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1. Introduection

The theory of quasiconformal mappings in the euclidean n-space has
been quite extensively studied during the last ten years. Usually, a quasi-
conformal mapping is assumed to be a homeomorphism. For n = 2, there
exists also a theory of non-homeomorphic quasiconformal mappings. See
Lehto—Virtanen [13, Kapitel VI] and Kiinzi [12, Kapitel 5]. These mappings
are often called quasiconformal functions (not mappings). Some authors
call them pseudoanalytic functions, but this term has been used by Bers
in a different sense. We prefer the word quasiregular, and do not make any
distinction between the words »mapping» and »function». It is fairly easy
to generalize several function-theoretic results for 2-dimensional quasi-
regular mappings, thanks to the following factorization theorem: Every
2-dimensional quasiregular mapping can be represented in the form g ok
where kb is a quasiconformal homeomorphism and ¢ is a complex analytic
function.

Higher dimensional quasiregular mappings, under the name »mappings
with bounded distortion», have been considered by Resetnjak since 1966
in a series of important papers [15, 16, 17, 18, 19, 20]. (See also Callender
[2].) He uses an analytic definition which will be given in 2.20. He also
hints at a geometric definition in [16, p. 629]. The purpose of this paper is
to give several equivalent characterizations for quasiregularity. These are
based on the linear dilatations and on the capacity of a condenser. The last
concept, defined in Section 5, is a generalization of the modulus of a ring
domain. Some of these results are new also for n = 2. In Section 8, we
give some applications. For example, we show that the branch set of a non-
constant quasiregular mapping has measure zero.

2. Preliminary results

2.1. Notation and terminology. The real number system is denoted by
R' and its two-point compactification R'U {oo, —oo} by R'. We let
R", n = 2, denote the euclidean n-space, and R"~' will be identified with
the subspace x, = 0 of R". For x € R* we write © = x¢; + * -+ + e,
where e,,...,e, are the coordinate unit vectors of R". For each set



6 Ann. Acad. Sci. Fennice A.T. 448

AC R welet CA,A, 094, and int A denote the complement, closure,
boundary, and interior of 4 , all taken with respect to R". Furthermore,
d(A) is the diameter of 4. Given two sets 4 and B in R", d(4, B)
is the distance between A and B, A \_ B is the set-theoretic difference
of 4 and B, and A 4 B is the set of all points @ + b such that a« € 4
and b €B. Given x €R" and r > 0, we let B*(x,r) denote the open
ball {y € R"| ly—=| <r}, and 8" '(x,r) the sphere 9Bz ,r). We
shall also employ the abbreviations

B*r) = B0,r), B* = BY(1), 8"7'(r) = S§"7'0,r), 8" = S (1)

The Lebesgue measure of a set 4 c R" will be written as m.(4),
or simply as m(A4) if there is no danger of misunderstanding. m,(4) is
also defined for sets in n-dimensional spheres and linear submanifolds of
RB¥ , n’ > n. The Lebesgue integral of a function f over a set 4 c R"
is written as

/afdm,. or /'f(x) dm,(z) ,
A 4

A

where the subscript n may again be omitted. We set 2, = m,(B") and
0, =n82,=m, (S"'). The linear measure A,(4) of a set 4 cC R"
is defined as follows: For ¢ > 0 let
AY(A4) = inf > d(4:)
i=1
over all countable coverings {4,,4,,...} of A4 such that d(4:;) <t.
Then
A,(4) = lim Aj(4) = sup A3(4) .
t—>0 t>0

If A c R" is a Borel set, Bor 4 denotes the class of all Borel subsets of 4 .

A neighborhood of a point x or a set 4 is an open set containing «
or A. A domain is an open connected non-empty set. The notation
f:G@— R* includes the assumptions that ' is a domain in E" and that
f is continuous. If f:G—R*, Ac @ and y €ER", welet N(y,f,A)
be the number (possibly infinite) of points in A4 N f=(y) . We set N(f, 4)
=sup N(y,f,A4) over y €R".

Given a domain G c R", we let J(G) denote the family of all domains
D such that D is a compact subset of G¢. If f:G—R*, D€ J(@Q),
and y € CfoD, then u(y,f,D) is the degree (topological index) of the
triple (y,f,D) [14, p. 125]. Suppose that = € G has a connected neigh-
borhood D € J(G) such that DN f(f(z)) = {z}. Then u(f(z),f,D)
is independent of the choice of D, and is denoted by i(x, f) .
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The i™ partial derivative of a mapping f:G— R" is denoted by
o:.f . If all partial derivatives of f exist at a point x € @, the formal de-
rivative of f at z is the linear mapping f’(z): R*— R", defined by
f@e=af(x), 1 =i=n. If f is differentiable at =, then f'(x) is
the derivative of f, that is,

fle + 1) = fl@) + f'@h + [hle(z , h)

where &(x,h) —0 as h—0. The Jacobian of f at « Is denoted by
J@,f).
If T:R"— R" is a linear mapping, we set
|7 = max |Tx|, (T) = min [Tx].
fel=1 fx]—1

If U isanopensetin R", welet CP(U) denote the class of all p times
continuously differentiable functions »: U —> R', and C5(U) the class
of all u € CP(U) whose support spt« is a compact subset of U . A func-
tion in C}{(U) will be identified in a natural way with a function in CH(R™),
which vanishes in CU .

Suppose that f:G — R". The branch set B, of f is the set of all
points of G at which f fails to be a local homeomorphism. f is open if the
image of every open set in G is open in R" f is light if for every y € R",
f4y) is totally disconnected. f is discrete if for every y € R*, f(y) is
discrete, that is, consists of isolated points. f is sense-preserving if
uy ,f,D) >0 whenever D €J(G) and y € fD "\ foD . f is sense-revers-
ing if w(y,f,D) <0 for all such triples (y,f,D). f satisfies the
condition (V) if the image of every set of measure zero has measure zero.

A continuum is a compact connected non-empty set. A ring is a domain
A c R* such that £" ™\ A4 has exactly two components, where R" is the
one point compactification of R".

2.2, Quasiadditive set functions. Let U be an open set in R". A map-

ping ¢ : Bor U — R is said to be a g-quasiadditive set function, ¢ =1,
if the following conditions are satisfied for all Borel sets in U :

(1) ¢(d) =0.

(2) Ac B implies ¢(4) < ¢(B) .

(3) ¢(4) < o if 4 is compact.

(4) If 4,,..., A, are disjoint and if 4;C 4, then

S (d) = grld).

From (4) it follows that the same inequality is true for an infinite se-
quence of disjoint Borel sets 4,,4,,.. .
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The upper and lower derivatives of a g-quasiadditive set function ¢ at
a point z € U are defined as follows:

_ ?(Q)

/() = lim sup —~7,
v@) h—>0 d(Q)Ehm(Q)

?(Q)
4 _— 1‘ i E—
? @) hl-{no d(lgih m(Q)’

where @ runs through all open cubes and open balls such that x €Qc U .

2.3. Lemma. Suppose that ¢ is a g-quasiadditive set function in an open
set U. Then

(1) ¢’ and ¢ are Borel functions.

(2) ¢'(x) = ¢’ (x) < o a.e.

(3) For each open set Vc U,

[ = wm,

v

The proof for ¢ = 1 is given in [14, pp. 204—209]. The proof for the
general case is completely analogous. The definition of [14] for the deriva-
tives @ , ¢ is slightly different from ours, because the sets @ are in [14]
assumed to be cubes. However, this makes no difference in the proof of
2.3, since the Vitali covering theorem holds for the family of all closed
cubes and closed balls.

2.4. Normal domains. Given a mapping f: G — R", a domain D € J(G)
is said to be a normal domain of f if foD = ofD . A normal neighborhood
of a point x € G is a normal domain D such that D N f~(f(x)) = {x}.

We shall use the concept of a normal domain only for open mappings.
In this case, we have always ofD C foD, and the condition foD c ofD
means that f defines a closed mapping D — fD . The definition of Why-
burn [28] for a normal domain is slightly more restrictive since he also
demands that f defines an open mapping D — fD . Tt is not difficult to
show that, for discrete open mappings, the domains U(xz,f,r), which
will be defined in 2.8 and used throughout the paper, satisfy this addi-
tional condition, but we shall not use this fact.

If D is anormal domain of an open mapping f, then fD N foD = O .
Hence, u(y,f,D) is constant for y € fD . This constant will be denoted

by wu(f,D).
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2.5. Lemma. Suppose that f:G-— R" is open, that UC BR* 1is a
domain, and that D is a component of fU such that D € J(G). Then D
s a normal domain, fD = U , and U € J(fQ) .

Proof. Since f is open, 9fDcC foD . Next assume y € foD . Then
y = f(x) for some x € 0D . Now z¢fU, since otherwise D would
not be a component of f~1U . Thus, y € U D fD . Hence y € fD\ fD =
fD\.fD = ofD . Consequently, D is a normal domain. Furthermore,
foabNU =@ . Thus fD=UNfD is both closed and open in U,
whence fD = U. Finally, U = fD is a compact subset of fG, i.e.,
U e J(fG).

