrm sou* 

t@ ,-f , r)

A,nd

L*(x: , f , r)"i:rpm
t}ne 'inaerse linear ili,latati,on of f at r .

fn this section we first establish upper bounds for H(r, /) and H*(r ,l)
when / is a non-constant quasiregular mapping. The main results (Theo-
rems 4.13 and 4.14) are that both these dilatations characterize non-constant
quasiregular mappings. These characterizations are called the metric de-
finitions for quasiregularity.

The inverse linear dilatation also plays an essential role in Section 7.

where the important inner dilatation inequalit;' for the capacities of
condensers is proved.

'We assume now that in all the lemmas which appear in this section

f :G--->.8" is a discrete open mapping. Given three sets A,B,C in R".
a path T:la,bf --->R" is said to joi,n A and B in C if y@)eA,
V(I9B and y@eC for a<t<b.

4.3. Lemma. Let re G and, let o* beas,i,n2.9.?hen l,*(r,f ,L(r
f ,r)): L*(r,f ,l(*,f ,r)): r for 0 <r <1,*(r,f ,o.) .

Proof. Set l:l(*,f ,r) and L:L(r,f ,r). Obviously l<L1on.
Weprove l*(u,f ,L): r. Theprooffor L*(r,f ,l):r issimilar.Since
B"(r,r)c U(ru,f ,L),1*(r,f ,L)> r. Choose o€§"-1(r,r) such that,

lf(a)-f(r)l: L. By 2.9, 7U(r,f ,L): U(*,f , d,) o f-t3"-'(f(r),L).
Thus ae 0U@,f ,r), which implies l*(*,f ,L)=la-rl:y.

4.4Lemma. Let reG and, let o* beas,i,n2.9.Xor 0<s<t{o*
let f(s,t) bethefaru,ily of allpathswhi,ch joi,n 7U(r,f ,s) anil, 1U(r,f ,t)



in
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LI(u,f, f)\ O1r,f ,s) . Suppose that there exi,st constants b and, o,
ä < o, 0 ( 6! 6,, such that M(l(s, r)) < bIUIfff@,fl) for all,

s<t<o. Then H(r,f) <C< co where C d,egtend,s only on, m

b.

Proof. Assume 0<r(1,*(r,f ,o*), andset L:L(r,l,r),1,:
l(r,f ,r). Obviously L<o*. Suppose l<L. Then ff(l ,L) is a

subfamily of the family of all paths joining §"-'("f(*), 7) and S"-L(f(n), L)
in B"(f(*), r)\ B"(/(tr), r) . Hence Mfff(l , L)) < a"-,1$og(Lll))-L 123,
p. 71. By 4.3, lU(r ,f ,l) and lU(r ,f , L) meet §"-1(tr, r) . X'rom this
ancl the fact that U(r ,f , r) \ O1r ,7 ,11 is by 2.9 a ring it follows the
estimate MQ(l , L)) > a^) 0 where a, depends only on n 126,ll.7).
Since .il4(-l'(1, , L)) <bn[fff(l, Z)) , we obtain Lll < C where

- lläro,-r\ r/(n-r)\

c: exP((?) 
)

This proves the lemma.
The upper bound for H(r,/) when / is a non-constant quasiregular

mapping follows now easily from the result of Section 3 and Lemma 4.4.

4.5. Theorem. Let f : G -'> R" be a non-constant quasiregular mappi,ng,

Then for eaery n e G

H(r,f)!C<a,
u'het'e C il,epenils only on n and, the prod,uct i,(r,f)Koff) .

Proof . Let r e G . By 2.26, 2.12, and 3.2, the conditions in 4.4 arc
satisfied with ä : d(*,f) KoU) ZI and some d ) 0. Theresultfollows
from 4.4.

A similar result holds for H*(r ,f):

4.6. Theorem. Let f : G -+ R" be a non-constant quasi,regular mappi,ng.

Then for euery r e G

H*(m,f) ! H(r,71zi(+flr<o$) { C* < a,
u;here C* d,epend,s only on n and the prod,uct i,(r , f)Koff) .

Proof. Let' r € G. By 2.26, f is sense-preserving, discrete, and open.

Choose o, as in 2.9, and set D : U(*,f ,o*). Let t > 0 be such that,

L(*,f ,t)1o* and let ro)0 be such that U(*,f ,r)cB"(n,t) if
0<r rr. Assume 0<r{rr, and set tr*:t*(x,f ,r),1*:
I*(*,"f ,r), L:L(r,f ,L*), and l,:1,(u,f ,l*). Wechoosealine.I
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through f(r). Let A' : {y ll < ly-f(r)l < Z} , let E' and -8" be the
components of JnÄ', and set E:Dfrf-ril',X:Dfif-rT'. If
Eo is any component of E, fEo* E' by 2.6. By 2.9, lU(r,f ,l):
D O./r-r6"-rff@), l) and 7U(r, f , L) : D n7r-rg"-r(f(r), L). Hence Do

meets both 7U(r,f ,l) and iU(r ,f , L) . Since 7U(x ,f ,1,)c
B"(r,lx) and OU(r,f ,L)cCB"(r,L*), wegetthus 0 +5"-1(r,u)n
EocS"-t1r,u)fi8, and similarly §"-1(r,u)fiIlA for every
u,l*1to<L*.

Set :4.:{zll* <lz-ul<L*}, andlet l- bethefamilyof allpaths
which join ä'and "F in A. Then M(l)Zc"log(L*ll,*) where c.)0
is the z-modulus of the family of all paths joining e" and -e, in §"-r
L26, lO.L27. On the other hand, every path in f T joins .O' and .E'' fu A' ,

and hence Mfff) ( c,log (Lll) by [26, I0.r2]. By 3.2 and2.l2 wegetthus

L*

But r-l(n,f ,L*)-L(x,f ,l*), andletting r+O weobtain

Theorem 4.Scompletes the proof.

