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INTRODUCTION

The definite automata constitute one of the earliest, and best known

classes of finite automata. From the historical point of view, the concept

has its origin in the pa,per tltl by Mccur,r,ocn and Prrrs, published in
1943. In this paper the loop-free neural nets were characterized. in terms

of logical calculus. As is well known, an automaton is definite iff it is real-

izable by a loopfree sequential network. The notion of definite events

(here language§) was actually introduced 1956 by Kr,nnNr [9] in his famous

paper, where he also ga,ye a new formulation of the McCulloch-Pitts theory.

The definition of definite languages has then been formulated in two

equivalent ways in modern terminology.
Bnzozowsxr lll calls a language definite iff it can be given by a regular

expression E + X*I , where E and E denote finite languages. 1'he

simplicity of these definite expressions allows him to define a canonical

representation for definite languages. This result (with an extension by
Pez and Ppr-ps [14]) is still one of the few partial solutions of the general

problem of canonical forms of regular languages.

The other definition 'w-as given by Pnnr,ns, RauN and SHAMm, lI5],
who also introd.uced the related concept of definite transition tables (here

transition systems). We adopt their definitions, but derive the fundamental

properties needed using a special regular expression, called the k-form,

for the definite language. In particular, we obta,in the results of [15] that a

reduced /c-definite automaton has a k-definite transition system and at

least fr f I states by considering the derivatives of the ft-form (§ l)'
The s.P. partitions of definite transition systems are considered in

§ 2. Thereby a, new formulation and some generalizations of the contrac-

tion theory by Ponr,ns et al. arc presented. The partitions and the corres-

ponding homomorphic images of the transition system are then used in
the second testing and analysis method given in § 3.

In § 4 we consider autornaton partitions on the semigroup of input
word.s. Definite automaton partitions are defined., and it is shown that
any automaton partition defined by an S.P. partition of a definite transi-

tion system is definite. The special form of definite expressions makes it
possible to develop an effective synthesis algorithm for definite languages
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from a method presented by Lnrrrsnvsxr ll0l. The method is based on
the automaton partition theory and gives the minimal solution for any
collection of definite languages. A bound for the number of refinements
needed is given.

The remaining part of the first chapter deals with definite sequential
machines and compositions of definite transition systems.

The relevance of definiteness in the theorv of noninitial automata
was noted by Srmxn [f9]. We treat noninitial automata in Chapter II
starting with a slightly different definition of representation. In § 7 neces-
sary and sufficient conditions under which a noninitial automaton repre-
sents a language are given. In § 8 a synthesis method giving the minimal
solution for any collection of representable languages is developed through
a suitable counterpart to the automaton partition theory.

A great number of different varieties and generalizations of definiteness
appear in automaton theory. Such as the reverse definiteness b;, Bnzo-
zowsKr [l], ultimate-definiteness by Plz and Pnr,nc [14], and generalized
definiteness by GrNznunc [4]. rn the theory of probalistic automata we
note the definite and quasi-definite tables, and quasi-definite languages
introduced by Prz [13], [14]. Bnzozowsr<r and srNen ['3] have considered
definite asynchronous sequential circuits. Recently, Ser,orral [17] has
introduced the notion of time-variant definite languages.

We begin chapter rrr with a treatment of reverse definite autornata
and transition systems. Thereby a criterion for reverse definiteness is
given.

In § 10 we introduce the multidefinite languages. The mode of generali-
zation in question can be explained as follows. A sufficiently long u'ord
belongs to a given definite language iff it has a suffix of a specified length
belonging to the language. A sufficiently long word belongs to a given
multidefinite language iff it has some number of subwords, including a
prefix and a suffix, of some specified lengths such that the eoncatenation
of these subwords belongs to the language. we accomplish this generaliza-
tion starting with the definition of definite languages by Pnnr,ns ef az.
x'rom Theorem 23 it follows that the same familv of languages could be
obtained by starting with Bnzozo\vsKrs definition.

Besides the definite languages, the family of multidefinite languages
includes the reverse definite and the generalized definite languages. Through
a canonical expansion we define a hierarch;r of complexit5, for the multi-
definite languages. Hereby the empty language and the universal language
get the rank 0, all other definite and reverse definite languages the rank r,
and so forth.

rn § r I the corresponding generalization of definite transition systems
is introduced and studied. rt, turns out that the rank of a multidefinite
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transition system cannot, exceed 2. rn § 12 some properties of multidefinite
automata are presented. x'rom Theorem 27 it follows that a reduced auto-
maton has a multidefinite transition system iff it is generalized definite.

PRELIMINARIES

An alphabet is a nonempty finite set. X'or the alphabet X we denote
by X* the set of all finite sequences (word,s) of letters from X , including
the empty word ,1 . The union or surn of two subsets (languages) of X*
U and 7 is denoted by a + V, their prod,uct is defined by UV :
{pl p:'u,'u t u€U , u€V}. Using the denotations tlo:U},C[i+\ :
ataO:0,1,...) , lheiterationof U isdefinedby

u:{1}+u+U2+...:öU'.
i:0

The length of a word p is denotedlry L(p) and the length of a language
a + A is defined by

L(U):max{L(p)ipeU}.

X'or U:4, weput L(b):-t.
The unit languages {p} , with p in X*, are written without paren-

theses: {p} : p . We use the symbol X to denote the sum of the letters
in X , too. Then Xk (k:0,L ,2 ,. . .) denotes the set of words of
length å.

Let p , 7t' and p" be words such that p : p'p', and L(p,,) : lc

(k:0,l,...) .Thenwe call p" thek-suffirof p anddenoteitby
plk .

we give the definition of definite languages as it was formulated by
Pnmos, RasrN and Srrerurn 115].

Definition 7. Let k be a non-negative integer. The language D
wea,lclg lc-d,efinite iff, for any word p satisfying L(p) ) k , p e D
plh eD.

When k > l, D is lc-d,efinite, iff it is weakly k-definite but not, weakly
(k - l)-definite- A language is O-definite iff it is weakly 0-definite. The
rlegree of D (denoted by degD) is fr iff D is ä-definite.
A language is d,efi,nite iff it is ft-definite for some ft .

is
iff
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It is easily seen that if D is weakly k-definite, then it is weakly &'-

definite for any l§' > lc, and /c"-definite for some unique lc' < lc .

The definite languages can be introduced equivalently by calling a
language definite iff it has a representation

(1)

Hence almost equality
into equivalence classes,

xk
An (i,ni,tial) automaton

D:A+X{<R,

divides the class of rveakly k-definite languages

each class corresponding to a, unique subset of

over the alphabet X is an ordered quadruple

2[-(§,ö,so,f),

'n-here A and -tB are finite languages. We call (I) a d,efinite erpressi,on

for D iff @ and rB are regular expressions denoting finite languages,

tyhere only the sum operation applied on words is used. If D is weakly
k-definite, then it has a definite expression (l), where R c Xb and

L(q <k. Suppose further that the terms in O and "B are arranged

in order of increasing length and words of equal length in some given

alphabetical order. fhis unique definite expression we call Lhe lc-form of
D,

Note. we shall not bring forth explicitly the distinction between a
regular expression and the language denoted by it. fhence we use the
symbol of a regular expression to denote also the corresponding language.

The canoni,cal regular erpress'ions introduced by Bnzozorvsxr [1] pro-

vide another useful - and in general more compact - way of describing

definite languages.
We call two languages [/ and V al,most equal iff

u'here lwl denotes the cardinality of the set W .

If Dr: Qr* X*-8, and Dz: Qz* X*Rz are two definite expres-

sions with Rr: Rz, then the languages D, and. D, are almost equal'

lloreover the following lemma is obvious.