2.6. Lemma. Suppose that f: G — R is open and that D is a normal
domain of f. If E is either a domain or a continuwm in fD , then f maps
every component of DN fE onto E . Furthermore, if F is a compact
subset of fD, then D N fF s compact.

Proof. The case where E is a domain follows from 2.5. If E C fD is
compact, then D Nf2E = DN f1E is compact. Moreover, f defines
an open mapping D N fE — E ([27,(7.2), p.147]). If E is a continuum,
every component of D N f~1E is mapped onto E by [27, (7.5), p. 148].

2.7 Lemma. (Path lifting). Suppose that f:G — R* is light and open
and that Dc G is a normal domain. Suppose also that f:[a,b]— fD
is a path, that a <ty <b, and that x, € D such that f(x,) = B(t,) . Then
there is a path x:[a,b]l— D such that «lt,) =2z, and fox =f.

Proof. Considering the restrictions of f to [a,f)] and [f,,b] sepa-
rately, we may assume that ¢, is an end point, say f, =a . Set I = [a, ],
J =pl, and J=DNfJ . Then J and J’ are compact, and f
defines an open mapping J —J'. Define g:J X I —J" X I by g(x,1)
= (f(x),t) and B:I—J x I by pit)=(B(),t). Then ¢ is a
light open mapping, and I is an arc. By a result of Whyburn [27, (2.1),
p. 186] there is an arc Jy,c J X I such that (z,,a) €J and such that
g maps J, homeomorphically onto g 1. Set x = Po (g1J)) o B, where
P:.J x I—.J is the projection. Then «(t)) =2, and fox =f.

2.8. Notation. If f:G-—>R", 2€G, and r >0, then the z-com-
ponent of f-1B"(f(x),r) is denoted by U(x,f.7).

2.9. Lemma. Suppose that f:G—R* 1is discrete and open. Then
Hm d(U(x , f,7)) = 0 forevery « € G . If U(x ,f,r) €J(G), then Uz, f, )

r-»0
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ts @ normal domain and fU(x,f,r) = B*(f(z),r) € J(f(G)). Furthermore,
Jor every point x € G there is a positive number o. such that the following
conditions are satisifed for 0 <r < o, :

1) Uz, f, r) is a normal neighbourhood of x.

@) U,f,n=U.f,0) NS

(3) oU(x,f, r)—D [ o) NSt l(f"c) vy if 7 < o0..

(4) CU(x,f,r) is connected.

(6) CU(x,f,r) is connected.

6) If 0<r<s=o., then U(x.f.r)c U@.f,s), and Uz, f,s)

N O, f,r) is a ring.

Proof. Given x €(G and &> 0, choose a neighborhood W of =z
such that W €J(G), d(W)<e, and WN[fAf(z))={x}. Then
U, f,nc W for 0<r<d(f(x),folW). Hence d(U(x,f,r))—0 as
r—0. If Ux,f,r) €J(G), it follows from 2.5 that U(z,f,r) is a
normal domain and that fU(x,f,r) = B*(f(x),r) € J(fG).

The first part of the proof implies that = has a normal neighborhood D .
We choose o, such that 0 << o. < d(f(z),foD) and such that U(z,f,0.)
c B x,t)c D for some ¢>0. To verify the propertles (1)—(6)
we may assume that 0 <r <o,. Set U =U(x,f,r),U,=U(x,f, o),
and V = fU = B*(f(z),r). The condition (1) is clear by what was proved
above. Since Uy N f~(f(x)) = {2}, (2) follows from 2.6. Suppose next that
2 €U,N foV . Since f is open, exely neighborhood of z meets f1V .
By (2), this implies z € U. Thus z€0U, whence U,N f1oVc aU.
On the other hand, foU = ofU = oV implies 9U c U, N f-19V, and
(8) is proved.

Since Uc B'x,t)c D, there is exactly one component E of CU
which meets CD. We show that £ = CU. Set F = CU \_E . Since
DN f(f(x)) = {x}, it follows from 2.6 that U = DN f1V. Hence
SF does not meet V. Since f is open, ofF C foF c foU = 9V . Since
fF is bounded, fF c oV . Since f isopen, int F = @ . Setting U, = CE
we thus have U; = U . Hence fU,C int fU = V, whichimplies fF c V.
This proves F = @ . Thus, CU = E is connected.

If ,y €CU, thereis 7, suchthat r <, < ¢, and such that z,y €
CU(x,f,n)c CU. Hence (5) follows from (4).

The relation U(x,f,r)c Ux,f,s) follows from the last statement
of 2.6. By (4), the components of the complement of 4 = Uz, f, s) \,
U@,f,r) are U@,f,r) and CU(z,f,s). By (5) and the Phragmén-
Brouwer theorem [11, p. 359], 4 is connected. Thus 4 is a ring.

2.10. Corollary. If f:G — R" is discrete and open, then every point
m G has arbitrarily small normal neighborhoods.
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2.11. Lemma. If f:G— R" is discrete and open. dim By =n — 2

This important result was proved by Cernavskii [3, 4]. Another proof
is given in [25]. It implies that G\ By is connected. Hence i(z,f) hasa
constant value, either -1 or —1, in G\ By. In the first case f is
sense-preserving, and in the second case sense-reversing. For convenience,
we shall restrict ourselves in this paper to sense-preserving mappings. This
is obviously an unessential restriction.

2.12. Lemma. Suppose that f:G— R is sense-preserving, discrete,
and open.

(1) If D€J(G), then N(y,f,D)=uly,f,D) for all y€CfoD,
and N(y,f,D)=uly.f,D) for y€C@DU (DN By).

(2) If D is anormal domain, N(f,D) = u(f, D).

(3) If Ac G is compact, N(f,A) < oo.

(4)  Every point z € @ has a neighborhood V such that ) f U is a neigh-
borhood of x and if UC V., then N(f,U)=1i(x.f).

(6) x € By if and only if i(x,f) =2.

Proof. (1) Let y €CfoD and let DN fy) ={r;....,a). Then
k
y.f:D) = Zl (2, f) -
J

Since f is sense-preserving, i(x;,f) =1. Thus u(y,f,D) =k=
N.f.D). If y€Cf(@DU (DN By)), every i(x,f) =1 in the above
sum, and we have u(y,f.D)= N(y,f,D).

(2) By [5, 2.2], dim fB; < n—2 < n. Hencethereisa point y € fD ™\
fB;. By (1), ulf.,D)=ply.f.D)=N(y.f,D)=N(f,D). On the
other hand, (1) 1mphes that N(z,f,D) =< u(f.D) for all z€CfoD.
Hence, u(f,D)= N(f,D).

(3) By 2.9, A can be covered by a finite number of normal domains
D,,...,D.. Using (2) we obtain

N A) S SNG.D) = Sulf, D) < o

(4) By 2.9, x has a normal neighborhood V. If UcC V is a neigh-
borhood of x, thereis anormal neighborhood V; of x suchthat V,c U.
Then (2) implies i(z,f) = N(f, V) = N(f, U) = N(f,V)=1i(x.f).

(5) follows from (4).

2.13. Remark. Since a light sense-preserving mapping is discrete and
open [22, p. 333], we could replace the words »sense-preserving, discrete,



12 Ann. Acad. Sci. Fennice A 1. 148

and open» by »sense-preserving and lights throughout the paper. However,
we shall not do this, because it is essential that our mappings are discrete
and open, while sense-preservation is assumed mainly for the sake of
convenience.

2.14. Lemma. Suppose that f:G — R* is sense-preserving, discrete,
and open, and that f is differentiable at xy € G . Then J(z,,f) =0. If
% €Br, J(x,f)=0. If A isa Borel setin G and if f is differentiable
ae. in A, then

(2.15) / TG, f) dm() = / Ny, f, 4) dmy).

A R"

Proof. If J(x,,f) %0, then i(x,,f) =sgnJ(z,,f) by [14, (68).
p- 332]. Since f is sense-preserving, J(z,,f) =0. By 2.12, i(x,f) = 2
for x € Bf. Thus J(x),f) =0 if @, € B;. The inequality (2.15) can be
derived from general integral inequalities (see [14, p. 260]), but it can also
be proved directly as follows. We express 4 \ B; as a union of disjoint
Borel sets A4,,A4,,... such that each A; is contained in a domain
D;c D in which f is injective. Since (2.15) is well known to be true for
homeomorphisms and since J(z,f) =0 a.e.in 4 N B, we obtain

/J(x,f)dm(x):fJ( ) dm(x 2/ (x,f) dm(z

A A\Bf

<Z/NyfAdm /zNyfAdm </’\’JfAdm

2.16. ACL-mappings. Let R;™' be the subspace of R" defined by
; =10, and let P;:R"— R!™' be the orthogonal projection. Suppose
that U is an open set in R". A mapping ¢: U - R™ is said to be ACL
if g is continuous and if for each open n-interval @ such that Qc U .
g is absolutely continuous on almost every line segment in @, parallel to
the coordinate axes. More precisely, if E; is the set of all points = € P,Q
such that g is not absolutely continuous on @ N P;'(z), then m, (K
=0,1=7=n. An ACL-mapping has partial derivatives a.e. If these
are locally LP-integrable, p =1, ¢ is said to be ACLP.