4.7. Ranark Define a -I{-quasiregular mapping g : Rz --> Rz by g(z) :
(r{i,Ky)h where we have used the complex notabion z : r*iy, where
K > l, and where k is a positive integer. Then H(0 , g) : l{k and
i,(0 , g) : fu , which shows Chat the linear dilatation depends in general
on the local degree.

We turn now to the converse problem and establish characterizations
of a non-constant quasiregular mapping / by H(r,f) and H*(a,f).
Recall that / : G ---> -8" is a discrete open mapping in the lemmas in this
section.

4.8. Lemma. Let C c G be compact. Then there er,i,sts t > O suclt that
the mapping (r , s) t--> l*(r , f , s) i,s conti,nuous anil the mappi,ng (r , s) r>
L*(r,f , s) is louer semi-conti,nuous i,n the set C X (0 , r) .

Proof. X'or re C let §,)0 be such that U(*,f,s,)c B"(r,a)
where a:d(C,AG). Wecover C bysets U(*r,f ,s*rl2),,i:I,...,
k. Assume re C and let re U@,,f ,s*,12). Then U(*,1,s,,f2)c
U(ri,f,s*,) and hence U(*,f,s)cC*aB" if 0<s(f:
min(s,r/2 s,ol2). Assume (ro,so)€Cx(0,t) and 0(e{
min (l* (*o,f , so) , d,(U(ro,.f , sr), 0G)) , and set yr: f(uo) .

,f)Koff)c,los (!r;)
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We show first that (r , s) r+ l,*(r , f , s) is upper semicontinuous at
(ro,so). L€t z e Ou(*o,,f,s6) be such that l*o-zl : l,*(ro,"f,§o). The

seb fB"(z , el2\ is a neighborhood of f(z) and there is therefore a point
u eB"(2, el2)fi CA@o,f ,so) such that o' : l@) e B"(yo,s). Set z :
(la'-yol -sdlz and let d, 0 < ö < elz, be such that lr-xol < ö

implies lf@)-grl (2. If now (r,s)€C x (0,r1 suchthat lr-rol<ö
and ls-sol <2, then u'Q.B"(f(r),s) andhence aQO(r,"f,8) .This
implies l*(r,f ,s) <lu-zl * lz-rol * lro-rl1l*(ro,,f ,ss) f e.

To show tlnat (r, s) » l*(* , f , s) is lower semicontinuous at (ro , ss) ,

set r:|,*(ro,.f ,§o) -e12. Then B"(ro,r)cU(ro,"f ,§o), and 2t:
d(fB"(ro,r), §"-l(ye,ss)) is positive. Let ö,0< ö<e12, be such that

lr-rrl { ö implies lf@)-yol<t. Assume (r,s) €C x (0,tf ,lx-rol
<ö, and ls-soi <2. Then lB"(*o,r)cB"(f(r),s) and hence

B" (*o,r)c tJ(r,f ,sl because reB"(ro,r). X'rom this it follows that
l*(r,f , s) > r- lr-roiZl*(rr,,f , so) - s.

Finally, to prove the lower semicontinuity of (r, §) » L*(r,f ,s) at'

(ro,so), let ze OU@o,"f ,so) be such that lz-rol:L*(to,,f ,so) and

let ue U@o,f ,so\fi8"(z,elz). There exists acontinuum .4 in U(*0,

"f ,so) suchthat ue A and B^(*s,el2)c,4. Then fA is acompactset
in B"(ao , so) and 2r : d,(fA, §"-l(yo , s0)) is positive. Again, let d ,

0 < d 1el2 , be such tinat ir-xol < ä implies lf(r)-yol < r. Assuming
(r,s) € C x (0,t1, lr-rol < ä, and ls-sol < z, we have fAc
B"(f(n),s) and thereforc Ac U(*,f,s)' Hence L*(*,.f , r) 2 lx-ul Z
L*(xr,,f,so) -e.

4.9. Rem,arlc. Leb g : RB ->,83 be the mapping defined in the cylin-
drical coordinates by g(r,q,z) : (r,2q,z). Then rr+ L*(r,9,s),
s ) 0, isdiscontinuous atpoints r : (s, E,z) .

4.10. Lemma. Let C c G

tlr,atfor 0<-rl q

(1) n*l(*,f ,r) o?LCl r+
(2) n > l*(* ,f , L(* ,f , r))
(3) n'r> L*(* , f ,L(r ,f ,r))

be compa,ct. Then there erists g > 0 such

L(* , f , ,) are cont'i,nuous i% C ,

'is cont'inunous 'i,n C ,

t,s louser senx'i,cont'inuous 'i,n C .

Proof. The condition (l) holds for o <r <d(C,AG). Let f be as in
4.8 and let g,0 (p <d(C,AG), be such that, lf(y)-f@l<f when-

ever ly-zl<Q,AQC, and ze G. Then (2) and (3) follow from 4.8

and (I).

4.1I. Lemma. If H(t,,f) o, H*(*,f) i,slocal,lybound'ed,, f i,s ACL"

2L
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Proof. The proof is carried through in full detail for H*(*,f). By a

simplified version one c&n prove the statement for H(x,,f) . W" shall show
that the condition of Lemma 2.I7 is satisfied. This is done by modifying
the proof of Gehring [9, Lemma 9].

Let DeJG),let QcD beanopen z-interval,andlet P:R"->R"-r
be the orthogonal projection. X'or each Borel set A c PQ we define Zn -
Q n P'LA. Setting E(A ,Q) : m(fZe) we obtain a 4-quasiadditive set
function A r-> E(A, 0) in PQ , where q: N(f , D) . Fix z e PQ sruch
that the upper derivative i'@,Q) is finite, and set J:2,.