Lemma 1. Two weakly k-definite languages Q, * X*R, and

Q, * X*Rr, given in their k-forms, are almost equal if and onlv if -81 :
R2.

rvhere S + A is the set of states, d: § x X-+§ the next-state function,
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so € § the initial state and -F c § the set offinal (or representing) states.
The pair (,S, ä) is referred to as a transit'i,on system, and (8, ä, so) as

an ini,ti,al transit'ion system. The automaton or transition system is called

Jinite iff § is a finite set.
X'ollowing the common practice we extend the domain of ö to § x X* .

We denote ö(s , -p) by ,? for any state s and word p . X'or a set §, c B
and word p we denote

ä(§, , ?) : {s € Bi ,rp : s for some §1 € §r} .

Tlre language represented, by ?I is defined as ?(U) : {p e X*lsop € J|} .

The finite automaton is called d,efdni,te or (weakly) fr-definite iff 7(?I) is
definite or (weakly) ft-definite, respectively.

A language U is said to be representabl,e in the initial transition system
A:(5,ö,§o) iff thereexistsaset .Fc§ suchthat U:T(2I) for
2[:(§,d,s0,.P) .

We shall frequently deal with partititons on a state set or on X* .

Let z be a partition on a nonempty set, §. Identifying z with the cor-
responding equivalence relation on § we denote, for any s, s'€ §, szs'
iff s and s' belong to the same class in n .

Let Tt and nz be two partitions on § . We denote nr l nz arrd
call ar a refinement of nz iff for each class nlenl there exists a class
nfi e nz such that nr" c n'u. We write n7 < nz iff the refinement is proper.
The relation ( defines a partial ordering in the set of all partitions on
§ . It is easy to see that the set of all partitions on § forms a lattice
relative to {. Hereby, the infimum and supremum of the partitions z1
and zs are given lry n' . nz and nL * n2, respectively, 'w,here the meet
operation f and the join operation f are defined as follows.

l. For any s,§'€§, sQl.nz)s' iff szls' and sn2s'.
2. For any s, s'€ §, s(# { nz)s' iff there exists a sequence

80:§r§trSZ, _t
§rr-E

11

§;zzs; 1 .

The greatest elernent of this lattice is the
a,nd t,he least element is the null part'it'ion, 0

Å partition on a state set is called a state

X* arl input partition.

,1 ),.. ,n 1, s;21§i+r or

'identi,ty partition I -- {,S} ,

-{{r}ls€,,S}.
parti,t'ion and a partition on
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CHAPTER I

DEFINITE AUTOMATA AND TRANSITION SYSTEMS

§ 1. Derivatives of ilefinite languages

l. t. The (left) deri,aatiae of a language I/ with respect to a given word
p is defined as the language

1pU:{q€X*lpqea}.

The set of all distinct derivatives of a regular language U, here de-

noted by AU , corresponds in a well-known way to the state set of the
minimal finite automaton representing a (cf. Bnzozowsr<r [2]). The
special applicability of the synthesis method provided by this fact to
definite automata was demonstrated by Bnzozowsrr [1]. We shall make

use of the derivatives to find some fundamental properties of definite
automata in a simple way.

1.2. Let D : Q + X* l? be a definite expression. Then for any letter
t:inX

(1.1) A"D - A"8 + A"R + X*-R .

The derivative is definite and by repeated use of (1.1) and the general

rule lpqU : Aq@pa), we get for an arbitrary nonempty lrord p -
frr*z,,'fin:

ApD - Apln-L Q.,D)

:- lpt,,-2 (A*,(A*,Q + 0*,R * X''< A))

: 
orl*-z (o*,(a*,*,Q + o*,*,4 + o*,R + x* A))

a

-loQ + 7oR + 0olo-r'R+"'+ 6*nR +X*-B'

ff we denote for any n ord p of length ?L and language U
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Opfl : Ö Aptiu
i:1

(1.2)

Clearly (f .2) holds also when p : )".
Suppose lhat D is weakly fr-definite and that Q + X*R is its fr-form.

fhen

LQ|Q+APR)<k.

Hence the derivative is weakly fr-definite and (1.2) gives its ft-form when
the words in 1oQ * }pR are ordered properly. Using Lemma I we get

Lemma 2. The derivatives of a weakly k-definite language D are
rveaklv å-definite and almost equal to D.

ft is to be noted that deg D is in genera,l not retained in d.erivation.
Similarlv we get from formula (1.2) and Lemma 2

Lemma 3. Let Dr and Dz be two almost' equal weakly fu-definite
languages. Then 0oD1: 1rD, , for any word p satisfying L(p) > k .

If k> 0 and L(p):k-L, then?rD, and )oD, differatmostby
the empty word l. .

Theorem 1. A language is v'eaklv ä-definite if and onl1, if, for any
fixed y'ord q of length A , all derivatir-es Aq(ApD) are equal.

Proof. Suppose that AqQp,D) : 0r(0r.D) for all words pr and pz
whenever L(q) : k . Let p : p'(p'l) be an arbitrar5, word satisfying
L(p) > I; . Then by our assumption

1pD : Apth@p,D) : 0rp(0iD) : 0o1t"D .

Buttlrisimpliesthat pe D if andonlyif plk€D, andhence D is
weakly k-definite. The converse part follows from Lemmas 2 and 3.

From Iheorem I and Lemma 3 we get the following

Corollary 1.1. If k > 0, then any fr-definite language has two deriva-
tives differing only by the empty word .i, .
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Theorem 2. A fu-definite language has at, least k + | different deri-
vatives.

Proof. The case lc : 0 is obvious. We suppose that k > 0 . Let D
be a k-definite language. For every integevi,:0,1,2,... we define
an equivalence relation Qr on O D by the condition A,DQi A,D iff
AP@P) : 0p(0,D) for all P e X' '

Clearly A"DQIA,D im.plies O,D Q'+'A"D. Thus we have a nonde-

scending chain of partitions on 0 D

The last equality follows from Theorem l. Clearly

o,DQ'+'A,D iff a,,DQ'0,,D for arry fr in x .

Suppose that for some 'i,:0,1,... ,k - l, 9'*t: Qi. We make
the induction hypothesis that Qi-r": d)i. Then the following chain
of equivalences is valid:

OuDQi+"+'a,D iff aunDOi+" O,*D for any r in X

iff A"*DQI 0,*D for any r in X

iff a"D Qi+ra,D

iff a"DQia,D.

Ilence Qi+t - Qi implies Qi: Qi+ r: .. .: Qh-t: th: I But
this contradicts Theorem l. Hence all inclusions in (1.3) must be proper,
and thus the number of derivatives must exceed k .

X'rom this we obtain immediately the following result proved in another
way by Pnnr,ns et al,.llil.

Corollary 2.1. A k-definite finite automat'on has at least k + | states'

§ 2. Detinite transition systems

2.1. The definiteness of a transition system 'was defined in l15l as fol-
lows.

The transition system (,S , d) is wealcl,g k'd'efini,te (fr > 0) iff for every
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word p , L(p) : /c implies d(s , p) : ö(s' , p) for any pair of states
§, §' in § . The notions of k-d,ejinite and d,ffinite transition system as

well as Lhe il,egree deg ö of a definite transition system are derived from
this in the way of Definition l.

As a direct consequence of Theorem I we can state the following result
due to Pnnlns, RerrN and Sneurn [15].

Theorem 3. A reduced finite automaton is fu-definite if and only if its
transition system is k-definite.

2.2 Let n be a state partition of a transition system (§ , d) . X'ollow-
ing the terminology of [7] we call n a part'i,tion with substi,tution property
or shortly an ,S.P. partition iff, for any states s and s' in § and any
letter r,

s 1r s' implies d(s , ru) n d(s' , n)

Hence a state partition z on § is an S.P. partition iff for each class
nn€n and each letter r in X there exists a class nuen such that
ö(n, , r) c nfr . Clearly z, is unique and thus a transition system

(S,d)-:(n,ö.),

the n-i,mage of (§ , d) can be introduced by defining

forall no,nue n and freX.

