ANNALES ACADEMIAE SCIENTIARUM FENNICAE

Series A

I. MATHEMATICA

446

ON SPECTRAL DECOMPOSITIONS OF OPERATORS IN J-SPACE

 $\mathbf{B}\mathbf{Y}$

VÄINÖ JALAVA

HELSINKI 1969 SUOMALAINEN TIEDEAKATEMIA

.

doi:10.5186/aasfm.1969.446

Communicated 14 March 1969 by R. NEVANLINNA and G. JÄRNEFELT

KESKUSKIRJAPAINO HELSINKI 1969

.

1. Introduction

1.1. We consider a complex linear space X. Let Q denote a Hermitian inner product on X. We assume it to be non-degenerate $(Q(x, y) = 0 \text{ for all } y \in X \text{ implies } x = 0)$ and indefinite (Q(x, x) has positive and negative values). Further, let X have a decomposition

$$X = X^+ \oplus X^-$$

into direct sum of two Q-orthogonal linear manifolds X^+ , X^- :

$$\begin{array}{lll} Q(x^+\,,\,x^-) \ = \ 0 & \text{for all} & x^+ \in X^+\,, & x^- \in X^-\,, \\ Q(x^+\,,\,x^+) \ > \ 0 & \text{for all} & x^+ \in X^+\,, & x^+ \neq 0\,, \\ Q(x^-\,,\,x^-) \ < \ 0 & \text{for all} & x^- \in X^-\,, & x^- \neq 0\,. \end{array}$$

We assume that in this »Q-canonical» decomposition $(X^+, Q|X^+)$ and $(X^-, -Q|X^-)$ are Hilbert spaces; in this case (X, Q) is called J-space.

Let P^+ and P^- be the projectors onto X^+ and X^- , respectively, satisfying

$$P^+P^- = P^-P^+ = 0$$
, $P^+ + P^- = I$.

With

$$J = P^+ - P^-$$

the definition

$$H(x, y) = Q(J x, y)$$
 for all $x, y \in X$

gives a Hilbert inner product H on X. We denote the corresponding Hilbert norm by

$$||x|| = +\sqrt{H(x, x)}$$
 (x \in X).

In the following all topological properties are based on this norm.

1.2. A linear mapping A with the domain D(A) and the range R(A) in X is called an operator. If D(A) is dense in X, the operator A has a uniquely determined H-adjoint A^* , which is a closed operator:

 $H(A x, y) = H(x, A^* y) \quad \text{for all} \quad x \in D(A), \ y \in D(A^*).$

Take $x \in D(A)$ and $y \in D(A^*J)$, then ¹)

 $Q(A x, y) = H(J A x, y) = H(x, A^*J y) = Q(x, J A^*J y).$

The operator

is called the Q-adjoint of A . For $x\in D(A)$ and $y\in D(A^{\mathtt{c}})$ we have

$$Q(A x, y) = Q(x, A^{\circ} y).$$

In particular, we have

(2)
$$J^c = J^* = J^{-1} = J$$
.

Lemma. We assume that G and its inverse G^{-1} are continuous operators defined on X. Further let A be an operator with the domain dense in X. Then D(A G) is dense in X and

$$(A \ G)^* = G^* A^*$$
.

Proof. Let x be an arbitrary element of X. Since D(A) is dense in X there is a sequence $\{x_n\} \subset D(A)$ with $x_n \to G x$. Then $G^{-1}x_n \in D(A|G)$ and $G^{-1}x_n \to x$ since G^{-1} is continuous. This implies that D(A|G) is dense in X.

It is wellknown that 2) $(A \ G)^* \supset G^* A^*$. Since $D(G^*) = X$ we have $D(G^* A^*) = D(A^*)$. For $x \in D(A)$ and $y \in D((A \ G)^*)$ one derives

$$H(A x, y) = H(A G G^{-1} x, y) = H(G^{-1} x, (A G)^* y)$$

If y is fixed the expression $H(G^{-1}x, (A G^*)y)$ is a continuous function of x. This implies by the definition of $D(A^*)$ that $y \in D(A^*) = D(G^*A^*)$. Consequently, we have $D((A G)^*) \subset D(G^*A^*)$ which completes the proof.