Let I be a compact subset of J . There exists p > 0 such that (2)
and(3)in4.l0holdfor 0<r (q and C:8. Since H*(r,f) islocally
bounded, there is a constant c< oo suchthat H*(*,f) (c for re D.
Given an integer k such that 0 < Uk q min (d,(I ,0Q), q) let Ix be
theset of all r €7 suchthat 0 <r <lllcc implies L*(r,f ,L(r,f,rDlc
!l*(r,f , L(r,f ,r)) : r' Then every Ip is compact by 4.r0. Moreover,
I : UI* by 4.3. X'ix ä, andchoose e > 0 and r> 0. Byawell-known
lemma [7, p.6] there is a ä,0 < ö < 1/]c, suchthatforevery r,0 <
r1ö, thereexistsacovering of I* byopensegments 1r,...,/o of
J such that (I) mr(/) :2y, (2) the center ri of Åi, belongs to Iy,
(3) each point of & belongs to at most two different /r, and (4) pr <
mr(86) { e. Choose r € (0, ö) such that ll@) - f(o)l < f/2 whenever

lu-ul{r and u,aeQ. Set si:L(u,f,r), [t:B"(f(r,) ,s,).
Then f?xc UVt and d(V) : 2s; { t. Hence A\(fX*) <)d,(V,) S
) zr, . By Hölder's inequality this implies

2"n"-L
A'r(fPn)" 5 2nrn-L I tl - n: )rn(V;)

Since .r; €-F6, we have L*(rt,,f , r,) ( cl*(r;,f , si) : cr, arr.d therefore
U; : fl(r;,,f,s,) c B"(ri,cr). Since u < Lllc, this implies Yi : fUic
lZu where A: B"-1(z,cr). Observing that every point in Zo belongs
to at most 4c different Ui, we get, thus \m(Y) { 4cqm(fZr) :
acqg(A, Q) . X'rom this and from pr < rrur(X) * e it follows

d)n %Ln-t V)

Lettingfirst r-+0, then e->0, andthen f ->0, weobtain A1ffX*)"
qCE'@,Q)lnL(X)"-L where C - 2 +2c"Q._rlQ*. Since ff is the limit
the expanding sequence of the compact sets ,fIr, we have Ar(fI)
lim.,lt (/fr) and hence

of
:

(1. 12) Ar(fI)" < qCg'(" , Q)m,r(I)"-'
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Letnow Ii, i:1,...,n1,, be disjointclosedsubintervalsof J. We
have ) d(jl) <2 Ar(ftt) < qAr(fUI1) . Applying $.r2) b n : U{ we

obtain

(Z d(fl))" 3 q'*' Cv'@ , Q) (\ mr(111"-t .

Thus(2.f8)istruefoltl : n.By symmetry,itholdsalsofor I <d < n-l .

Hence / is ACL".
We are now in a position to prove the metric definitions for quasi-

regular mappings.

4.I3. Theorem. A non-constant marypi,ng f :G->R" is quasi,regular i,f
anil, onl,y if it satisfi,es the followi,ng cond,iti,ons:

(l) f i,s sense-preseraing, ili,screte, and, open.
(2) H(r , f) i,s locally bound,eil, i,n G .

(3) There eri,sts a < @ such that H(r,f) {a for almost eaery re
G\Br.

Proof. Suppose first that / satisfies the conditiorrs (l), (2), and (3).

The mapping "f is ACL" by 4.1I. An open ACl"-mapping is differentiable
a.e.124,p. 91. Let D e J(G). By (2) there exists c < @ suchthat H(r,l)
{o for reD. If /isdifferentiableat reD, wehave

ll'@)1" 3 c"-t J(* ,f) .

Since this holds a.e. in D,/lD is quasiregular.If m €D\ By andif U
isacorurectedneighborhoodof r suchthat U cD\ By, ibfollowsfrom
(3) that K,UIU), K,(flU){a"-r. Hence /iD is a"-1-quasiregular by
2.28. Since this is true for every D e J(G) , f is q'-'-quasiregular.

Let now / be quasiregular. The condition (f) follows from 2'26, and
(2) and (3) from 4.5 and 2.t2.

4.14. Theorem. A non-constant magtpi,ng f : G ---> R^ i,s quasi,regular

if and, only i,f it satisfies the followi,ng conditions:
(t) f i,s sense-gtreserai,ng, d,iscrete, anil, olten.

(2) H*(u , f) is locally bouniled, in, G .

(3) There er'i,sts a* < a such that H*(* , f) ! a* for almost eaery

r€G\-B1.

Proof. Suppose lhat f satisfies (f), (2), and (3). As in the proof of 4.13

we conclude tlnat f is ACL" and differentiable a.e. Each point in G \ .B1

has a connected neighborhood U such that /lU is injective. Hence

H(f("),ff1u)-'):H*(z,f\ for z insuch a U' Thistogetherwith(2)
and (3) imply that (/lU)-l and hence flU are o*n-1-quasiconformal. ff,
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in addition to this, we show that ll'@)l : J (r , f) : 0 for almost every
r e By, we can conclude bhat f 'r o*n-1-quasiregular. Let ro € .B7 be a
point where / is differentiable. By 2.L4, J(ro,f) -- O . Since / is dif-
ferentiable a.e., it is sufficient to show lbLal f'(ro): 0 . We have

(4.15) f@o+h) - f(*r) - f' @o)t + lhle(h)

where e(h)--> 0 as ft,--+O. Suppose that lf'@dl: 1> 0. Choose unit
vectors hr,h, sucht};rat lf'@o)htl: .1 and f'(*o)hr:0. Consider r > 0
such that U(ro , f , r) is a normal neighborhood of ro . Choose a1 , ar) O

such that ro{a;h;€1U(ro,f,r), i:1,2. Then lf@r*a;hr)-
f@il: r, and we obtain from (4.15)

iarf'(ro)hr* ""r@r7=)l: 
r : arle(urhr)1.

Thus

L*(*o,f ,r\ _ dz _ l"-le(arhr)l
l\%Jn="r= lt\"rhr)l'

which implies H*(ro,,f) : @ . By (2), this is a contradiction.
If / is quasiregular, the conditions (1), (2), and (3) follow from 2.26,

4.6, and.2.12.

5. Condensers

5.1. fn this section we generalize the concept of a
capacity. This genera,lization is called a conderl.qer,
properties of the cepacity of a condenser.

ring
and

domain and its
\\,'e state some

5.2. Defi,nition. A cond,enser is a pair E: (A, C) where Ac R" is
open and C is a non-emptycompactsetcontained"in A. ,E is ari,ngl,i,ke
cond,enser if ,4 \ C is a ring (see 2.1). E is a bound,ed,cond,enser if z4 is
bounded. Acondenser E: (A,C) issaidtobeinadomain G if. AcG.