Theorem 4. All z-images of a ft-definite transition system are weakly
å-definite. Hence all homomorphic images of a /c-definite transition system
are weakly k-definite.

The proof of this theorem is straightforv-ard. The second proposition
follows from the first because each homomorphic image of a transition
system is isomorphic to the z-image, where z is the S.P. partition induced
by the homomorphism.

2.3. We now introduce an important class of S.P. partitions of a transi-
tion system. The concepts defined in the following two definitions are
generalizations of those (for n: I) used in []5].

I5
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Definition 2. Two states s and s' of a transition system (§, ä) are

n-equiualent (n:0,I,. .) iff ö(s,p) :ö(s',p) foranywordpof
length n.

Clearly this is for every n, an equivalence relation on § corresponding
to that introduced for derivatives of a given language in the proof of Theo-

rel:r. 2. We denote t'he relation and the corresponding partition on § by
9".

(u) Q" is an S.P. partition,
(b) Pn' <Q"+r, and
(c) if 9"+r:Q", then {)"+i=-=Qru for every i==0,I,

Proof. The properties (a) and (b) follow easily from definitions, arrd
(c) can be proven by a technique similar to that used in the proof of Theorem
2.

From Lemma 4 we get the following theorem, which includes the
existence of I-equivalent states proved by SruoN 118].

Theorem 5. The transition system (,S, ö) is weakly /c-definite if and

only if Qk : I. If the transition system is ft-definite with fu ) 0 , then

u.hich are not (d 1)-equivalent.

As noted in Lemma 4 the partitions
no\v show' that the Q"-tmages can be

of the strong contractions used in [15].

, k a pair of i-eeuirralent states

Qn are S.P. partitions. \\-e shall
constructed practicallv br- means

Definition 3. The ntlt, (strong) contracti,on (§", d") , %) 0, of atransi-
tion system (S, d) is defined recursively as follows.

l. (§o , do) : (§, d) .

2. Given (&, ö,) , i:0, I,..., (§,*r, ö;+r) is obtained from
(§r, ö;) by identifying the states in each class of l-equivalent states as

one state.

The identifications in 2 can be performed by choosing from each set

of l-equivalent states a representative, removing the other states from the
state set and replacing them in the remaining transition tabie by their
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representatives. Hence \4re may suppose that §,+rC s,c s for every
n . we suppose that the representatives are always chosen according to
some prescribed rule. Then a contracti,on operator c performing the con-
tractions can be introduced: C(S, d) : (,S, , dr) and Cs is the represen-
tative of the class of l-equivalent states in (s , d) to which s belongs.
fn general, we can write C"(§, ä) for (§,, d") , and C"s for the repre-
sentative of s in §, . Herebv C0 is the identity operator. If O"s : eo s, ,
then we say that s and s' &re id,enti,fied, in B" .

Lemma 5. If ä(s, r) :6', then ö,(C"s,n): C"s' (rt: 0, l, . . .)

Proof. The proposition holds in the cases ?? : 0 and n : I per defi-
nitionem. Supposethatitholdsfor n:i, andthat d(s,z) :s,. Clear-
ly, Cis and Cis' are l-equivalent to C'+ls and Ci+Ls,, respectively,
in (§;, d;) . Hence

ä;(C'+ ls 
, r) : d;(C's , n) : Cis'

by the induction hSrpothesis. The definition of (B a r , d,*,) implies now
that

Theorem 6. Two states of the transition system (,S, d) are identified
inthe nth contraction (8",ö"), tL:0,1,...,if andonlyif theyare
a-equivalent. Hence (§,, d,) is the g"-image of (8, ä) .

Proof. The validity of the theorem for n : 0 is obvious. Suppose
that it holds for n: i,i:0,I,..., and consider the case n:,i, * l.

First let s and s' be (a f l)-equivalent states. Then (sr)4 : (s,r)q ,
for any word rq in -fi-l. Hence sr and s'fi are identified in §;, for
any letter r in x. But this implies by Lemma 5 that the representabives
of s and s' &re l-equivalent in (8, , d,) and hence identified in
(8,*, , ä,+r) .

Suppose conversely that the states s and s, &re identifiedin §,*, "

Then their representatives s and s' in §; are 1-equivarent (possibly
equal) i, (S,, d;) , i.e. d;(§, r) - d;(§' , r) for any n. But on the other
hand, ä;(§, r) and öi(§' , r) are the representatives o{ sr and s,* irr
§; . Hence by the induction hypothesis sr!)i s'r for every letter n .

This implies s()itrs'.
Hence each class of Q" has a unique representative in §, . If s and

s' are the representatives of the classes Qi and e;, then ö(ei , r)

L7
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c O[ implies d"(s, e) : §' , and conversely. Thus (§", Ö,) is isomorphic

to (§, ä)o^

Combining Theorem 6 with Theorem 5 we get, successively, the follow-
ing results presented or implicit in [15].

Corollary 6.1. The transition system (§, ä) is ft-definite iff §, :
,S:§.1/Ss1...f,&, and I&l :1.

Corollary 6.2. The transition system (S, ä) is ft-definite iff (§", ä")

is (k-n)-definite, for any n:0,1,...,k.

Corollary 6.3. If the transition system (,S , d) is definite, then it is

weakly (l,Sl - l)-definite.

Corollaries 6.I. and 6.3. constitute the basis for the method of testing
definiteness of a reduced finite automaton by Pnnr,ns et al. In § 3 we use

the contractions (S", ä") to find a definite expression for the language

represented by a reduced definite automaton.

2.4. Ta remove the restriction of the finite automaton being reduced

we introduce no\v another type of equivalence relations in S and the

corresponding contractions. As opposed to the relations 9n these rvill
depend on the set of final states, and are thence defined only for transition
systems of automata.

Definition 4. Two states s and s' of a finite automaton !I :
(§, ö,sr,1) are n-ind,istingui,shable, n : 0,1,2,. . .,iff

ö(s,p) €.E' if andonlyif ö(s',p)€I,

for every word p satisfying L(p) 2 n .

X'or every n : 0,L,. .. we denote this equivalence relation ancl the

corresponding state partition by 2". These partitions resemble itl marly

respects the partitions (J".

Lemma 6. For every n: 0,1 ,...,
(a) Z" is an S.P. partition,
(b) ," .--2'+' 

,

(c) if f"+r:2", then »n-|i - »n, for any i:0,1,2,,..,
(d) J2" l Zn , and
(e) if the finite automaton is reduced, then Z" : Q" .
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Proof. The properties (a), (b) and (d) follow easily from definitions,
(c) can be proven by the technique used in the proof of Theorem 2.

Suppose that s X"s' holds for a pair of states s, s' € §. Then, for any
words pex" and re X*, spre E iff s'pre X. Hence the states

sp and s'p are indistinguishable. Hence sP : s'It, for any ? e X" ,

if 2[ is reduced. This implies together with (d) lhal E" : d)" .

From Theorem I and Lemma 6 we get

Theorem 7. A connected finite automaton !I : (S , ä , so, 7) is k-
definite if and only if

Definition 5. By the nth i,nd,i,sti,nguishabi,lity (i,.d,.) contraction (8,, öi)
of the transition system of a finite automaton !{ : (§ , d , §o , -F') we mean
the P-image of (8, ä) .

As for the sets ,S, we may suppose that §l*rc §lc S, for every
?L . To construct the i.d. contractions we do not know of such a simfle
recursive met'hod as for the contractions (§", d") . They must be con-
structed by first finding the partitions 2-" and using the following obvious
counterpart to Lemma 5.

Lemma 7. If ö(s , r) := .§' , alld. if' ,5' äncl

for s and s' in S; , then ä;(§ , r) - §:' .

are the representatiYes.

To find the partitions [n'
in [ 15].