We assume that A is a closed operator with the domain D(A) dense in X. Then $D(A^*)$ is dense in X and by the previous lemma $D(A^c) = D(A^*J)$ is also dense in X. Further we get

$$(J A J)^* = (A J)^* J^* = J^* A^* J^* = J A^* J = A^{c}.$$

This implies that A^{c} is a closed operator. Since $A^{**} = A$ one obtains

$$\begin{array}{l} A^{\rm cc} \,=\, J \, (J \; A^* \, J)^* \, J \,=\, J \, (A^* \, J)^* \, J^* \, J \,=\, J \; J^* \, A^{**} \, J^* \, J \,=\, J^2 \, A \; J^2 \,=\, A \; . \\ \hline & & & \\ \end{array}$$

 2) E.g. [6].

From (1) and (2) one immediately gets the rules (if the operators in question exist):

- $1) \qquad (A^{-1})^{\rm c} \ = \ (A^{\rm c})^{-1} \ ,$
- 2) $(\alpha A)^{c} = \bar{\alpha} A^{c}$,
- 3) $(A + B)^{c} \supset A^{c} + B^{c}$,
- $4) \qquad (A B)^{\circ} \supset B^{\circ} A^{\circ} ,$
- 5) $A \subset B$ implies $A^c \supset B^c$.

Especially if A is a continuous operator, the rules 3) and 4) can be replaced by

 $(A + B)^{c} = A^{c} + B^{c}$,

4') $(A B)^{c} = B^{c} A^{c}$.

Let A be an operator (not necessarily continuous) and C a continuous operator. If $C A \subset A C$ we say that A commutes ³) with C and write $A _ C$. The notation $A _ B$ means that A commutes with every continuous operator C commuting with B.

We give the definitions:

(a) The operator A is Q-self-adjoint if $A = A^{c}$.

(b) A continuous operator A with $A^{c} = A^{-1}$ is called *Q-unitary*.

(c) A closed operator A with the domain dense in X is called *Q*-normal if $A A^{e} = A^{e} A$.

1.3. In his theory of linear spaces with indefinite inner products Rolf Nevanlinna expressed the idea [4] that under some restrictive conditions it should be possible to derive, by analogy with the spectral theory of H-self-adjoint operators, a spectral decomposition of Q-self-adjoint operators. Erkki Pesonen [5] studied the question in details in the special case that the self-adjoint operator is continuous and (X, H) is a separable Hilbert space. Applying some results of Heinz Langer [3], Rolf Kühne [2] examined the problem from a different point of view and generalized the results of Pesonen for general Hilbert spaces. Peter Hess recently [1] succeeded in generalizing this for non-continuous Q-self-adjoint operators.

In this paper we shall give such a modification of the results of Hess which is also applicable for Q-unitary and Q-normal operators.

I express my sincerest thanks to Professor I. S. Louhivaara for his kind interest and many valuable advice. I also wish to thank Dr. Peter Hess for his valuable criticism on the first manuscript of this paper.

³ E.g. [6].

2. Various Hilbert inner products in J-space

Let Λ be the set of the continuous and Q-self-adjoint 2.1. operators G for each of which there is a positive number h (depending on G) such that

(3)
$$Q(G x, x) \ge h ||x||^2$$
 for all $x \in X$.

A bilinear form K defined on the space X is a orem 1. Hilbert inner product topologically equivalent to H if and only if there is an operator $G \in \Lambda$ such that

$$K(x, y) = Q(G x, y)$$
 for all $x, y \in X$.

(a) Let K be a Hilbert product equivalent to H. Proof. There exists an H-self-adjoint continuous operator C such that

$$K(x, y) = H(C x, y) = Q(J C x, y)$$
 (x, y $\in X$).

We write G = J C. Then we have

$$K(x, y) = Q(G x, y) \qquad (x, y \in X),$$

and G is Q-self-adjoint:

$$G^{c} = (J C)^{c} = C^{c} J = J C^{*} J^{2} = J C = G.$$

Since the Hilbert products H and K give the same topology there is a positive number h such that

$$Q(G x, x) = K(x, x) \ge h H(x, x) = h ||x||^2$$

for all $x \in X$. Consequently, we have $G \in A$.

(b) Suppose

$$K(x, y) = Q(G x, y) \qquad (x, y \in X)$$

where $G \in \Lambda$. Since G is Q-self-adjoint, K is a Hermitian inner product. In accordance with (3) there is a positive number h such that

$$K(x, x) = Q(G x, x) \ge h H(x, x)$$

for all $x \in X$. On the other hand

$$K(x, x) = H(J G x, x) \leq ||J G|| H(x, x)$$

for all $x \in X$. Consequently, the forms H and K induce the same topology.