Suppose that f: G — R* is a discrete open mapping and that @ € J(&)
is an n-interval. For each Borel set A4 C Pi) we set ¢i(d.Q) =
m(f (@ N P;7'4)). Then Ar>qi(d,Q) is a ¢-quasiadditive set function,
where q¢ = N(f, Q) < co by 2.12. Hence, by 2.3, its upper derivative
#i(z , @) is finite for almost every z € P,Q .
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2.17. Lemma. Suppose that f:G — R 1is discrete and open and that
for every domain D € J(G) there is a finite constant Cp such that

k E
(2.18) (zl d(fA))" = Cppilz , Q) (_Zl my(4;)"

J= J=
whenever @ is an open m-interval tn D,1 <1 <n,z€P,Q, and A, ...,

Ai are disjoint closed subintervals of Q N P7'(z). Then f is ACL™.

Proof. This lemma is a generalization of a result of Agard [1]. The
following proof is essentially due to him.

Let @ € J(G) be an open n-interval. A simple limiting process shows
that (2.18) is true whenever 4,, ..., 4, are non-overlapping subintervals
of @N P;'(z). Thus f is ACL. To prove that f is ACL", it suffices to
show, by symmetry, that |0.f|* is integrable over @ .

Choose an integer j, such that 0 < 1/j, < d(@, 0G) and set

1/j

9@) = 1@, gi(0) = % / glo-He) dt.

._1/’]‘

Then g;(x) is defined for almost every x € Q and for all j =j,. We
first show that ¢g; —g¢ a.e.in @ . It is well known that ¢ is measurable,
in fact, g is a Borel function (Saks [21, p. 170]). Hence, the function
(v, t) = g(xr+te,) is measurable in @ X (—1/j, 1/j). By Fubini’s theo-
rem, this implies that g¢; is measurable. Write @ = @, X J, where
@y = P.Q is an open (n—1)-interval and J = (@, b) is an open l-interval.
Then almost every z € (), has the property that ¢+ f(z,¢) is absolutely
continuous for ¢ € (a—1[j,,b+1/j,). For such z, Lebesgue’s theorem
implies that g¢j(z,t) —g(z,t) for almost every t€J . From Fubini’s
theorem it follows that lim infg;(x) = g(x) = lim sup g;(z) a.e. in Q.
Thus gi—g¢ ae.in Q.

Again by Fubini’s theorem, almost every » € J has the property that
gi(z , u) —>g(z,u) for almost every z €,. Consider such %, and set

Fi(E) = gl , @y X (u—1[j , u-+1[j))

for all Borel sets E C @, and for j = j,. Then the set functions F; are
g-quasiadditive for ¢q = N(f,D) where D =@, X (a—1/j,,b+1/j,) .
If Fj(z) < oo, it follows from (2.18) that the function ¢ f(z,¢) is
absolutely continuous on [u—1/j, u-+1/j] and that its total variation is
not greater than (C,F;(z)(2/j)"")"". Consequently,

ut-1/f

e wr =5 / o 01| = 0B

u1)j
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Integrating over z € @, and using 2.3 we obtain

(2.19)

[ ot i @) = 3 CotTE@) = § CottmlfiQs (e w1
Q

For each Borel set Ec J set y(H) = m(f(Qy X E)). Then o is a
¢-quasiadditive set function in J. As j— oo, (2.19) implies by Fatou’s
lemma

/ 9(z , w)" dm,_(2) = Cpg®y’(u) .
Q
Integrating over w € J and using 2.3 we obtain

/ g dm = Cpgp(J) = Cpg*m(fQ) < 0.
Q
Thus g¢* is integrable over @ .

2.20. Quasiregular mappings. A mapping f:G — R* is said to be
quasiregular if f is ACL® and if there exists a constant K =1 such that

(2.21) f'@)" = KJ(,f)

a.e. in G The smallest K =1 for which this inequality is true is called
the outer dilatation of f and denoted by K,(f). If f is quasiregular,then
the smallest K = 1 for which the inequality

(2.22) J(@,f) = K(f' (@)

holds a.e. in @ is called the inner dilatation of f and denoted by K,(f).
The maximal dilatation of f is the number K(f) = max (K,(f), Ky(f)) .
If K(f)y< K, f is said to be K-quasiregular. If f is not quasiregular, we
set Koff) = K (f) = K(f) = w.

The above definition is a natural generalization of the analytic definition
for quasiconformal mappings [24]. A sense-preserving mapping is K-quasi-
conformal if and only if it is a K-quasiregular homeomorphism.

Tt is not true that every ACL™-mapping which satisfies (2.22) is quasi-
regular. For example, the projection f(x) = e, satisfies (2.22) with K =1,
since J(x,f) = I(f'(x)) = 0 everywhere.

The above definition has been used by Callender [2] and Resetnjak [15]
in a slightly different form. In their definition (2.21) is replaced by

(2.23) c

n
i—1j

B

laifj(%)z)"/2 =n"KJ(,f),

[
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where K is sometimes replaced by K" or by K">. Let Kg(f) be the
smallest K =1 for which (2.23) holds a.e. Then it is easy to show that

(2.24) Ki(f) = Kolf) = n"*Kx(f)

and that these inequalities are the best possible. Furthermore, we have
the inequalities

(2.25) Ko(f) = Ki(f)"1, Kilf) = Ko(f)*

which also are the best possible.

2.26. Lemma. Let f:G — R* be a quasiregular mapping. Then
(1) f s either constant or sense-preserving, discrete, and open.
(2) f is differentiable a.e.

(3) f satisfies the condition (N) .

These important results are due to Refetnjak [16, 18].

2.27. Lemma. Suppose that f: G — R" is quasiregular. Then f'(x) = 0
a.e. in By. Moreover, m(fBs;) =0 .

Proof. We may assume that f is not constant. By 2.14, J(z,f) = 0
a.e. in By. Hence [f'(x)| =0 a..in B;. From [14, Lemma 3, p. 360]
it follows that

/ Ny £, B dmly) = f TG, f)dm@) =0 .
R B

Hence m(fB;) =0.

2.28. Lemma. Suppose that f:G — R" is a non-constant quasiregular
mapping and that every point in G\ B; has a neighborhood U such that
EffIU)<a,EK(f1U)=b. Then K (f) <a,K(f) <b.

Proof. By 2.27, f'(x) =0 a.e. in B;. Hence, the inequalities (2.21)
and (2.22) are automatically satisfied in Bj.

3. Path families and quasiregular mappings

3.1. Suppose that A4 is a subset of R". By a path in A we mean a
continuous mapping y:4 A where A is a closed interval in R!. If
I' is a family of paths in R", welet F(I') be the family of all non-negative

Borel functions o : B"* — R! such that
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/gdsgl

7

for every rectifiable y € I'. The modulus of I' is the number

M(I')y = inf /Q"dm.
0€EF(I")
RTL
Suppose that I" is a family of paths in a domain ¢ and that f: G — R"
is a mapping. Then the family fI" of all paths foy,y € I', is called the
image of I' under f. If f:G— G’ is a K-quasiconformal mapping,
it is well known [23] that

M(I')JK < M(fI') < KM(I)

for every path family I' in G. We conjecture that the right hand in-
equality is true also for K-quasiregular mappings. As yet, we have been
able to prove it only in special cases, for example, if n =2 orif By = 0.
The left hand inequality need not be true for non-homeomorphic quasi-
regular mappings, as is seen from the following counterexample: Let I’
be the family of all horizontal segments which join the vertical lines Re z
=0 and Rez =1 in the complex plane R2 If f:R?>— R? is the ana-
lytic function f(z) = €5, we have M(I') = oo, M(fI') = 2x. However,
we can establish the following inequality:

3.2. Theorem. Suppose that f:G — R" is a quasiregular mapping and
that A is a Borel set in. G such that N(f,A) < co. If I' is a family of
paths in 4,

(D) = N(f, DRI -
Proof. Set
L(l‘,f) = llmsupsz_{—il%)l:ji(x_)l

for x €G. Thus L(x,f) = |f'(z)] whenever f is differentiable at «.
It is easy to see that x> L(z, f) is a Borel function.

Suppose that o' € F(fI'). Define o: R"— R by setting
o(@) = o'(f(@)L(z , f)

for €A and o(x) =0 for z € CA. Let I, be the family of all recti-
fiable paths y € I' such that f is absolutely continuous on y . By this
we mean that if 3 is the parametrization of y by means of its path length,



O. MarTIO, S. RickMAN and J. VArsini, Definitions for quasiregular 17

then foy° is absolutely continuous. By a result of Fuglede ([6] or [23,
p. 16]), M(Iy) = M(I'). From the formula concerning change of variables
in integrals it follows that

/stg/g'dsgl
for

14

for all y € I,. Thus p € F(I,). A more detailed proof is given in [26].
Hence we obtain

M(I') = M(Iy) = / " dm = / o' (f@)" Lz , )" dm(x)

éKo(f)/@’(f(ff))”J(x>f) dm(2) .

A

Since f is ACL", J(x,f) isintegrable over every domain D € J(G). Thus,
the transformation formula in [14, Theorem 3, p. 364] yields

/ @)@, f) dm(z) = / S@PN(y ,f, AN D) dm(y)

AND

Rll
= N(f, 4) /9’"dm-
R;‘

The theorem cited above is formulated in [14] for finite-valued func-
tions, but we may apply it to min (k, ¢”) and let then k£— oco. Since
D € J(G) is arbitrary, we obtain

M) £ N A Kop) [ o am.