W'rite sA"s', !1,-0,1)

r^/'e can use the followirg relations considered

, for two states §,§'€§, iff

sp e I exactly in case s'p e X ,

for anv u.ord p of length n. Ihese relations are equivalence relations
in § and the;, can be used [15] to test the definiteness of an arbitrary
connected finite automaton: the automaton is weakly k-definite if and
only if /f : I. In general the corresponding partitions A" on § are
not S.P. partitions and the relations A" < A- I donot,hold. Thepartitions
can be formed practically as follows.

l.sAos'iff s,s'e I or §,s'€B--F.
2.sAi+rs'iff suAis'r forall r in X, i:0,I,....
In general it is not easy to find the partitions f", but when the auto-
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maton is ft-definite, then Ak : Ak + I - Ak + 2 
-

E" can be found as indicated in the followirg
, and the partiticns

Lemma 8. If the finite automaton ?I is k-definite, then

foreYer)i't?.,-0,1,

En-An.A"+1 ...-.A0,

,k.

§ 3. Testing detiniteness and analysis of definite automata

3.1. Consider the following problem. Given a finite automaton it nust
be decided whether or not it is definite. If the answer is affirmative, the
degree and a definite expression for the language represented must be

found.
Pnnr-ns, Ranrr and Snlrrrn [15] have given two methods to solve the

questions about definiteness and degree. The first method uses the (strong)

contractions (or alternatively a weaker type of contractions) and is appli-
cable to reduced finite automata. GrNzsunc [4] has formulated this test

by means of graphs. The second method using the partitions ,4" is appli-
cable to any connected automaton.

We shall present two decision methods which also soh'e the analysis

problem and give the language represented by a definite expression. Bnzo-

zowsKr [1] has given such a method involving the construction of the

reverse (dual) automaton. Our second method makes use of this idea.

3.2. Method I. Let !I : (§ , d , so, -t') be a given connected auto-
maton with za states ss, §1 ,..., §.-r. To everyword p rve associate

the state vector

If all components of lo belong t'o I we call to purely positiae, and if
they all belong to § - X , purely negatiue.

Lemma 9. A connected finite automaton is weakly fr-definite if and onl.1.

if l, is for every word p of length fu either purely positive or purely
negative.

This lemma is a direct consequence of Theorem I (or 6) and it suggests

the following simple testing and analysis method.
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The transition table is successively written for words of length (0, l,)
2,3,... so that the row corresponding to each word p gives the vector

h . If a row is purely positive or negative it, is marked by the sign f or -,
respectively. The process is continued until the first /c is reached such that
all rows corresponding to words of length k are marked. If there exists
such a lc , then 2[ is ft-definite and the ]-form

T(A):Q+X*R

is obtained from the constructed table by taking to Q all words p with
L(p) < k for which the first component of f, belongs to -t' , and to A
the words of length k marked by +. Corollary 2.1 guarantees that only
a finite continuation is needed. X'or if no k less t'han n satisfies the above
condition, then !I cannot be definite.

Example l. Consider the 6-state automaton !I given by Table I (a),

where §:{4,b,c,1,2,3}, s0:a and n:{a,b,c}. From the
continued Table I (b) we see that 2[ is 2-definite and

rW)-1+n+X**Y

Table l.

)' l"
fr

a

b22232
LcIlcc

,fr

v
rfr
ny
yn

vy

b

1

q

c

2

I

222
cl1
333
ccc
222
tlI

(b)

q2

c

3

c+
o2

1

3

c

2

c

2

I

(")

The continuation is facilitated if we note that the columl under any
state s corresponding to the words rg , with r e X and L(p) : j
(r:I,2,...), is the s&me as that under ä(s,r) corresponding to
the words of length y , when the words of equal length are always written
in the same alphabetical order.

If the automaton has proven to be k-definite, then the indistinguishable
states can be found from the continued table, for obviously any pair of
distinguishable states can be distinguished by a word of length less than
k. Thus in Example I we find from Table I (b) considering l, , t* ar,d t,
that the states 2 and 3 are indistinguishable.
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The procedure described above can often be considerably shortened
and the canonical expression (cf. tt]) is obtained by omitting in the con-
tinuation every word having as a suffix some word. previously marked.
Then for /c-definiteness it is necessary and sufficient that the table has

some rows for words of length k , which are all marked and thus no rows
for words of length more than k . The canonical representation

r$)___ a +x*-B

is obtained by taking to R , without changing their order, all words
marked by + and to Q all other words whose state vector has a final
state as the first component. Also from this table the indistinguishable
states can be found.

Example 2. In the case indicated by Table 2, where so : I and -E :
{o , b}, the table is continued for only those words of length 3 which
end with ry ar'd only for those words of length 4 which end wilh rry .

The language represönted is 4-definite and we get the canonical expression

f QI): 'n + ryy + X* yy

Table 2,

i lr
?J

a
tr1)

ny

at
aa

fr"xu

UfrA

rx":»y

yfr'fru

fnstead of the 31 rows of the complete table Iable 2 has onlv 11 rou's.
Method I is technically simple and it gives the languages represented

by any choice of initial state, but the maximal length of the table increases
rapidly with the number of states.

3.3. Method II. Ihis method involves two stages. X'irst sufficiently
many contractions of the transition system of 9I are formed and from
these the definiteness is tested. If the automaton proves to be definit'e,

a3323
2b22b
23333
222b2
33333
bbbbb
b2222
22222
22222
22222
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then the language represented is obtained as a definite expression from a

graph which is constructed by means of the contractions.

First let !I be reduced. The contractions (/S, , d,) are successively

formed as indicated in 2.3. The initial state is always taken as the repre-

sentative for its class in any contraction. Then Theorem 3 and Corollary

6.1. provide the criterion of Pnnr,ns et al.:if (Sr , ör) is the first contraction

admitting no further proper contractions, then 2[ is definite iff l§rl : r .

If lsri : I, then degT(!L): k.
suppose that !{ has proven to be k-definite. fhen construct a graph

f(?t) as follows.
The nod.es of J-(?I) correspond to subsets of § and we assign them

orders in the following rvay.
l. Ihe initial node s, : 7 is the only node of order 0'

2. When the nodes of order i (i, :0 , 1 , . . .) are constructed, then

the nodes of ord.er d f t are obtained from the table of (§; , d;) as fol-

lows. To each node s, # §;-, (for i: O, s; + §) of or<ler i and

letter r we introduce a node

"* 
: {, € §ild;(s, r) € so },

if this is nonempty, and lead a transition labelled by r from s, to so".

Equal nodes of the same order may be identified a§ one node. If si: 0 ,

then a transition labelled b;r r is led to & common empty node s[ (In
practice this node and transitions leading to it may be neglected).

3. If for a node §; of order d, s, : §;-1 (for 'i,:0, so : §) ,

i.e., if sr- contains all states of the transition system from which it was

construcied, then no nodes s; arc introduced, but a transition labelled

b5r all input letters is led from sf, to itself.
Evidently the construction terminates and the last nonempty nodes

areoforder k or fr-1.
Let ä- be the transition function of l-(!{) and denote by !{, the

finite automaton (s, d, s, J') for any state s in §. Ifwe furtherdenote
hy p- the reverse of the v'ord p (i'e., P- : r^cc*-L. . .frL if p :
fr.tr2 . . . rm , and 

^- 
: )"), then the connection between i-(U) and' !{

can be explained b5.' the follorving

Theorem 8. Let p be an arbitrary word. Ihen for any state s in §:
p- eT(2[") if and onl;'if ö-(s, ,p) contains a state identified with s

in the contraction from r-hich ö-(s; ,p) was constructed.

Proof. tr'irst suppose that ö-(sr- ,?) contains a state § identified
with a . From the construction of I(?I) it follows that the order of
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d-(rr-,p) does not exceed the length m of the word p. Hence s(J-§
by rheorem 6. on the other hand it follows from the construction of the
graph that d(§,p-) €st:7. Hence also ö(s,p-) belongs to I.