The follov'ing lemma is immediate.

5.3. Lemma. Il f :G-->R" is open and, E: (A,C) i,s a condenser
in G , then (fA , fC) i,s a condenser i,n fG .

In the above situation rye denote fE: (lA,fC).

5.4. llhe ca.pacityof aconil,enser. Let, E : (A , C) beacondenser.Weset

r
-inf I

"eWo(E) J
lYul" dm
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and call rtthe cagtacity of.the condenser E . Tlne seb Wo(E) : Wr(A, C) is
the family of allnon-negativefunctions z : A ---> -81 suchthat (l) z € Co(A) ,

(2) u(r)>L for r€C, and(3) ,rl isACL. Intheaboveformula

lVzl : (2,@,u)')'t'.

We mention some properties of the capacity of a condenser.

5.5. Lemma. Il E: (A,C) i,s a condenser,then

t
capD: inf I lV"Ya*

"ewo@lE) J

where lvtr@) : Wf (A , C) : Wr(E) n C3@) .

Proof . Obviously

capr{ inf INuYo*.- -revroop1!

The converse inequality is proved by a standard approximating argument.

The construction involves first multiplying ueWo@) by I * e, e ) 0,
so that the resulting function is > (l*u) on c , and then forming a
smooth integral avera,ge, cf. e.g. [26, section 27]. The details may be omitted.

5.6. Lemma. Il E: (A,C) is a ri,nglike conöl,enser, then, capU -
cap (A \ C) dzr the sense of Gehri,ng [8, p. 500].

This is a direct consequence of z-dimensional versions of [8, Lemma 1,

p. 50ll and [8, Remark, P. 502].

5.nl . Lemma. If

uhere the i,nfi,m%rn 'i,s

A and U)C.

Proof . Obviously
type, hence

E - (A , C) 'i,s cL condenser , tlt en

cap0 : inf cap (U ,C) )

taken ouer all ope?t, sets U su,ch that A 'is compact i,n

cap E { cap (U , C) for all sets U of the above

there exists a function

c).

%eLet s>0. Then Wo@) such that
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Since spt zl

ctl and A

(cup

ulr,ere bn is a positiae constant

Letting e -+ 0 gives the desired result.

f

I
uA

is compact in A, there exists an open set U
iscompactin A. Then ueWr(tl ,C) and

r

A

such that spt z
we obtain

The lemma follows.

5.8. Lemma. The inequality

m(A)
capU 

= a<c,ae,-oa-"

holils for the capacitg of a bouniled, cond,enser E : (A , C) .

Proof. Let 0 ( e ( d(C , AA)". There exists an open set U such that
CcUcUcA and it(C,AA)"<d,(C,OU)J-e. if we define u(r):
d,(r , CU)ld,(C , aa), then lu(r)-u(y)l { l"-yllde , aU) for all & ,
y e R". Thus ue Wo(E) and lVzl < tld(C ,OU) a.e., which implies

m{A)

d,(C,AA)"- t

5.9. Lemma. Buppose that E: (A,C) is a conilenser such that C is
connected,. Then

Proof. By 5.7 we may suppose that a is bounded. we may also assume
that d(c) : r > 0 and that' c contains the origin and the poinb re^ .

Let, ueWtr@). X'or 0 <t <r welet ?(t) denotethehyperpl&yra n.:[,.
Using the method of 123, p. 91, we estimate the integral

il1^-r>b*ryI
m(A)

wltich depends only on ,t?, 
.

I lYuln dmn-,.
r(r)



Fix zeCn?(f) . For UeS"-z let R(A) bethe§upremumof all
Jo)0 suchthat z+ty€A for 0<r<fo. Then

n(y)
r
| 1Yu1"1ty)\dt > u(z) - u(zlB(y)y) > |

J

for all y e S^:. By llölder's inequality this implies

"f'
t I (n-r)-' R(y) | lvu(z*ty)l t"-2 ilt .
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\ rl-l

I
I

Integrating over y e §"-2 yields

rroln

(5. 10 ) sn-z s"-2 o

= f lYuln dmn-r.
,"1,t

On the other hand, we obtain by llölder's inequality

(5. 1 1) s"-2 sn-Z s'-2

I r in_l

= 
(n-L)nt*-, @ n r(t), (/ R-r d,mn-z)

Setting f(t) : ffin-r(An rU)) , we "O;; 
from (5.10) and (5.11)

f
I lYul" dm*-, 

= 
(n-1)1-"-1/(n-t) *:!S-') f(t)ri(l-n) .

,{,t

fntegrating orrer 0 <t 1r we obtain

t'i
(b.LZ) 

.l lYul* clm 
= 

(n-I1t-"-tt@-t) rtfilvr-tt 1 f (t)Ii(l-,) dt .

J

Hölder's r;nr*lity gives

; \,7] , ; ' \,r-1 
r



Ann. Acacl. Sci. Fennierc A. I. 448

By (5.L2), this implies

-' *(A)'

Since this holds for every u e Wtr @) , the lemma follor,vs.

IS

E

6. The condenser ilefinition for K"(/)

6.1. Suppose that f : G -->-8" is a mapping. A condenser E : (A, C)
said to be a normul conilenser of / if /. is a normal domain of /. If
is a normal condenser, we set N(l , E): -nf(f , A) : p(f , A) (cf . 2.\.
This section is devoted to the proof of the following result:

6.2. Theorem. Suppose that f : G ---> R" 'is sense-presera,i,ng, d,iscrete,
anil open, and, that I < K { o . Then the follous,i,ng cond,iti,ons are equ,i,ualent:

(r) Koff)<K.
(2\ cap E < KN(f , E) cap fE for all normal conrlensers E i,n G .

(3) cap E < KN(f , E) capfU for all ringlilce normal, condensers E
i,n G.