We shall still consider an operator $G \in \Lambda$ and the corre-2.2. sponding Hilbert product

$$K(x, y) = Q(G x, y) .$$

We have for $x, y \in X$

 $K(G x, y) = Q(G^2 x, y) = Q(G x, G y) = K(x, G y),$

thus G is K-self-adjoint.

Let C be a continuous operator satisfying

$$K(x, y) = H(C x, y) \qquad (x, y \in X).$$

Then we have G = J C. The operator C has a continuous inverse C^{-1} defined on X. Since $G^{-1} = C^{-1}J$, the operator G has also a continuous inverse G^{-1} defined on X.

Theorem 2. Let A and B be two closed operators with the domains dense in X. Then the two following propositions are equivalent.

(i) In X there exists a Hilbert product K equivalent to H so that the operators A and B are the K-adjoints of each other.

(ii) There exists an operator $G \in A$ such that $G A = B^{\circ} G$.

Proof. (a) First we assume that there is a Hilbert product K equivalent to H so that B is the K-adjoint of A. We denote for K-adjoint of A by A° that is $B = A^{\circ}$. According to Theorem 1 there is such an operator $G \in A$ that

$$K(x, y) = Q(G x, y)$$
 (x, y $\in X$).

For $x \in D(A)$ and $y \in D(B)$ one gets

$$Q(x, G B y) = K(x, B y) = K(A x, y) = Q(G A x, y).$$

This implies $G A \subset (G B)^{\circ} = B^{\circ} G$.

For $x \in D(B G)$ and $y \in D(B^{\circ} G)$ one derives

$$K(B G x, y) = Q(G B G x, y) = Q(G x, B^{\circ} G y) = K(x, B^{\circ} G y),$$

hence $B^{\circ} G \subset (B G)^{\circ}$.

Since G and G^{-1} are continuous operators defined on X, we obtain $(B G)^{\circ} = G^{\circ} B^{\circ} = G A$ according to the lemma in section 1.2. Thus we have $B^{\circ} G \subset G A$.

Consequently, we have $GA = B^{c}G$.

(b) Let $G \in A$ be an operator so that $G A = B^{c} G$. We define

$$K(x, y) = Q(G x, y) \qquad (x, y \in X).$$

According to Theorem 1 the form K is a Hilbert product equivalent to H.

For $x \in D(A)$ and $y \in D(B)$ one has

 $K(A \ x \ , \ y) = Q(G \ A \ x \ , \ y) = Q(B^{\circ} \ G \ x \ , \ y) = Q(G \ x \ , \ B \ y) = K(x \ , \ B \ y) \ ,$ therefore $B \subset A^{\circ}$.

Because of the equation $GA = B^{\circ}G$ we have $x \in D(A)$ if and only if $Gx \in D(B^{\circ})$. We obtain

 $\begin{aligned} Q(B^{\circ} G x, y) &= Q(G A x, y) = K(A x, y) = K(x, A^{\circ} y) = Q(G x, A^{\circ} y), \\ \text{for } x \in D(A) \quad \text{and} \quad y \in D(A^{\circ}). \text{ This results in } A^{\circ} \subset B^{\circ\circ} = B. \text{ Consequently } A^{\circ} \text{ equals } B. \end{aligned}$

3. Application for the spectral decomposition of Q-self-adjoint, Q-unitary and Q-normal operators

3.1. Let A be a closed operator with the domain dense in X. We assume there is such an operator $G \in \Lambda$ that

$$(4) GA = A^{c}G.$$

According to Theorem 2 there is a Hilbert product K equivalent to H and K is such that A is K-self-adjoint. Consequently, one has a unique K-self-adjoint spectral family { $E_{\lambda} \mid -\infty < \lambda < \infty$ } having the following properties:

Thus we have obtained for the operator A a spectral decomposition defined above. However, the spectral family $\{E_{\lambda}\}$ is in this case not necessarily Q-self-adjoint.

Now we assume in addition to (4) that A is Q-self-adjoint: $A = A^{\circ}$. Then one has

$$G A = A G$$
 and $G^{-1} A = A G^{-1}$.

From (e) it follows that $G^{-1} _ E_{\lambda}$. Hence we derive

for all $x, y \in X$. Consequently $E_{\lambda}^{c} = E_{\lambda}$.