RM

Since this holds for every o' € F(fI'), the theorem follows.

4. The metric definitions

4.1. Notation. Let f:G — R* be discrete and open, and let « € G .
If 0<r<d(x,oG), we denote
U, f,r)= inf [fly) —fl)],

lr—yi=r

Lz, f,r) = sup |f(y) — fl@)] = sup |[f(y)—f(x)] .

|x—y|l=r |x—y|<r
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If 0<r<d(f(x), 0f¢), we denote

Fa,f,r)= inf |z—z],
2€0U(x, fir)
L*x,f,r)= sup |r—z|= sup |r—=z|.
2€0U(x, f,r) s€U(x, fir)

Recall that U(x, f,r) is the x-component of f-1B*(f(x), r) .

4.2. Definition. Let f:G — R" be discrete and open. If « € G, we
call

H y L(x,f,r)
@) = T S g 1)
the linear dilatation of f at x, and
L*¥(x ,f,r)
H* =1i —
@ 1) =TS Gt 1)

the inverse linear dilatation of f at «.

In this section we first establish upper bounds for H(x ,f) and H*(z, f)
when f is a non-constant quasiregular mapping. The main results (Theo-
rems 4.13 and 4.14) are that both these dilatations characterize non-constant
quasiregular mappings. These characterizations are called the metric de-
finitions for quasiregularity.

The inverse linear dilatation also plays an essential role in Section 7,
where the important inner dilatation inequality for the capacities of
condensers is proved.

We assume now that in all the lemmas which appear in this section
f:G— R" is a discrete open mapping. Given three sets 4 , B, in R",
a path y:[a,b]—R" is said to join 4 and B in C if y(a) €4,
y(0) €B and y(t) €C for a <t <b.

4.3. Lemma. Let xGG and let o. be as in 2.9. Then ¥, f, L(a
fom)) =L, f . f,r)=r for 0<r<l¥x,f,o).

Proof. Set | =l(x,f,r) and L = L(x,f,r). Obviously | <L < o..
We prove I*(x,f, L) =r. The proof for L*(x,f,l) = r is similar. Since
B"(x ryc U, f,L) x,f,Ly=r. Choose a ES"‘l(w r) such that
f@)—f@)| = L. By 26, oUte,f,1) = Ule.f, o) 018 fo) 1)
Thus a € 9U(x, f,r), which implies *(z,f, L) < la—ax| =r

4.4 Lemma. Let * €G and let 0. be as in 2.9. For 0 <s <t = o
let I'(s,t) bethe family of all paths which join oU(x . f,s) and oU(x ,f,t)
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in U,f, )\ O,f,s). Suppose that there exist constants b and o,
1<b< 0, 0<o=<o0,, such that M(I'(s,t)) =<bM(fI(s,t)) for all
0<s<t<o. Then H(x,f) =C < o where C depends only on n
and b .

Proof. Assume 0 <7 <Il*@,f,o,), and set L= L(x,f,r),l=
l(a,f,r). Obviously L <o,. Suppose [ <L. Then fI'l,L) is a
subfamily of the family of all paths joining S"7Y(f(x),1) and S"(f(z), L)
in B*(f(z), L)\ B"(f(x),1) . Hence M(fI'(l, L)) = o, /(log(L/))"* [23,
p. 7). By 4.3, 9U(x,f,1) and oU(x,f, L) meet 8" *(x,r). From this
and the fact that Uz, f, L)\ U(x,f,1) is by 2.9 a ring it follows the
estimate M(I'(l, L)) = a, > 0 where a, depends only on n [26, 11.7].
Since M(I'(l, L)) < bM(fI'(l, L)), we obtain L/l = C where

b, H(n—1)
o =l ")

n

This proves the lemma.
The upper bound for H(z,f) when f is a non-constant quasiregular
mapping follows now easily from the result of Section 3 and Lemma 4.4.

4.5. Theorem. Let f:G — R be a non-constant quasiregular mapping.
Then for every x € G

v, f)sC< o,

where C depends only on n and the product i(x , f)K(f)

Proof. Let x €G. By 2.26, 2.12, and 3.2, the conditions in 4.4 are
satisfied with b = i(z,f) Ko(f) = 1 and some o > 0. The result follows
from 4.4.

A similar result holds for H*(w . f):

4.6. Theorem. Let f:G — R" be a non-constant quasiregular mapping.
Then for every x € G

H*(x,f) < H(x , f)*=D¥0) < 0% < o,

where C* depends only on n and the product i(x , f)Ky(f) .

Proof. Let x € ¢. By 2.26, f is sense-preserving, discrete, and open.
Choose ¢, as in 2.9, and set D = U(x,f,0,). Let t > 0 be such that
L(x.f.t) <o, and let 7,>0 be such that U(x,f,r)c B*x,t) if
0<r=r,. Assume 0<r=<r,, and set L*=L*ax,f,r), I*=
*(.f,7), L=L(x,f,L*), and l=I(x,f,l*). We choose a line J
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through f(x). Let 4" ={y |l < |[y—f(x)| < L}, let E' and F’ be the
components of JN A, and set E=DNfE  , F=DNfF . If
E, is any component of E, fE,=E by 2.6. By 2.9, oU(x,f,])
DN fA8"Y(f(x),l) and oU(x,f,L)= DN f18"Yf(x),L). Hence E’
meets both oU(x,f,l) and oU(x,f,L) Since oU(x,f,!)C
Bz ,1*) and oU(x,f,L)c CB*(x, L*), we get thus @ +# 8"z, u) N
E,c 8" Yo, u)NE, and similarly S*z,u)NF £ @ for every
w, ¥ <u<<L*.

Set A ={z|I* < |e—z| < L*}, and let I' be the family of all paths
which join E and F in A. Then M(I') = c,log (L*/l*) where ¢, > 0
is the n-modulus of the family of all paths joining e, and —e, in 8"
[26, 10.12]. On the other hand, every path in fI" joins E’ and F’ in A’,
and hence M(fI") < c. log (L[l) by [26, 10.12]. By 3.2 and 2.12 we get thus

Lx* Lr
tlog 3¢ = M(I) = il NKSNMUUT) £ ite, HEo(fenlog (S 7).
But r=1x,f,L*) = L(x,f,l*), and letting r — 0 we obtain

H¥x,f) < H(z,f)"®)kol)
Theorem 4.5 completes the proof.

4.7. Remark. Define a K-quasiregular mapping ¢ : R2 — R? by g¢(z) =
(x+iKy)* where we have used the complex notation z = x-+iy, where
K > 1, and where k is a positive integer. Then H(0,g) = K* and
4(0,9) = k, which shows that the linear dilatation depends in general
on the local degree.

We turn now to the converse problem and establish characterizations
of a non-constant quasiregular mapping f by H(z,f) and H*(z,f).
Recall that f: G — R" is a discrete open mapping in the lemmas in this
section.

4.8. Lemma. Let CcC G be compact. Then there exists t > 0 such that
the mapping (x,s) ¥ ,f,s) is continuous and the mapping (x,s)
L*¥@ , f,s) is lower semi-continuous in the set C x (0 ,1).

Proof. For x€C let s,>0 be such that U(x,f,s.) c Bz, a)
where a = d(C, dG¢). We cover C by sets U, f, 5,/2), 1=1,

k. Assume x€C and let z€U(z,f,s, /2 Then Uz, f, ij/2) c
Ux,-,f,sxj and hence U(x,f, )CC‘—]—aB" f 0<s<it=
min (s, /2, ..., 8,/2). Assume (%,,5)€C X (0,#) and 0<e<
min (I* (2, f, %) » AU (%, , [, %), 0G)) , and set y, = f(,) .
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We show first that (v,s)+1*(x,f,s) is upper semicontinuous at
(%, ) - Let z€dU(xy,[f,s) be such that |z,—z| = I*(zy,[, ). The
set fB"(z,¢/2) is a neighborhood of f(z) and there is therefore a point
v € Bz ,¢/2) N CU(xy,f,3) such that o = f(v) € B*(y,,s). Sett=
(' —yo] —sp)/2 and let 6,0 <6 <e¢/2, be such that |z—u,| <6
implies [f(x)—y,] < 7. If now (x,s) €C X (0,¢] such that |x—ax,| <9
and |s—s,| < v, then '€ B™(f(z),s) and hence v¢€ U(x,f,s). This
implies I¥(x, f,s) < |[v—2z] + [z2—x| + [wo—2| < I*@,, [, ) + ¢

To show that (x,s) > I*(x,f,s) is lower semicontinuous at (z,, ) ,
set r=1%wy,f,8) —e/2. Then B'(xy,r)C Uxy,f,s), and 27 =
d(fB*(xy, 1), 8"y, , S)) is positive. Let 6,0 < d < ¢/2, be such that
lx—ax,| < 6 implies [f(x)—y, < 7. Assume (x,s) €C X (0,¢], [w—x]
<8, and ls—s, <7. Then [fB"(%,,r)C B*(f(x),s) and hence
B (x,,r)c U(x,f,s) because € B"(xy,r). From this it follows that
P, f,8) = r— [e—ry| = P f 2 50) — € -

Finally, to prove the lower semicontinuity of (x,s)+> L*(x,f,s) at
(%, 8) » let z€0U(x,,f,s) be such that |z—xy| = L*(x,,f,s) and
let u € U(xy,f,8) N Bz,¢2). There exists a continuum A4 in Uz, ,
f,s,) such that w € 4 and B"(z,,¢/2)C A. Then fA is a compact set
in B'(y,,s,) and 2t =d(fA,8" Yy,,s,)) is positive. Again, let o,
0 < 6 < ¢/2, besuchthat jx—a,| < 6 implies |f(x)—y,| < 7. Assuming
(x,s) €C X (0,1], |w—ay) <0, and |[s—s| <7, we have fAdcC
B*(f(x),s) and therefore Ac U(x,f,s). Hence L¥*(x,f,s) = [v—u| =
L*(%‘O ’f, 80) —E.