Since (2) implies (3) trivially, it suffices to prove that (B) > (1) + (2).

6.3. Proof for (3) = (1). \Ve show first, using the metric definition
4.13, that / is quasiregular. Leb r €G, and choose 6*) 0 as in 2.g.
Choose 0(rr {r, 1o*, and set Ur:U(r,f ,ri),,i:1,2. Thel
E : (Ur, 7r) i. a ringlikenormal condenser. Let l' be the family of all paths
joining 0U, and 0U, h % \ ,, , and tet J", be the family of all paths
joining the boundary components of the spherical rlng A : B"(f (r), rz) \
B"ff@),r)) in A. By 2.9, A[Ji:orn/.-rg"-r(f(r),r,), i:r,2.
From the path lifting lemma 2.7 it follows that lr: fI .

tsy 5.6 and by a generalized version of [10, Theorem l], cap E : M(I)
and capfU - M(lr). Hence (3) implies MQ) < Ki(r,f)M(fl-). X'rom
4.4 it follows that H(r,f)<C < oo whero C depends only on n,K,
and i,(r,/) . Since i(*,f): I for r€G\ By, it followsfrom4.lSthat
/ is quasiregular.

If r eG\ Br, then there is aneighborhood 7 : B^(r, r) such that
flV is injective. By (3) and by 5.6, cap R < K cap fR for all rings .B c Z .

Hence Kofflv) < K by the corresponding result for quasiconformal
mappings [26, 36.r]. By 2.28, Koff) < K .

6.4. Proof for (l) * (2). Suppose tlnat E : (A , C) is a normal con-
denser in G. Let e > 0. By 5.5, there is z € Wf (lD) such that

28



I lVrY dm l capfU I t .

i
Define u:A->fi'by u(r):a(l@D. Then u(n)2L for r €C. Since

/ is ACL and a.e. differentiable, a has a.lso these properties. Since zl is a
normal domain of f , it follows from 2.6 that spt z c A n f-t' (spt o)

is compact. Hence u e Wo(E), which implies

r
capES llYuldm.I

Here lYu(r)l < lYa(f(r))l I/'(r)l a.e. Using lt4, Theorem 3, p. 3641 we
obtain

r
cap fr { Ko$) I lYa(f ("))l"J(r , f) dm(x)

J

nu
I

_ Ko(f) I lYu(y)l"I[(a,f ,A)dm(y)
!"

I{(f , E) Krm I lV, l'dm < nff , E) Koff) @ap fE
fA

is arbiträry, (2) follows.
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Since e

+e)

7. The conilenser ilefinition for Kr(/)

This section is devoted to the proof of the following result:

7.1. Theorem. Suppose that f : G -> R" i,s seruse-preseraing, il.'iscrete,

and, open, and, that I < K ( co . Then the following condi,tions are equiualent:
(r) K,(f) < K.
(2) capfU < R cap E for all condensers E in G .

(3) cap fil S K cap E for all ri,ngli,ke condensers E i,n G .

7.2. Remarks. This result differs from 6.2 in two respects. First, in 7.1

the factor N(f , D) does not appear. §econd, the inequality (2) holds for all
condensers while the corresponding inequality cap E < If(/ , D)K,U) cap f E
of 6.2 is given only for normal condensers. fn partieular, (2) holds for con-
densers E : (A , C) such lhat Ä is not compact in G . This makes 7.I to a
useful tool when the boundary behavior of quasiregular mappings is studied.
X'or example, suppose that f : R" --> -8" is a bounded non-constant quasiregu-
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lar mapping. If E is the condenser (fi" , -Bn; , u'e have cap E : 0, while
5.9 implies cap fE > 0 . This contradicts (2), and we have proved Liouville's
theorem in za dimensions (cf. Re§etnjak [19, p. 661]). We intend to retunr
to related questions in a later paper. Tho proof of 7.1 is considerably more
difficult than that of 6.2. Since (2) implies (3) trivially, it, suffices to prove
that (3) + (r) + (2).

7.3. Proof for (3) = (1). We sho'w first rvith the help of Lemma 2.I7
that f isACL". Let D?J(G), andlet Q beanopen z-intervalin D.
Write Q: Qo X "I, where Qo is an (ru-l)-interval in -8"-1 and "I is
a,n open segment of the r,-axis. Using the notation of 2.16, we have g"(E , Q)
: m(f(t x J)) for Borel sets E c Qo. I'ix z e Qo such that ,p*(" , Q)

{ oo, and let År,...,Ån be disjoint closed subintervals of the segment
f,,: {z) X J . Set Ai: /; * rB" wher.e r is a positive number such
that (i)the domains A; are disjoint, (ii) .4; c Q , and (iii) Q"r I a"-rmr(/i)
for l<i<k. Then (A;,/;) is a ringlike condenser, and'rve obtain
from 5.8 and (iii) the estimate

cap (Ai, At) { m(A;)1'r" i 2ro,-1 mr(/;)jr .

On the other hand, 5.9 implies

d( fl,\
(cap (fA1,.fJ,))'-' i t," ilÄ .

Together with (3) these yield

where C depends only on n and K
Summirgover I <i<k ar1d"usi I{ölder's itrequalitv \r-e o}ttain

d(fA;))" { Ctm*-,(B}-l ?il,(fAi) nL1(4,))"-1

where B : B"-1(z , r') and Ct depetrd-s only on tL and I{ . Setting
q: I,{(f , D) rie have ) m(fA,\ l qm(U fA,) < 7V,(B , Q) . Letting r-+ 0

we thus obtain

d(fÅ;))" { qCrqr'"t=, 0) mL(lt))"-1

By symmetry, Lemma 2.17 implies that / is ACL".
As an open A0l"-mapping, / is differentiable a.e. by [24, p. 9].

prove that / is quasiregular by showing that if / is differentiable at
then

k

(>
f - I

Ilg

k,

/\
t./

;_'t

k

(>
rl :1

It.