Suppose now that p- e T(W,). We proceed by induction on L(p):
m.If. rn:0, then p:)" and s e I: s,, . Suppose that thetheorem
is true for any state and any word of length i , and let m be i + L .
We rryrite p: qfr. Denote §: Crs and s, : Cisr, where j ( i is
the order of ö-(s, ,q). Then by Lemma 5 dj(§ ,&): s,. Hence _

§ € {s" € §;l d;(r" , n) € d- (s, ,q) } - ö-(s; ,p)

The definite expression f (U)
by taking to R the rerrerses of
initial node to a node s, _ I of
reverses of all words leading to
state ,so of 2[ .

all words of length i leading from the

some other node containing the initial

Example 3. Consider the finite automaton ?I : (s, d , s, , I') rvith
I : {o,b,c) and so: I given by Iable B. The contractions (Br, dr)
and (§r, dr) are given in the same table. From (8, , dr) we see that
?I is 3-definite because l§rl : I . The graph J.(?{) is shown in Figure I.
The nodes sr- : { a,b,c}, s"- : {l} and s, : {3 ,4,a,c} I\,ere
read from (§o , do) , ,* : §, and s;: 12, i\ from (§, , d,) , a,nd

!i, : §, from (§, , är) . The empty node and transitions leading to it
have been omitted. From the graph we get

r$) - n + x*(xy * yyy)

Table 3.

1."q. states

{2, b}, {3, a},

{4, c)

do

fi

v

d1

fD
ö

c

3

4

3

b

3

c

a
2

oö

4

fr

a

d2

{1,3}, {2,4}

fr

v
{1, 2}

.)
ö

b

I
2

I
c)

3

2

Figure I. 
"
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If the finite automaton 2[ is not known to be reduced, then the con-

t'ractions must be replaced by the i.d. contractions. The analysis procedure

consists then of three stages.

I. The partitions A"(n:0,I,2,...) are computed by the re-

cursive formulas of Prnr,ns et al. (see § 2) until a partition Ah : I is ob-

tained. The possible nondefiniteness is revealed at this stage. X'or if no

å < lsl satisfies this condition, then !I cannot, be definite.
2. If lhe automaton has proven to be ft-definite, the partitions 'n

for n: k,k - 1,...,0 are computed using Lemma 8, and the corres-

ponding i.d. contractions are formed using Lemma 7.

3. A graph J-'(21) is constructed just as i"(?{) but using instead
of the contractions (§, , d,) the i.d. contractions (§j , dj) .

A definite expression tor T(2I) can be read from .1-'(2I) in the same

rvay as from J'(QI) above. The justification of this method can be given

along the same lines as in the method for a reduced automaton.

§ 4. Detinite automaton partitions and synthesis of definite automata

4.f . A partition II on X* is called an automaton partition (or right
i,naari,ant) iff for each class IIo e If and letter r e X there exists a block
IIp e n such that II,x C. IIu .

Gr,usrr ov [5], [6] has shown that the automaton partitions form a

lattice relative to the partial ordering (. The infimum and supremum

of the automaton partitions IIt and II2 are given by nt' II2 and

nt + JIz, respectively.
An automaton partition Z defines an initial transition system

A(n):(II ,ö,II).\,

where II^en istheclasscontaining 1., and ö:IIxX--+II isdefined
by the condition

ö(fI*,n): If s iff ilonc ff it,

for any IIo, ilf €Z and r e X.
conversely, let A: (,§ , d , so) be a connected initial transition system

and z a partition on § . By the input partition defined by z we mean

the partition

n tn\ : {T(W") I n* e n} ,
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n'here ?Io: (S,d,so,zo) . The following theorem is a generalizationof
a result implicit in the well-known representability theorem by Nnnoon
(cf. [t6]) and explicitly presented in [6].

Theorem 9. Let A : (8, ö , so) be a connected initial transition
system and n a partition on ,S. Then II : fl{n} is an automaton
partition if and only if er is an S.P. partition.

Proof . Let yt, and p, be two words in the same class II* e II , and
r a letter. Then sop, n so?2, and if z is an S.P. partition also soplfrxrsopzfr ,
lvhich implies pr*flprr .

On the other hand, if z is not an S.P. partition, then there exist classes

tlornuQn, states §1 ,§2€7r.o, and a leLher x such that, srre nu but,

srr 4. nu. Because A is connected there exist words p, and p2 such

that s, : §o?r and s, : qoqz. Now Ptlbz, but not prrlfprr .

We note that all automaton partitions defined by S.P. partitions of
finite transition systems are finite. The following theorem reveals the
isomorphism between the lattice of the S.P. partitions of a given initial
transit'ion system and a sublattice of the automaton partitions.

Theorem 10. Let / : (§ , ö , so) be a connected initial transition
svstem, and nL and" nz two of its S.P. partitions. Then

(a) ,t ( z2 implies 11{21} l II{nz) ,

(b) I{nL . n'} : II{n'\ ' Il{nzy, and
(c) II{nL * n'\ : II{"'} * il{"'} .

The proof of this theorem is staightforward.

4.2. We call an input partition wealcly h-d,eJi,nite iff all of its classes

are weakly /r-definite languages. The notions of k-d,efinite and d'efinite parti-
tions, and, thetr d,egree are introduced as the corresponding concepts for
languages in Definition l. Hence a partit'ion is fu-definite iff all of its classes

are rveakly k-definite languages and at least, one is k-definite. We note
that a definite input partition is always finite.

Theorem 11. The infimum and. supremum of two weakly /c-definite
input partitions (/c : 0, 1, . . .) are weakly k-d.efinite. Hence the definite
input partitions form a lattice relative to the relation {, and the weakly
k-definite (k:0,1,...) partitions a sublattice of this lattice.

The easy proof based on the fact that the unions and intersections
of weakly fr-definite languages are weakly ft-definite is omitted. As a con-

sequence we get
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Corollary 11.1. The definite (weakly fr-definite) automaton partitions
form a lattice relative to (.

Theorem 12. Let 2[ : (8, d , so , .F') be a k-definite connected finite
autonraton and Z"(n,:0,1,...,k) the state part'ition into zl-indis-

tingnislrable states. Then 1/" : I\X") is a (k - n)-definite automaton
partition.

Proof . As noted. in Lemma 6 X" is an S.P. partition and II" thus by
Theorem 9 an automaton partition.

Let pexh-^ and q€X* bechosenarbitrarily.X'oranyword r satis-

fying L(r)Zn) wehave L(pr))lc, andthus sopr€.E iff soqpre F.
Hence srp Z"soqp and pll"qp. This implies that n" is weakly
(fr - ir.)-definite.

Bv Theorem 7 Ek :1 and. thus IIe is O-definite. Suppose that fu > 0

and 0(n<k-t. Because !I is notweakly (fr-I)-definite there
existtn'owords ?e Xt"-t and q€X* suchthat sop€"F but soqltt?,
or s'p€-F but soSge-F. Denote p:p'p", where L(p'):lc-n-L
ancl I(p') : rz . Then p' and qp' belong to distinct classes in Z" be-

cause sop' Z"toW' does not hold. Thus II" is not weakly (k - n - l)-
definite.

\1:e get the following corollaries with the assumptions of Theorem 12.

Corollary 12.1. The state partition of 2[ into indistinguishable states

defines a k-definite automaton partition.

Corollary 72.2. If Z" {n, for the state partitiot n, then II{n} is

rreaklv (L - n)-definite.

Corollary l2.3.If ?I is reduced, then each of its state partitions defines

a x'eahlv &-definite input partition.

4.3.Let C be afamilyof partitionson X*. Theautomatonpartition
1/ is a mu,ri,mal automaton refi,nement of C iff

(l) 17 refines ever5r partition in C, and

e) il is not a proper refinement' of anSr automaton partition which
refines every partition in C .

Gltsttrov [6] has shown that each family C has a unique maximal
automat,on refinement.

Let K:{Ur,Ur,...,U^} be a nonempty collection of languages.