4.9. Remark. Let g:R®— R® be the mapping defined in the cylin-
drical coordinates by g¢(r,¢,2) = (r,2p,2). Then x> L*x,g,s),
s > 0, is discontinuous at points * = (s, ¢,2) .

4.10. Lemma. Let Cc G be compact. Then there exists ¢ > 0 such
that for 0 <r <<g

(1) zwIlx,f,r) and x> Lz, f,r) are continuous in C,

(2) x—l*x,f,Lx,f,r) is continuous in C,

(8) x> L¥,f, L., f.7) is lower semicontinuous in C .

Proof. The condition (1) holds for 0 <7 < d(C, 9¢). Let t be as in
4.8 and let 0,0 <o <d(C,dG), be such that |[f(y) — f(z)] <t when-

ever ly—zl <o,y €C, and z€G. Then (2) and (3) follow from 4.8
and (1).

4.11. Lemma. If H(x,f) or H*(x,f) s locally bounded, f is ACL".
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Proof. The proof is carried through in full detail for H*(x,f). By a
simplified version one can prove the statement for H(z , f) . We shall show
that the condition of Lemma 2.17 is satisfied. This is done by modifying
the proof of Gehring [9, Lemma 9].

Let D €J(G), let Q€ D beanopen n-interval, andlet P : R* — R"1
be the orthogonal projection. For each Borel set A ¢ PQ we define Z, =
QN P14 . Setting ¢(4,Q) = m(fZ,) we obtain a g¢-quasiadditive set
function 4+ ¢(4,Q) in PQ, where ¢ = N(f, D). Fix z € PQ such
that the upper derivative ¢'(z, Q) is finite, and set J = Z, .

Let F be a compact subset of J . There exists p > 0 such that (2)
and (3) in 4.10 hold for 0 <7 < o and C = @ . Since H*(x,f) is locally
bounded, there is a constant ¢ << oo such that H*(x,f) <c¢ for x €D .
Given an integer k such that 0 << 1/k << min (d(F, 9Q), o) let Fi be
the set of all # € ' such that 0 < r << 1/kc implies L*(x,f, L(x,f,7))/c
=I¥a,f,Lx,f,r) =r. Then every F, is compact by 4.10. Moreover,
F = UF, by 4.3. Fix k, and choose ¢ > 0 and ¢ > 0. By a well-known
lemma [7, p. 6] there is a 6,0 << § << 1/kc, such that for every r,0 <
r << 0. there exists a covering of F, by open segments A4,, ..., 4, of
J such that (1) my(4;) = 2r, (2) the center a; of A; belongs to F,
(3) each point of F) belongs to at most two different 4;, and (4) pr <
my(Fy) +¢e. Choose r € (0,0) such that |[f(u) — f(v)] < /2 whenever
fu—vi{<r and w,v€Q. Set s =L(x,f,r), Vi=DB"(f(m),s:).
Then fFic UV: and d(Vi)=2s <t. Hence A\(fF) <> d(V:) =
> 2s;. By Hélder’s inequality this implies

, . 2npn—1
AY(fF) < 27" 1> st = 0. > m(Vy).

Since x; € Fy, we have L*(x;,f,s) < cl*(:,f,s) = cr, and therefore
U= Ulx; . f,s)C B*(a;, cr). Since cr < 1/k, this implies V; = fU; C
fZ, where A = B"l(z,cr). Observing that every point in Z, belongs
to at most 4c different Ui, we get thus > m(V)) = 4cqm(fZ,) =
4cqyp(A . Q). From this and from pr < my(F) + ¢ it follows

2" 2¢"q(my(F) + )" Loy (4, Q)
Qn mu—] (A) ‘

AR =

Letting first » — 0, then ¢ — 0, and then ¢t — 0, we obtain A,(fF:)" <
qC¢'(z , Qymy(F)*1 where C = 2""*¢"Q, ,/Q,. Since fF is the limit of
the expanding sequence of the compact sets fFi, we have A,(fF) =
lim A4, (fF:) and hence

(4.12) A,(fF)" = qC'(z , Q)my(F)" .
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Let now I;, j=1,...,m, be disjoint closed subintervals of J. We
have > d(fI}) = > A(fl)) = ¢4,(fUl)) . Applying (4.12) to F = UI; we
obtain

ALy = ¢ Cg'(z, Q) (2, ma(Lj))"* .

Thus (2.18) is true for 7 = n . By symmetry, it holdsalsofor 1 =<7 =n—1.
Hence f is ACL™.

We are now in a position to prove the metric definitions for quasi-
regular mappings.

4.13. Theorem. A non-constant mapping f:G — R" is quasiregular if
and only if it satisfies the following conditions:

(1) f 1is sense-preserving, discrete, and open.

(2) H(x,f) is locally bounded in G .

(8) There exists a < oo such that H(x ,f) = a for almost every x €

G\ B;.

Proof. Suppose first that f satisfies the conditions (1), (2), and (3).
The mapping f is ACL" by 4.11. An open ACL™-mapping is differentiable
a.e. [24, p. 9]. Let D € J(G) . By (2) there exists ¢ < oo such that H(z, f)
<c¢ for x € D. If f is differentiable at « € D, we have

If"@)|" = 1 (@, f) -

Since this holds a.e. in D, f|D is quasiregular. If « € D\ B, and if U
is a connected neighborhood of x such that U c D\ By, it follows from
(3) that K, (f|U), K, (f|lU) <a*'. Hence f|D is a"l-quasiregular by
2.28. Since this is true for every D € J(G), f is a"!-quasiregular.

Let now f be quasiregular. The condition (1) follows from 2.26, and
(2) and (3) from 4.5 and 2.12.

4.14. Theorem. A non-constant mapping f:G — R* is quasiregular
if and only if it satisfies the following conditions:

(1) [ is sense-preserving, discrete, and open.

(2) H*(x,f) is locally bounded in G .

(3) There exists a* << oo such that H*(x,f) =< a* for almost every

Proof. Suppose that f satisfies (1), (2), and (3). As in the proof of 4.13
we conclude that f is ACL" and differentiable a.e. Each point in G\ By
has a connected neighborhood U such that f|U is injective. Hence
H(f(z), (flU)) = H*(z ,f) for z in such a U . This together with (2)
and (3) imply that (f|U)™' and hence f|U are a*"!-quasiconformal. If,
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in addition to this, we show that [f'(z)| = J(z,f) = 0 for almost every
x € By, we can conclude that f is a**!-quasiregular. Let z, € B; be a
point where f is differentiable. By 2.14, J(x,,f) = 0. Since f is dif-
ferentiable a.e., it is sufficient to show that f'(x,) = 0. We have

(4.15) f@oth) — flay) = f'(@)h + |kle(R)

where ¢(h) —0 as 7 — 0. Suppose that |f'(z))] = 2> 0. Choose unit
vectors hy, by, such that |f'(x)h| = A and f'(xy)h, = 0. Consider r > 0
such that U(z,,f,r) is a normal neighborhood of x,. Choose «,,x, > 0
such that ;4 ki €9U(xy,f,7), 1=1,2. Then |f(x,+ oihi) —
flxy)] = r, and we obtain from (4.15)

o f (@o)hy + e(ahy)| = 1 = aple(ay by )| -
Thus
*@o s f57) — le(oqly)]
I*(xo o Ea fe(oczhz)r— !

which implies H*(x,,f) = o . By (2), this is a contradiction.
If f is quasiregular, the conditions (1), (2), and (3) follow from 2.26,
4.6, and 2.12.

V

5. Condensers

5.1. In this section we generalize the concept of a ring domain and its
capacity. This generalization is called a condenser, and we state some
properties of the capacity of a condenser.

5.2. Definition. A condenser is a pair E = (4 , () where 4 c R* is
open and C is a non-empty compact set containedin 4 . E is a ringlike
condenser if A\ _C 1is a ring (see 2.1). E is a bounded condenser if A is
bounded. A condenser £ = (4, C) is said to be in a domain G if 4 c G .

The following lemma is immediate.

5.3. Lemma. If f:G-—R" is open and E = (A,C) is a condenser
tn G, then (f4,fO) is a condenser in fG .

In the above situation we denote fE = (f4 ,fC).