(>
ti':1

It

(>
i:1

We
frT,

(7 .4) lf '@åj" { KrJ (,t"0 ,.f)
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where K, depends only on ra and K . Eot brevity, we set L : lf'@o)'i
and "I : J(ro,"f) . We may assume that L> o. Let 0 ( e ( L, and
let e be a unit vector such that lf'@d"l: Z' For 0 { r < il(rr, 0G)12

let C, be the closed line segment with end points rir6 arrd ro { re ' Setting
A, : C, * rB" we obtain a ringlike condenser E, : (A,, C,) in G . Since the
condensors E, are similar for all r , cap E, : c is a positive constant, inde-

pendent of r. We choose r so small that l/(.ro -1' re) -"f(ro)l > (L - e)r

atd. m(fA,) 
= 

(/ ! e)m(A,). Since nt(A,):i}«tn-rr", 5'9 implies

(.up fil,)*-r > ,"ffAä c, 
qr=li

rvhere O depends only on ?L

obtain
Since cäp fWr § /{ c{Lp E,- Kc , \rre

(L - e)" < C-1'Kn-1c"*1(J * e) .

Letting e + 0 yields (7.a). Hence / is quasiregular.
Let r eG\ 81 , and choose aconnectedrreighborhood D of r such

LhaL f I D is injective. Applying Theorem 6.2 to the mapping (/ I D)-t
we obtain

K,(f lD):Koff,D)-') <K.
By 2.28, K,(l) S K .

7.5. We now turn to the proof of (l) =' (2) irr Theorenr 7.1. Assume that
Kr(f)<K, andlet E:(A,C) beacc'trdenserin G. LeL u bean
arbitrary function in Wtr@). We define a:fA --+-r?1 by

a(Y) - suP tr(;r') '
,e7-11.'i

Since / is discrete and since sptzl is comp€tct, f-'@)n sptz is finite.
Hence for each y e fA there is x e f-'(A) such that a(A) : u{x) . We arc
going to show that a e Wr$E). For this purpo-ce we prove some lemmas.

7.6. Lemma. The functi,on a has the Jollou:i,ng properti,es:

(1) a(a)>-r for yefC.
(2) spt a : /(spt z) .

(3) spt u ris com,pact in, fA .

(4) a 'i,s cont'inuous.

Proof. The property (I) is trivial. For (2), set L': i'u € A lu(r) 7-0)
and V:{yefAla(y)*0}.Then fU:V. Since f is continuous

and spt u: O is compact, ,f(spt u\ : V : spt ?j . Since (3) is a con-

sequence of. (2), it remains to verify (4).
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Let yefA. If y €spto, then a:0 in a neighborhood of y.
Next assume gesptu:/(sptn) . Let e)0. Choose a neighborhood
U of spt z such lhal O is a compact subset of .4 and such that 0[/ fl
f-r(y):4. Let Unf-r(y):{rt,...,ni}, where u(rr):111y'1 . By
the continuity of u we cart find neighborhoods U(*r) of ri,l { i < j ,

such that lu(r)-u(r)l <e for reU@). Then F:OlgU(r;)
is compact, yefl , and i:r

v : (Ä/u(&))\/r

isaneighborhood of y. We.O"*:rn* la(z)-a(y)l<e if ze V.
Since z efU@r), z:f(rd for some roe U@r). Hence

a(z) 2 u(ro) 2 u(r) - e : a(y) - e .

On the other hand, a(z):u(r) for some r in Unf-t(z)c U\1.
Hence r e U@i) for some rl , which implies

a(z) : u(r) < u(n) + e { a(y) { e.

The lemma is proved.

7.1. To show that aeWofftl, we still must pror,-e ihat a is ACL.
Since this property is local, it suffices to show that a is ACL in a neighbor-
hood of each point of spt o . X'ix yo € spt o , and let f-t(yo) fl spt u :
{*r, . . ., nc) . Choose ro such that 0 ( ro < d,(yo, 1fA) and such that
the domains U(r;,f ,ro) are disjoint normal neighborhoods of r; for
1 

= 
d < q (see 2.9). Next choose a positive number r, ! ro such that

B'(yo , rt)n /(.pt t* \ Ö U@, ,f ,ro)) - fr. Then the compolr.ents of

l-'B"(yo, rr) which meet spt u are the sets U(rt,f ,rr) , 1 < i < q. Set

[J;:(J(xt,f ,rr) and. U:öUr. Choose a,n open z-interval Q such

that QcB'(yo,rr1 . W"it"':'q:QoxJ, where Qo is an (n-l)-
interval in R"-L, and J: (a,b) is an open segment of the r,-axis.
For each Borel set A c Qo put E(A) : m(U fi f-1(A x J)) . Then E
is a I-quasiadditive (in fact, completely additive) set function in Qo . By
2.3, ,p'(r) < co for almost eyery z € @0. X'ix such z, and set J,: {z}
x "I . To show that o is ACL, it is sufficient to prove the follo'wing result:

7.8. Lemma. ?heJunction a 'is absolutely continuous on Jo.

7.9. X'or the proof of 7.8 we need another lemma, which states, roughly
speaking, that the one-to-many correspondence /-1 is absolutelv conti-
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nuous on J,. We let @ denote the set of all continuous mappings
g:J,--- Lr such tlnat fog is the identity mapping of J,. Observethat
for any g e O , gJ, is contained in some U;.

7.10. Lemma. Ior eaerA s > 0 there i,s ä > 0 such that

ls,(y') - s;(y)l ( e

wheneuer lyr, Ur), . . . ) lyo, yo\ are di,sjoi,nt closeil interuals ,f J, ,

1<i,{p.a,?Ld gie @,

Proof . The proof is closely related to the proof of 4.11. By 4.6, there
isaconstant c suchthat' H*(r,f)<" for re U. Supposethat Wt,Yr)
are disjoint closedintervalsof "I- andthat g;e@,1{i,{7t. More

Set trti:Wi,yif and I:ILU...U.tr'P. Chooseaninteger fto such

that O<llko<d,(X,AQ). For k2ko and for L3i,{7t let IL
denote the set of all points A e Xt such that 0 ( r < llk implies

L*(gt(y),f ,r) !cl,*(g,(y),f ,r). Then Pic 4in, and -F": öri. u,
k:ho

4.8, the function y r-> L*(g;(A) , f , r) is lower semicontinuous, and the
function yv.>t*(g;(y),"f , r) is continuous. Hence each .F[ is compact.