Baclr L:; defines an input partition ,p' : {Ui, X* - Ur}. When all
languages in K are regular, then the maximal automaton refinement
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II of {rp',rl,',...,V'} is finite andalllanguages of K arerepresen-
table in the initial transition system A{I) . Moreover it was sholrn
in [6] that every initial transition system in which the languages of ff
are representable can be mapped homomorphically onto A@) . Hence
A(II) is minimal. f,mrrrsnvsxr [10] has given the following method for
finding 11.

First define Z0 as the input partition ffo : gL. rp, . ... . g" . Suppose
the,t ili has been constructed (d : 0, 1, . . .) . Then define a refinement
lli+r of IIi dividing each b]ock 1/;e ilt in maximal subsets lt',,t:
il;*' as follows. tr'or any lelter r there exists a class II: e il' such
that il"r*' * c n: . In this way a, descending sequerlce

of input partitions (termed here Letitsevski partitions) is obtainerl. The
procedure is stopped when a partition I7^ is reached for which no refine-
ment is needed, i.e., II^+t - fl^. This II^ isthemaximalautornaton
refinement, and each Ui of 1( is represented in A(II*) by the set of
states corresponding to the classes constituting U;. We do not know
any practical method for finding the refinements I/i in the case tvhere
the languages in K are general regular languages. fn Section *.{. rve
present such a method for definite languages.

Lemma 10. Let II0 , il' , il' , . .. be the Letitsevski partitions for
some collection K of languages, and i , j a pair of non-negative iutegers
satisfying i> j. X'oranyword p oflength i,-.f andanyclass n|e ilt
there exists a class ntu e ni such that, t\p c ntu .

The lemma is easily established by induction on a - j . In bhe follow-
ing theorem we give an upper bound for the number of refinements needed
when all languages in the family are definite.

TheoremlS. Let K:{Ur,Ur,...,U^\ (ru>L) be a colleetion
of weakly fr-definite languages and Z0 , il, , .. . the corresponding Leti-
tsevski partitions. Tf k > 0 , then IIb-L is an automaton partition. If
k : 0, then Z0 is an automaton partition.

Proof. The cases lc : 0 and lc: I are trivial. We suppose nou' that
lc > l. Let II!-1 be an arbitrary class in lfh-t . We prove by reversed.
induction on h:k-1,...,1 thatforeveryword. p of length h
there exists a class nfi-u e Zk-ä such thaf II!-' p c IIk-o .
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First we note that for every word p , with L(p) > k ' there exists

a elass nleilo such that IIL-'pC ni. This follows from the weakly

fu-definiteness of the languages in K which implies that the olass of a word
qp in IIo is uniquely determined by p .

SnpposenowthatL(p):lc-l'ByLemmal0thereexistsaclass
niefio such that, ilL-'pgnfr. For any " in- X , L(px): k and

thus tlrere exists a class III e ilo such that IIL-L p* c IIi. But this

inrplies that all word.s of II!-rp must belong to the same class nienr
becanse they belong to the same class nfr in 20. The first step of the

incluction is thus established.
Snppose now that the proposition is true for some ä - k - l,' .,,2 .

Let p be a word of length h - t. By the induction hypothesis there

exists for every le1ler r aclass nä-o eZr-h such that il!-' p* c IIk-h.
On the otherhand IIL-'pc nl-o for some n!-o enh-h by Lemma 10.

Thtrs t,lre words of fI!-'10 betong to the same class in lfk-n+r. Thiscom-
pletes the induction, and for h :1 we get the result that, for any letter
, th*." exists a class Zf-'eno- r such rhar II!-r rc IIfi-' -

{.4. We now describe a method based on the above considerations to
fincl the minimal initial transition system in which all languages of a col-

lection of definite languages are representable.

Let C:{(Jr,f|r,...,U,} (rz } t) be a collection of definite lan-
guage§ and k the least integer such that all languages in c are weakly
/o-definite. Write a table having a row for each word of length /c or less.

To each language associate a column such that the entry corresponding

to a 'word p contains I (0) if pe U; @CU;). Hence each word in the
table 'will be indexed by a sequence of length za of I's and 0's. If n 2 I ,

these sequences are replaced by simple indexes (".g. by taking the sequences

as binarv numbers). After this index column write a column for each input,

letter so that in the column of r in the row of p we write the index of
pr , ot if L(p) : lc llne index of prlk . Hercby every word gets & new

sequence of indexes. These are again replaced by simple indexes so that
tu.o lvords get the same index iff their index sequence§ a,re identical. This

proceclure is repeated until every pair of words having equal indexes also

gets equal index rows. These last indexes can be taken as the states of the

transition system to be constructed, and t'he last columns give the cor-

responding transition table (vertically v'ritten and with eventual repeti-
tions). The initial state is the index of I and the final states representing

the language [Å are the indexes of the words in the table which belong

to t'; . Theorem 13 guarantees that at most k (or one it k :0) indexing
steps are needed. Observation of the obvious periodicities in the formation
of the table facilitates the work considerably.
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Example 4. We construct the minimal transition system in v'hich the
2-definite languages Ur: ).-f r * X* (ru * ry) and Ur: r I y - f*
(rr * yfr + Ay) &re representable. The construction is given by Talrle 4

and the obtained transition system by Table 5. The initial state is a , and
[/, is represented by {, ,b,d,} and. U, Try {b,c,e}.

Table 4. Table 5.

I r" L', ra

1

fr

v
frfr

na
yn
uu

b

d
I .0-
I 1:
0 1_-
1 1:
r. 0:
0 1:
0 I_-

23L : abc

332 - bbd,

111 -= cec

332 : bbd,

2LL : dec

L32 : ebd,

I11 : cac

4.5. Let' p be any word. of iength fu . From the construction in {.4
'we see that, Xx p is a subset of some class Z, of the maximal automaton
refinement, I/. On the other hand, for any class lfoe If , IIop c X*p .

Thus in A(II) öQI",p): IIu for any state II,eII. Hence r,'e get the
following generalization of Theorem 3.

Theorem 14. The minimal initial transition s1-stem in which a gir-en

collection of weakly ä-definite languages is representable is 'rveakll- Å'-

definite.

§ 5. Definite sequential rnachines

5. 1. A Meal,y machine is an ordered quadruple ,n: (8,X,ö.t't),
where B (state set), X (input alphabet) and y (output alphabet) are

finite nonempty sets,

ö: § X X-+§ (next-state function)
a,nd

0: § X X+Y (output function)

functions. The domains of Ö and @ are extended to
way. If @ can be considered as a function from S

Moore mach'ine.

Adding to the quadruple a specified initial state
Mealy machine. The language represented by the set

s
to

x f'* in the usual
]' , then ,lt is a

so we get an initial
Y I of output letters

b

d
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in the initial Mealy machine is denoted by ?(!Jt , so, Yr) , when the initial
state is so.

Clearly, the only 0-definite language representahle in a Mealy-machine
is 0 . Excluding this trivial case we restrict the consideration to fr-definite
languageswith k>0.

5.2.We consider now the transition system (,S , ö) of a Mealy machine

lJt for which T(Wt,so, yI) is definite, for some so and Yr . That, lJt
is reduced as a sequential machine does not imply the definiteness of its
transition system. We define a stronger concept of reducedness.

Two states s , s' € B are said. to be Yr-d,isti,ngui,shabl,e, for some

YrcY, iff there exists a word. p such that, o(s,p)e Y, but
a\s' , p) 8 Yr, or vice versa. We call nJt Yr-red,uced, iff every pair of its
states is Ir-distinguishable.

Theorem 15. Let yJt be a Mealy machine connected for the initial
state so . If there exists a set, I, of output letters such that T(YJI , so , Ir)
is k-definite (ft ) 1) and ,Jt is I'r-reduced, then llt has a (k - l)-
definite transition system.

Conversely, if a }Iealy machine )Jt has a fu-definite (k > 0) transition
system, then f (Y!t , §o , y1) is weakly (k f l)-definite for any choice

of so€§ and YrcY.