5.4. The capacity of a condenser. Let E = ) be a condenser. We set

cap ' = cap (4,0) = inf / [NVul* dm

u€W,(E)
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and call it the capacity of the condenser E . The set Wy(E) = Wy(4 , () is
the family of all non-negative functions u : A — R such that (1) u € Cy(4) ,
(2) w(@) =1 for x €C, and (3) u is ACL. In the above formula

B

[Vl = (2 (0™

i=1

We mention some properties of the capacity of a condenser.

5.5. Lemma. If E = (4 ,C) is a condenser, then

uEW,® (E)

cap B = inf /IVul"dm
A

where W (E) = Wg(d, C) = Wy(B) N CF(4).
Proof. Obviously

cap I = inf / INVul|* dm .
uEWo‘”(E)4

The converse inequality is proved by a standard approximating argument.
The construction involves first multiplying v €Wy (E) by 14 ¢, e> 0,
so that the resulting function is = (1+e) on €, and then forming a
smooth integral average, cf. e.g. [26. Section 27]. The details may be omitted.

5.6. Lemma. If E = (4,C) is a ringlike condenser, then cap B =
cap (A \ C) in the sense of Gehring [8, p. 500].

This is a direct consequence of n-dimensional versions of [8, Lemma 1,
p. 501] and [8, Remark, p. 502].

5.7. Lemma. If E = (4,C) is a condenser, then
cap B = infcap (U, (),

where the infimum is taken over all open sets U such that U 1is compact in
A and UDC.

Proof. Obviously cap E < cap (U, O) for all sets U of the above
type, hence

cap E < infcap (U, C).

Let &> 0. Then there exists a function u € W(F) such that
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cap £ > /]Vui"dm-—e.

A

Since sptu is compact in A, there exists an open set U such that spt u
c U and U is compactin 4. Then u € W, olU , C) and we obtain

cap (U, 0) g/]Vu]”dm<ca-p(A,C)+e.
4

The lemma follows.
5.8. Lemma. The inequality

B < m(4)
2P = 0, ady

holds for the capacity of a bounded condenser E = (A4, C) .

Proof. Let 0 <& <d(C,34)". There exists an open set U such that
CcUcUcA and dC,04) <d(C,aU)y +¢e. If we define wu(x) —=
d(x, CU)[d(C,9U), then |u(@)—u(y)| < [x—y|/d(C,dU) for all x,
y €R". Thus u € Wy(E) and |Vu| < 1/d(C, dU) a.e., which implies

m(4) - m(A)
(C,oU0) = d(C,04) — ¢~

capE’§/d(O, 6U)*"dm=d

A

Letting ¢ — 0 gives the desired result.

5.9. Lemma. Suppose that E = (A ,C) is a condenser such that C is
connected. Then
aey
m(4)

(cap B)" ! = b,
where b, is a positive constant which depends only on n .

Proof. By 5.7 we may suppose that 4 is bounded. We may also assume
that d(C) =7 >0 and that C contains the origin and the point re, .
Let w € Wy (E). For 0 <t <7 welet T(t) denote the hyperplane z, =¢.
Using the method of [23, p. 9], we estimate the integral

[NVul* dm.—, .

T()
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Fix 2€C0NT(t). For y €S2 let R(y) be the supremum of all
o> 0 such that z +ty €4 for 0 =t <{,. Then

R(y)
[ e e = ) = ue+ R = 1
0
for all y € S"2. By Holder’s inequality this implies
R(y)
1 = (n—1)"1 R(y) / INVu(z+ty)|* "2 dt .

0

Integrating over y € S"-% yields

. R(y)
(n—1y / R dm,y = / sy (9) f IV ule-Hy) [ o de
(5 . 10) sn—2 sn—2 0
= IV u|® dma—y .

T()

On the other hand, we obtain by Holder’s inequality

\n / n—1
Wy — ( / dmn_z) < / Rt dm,, ( / R dm,,_z)

(5. 11 ) sn—2 sn—2 sn—2

< (n—Dymay (A 0 T()) ( / R dmn_;)"_l :

Sn°—2
Setting f(t) = ma.—y(4 N T(t)), we obtain from (5.10) and (5.11)

Vul* dmp—y = (n—1)"7H0D 7 GD f() 0

T()

Integrating over 0 < ¢ <<r we obtain

T

(5.12) / |Vu|*dm = (n—1)'7""10=1 gr0h / f@) dt
A

0

Holder’s inequality gives

. ( /' dt\)" _ ( /f(t) dt) ( / 00 dt\)n—l = m(4) ( / f(tyHe—m dt)"”I )
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By (5.12), this implies

\n—1

T"

(/ [Vul? dm) = (n—1)2E g m(A_) .
A

Since this holds for every w € W (K), the lemma follows.

6. The condenser definition for K,(f)

6.1. Suppose that f:G — R* is a mapping. A condenser £ = (4 , C)
is said to be a normal condenser of f if A is a normal domain of f. If
E is a normal condenser, we set N(f, E) = N(f, A) = u(f, 4) (cf. 2.4).

This section is devoted to the proof of the following result:

6.2. Theorem. Suppose that f:G — R is sense-preserving, discrete,
and open, and that 1 = K < co . Then the following conditions are equivalent :
(1) Kof) =K.
(2) cap E < KN(f, E) cap fE for all normal condensers E in G .
(3) cap B < KN(f, E)capfE for all ringlike normal condensers E
m G .

Since (2) implies (3) trivially, it suffices to prove that (3) = (1) = (2).

6.3. Proof for (3) = (1). We show first, using the metric definition
4.13, that f is quasiregular. Let z € G, and choose ¢, > 0 as in 2.9.
Choose 0 <7 <7, <o., and set U;=U(x,f,n), i=1,2. Then
E = (U,, U,) isaringlike normal condenser. Let I" be the family of all paths
joining U, and 9U, in U, \ U, andlet I be the family of all paths
joining the boundary components of the spherical ring 4 = B*(f(z) , r,) \.
B (fx),n)) in A. By 29, oU;,= U,Nf18"(f(x),r), i=1,2.
From the path lifting lemma 2.7 it follows that I = fI".

By 5.6 and by a generalized version of [10, Theorem 1], cap £ = M(I")
and cap fE = M(I). Hence (3) implies M(I') < Ki(x, f)M(fI') . From
4.4 it follows that H(x,f) = C << o where C depends only on n, K,
and i(z,f). Since i(x,f) =1 for x € @\ By, it follows from 4.13 that
f is quasiregular.

If x € G\ By, then there is a neighborhood V = B"(x,r) such that
S1V is injective. By (3) and by 5.6, cap R < K cap fR forallrings Rc V.
Hence K,(f|V) = K by the corresponding result for quasiconformal
mappings [26, 36.1]. By 2.28, K,(f) < K.

6.4. Proof for (1) = (2). Suppose that E = (4, C) is a normal con-
denser in /. Let ¢> 0. By 5.5, there is v € W°(fE) such that
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/ [Vo|"dm < cap fE + «.
fA4

Define u: A — R' by wu(x) = v(f(x)). Then u(z) =1 for  €C . Since
f is ACL and a.e. differentiable, » has also these properties. Since 4 is a
normal domain of f, it follows from 2.6 that sptuc 4 N f~(spto)
is compact. Hence u € Wy(#), which implies

cap B < / [NVu|*dm .
A
Here [Vu(z)] =< |[Vo(f(z))] |f'(x)] a.e. Using [14, Theorem 3, p. 364] we
obtain

OwEé&m/RMMWWLﬂmw
=&m/RMWWWJAmmw

gMﬁm&m/WWM§Mﬁmmmmwnuy
f4

Since ¢ is arbitrary, (2) follows.

7. The condenser definition for K,(f)
This section is devoted to the proof of the following result:

7.1. Theorem. Suppose that f:G — R" 1is sense-preserving, discrete,
and open, and that 1 =< K << oo . Then the following conditions are equivalent :

(1) E(f)<K.

(2) capfE =< Kcap E for all condensers E in G .

(3) capfE < K cap E for all ringlike condensers E in G .

7.2. Remarks. This result differs from 6.2 in two respects. First, in 7.1
the factor N(f, E) does not appear. Second, the inequality (2) holds for all
condensers while the corresponding inequality cap £ =< N(f, E)K,(f) cap fE
of 6.2 is given only for normal condensers. In particular, (2) holds for con-
densers K = (4, C) such that A isnot compactin . This makes 7.1toa
useful tool when the boundary behavior of quasiregular mappings is studied.
For example, suppose that f: R* — R" is a bounded non-constant quasiregu-
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lar mapping. If E is the condenser (R", B"), we have cap £ = 0, while
5.9 implies cap fE > 0. This contradicts (2), and we have proved Liouville’s
theorem in 7 dimensions (cf. Re§etnjak [19, p. 661]). We intend to return
to related questions in a later paper. The proof of 7.1 is considerably more
difficult than that of 6.2. Since (2) implies (3) trivially, it suffices to prove
that (3) = (1) = (2).