Let, 11 and f be arbitrary positive numbers, and fix k 2 ko. Using

the same lemma as in the proof of 4.Ll (U, p. 6l or [26, 31.U), we can find
positive numbers dr, . . ., do such that for all r € (0, ö;) there exists a

covering of. I'n by open inteivals /" , . . . , Åitl such that (l) m,r(/^) : 2r,

(2) the center y"^ of /i belongs to Ii, (3) every point of -Fi belongs to
at most, two different /"^ , and. @) l(i,)r < mr(FL) * rtlp. Set a : min

lyr+r-y;l . Choose r>0 such that r(min(år,.. .,öp,lll§,*i;'=-:iå
such that lgt(y) - g;(y')l < tlzc whenever ly-y'l { 2r, y,y' e J,,
and L{i,{p. Then {/}, ll<i{p,r3m1l(i)} isacoveringof
P

[-l ,Fi, such that every point is covered at most twice.

P

i:1

p

i- I

Set r"*:gr(y'*) and tl'*:U(*"*,f ,r), 1<i{p,L{m
Since A:*e f'k, we have LI^<cth where LI^-L*(r'*,f ,r)
t*(*'^ , f , r). On the other hand, lh { d(gtA'*) < tl\c, which

p

Ai (l) *ri\"
i:1

<l(i).
7*,,.

) " IIll,

implies

P ,(,) P 
'(r,)

i:L m:I i:l m:l
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By Hölder's inequality lr-e obtain
p Pt(i) p

n\ (!),s,t;)" < 2 * 
[ä:,,,TJ) 

(> 
'(d))-' 

.

Since l(i,)r < r\(EL) * ,tlp ! mlP') * ,tlp and since Q"t* < rn(a"^) ,

this implies

P - Eirn - 
2 c" (mr(P) * ?)"-1>> rru(U'*)

'i !9'!;1"a)"=ffi
Set B : B"-r(2, t') . Then each a; is contained in U n f-L(B x "f) .

Since every point belongs to not more than two different tl'^, we have

2Z*@"*) {2m,(U nf-t(B x "r)) : 2v@). Thus
P

A', (L) sfL)" { C(mr(F) * ,i"-r p(B)lm"-r(B)
i:l

where C:2+r""Q^alOo. Lettingfirst r->0, then rl -->0, then f -->0,
and then Ic --> q yields

\1,nr(r,r,)) - Ar(,!r9,r,)" < Cv,@) ml?) .

Since lS,@,) - gt(A)l < Ar(g,P'), this proves 7.10.

7.1L. Proof for Lemm,a 7.8. tr'[e show first that for every pair A,y e J.
there are g,d e@ such that

(7.t2) la(y) - u(y)i < iu(s(!» - u(s(y))l * lu(s(il - u(s(y»'i .

By2.T,thereare 9,0 e @ suchthat a(y): u(g(A» and a(y): u(g(A».
If a(y) Sa(il), then

la(!) - a(y)l: a(s(g)) - u(s(y)) < u(s(a» - u(s@» ,

and if a(y) < a(y) , then

lu(il) - a(y)i: u(s(a» - eu(s(r)) < u(g(a» - u(s(il) .

These inequalities prove (7.12).
Let e; 0 , and let ö ) 0 be the number given by 7.I0. Since z €

Cf (A), z satisfies a Lipschitz condition

(7.I3) lu(r) - u(r')l S Mlr - r'l
for all n,d e A. Let lyr,gr7,...,lAo,\of be disjoint closed intervals
of J, such that Zlg,-ytl<ö. By (7.L2) there are gi,g-i€@ such
that

la(il) - a(y)l { lu(g,(g,)) - u(st(y»l * lu(0,@)) - u(dt(yill
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for I S i ! p . By 7.10 and (2.13) rr,e obtain

p

I lu(§;) - u(v)l { zMe .
i:1

Hence u is absolutely continuous on J,, and 7.8 is proved. This implies:

7.14. Lemma. a e Wrfft) .

7.15. Lemma. Buppose that y € spt o \ /( spt u f1 B) . Then, there 'i,s

a neighborhooil Vo of y such that for eaery connecteil nei,ghborhood V c Vo

of y , the following condi,tions are satisfded,:

(1) Vnf@fflsptu) :4.
(2) The components of f-1'[' which meet spt' u form a fi,ni,te col,lect'i,on

Drr...rDn.
(3) f d,efines homeomorphi,srus li: Di'-->V .

(4) a is d,i,fferenti,able a.e. in T'r .

(5) lYa(z)l < max lYu(g;(z))j lgi@)l for almost eaery z € Y where
rsi<k

g': l,' .

Proof. Choose disjoint neighborhoods
spt u n f-'(y) such that U; e J G) and
1 

= 
i < k. l\ie claim that

vo: tårfr;,) ''... /(spt ?, \

is the required neighborhood of y
Let Y c Vo be a corrnected neighborhood of A . Then (1) holds since

U;llBy:ff for l<i<k.If D isacomponentof /-17 suchthat
DnWu*A, then D meets some Ui. Since f lA1 is injective,we
have VonfAUt-A, andhence Dfi1Ut-4. Thisimplies DcUi,
which proYes (2) and (3).

Since the mappings gi are quasiconformal, they are differentiable a.e.

in V. Let ze V beapointatrvhicheYery g, ,l <'i, ( ft,isdifferentiable.
Let 1 be the set of all indexes i such that a(z) : u(5,@)) . lf h e R"
is small enough, then by the eontinuity of u , u(z * å) : max u(91@ { h)) .

Thus ier

(7.16) |u(z * h) - u(z):. : 1(u(si@ + h)) - u(si(z))l

for some j e I . By (7.18), this yields

la(z I h) - a(z)l < M max lslz + h) - s,(z)l .