Proof. Suppose that the conditions of the first part are fulfilled, but
that, there exists a word p of length lt - | and states §1 , §2 such that
si : ä(sr , p) + ö(s, , p) : 6i . Let Pt ancl 9z be rvords such that
s, : å(so , pr) and s, : ö(so , -2rr) . For anY tlord q of length greater
than or equal to L L(pq) ) I; . Thus

or(so , ptpy) € 7'r. iff (,r(so , 'PzPQ) e ]-, ,

or equir,,alently,

o/s't , q) € I'1 iff c,t(s, , q) € ]', .

This contradicts the assumption that llt is )"-reduced. Hence the transi-
tion system must be weakly (k - I)-definite. That it is (k - I)-definite
follow-s from the converse part of the theorem. This, in turn, follows from
the fact that, for any so € B and Yrc Y ,

f Wt, so, Yr) - U T*n ,

3r
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where for each r e X , Tn is the weakly fu-definite language represented
in the initial transition system (§, ä, so) by the set

§, : {s € §j ,(s , r) € Yr\

of final states.
Clearly the minimal Mealy machine representing a k-definite (k > 1)

language satisfies the conditions of the first part of Theorem 15. Thus rve

get the following corollaries.

Corollary 15.1. The minimal Mealy machine representing a k-definite
(fr > l) language has a (& - l)-definite transition system.

Corollary 15.2. A Mealy machine representing a k-definite (k > L)

language has at least /c stat'es.

ry
! From Theorem 14 it follows that the minimal Moore machine represent-
ing a set of weakly ft-definite languages has a weakly /r-definite transition
system. As shown by Inenne [8] the equivalent minimal Mealy machine
can be constructed from this by identifying all l-equivalent states. Thus
the transition system of the minimal Mealy machine is the lsl contraction
of the transition system of the Moore machine. Using Corollaries 6.2. and
6.1. we get

Theorem 16. The minimal Mealy machine representing a collection of
v-eakly k-definite (ä > l) languages has a (k - l)-definite transition
system.

If the corresponding minimal Moore machine has z states, then the
minimal Mealy machine has at most z - I states.

5.3. We now modify the svnthesis and analysis methods presented
above for Mealy machines.

The minimal Mealy machine representing a collection of definite lan-
guages is obtained by assigning outputs to the states of the minimal initial
transition system constructed by the partition method and transforming
this Moore machine into a Mealy machine by the method of Isenne.

Let SJt : (S, X , Y , ö ,a) be connected for the initial state so, and
Y, c Y a given set of representing output letters. To test the definiteness
of T(sI., so, 7r) and to find, in the affirmative case, a definite regular
expression for it, we construct a graph ffllt , Yr) as follows.

1. The initial node is Yr.
2. For eac}. r € X introduce a node corresponding to the set B" ,
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and lead a transition from I, to & labelled by u . Nodes corresponding
to equal sets B" are identified, and nodes comesponding to an empty set
B, may be omitted.

3. Starting from each nonempty §" the graph J-(U,) is constructed.
as in § 3 for the finite automaton 0[, : (§, ö , so, &) . If we know that
,lt is I'r-reduced, then the contractions (§,, d,) are first constructed
and the subgraphs J-(21") can be found by means of them.

Clearly T(sllt , so, Ir) is definite iff all languages T(8I,) are definite.
More accurately - if the languages T(A; are all definite and at least
one of them nonempty, then

deg ?(IJt, so, Ir) : 
T.1I 

T(21.) + t .

A definite expression for T(sllt , so, Ir) can be found from ,I-(Srt , F1)
just as 7(2[) was found from J'(?t) in § 3.

§ 6. Compositions of definite transition systems

6.1. We consider now the preservation of definiteness in various com-
positions of transition systems.

In the following theorem the parallel connecti,on may be understood
in any of the current meanings of the word.. The serial connection is d.efined
in the following general way (cf. [6]).

Let Ar: (§r, dr) and A2 : (52, ö2) be transition systems over the
alphabets X, and )(, , respectively, and let, g: §r X X, -+ X, be any
nrapping. Then the transition system A* : (5, X §r, d) over the alphabet
)f, is a seri,al connection of A, and Ar, where d is defined by the con-
dition

d( (rr, sz),r): (ä, (sr ,n),åz(sz,E(sr ,n))),

for any (sr. , sr) € S1 X §, and r e Xr.

Theorem 17. The parallel connection A of any definite transition
systems A1 ,...,An is definite, and

deg A : max {deg Ar, . .,, deg A^} .

Let Ar: (§r, är) and, Ar: (§2, ö2) be definite transition systems
over the alphabets XL and Xr, respectively. Their series connection
4,, is definite and
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deg A* ( deg A, ! deg Ar,

for any mapping ?: §r x Xr--> Xr.

Proof. The first part, of the theorem is obvious. We prove the second

proposition.
The mapping g can be extended to a mapping g: §, x Xf -+ Xf

putting for any s € §r E@ , X): i, and

E@ , p): g(§ , nr) q(srr, nz) . . , q(sr". . . ntu-t , nn) ,

for any word .p : nlnz... nn (n2 t). Then for anSr (sr,sz) €§, X S,
and p€Xf

ö( (sr, sr),p): (d, (s1 ,p),öz{.lz,V(st,e))).

Let (sr, sr) and (ri , uj) be arbitrary states of A, and p : prpz
any word of length h * kz, where L(pr) : kr : deg,4r and L(p) :
kz: deg Az. Now dr(§r , ?r) : ör(si , pr) because .4, was /cr-definite.
Hence

E$t, P) : ?(sr, P) v@rPr, Pz)
and

g(s, P): g(§i , pr) q(s'rh, pr)

have a common kr-suffix, and thence

ör(rr, V@r, p) ) __ ör(tr, g\t, p) ) .

Thus \47e get,

ö( (s, , sr) , p) - (dr(st ,p), dr(s* , g (s' p) ) )

: (dr(sl , p) , ör(s'r, g (si , p) ) )

: d( (si ,s;),p).

Hence A* is lreakly (k, ! kr)-definite. The actual degree of A, depends

on g.

Corollary 17.1. Any series-parallel connection of definite transition
systems is definite.
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Corollary 17.2. A language representable in a series-parallel connection
of finite automata or sequential machines with definite transition systems
is definite.

Of course, definiteness is not retained in general in a feedback con-
nection of definite transition systems.

CHAPTER II

NONINITIAL AUTOMATA

§ 7. Representability in noninitial finite automata

7.1. A noni,ni,ti,al, automaton over the alphabet X is an ordered triple
(§,d,-F) , where (S,ä) is a transition system and ,Ec§ a set of
final states. The noninitial automata considered here are always finite,
i.e. § is a finite set.

Consider the following straightforward extension of the concept of
representation from finite automata to noninitial automata; The language
[/ isrepresentedin !I:(S,ö,I) iff p€U implies ä(s,p) €-tr'for
a,ny s€8, and peu implies ä(s,p) QF, for a,ny s€S. Itiseasy
to see that then only the languages fr and X* are representable in a
noninitial automaton. This was noted by Srenxn llgl and he introduced
a weaker type of representation for noninitial automata. Our definition
differs from that of Sr.q.nxn in that the restriction is imposed only on the
mode of representation and not on the words of the language represented,

(k

the

Detinition 6. The noninitial automaton ?{ : (S , å , P) lc-represents
a non-negative integer) a language U iff , for anv word p satisfying
condition L(p)>k,
(i) d(s,p)e?, forallstates s€§, if peU, and
(ii) d(s , p) e I, for all states s € §, if p e. U .

Hence the noninitial automaton is required to decide only about"words
possessing a given minimum length k whether or not they belong to IJ .

The follorrying results formulated in our terminology can be derived
from lr9l.
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A language ft-represented in a noninitial automaton is weakly ft-definite,
and for any weakly k-definite language (in [19] of type X* R , E c Xfr)
a noninitial automaton representing it can be found.