7.3. Proof for (3) = (1). We show first with the help of Lemma 2.17
that f is ACL". Let D € J((G), and let @ be an open n-interval in D .
Write @ = @, x J, where @, is an (r—1)-interval in R"! and J is
an open segment of the wx,-axis. Using the notation of 2.16, we have ¢.(E , @)
= m(f(E % J)) for Borel sets Ec @,. Fix z €@, such that ¢.(z,Q)
< oo, and let 4,,...,4, be disjoint closed subintervals of the segment
J,={z} x J. Set A;=4; + rB* where r is a positive number such
that (i) the domains A; are disjoint, (ii) 4; C @ . and (iii) Q. = wp—ymy (43)
for 1 <7=<Fk. Then (4:,4;) is a ringlike condenser, and we obtain
from 5.8 and (iii) the estimate

cap (A;, 4;) = m(4:)/r* == 20, my(di)jr .
On the other hand, 5.9 implies

oy, A
(cap (fdi, fAD"™ = Du (4

Together with (3) these yield
fJ ) Ci(l—n) ”)n(fA l H)IZ (Jl_)(n—l) n ,
where C depends only on n and K .
Summing over 1 <+¢ =< %k and using Holder’s inequality we obtain
k

A < Com,_(B) ( .?Z, W fA)) (X ma( Ay

i=1

uM»

where B = B"—l(z ,7) and €] depends only on n and K. Setting
q = N(f,D) wehave > m(fd:) = gm(U f4,) = qg.(B, Q) . Letting » —0
we thus obtain

k
z (fAN" =< qChpn(z . Q (Z my(1))1 .

By symmetry, Lemma 2.17 implies that f is ACL".

As an open ACL™mapping, f is differentiable a.e. by [24, p. 9]. We
prove that f is quasiregular by showing that if f is differentiable at .
then

(7.4) (o) " = Ko (. f)
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where K; depends only on n and K . For brevity, we set L = |f'(x).
and J = J(%,,f). We may assume that L> 0. Let 0 <e<<L, and
let ¢ be a unit vector such that |f'(xy)e! = L. For 0 <r < d(x,, 0G)/2
let C, be the closed line segment with end points «, and x, 4 re . Setting
A, = O, ++ rB™ we obtain a ringlike condenser E, = (4,,(,) in . Since the
condensers E, are similar for all », cap E, = ¢ is a positive constant, inde-
pendent of 7. We choose 7 so small that |f(x, - re) — f(zo)] > (L — &)r
and m(fd,) = (J + eym(A4,) . Since m(A4,) = 3w,p". 5.9 implies

ayey Loy

n—1 > ~
(cap fE)" = b iy =C g

where € depends only on 7. Since capfE, = K cap E, = Ke, we
obtain

(L — &)* < CAK™ e YT =+ &) .

Letting & — 0 yields (7.4). Hence f is quasiregular.

Let x € G\ B;, and choose a connected neighborhood D of z such
that f|D is injective. Applying Theorem 6.2 to the mapping (f|D)™
we obtain

K,(f D)= Ko(f Dy =K.
By 2.28, K,(f) = K.

7.5. We now turn to the proof of (1) =- (2) in Theorem 7.1. Assume that
K(fy= K, and let E = (A,C) be a condenser in . Let u be an
arbitrary function in Wi (E). We define ¢:fd — R' by

v(y) = sup u(x).
fo_'l(‘\ )
Since f is discrete and since sptuw is compact, f7(y) N sptw is finite.
Hence for each y € f4 there is « € f~'(y) such that v(y) = u(x) . We are
going to show that » € W(fE) . For this purpose we prove some lemmas.

7.6. Lemma. The function v has the following properties:
(1) o(y) =1 for y€fC.

(2) spto = f(sptu).

(3) sptw iscompact in fA .

(4) v ts continuous.

Proof. The property (1) is trivial. For (2),set U = {x € 4 |u(x) # 0}
and V ={y€fA|v(y) #0}. Then fU = V. Since [ is continuous

7

and sptu = U is compact, f(sptu)= V =spte. Since (3) is a con-
sequence of (2), it remains to verify (4).
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Let y€f4d. If yésptv, then » =0 in a neighborhood of y.
Next assume y €sptov = f(sptu). Let £> 0. Choose a neighborhood
U of sptu such that U is a compact subset of 4 and such that aU N
fflyy=9. Let UNfYy)={x,...,2}, where wu(x;)=0v(y). By
the continuity of % we can find neighborhoods U(z;) of z;,1 <¢ <7,
such that |u(z) —u(x)| <e for x€U(x). Then F =0\ U U()
is compact, y ¢ fF, and =t

V=@ﬂmm\ﬁ

is a neighborhood of y . We show that |v(z) —o(y)| <e if z€ V.
Since z € fU(x,) , 2 = f(x,) for some z, € U(x;). Hence

0(2) = w(zy) = u(z) —e=0(y) —e.

On the other hand, v(z) = u(x) for some =z in UNfiz)c U\ F.
Hence x € U(x;) for some ¢, which implies

v(2) = ulw) < u(w) + & < v(y) + ¢

The lemma is proved.

7.7. To show that v € W(fE), we still must prove that » is ACL.
Since this property is local, it suffices to show that ¢ is ACL in a neighbor-
hood of each point of sptv. Fix y, €Esptv, and let fl(y,) Nsptu =
{y,...,2;}. Choose 7, such that 0 <<r, <<d(y,, 9fA) and such that
the domains U(a:,f,r,) are disjoint normal neighborhoods of ; for
1=17=¢q (see 2.9). Next choose a positive number r; = r, such that

q
By, , ) Nfsptu\ U Ui, f,r)) =@ . Then the components of
i=1
f1B"y,,r,) which meet sptu are the sets U(a;,f,n), 1 =i < ¢q. Set
q
Ui=U(x:,f,r) and U = | U;. Choose an open n-interval ¢ such

=1
that Q@ c B'(y,,r,). Write @ =@, X J, where @, is an (n—1)-
interval in R"1, and J = (a,b) is an open segment of the uz,-axis.
For each Borel set 4c @, put ¢d)=mUNfYA x J)). Then ¢
is a 1-quasiadditive (in fact, completely additive) set function in @,. By
2.3, ¢'(2) < oo for almost every z €Q,. Fix such z, and set J, = {2}
x J . To show that v is ACL, it is sufficient to prove the following result:

7.8. Lemma. The function v is absolutely continuous on J, .

7.9. For the proof of 7.8 we need another lemma, which states, roughly
speaking, that the one-to-many correspondence f~1 is absolutely conti-
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nuous on J,. We let @ denote the set of all continuous mappings
g:J.— U such that fog is the identity mapping of J.. Observe that
for any g € @, ¢J. is contained in some U..

7.10. Lemma. For every &> 0 there is 6 > 0 such that

s

l9:(7:) — gily)| < ¢

whenever [y, 1], ... [Yp, Jp) are disjoint closed intervals of J,,

P
Sl —wyl <6, and g €D, 1 =i=p.
i=1

Proof. The proof is closely related to the proof of 4.11. By 4.6, there
is a constant ¢ such that H*(x,f) < c for « € U. Suppose that [y, ]
are disjoint closed intervals of J. and that ;€ ®, 1 =71 =p. More
precisely, yi = (z,4),% = (2, f), and a <t <L <...<tL < <b.
Set F'=[y:,%] and F = F'U...UFr. Choose an integer k, such
that 0 < 1/k, <d(F,0Q). For kgko and for 1<i<p let F;
denote the set of all points y € F' such that 0 <r < 1/k implies
L¥g:(y) ,f,r) = cl*(gi(y) . f,7). Then Fic Fi., and F'=UF,. By

k=F,
4.8, the function 3> L*(gi(y),f,r) is lower semicontinuous, and the
function y +> I*(gi(y) , f,r) is continuous. Hence each F; is compact.

Let n and ¢ be arbitrary positive numbers, and fix bk =k, . Using
the same lemma as in the proof of 4.11 ([7, p. 6] or [26, 31.1]), we can find

positive numbers 6, ..., 0, such that for all » € (0, d;) there exists a
covering of Fi by open intervals A, ..., 4, suchthat (1) m(4,) = 2r,

(2) the center g, of A belongs to Fj, (3)every point of F} belongs to
at most two different A’ , and (4) I(i)r < my(F}) + n/p . Set « = min
1<i<p-1
;.1 — | . Choose r > 0 such that » =< min (6,,..., 0, 1/k,«/2) and
such that |gi(y) — ¢:i(¥')| < t/2¢c whenever |y—y'|=2r, y,¥y €J.,
and 1=<i¢=<p. Then {A’ 11<i<p,l <m=<1(i)} is a covering of

U F. such that every point is covered at most twice.
i=1

Set af, =g(yh) and UL =TUl,,.f,r), 1=i=p,1 =m=1().
Since 3, € Fi, we have L¥ <clf, where L¥ = L*(ai, ,f,), 5 =
I*(z', ,f,7). On the other hand, I¥ =< d(g:d;) <t/2¢c, which implies
d(Uy < 2L% < t. Since g¢di,c U, this yields

bd (! r i)
A Ug,Fk"éz =2y

= l=1m:l i=1lm

1

Il
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By Holder’s inequality we obtain
P P
4 (Ulng’) 2o (> > I (O Iy

Since I(i)r < my(F}) + n/p < my(F') + n/p and since Q15" < m(Ul),
this implies

op , 2" ¢" (my(F) 4+ )" > > m(UL)
Ay (U gFiy = . 2
i=1 n
Set B = B"z,r). Then each U, is contained in UNfYB x J).