Ur,. . . , Ux of the points of
such that f i U, is injectiYe,

tl,)
k

U
i:1
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Since the mappings gi are differentiable at z, this implies

-. lu(z I h) - a(z)l

'?ilp u (oo'

and ( ) follows from the theorem of Rademacher and Stepanov L26, 29.1).
X'inally, (5) follows easily from (7.16).

7.17. We shall now complete the proof of Theorem 7.1. Let u e Wf @)
and o be as in 7.5. By Lemma 7.14 we have

r
cap lE ! | lYal" d,m .

,l
There exists a countable net of open disjoint cubes Q, ,Qr, .. . such that

ff\/(spt ullB):i)Q, and such that if 0.1 meets spto, then the
j:1

conditions (t)-(5) of 7.I5 are satisfied for y : Qi. Since m(fB):0
a

by 2.27, ,n(/.4\UO):0. Hence
j-t

(7.r8) capfE =; I lYal^ d,m .

':br
Consider a fixed cube Q; . lf Qi does not meet spt o , then

r
I lYal" dm: o .

.d,

lf Qi meets spt z , consider the inverse mappings !; i Q1 ---> Di , t < i
( k, given by 7.f5. X'or almost every z € Q we have

h

lYu(z)1" ( max lvu(g;(z))|" lsl@)l" s > lYu(st(z))1" Ko@)J(z , s)l<i<r. i:l
h

< r,(/)å lYu(s1(z))1" J(z , g) .

Since Kr(/) < K, this implies

rkr
I lvaram 

= 
K> | lYu(s;(z))|" J(z , e) d,m(z)

J ilr.Jai ai
krr: K> I lv"l" d,m: K I lyul" dm .

itJ -leiQi f,ej



Hence we obtain from (7.18)
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lYul" d*, lYul" dm

this proves cap fE = 
K caP fr . Theorem

-J, f
capfU 

= 
K> I

.i:1 J
f-'Qi

Wf (E) was arbitrat{t
completely proved,.

Since u e
'7.L is thus

8. Applications

In this section we show that the cornposite mapping of two quasiregular

mappings is quasiregular and t'hat' nt'(B): 0 for a non-constant quasi-

regular mapping.

8.1. Theorem. Supqtose that f : (j '-> R" and' g : G' -> R" are quasi-

regular and, that fG c G' . Then g " f : G'--> R" is quas'i'regular' and'

Ko@ , f) < Ko@) Kr(f) , K,(s " f) < Kr(s) K,(f) '

Proof. If either f o* g is constant, the result is trivial. rf not, then

g./ is sense-preserving, discrete, and open' Let E bea condenserin G '

Then 7.1 implies

capgfil < K,(s)capft { K,(g)K,(f)capE '

Hence, by 7.1, g,f is quasiregular and Kr(g'f) < K,(g)Kr(l)' Since

the corresponding result is well known to be valid for quasiconformal

mappings, the inequality for 1{o follows fiom 2'28'

8.2' Theorem. If f .(}--.>R" is a non-constant quasiregula,r mapping,

then J(r,"f) >0 a,.e.

Proof , we shall use an argument similar to the proof of Theorem 6 in

Gehring [9]. It suffices to show that' A:{*eGlJ(r,.f):0} has no

points of densitY.
Let r, e G, and choose a positive number ro such that if 0 < r 3 ro 

'
then L*i*r,f ,r)12H*(rr,f)I,*(ro,f ,r) and u(ro,f ,r) is a normal

neighborhoädof ,0. X'ix r€(0,r0], andset Uo:U(xo,f ,ro\' U:
u(io,f ,r), L*: L*(ro,f ,r), and J* :l*(to,f ,r)' consider the con-

a"rrr"" E:(U,C) where C:8"(ro,t*12).Let aewf(fU), and

define u : (J --> RL by u(r) : a(f(r)). since u is a normal domain,

sptu c U. Moreover, a isACL,and u(r)21 for r e C ' Let P:R"'->
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-8"-1 be the orthogonal projection, and set D : B"-r(P(ro),1*12). Then
for almost eyery z € D we have

2 = [ lvul d.m, -

un!-rr"

Integrating o.ver z €D yields

y : )2-n d)n_rlxo-t < [ lout o* .

J
Since lVz(r)l { lVa(f(r))l lf'@)l a.e. and since /'(r) : 0 a.e. in A , we
obtain

I

" = I lYa(f(r))l lf'@)1d,m(r) .

,{,
By Hölder's inequality this implies

*" < m(U \ ,4)"-, I Nlr<ft*»l* lf,@)l* d,rn(r)

1,

< Kog)m(U\ 1;"-, I Vr61*yl^ J(r,f)d,m(r).
/,

By [4, Theorem 3, p. 364], this yields

a, { K6g)N(f , Udm(U \ A)"-, I lVal d,m .

,!,
Since this holds for all a € W|ffE), we obtain

a" < Koff) N(f , Uo) ?rr(U \ A)"-L cap fD .

Here cap fE < Kr(f) capt E by 7.1, and cap D ! a4_rl(log 2)"-L . Set
B : B"(ro , L*) . Then m(B) : d)nlx" ! Q^ZH*(ru , f)"1*", and we obtain

rn(B) < §m(U \ .4) < prz(B \ .a)

where the constant B is independent, of r. Hence ro cannot, be a point
of density of A.

8.3. Theorem. If f : G ---> R" ,is a non-constant quas,iregul,ar mapgting,
then m(Bi: g .

Proof . By 2.I4 and 2.26, J(r ,f): 0 a,.e. in By. The theorem follows
from 8.2.
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8.4. Theorem. Sugtpose that f : G ---> R" ,is a non-constant quas,iregul,ar
mappi,ng. If A is a measurable set in G , then fA is measurable. Moreouer,
tn(fA) :0 i,f and, only i,f m(A) : o .

Proof . We express G \ Br as a countable union of domains inwhich /
is injective. Since m(B) : m(fB) : 0 , the theorem follows from the
corresponding result for quasiconformal mappings.
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