The Q-self-adjoint spectral family $\{E_{\lambda}\}$ having the properties (a)—(e) is uniquely determined (not depending on the special choice of K). In fact, let $\{F_{\lambda}\}$ be another spectral family with the same properties. Since $F_{\lambda}__A$ we obtain F_{λ}_G ; this results in $\{F_{\lambda}\}$ being K-self-adjoint. The implication of the last fact is that $\{F_{\lambda}\} = \{E_{\lambda}\}$.

Thus we have the following result of Peter Hess:

Corollary 1. Let A be a Q-self-adjoint operator. We assume the existence of an operator $G \in A$ satisfying A G = G A. Then there is a unique Q-self-adjoint spectral family $\{E_{\lambda} \mid -\infty < \lambda < +\infty\}$ having the properties (a)-(e).

3.2. Now we assume that A and A^{-1} are continuous. Further, we assume there is an operator $G \in A$ such that

(5)
$$G A = (A^{-1})^{c} G$$
.

According to Theorem 2 there is a Hilbert product K equivalent to H so that A and A^{-1} are the K-adjoints of each other. Therefore A is K-unitary. There exists a unique K-self-adjoint spectral family $\{E_{\varphi} \mid 0 \leq \varphi \leq 2\pi\}$ having the following properties:

Let us assume in addition to (5) that A is Q-unitary. Then $A^{-1} = A^{\circ}$ and GA = A G. Now we can prove as we did in section 3.1 that E_{φ} is Q-self-adjoint. Besides, this spectral family possessing the properties (a)-(e) is unique.

Corollary 2. Let A be a Q-unitary operator. We assume there exists an operator $G \in \Lambda$ with the property A G = G A. Then there is a unique Q-self-adjoint spectral family $\{ E_{\varphi} \mid 0 \leq \varphi \leq 2\pi \}$ having the properties (a)-(e).

3.3. Let A be a closed operator with the domain dense in X. We assume that there is a closed operator B with the domain dense in X such that A B = B A. Moreover, we assume the existence of an operator $G \in A$ with the property

$$(6) GA = B^{c}G.$$

In agreement with Theorem 2 there is a Hilbert product K equivalent to H so that A and B are the K-adjoints of each other. Since A B = B A the operator A is K-normal. There exists a unique K-self-adjoint spectral measure E defined for the Borel sets of complex numbers so that the following properties are valid ⁴):

- (a) E(C) = I,
- (b) $A = \int_C \lambda \, dE$,
- (c) $E(M) _ A$ for each Borel set M of C.

We assume especially that $B = A^{\circ}$. Then the operator A is Q-normal: $A A^{\circ} = A^{\circ} A$. Since, according to (6), G A = A G it follows from (c) that $E(M)_G$. This implies that the spectral measure E is Q-self-adjoint.

Corollary 3. Let A be a Q-normal operator. We suppose there exists an operator $G \in A$ satisfying A G = G A. Then there is a unique Q-selfadjoint spectral measure E possessing the properties (a)-(c).

University of Jyväskylä Finland

⁴) The set of all the complex numbers is denoted by C.

References

- HESS, P.: Zur Theorie der linearen Operatoren eines J-Raumes. Operatoren, die von kanonischen Zerlegungen reduziert werden. - Math. Z. 106, 1968, pp. 88-96. = Vordruck: University of Jyväskylä, Department of Mathematics, Report 2, 1967.
- [2] КÜHNE, R.: Über eine Klasse J-selbstadjungierter Operatoren. Math. Ann. 154, 1964, pp. 56-69.
- [3] LANGER, H.: Zur Spektraltheorie J-selbstadjungierten Operatoren. Math. Ann. 146, 1962, pp. 60-85.
- [4] NEVANLINNA, R.: Über metrische lineare Räume. V. Relationen zwischen verschiedenen Metriken. - Ann. Acad. Sci. Fennicæ A I 222, 1956.
- [5] PESONEN, E.: Über die Spektraldarstellung quadratischer Formen in linearen Räumen mit indefiniter Metrik. - Ann. Acad. Sci. Fennicæ A I 227, 1956.
- [6] RIESZ, F., and B. SZ.-NAGY: Leçons d'analyse fonctionnelle. [4th edition.] Académie des Sciences de Hongrie. Gauthier-Villars / Akadémiai Kiadó, Paris / Budapest, 1965.