Since every point belolws to not more than two different Ul , we have
> > m(UL) < 2m(U N fYB x J)) = 2¢(B) . Thus

A, (U iy = Cln(E) + 0= ¢(B)mas(B)

where C = 2"7'¢"Q,_,/Q, . Letting first » — 0, then 5 — 0, then {— 0,
and then k— oo yields

p . r . _
O (@) = 4 (U gl = CF' () my(F)
i= i=1

Since |g:(7:) — gi(y:)| = A,(¢:F’), this proves 7.10.

7.11. Proof for Lemma 7.8. We show first that for every pair y, i € J,
there are ¢,J € @ such that

(7.12)  [o(7) — o)} = wg®) — wlgy)| + [w(@7) — w(Gy); -

By 2.7, there are g, § € @ such that v(y) = u(g(y)) and v(7) = w(§(7)) .
If v(y) =), then

(7)) — o) = (@) — w(9(y)) = w(@@)) — ()
and if o(7) < »(y), then

w(y) — o) = wg(y) — wg@) = u(gly)) — uw(g(@)) -
These inequalities prove (7.12).
Let 6> 0, and let ¢ > 0 be the number given by 7.10. Since u €
Cy(A4), w satisfies a Lipschitz condition
(7.13) u(@) —u@)| =< Mz — 2’|

forall w,2"€4. Let [y,,%],...,[¥p,7p] be disjoint closed intervals
of J, such that > |7 — | < 6. By (7.12) there are ¢;,J: € @ such
that

[0(7:) — o) = [u(gu#:)) — wg(ya))| + [w(F(7.) — w(@i(y:)]
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for 1 <¢=<p. By 7.10 and (7.13) we obtain

(@) — v(y)| = 2Me .

i

I

LM

Hence v is absolutely continuous on J,, and 7.8 is proved. This implies:
7.14. Lemma. v € W(fE) .

7.15. Lemma. Suppose that y € spt v \ f(spt w N By). Then there s
a neighborhood V, of y such that for every connected neighborhood V C V,
of vy, the following conditions are satisfied:

1) VNfBNsptu)=0.

(2) The components of fV which meet sptu form a finite collection

Dy,...,D,.
(8) f defines homeomorphisms fi:Di—V .
(4) v 1is differentiable a.e. in V.

(5) [Vo(z)] < max [Yu(g:(z) 'gi(2)] for almost every z €V where
1<i<k

gi=f".

Proof. Choose disjoint neighborhoods U, ,..., Ur of the points of
spt « N f~4(y) such that U; €J() and such that f| U; is injective,
1<i=<k. We claim that

k k
Vo= (N U fepta \ U T

is the required neighborhood of ¥ .

Let Vc V, bea connected neighborhood of y . Then (1) holds since
UNB =0 for 1=i=k. If D is a component of f~1V such that
DNsptu @, then D meets some U;. Since f| U; is injective, we
have V,N foU; = @, and hence DN oU; = @ . This implies Dc U;,
which proves (2) and (3).

Since the mappings ¢; are quasiconformal, they are differentiable a.e.
in V. Let z €V beapointat whichevery ¢;, 1 = ¢ = k, is differentiable.
Let I be the set of all indexes ¢ such that v(z) = u(gi(z)). If h€R"
is small enough, then by the continuity of v, v(z + k) = max u(g;(z + %)) .
Thus jet

(7.16) (e + k) —v(z) = (ulgi(z + k) — u(gi(z)]
for some j € 1. By (7.13), this yields
lw(z + h) — v(z)] = M max |gi(z + h) — gi(2)] .

1<i<k
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Since the mappings ¢:; are differentiable at z, this implies

: vz + h) — v(z)|
lim sup
h—0 ikl

and (4) follows from the theorem of Rademacher and Stepanov [26, 29.1].
Finally, (5) follows easily from (7.16).

< 0,

7.17. We shall now complete the proof of Theorem 7.1. Let u € W (X)
and v be as in 7.5. By Lemma 7.14 we have

capré/]V@l"dm.
4

There exists a countable net of open disjoint cubes @, , @, , ... such that
FAN f(sptu N By) = lj Q; and such that if @, meets sptv, then the
conditions (1)—(5) o%:';.15 are satisfied for V = ;. Since m(fB;) = 0
by 2.27, m(f4 \ G} @) = 0. Hence

=

(7.18) cap fE = i [Vo|* dm .
i=1
<

Consider a fixed cube ;. If §; does not meet sptv, then

/ [Vol*dm = 0.
Y

If @; meets sptv, consider the inverse mappings ¢:: Q;—D;, 1 <1
=k, given by 7.15. For almost every z € Q; we have

k
V()" = max [Vu(g:(z) " g:(2)]" = ; Vulgi(2)" Ko(g:)J (= , g:)

<isk )
= K((f) 21 Vulg(2) " J (=, gs) -

Since K, (f) =< K, this implies
k

f Vopdn = K5 | [Vulg)P I, g9 dmie)
Q;

i=1

:Kﬁ/]Vu["dm:K/[VuI"dm.

8¢ o
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Hence we obtain from (7.18)

cap fEl < KZ / IVul"dm = K / IVu|™ dm .
j=1 J
f—le |
Since « € W (E) was arbitrary, this proves cap fE = K cap E . Theorem
7.1 is thus completely proved.

8. Applications

Tn this section we show that the composite mapping of two quasiregular
mappings is quasiregular and that m(By) = 0 for a mnon-constant quasi-
regular mapping.

8.1. Theorem. Suppose thal f:G — R* and g:G — R" are quasi-
regular and that fGc G’ . Then gof: G — R" is quasiregular, and

Ko(g o f) < Ko(g) Kolf) , Kilg o f) = Kilg) Kilf) -

Proof. If either f or ¢ is constant, the result is trivial. If not, then
gof is sense-preserving, discrete, and open. Let E be a condenser in G .
Then 7.1 implies

cap gfE = K,(g) cap fE = K, (9)K,(f) cap £ .

Hence, by 7.1, gof is quasiregular and K,(g°f) = Ki(9)K(f)- Since
the corresponding result is well known to be valid for quasiconformal
mappings, the inequality for K, follows from 2.28.

8.2. Theorem. If f:G — R" is a non-constant quasiregular mapping,
then J(x,f) >0 ae.

Proof. We shall use an argument similar to the proof of Theorem 6 in
Gehring [9]. It suffices to show that A ={z € G| J(x,f) =0} has no
points of density.

Let 2, € G, and choose a positive number 7, such that if 0 <r =7,
then L*@y,f,r) < 2H*(xy, /)I*(x,f.7) and U(x,,f,r) is a normal
neighborhood of z,. Fix r € (0, 7], and set Uy=Ulxy,f 1), U=
Uy, f,7), L* = L*(@,, f,r), and I* =¥z, ,f,7). Consider the con-
denser E — (U,C) where € = B'(z,,1*/2). Let v € Wi (fE), and
define wu:U —>R! by u(x)=o(f(x)). Since U is a normal domain,
spt wuc U . Moreover, % is ACL, and u(z) =1 for x €C . Let P:R"—
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R™1 be the orthogonal projection, and set D = B™Y(P(z,) ,1*/2) . Then
for almost every z € D we have
2 < | [NVuldm, .
unpP—l(z)

Integrating over z € D yields

X = 2 Q1 < / Nl dm .
;

Since [Vu(x)| = [Vo(f(x))| |f'(z)] a.e.and since f'(x) =0 a.e. in 4, we
obtain

x é/ Vo(f@)] 1f (@)] dm() .
4
By Hoélder’s inequality this implies

& = m(U N Ay / o(f@) " |f(@) " dmiz)

U

= Ko(f)m(U A)”‘l/ NVo(fE)" (@, f) dm() .
U

By [14, Theorem 3, p. 364], this yields

w < KNS, Ug) m(U ™, Ay / ol dm .
7t
Since this holds for all » € W7 (fE), we obtain
" = Ko(f) N(f, Up) m(U\ A)'cap fE .

Here capfl < K,(f)cap E by 7.1, and cap E < w, ,/(log 2)*1. Set
B = B"(xy, L*) . Then m(B) = Q,L*" < Q,2"H*(x, , f)"I*" , and we obtain

m(B) = pm(U \ 4) = pm(B\ 4)

where the constant f is independent of r. Hence a, cannot be a point
of density of 4.

8.3. Theorem. If f:G — R" is a non-constant quasiregular mapping,
then m(By) = 0 .

Proof. By 2.14 and 2.26, J(z,f) = 0 a.e.in B;. The theorem follows
from 8.2.
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8.4. Theorem. Suppose that f: G — R" is a non-constant quasireqular

mapping. If A is a measurable set in G, then fA is measurable. Moreover,
m(fA4) = 0 if and only if m(4A) = 0.

Proof. We express G\ By as a countable union of domains in which f

is injective. Since m(B;) = m(fBs) = 0, the theorem follows from the
corresponding result for quasiconformal mappings.
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13.

14.
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