7.2. Obviously the conditions for k-representation are still so strict
that it may happen that a given noninitial automaton does not fr-represent
any language for any lc. \Me consider the analysis problem of deciding
whether a noninitial automaton fu-represents some language for some k
and finding the languages /r-represented.

Theorem 18. The noninitial automaton 2[ : (§ , ö ,l) /c-represents
(fu > 0) some language if and only if

(a)atllanguages Tt:T(W), where 2t;:(§,d,§i,-F') and s;€§,
are weakly ft-definite and almost equal.

If (a) is satisfied, then 2[ /r-represents a language 7 if and only if ?
is weakly fr-definite and almost equal to the languages fi .

Proof. Suppose that the language 7 is /r-represented in 2t. Consider
any state s; € § and let p be an arbitrary word with L(p) > fr . Write
p:q.r, where r:plk. Tf pe T;, then s;p€-F and hence pe T.
X'urt.hermore (sq)r €1 impliesthat re T, andhence sire n, which
implies reTi. Similarly we see that re?; implies reT. Hence
especiallv (s;q)r:s;pe n, and so peT; and peT. Therefore Ti
is weakll fr-definite and any of its rvords of length k or more belongs to ? .

Ontheotherhand,if peT and L(p)> ft, then s3,'t I andthus
pe Ti. Hence T and Ti are almost equal, for they can differ only by
v'ords of length less than fr . From this we can conclude that ? is 'weaklv
ft-definite, and that all languages ?; are almost equal.

Conversely, assume that the languages Ti ete weakly /r-definite and
almost equal. Then they have k-forms Ti: Q, I X* -8, where R c Xk
is the same set for every i . Let T be any weakly fr-definite language
almost equal to the languages 7i. Then 7 has the k-form I + X* R .

Hense for any state s; and anv rvord p satisfying L(p) > d::

sipe F iff pQTi iff p €X*E iff pe f

Thus 7 is k-represented.
Consider now the state vectors fo used in Section 3.2. Either by Theorem

18 or directly from definitions .we get

Corollary 18.1. The noninitial automaton 2I k-represents some language
if and only if the vector lo is either purely positive or purelv negative,
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for any word p of length k . If this condition is satisfied, then 2{ fr-
represents the weakly k-definite languages almost equal to X* R , where
R : {p e Xhl tp purely positive}.

Hence the analysis of a noninitial automaton can be accomplished by
Method I described in Section 3.2. Note that the transition system of QI

need now not be connected for any initial state.
If ![ is connected for some initial state - say so, then for anv state

si there exists a word .p such, that sopt: §i. Hence T;: äp?o is by
Lemma 2 weakly k-definite and almost equal to 7o whenever ?o is
weakly k-definite. Thus we get,

Corollary 18.2. If. the noninitial automaton !I is connected for somo
initial state so, then ?I ft-represents some language if and only if the
corresponding initial automaton llo is weakly fu-definite. If this condi-
tion is satisfied, then the /c-represented languages are the weakly /c-definite
languages almost equal to 7(2to) .

Thus we get an alternative method fot analyzing a noninitial auto-
maton. The automaton is divided into connected subautomata, which
are then tested for definiteness and analyzed by any method. If the sub-
automata are all definite, then the languages represented are finallSr com-
pared with respect to almost equality.

§ 8. Synthesis of noninitial automata by partitions

8.1. Let ,4 : (§ , d) be a finite transition system and lc a non-negative
integer. We say that the language f) is lc-representable in A iff there
exist's a set -E C § such that U is fr-represented in the noninitial auto-
maton !I:(8,ö,X).

Theorem 19. The languages of a
in the same transition system if and
k-definite.

given family are all lc-representable
only if the languages are all rveakly

Proof. The necessity of the condition follows from Theorem 18. Let
Ur, Ur t . . . , Uo be some weakly k-definite languages. They are all k-
representable in the transition system A : (Xo, d) , where

ö(p , n) - pnlk ,
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f(,r any p€Xn and re X. The language Ui(i:L,...,n) is &-

represented by the set -Fi : {p e Xrlp e Ut} of final states.
The transition system 2[ has in general unnecessarily many states.

In what follows we shall develop a method for finding the minimal solution
of the synthesis problem. The method is based on a modification of the
concept of automaton partition.

fn this connection we note that the minimal automaton of an equi-
valence class (under almost, equality) considered in [I5] gives the minimal
transition system for one definite language.

8.2.

Definition 7. Let' lc be a non-negative integer. We call a partition I/
on Xk an automaton lc-parti,tion iff , for each class IIo e n and each letter
r e X, there exists a class I/, € 11 such that

ilotr C lf nfi.

The proof of the followirg lemma is straightforward.

Lemma 11. The infimum nt' n2 and supremum JIt + flz of two
automaton fr-partitions Z1 and flz are automaton å-partitions.

Let C be a family of partitions on X& . We call the automalon k-
partition II a marimal, automaton lt-reji,nement of C iff

(1) il refines every partition in C , and

Q) n is not a, proper refinement of any automaton k-partition which
refines every partition in C.

Theorem 20. Every family of partitions on Xe (/c > 0) has a unique
maximal automaton k-refinement,.

Proof. There exist only a finite number of partitions on XÅ and the
trivial partit'ion O : { {e} lp € X*} on Xk is an automaton ft-partition
refining any partition on Xa . Thus a maximal automaton /r-refinement
of any given family C exists. Suppose that IIr and lfz are both maximal
automaton fr-refinements of C. Then also ,I11 | II2 refirres every parti-
tion in C , and furthermore nt + n2 is by Lemma II an automaton
k-partition. Thus nt + JIz - JIt - n2 , because IIl < IIr I II2 and
II2<IIL+ilr.
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8.3. Let K:{Ur,Ur,...,U^\ (n>l) be a family of weakly fr-
definite languages given in their ft-forms f4 : g, a X*&, 'i : L ,

... )7b. Every language [Ji defines a partition ,':{&,Xk - Ri}

on Xa
Each automaton fu-partition II defines a unique transition system

AW) :: (fI , ö)

where, for any fro , n fi €, II and fr e X ,

ö(n*, t:) : frs iff fron C X' ffP'

Olearly,forany p€X*Xh andanystates fro,frBe n,

Hence a weakly fr-definite language tl:Q+X*R, L(Q)<k and'

R c Xk, is k-representable in A(II) if and only if -E is the union of

some classes in II
Thus the languages of K are aII /c-representable in the transition

system defined. by the marimal automaton k-refinement of the family

ö:{f,,rpl,...,rlt"}. This can be found by the following modification

of the method of Lnrrr:snvsxr (cf. 4.3.).

First put flo : VL' 'ytz' ...' 1P" . Suppose that the partit'ion Z'
(d:0,L,...) has been found. Then Z'+1 is defined as themaximal

refinement of IIi such that, for each lfi+t e ni+L and each r e X ,

there exists a class IIh e IIt satisfying the condition IIL*' ! g. Xni 
:

similarly as in the proof of Theorem 13 it is seen that ,Tn-t (fot fr > 0)

gives the wanted refinement.
The maximal automaton k-refinement can be found b1' a similar tabu-

lar method as that presented in 4.4. The table is now written only for

words of length k , and the index of the word p in the column of r is

the index of. prlk .

Example 5. lYe construct a transition system in u'hich the 3-d.efinite

languages Ur: X* (rax *Ytn +yyr) and Uz: X* (a:m !yun { yry)

"uri 
t" g-rrpresented. The construction is given in Table 6 and the result-

ing transition system in Figure 2. u, is 3-represented. by the set {c , d}

and tl, by the set {a , d , e) '
we now show that the described method gives the minimal solution.

This follows from
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Table 6.

I ara,

frfrfr

frtty
fryr
nyy
yfrr
yny
yan

vya

0 I :lLU-aab
0 0-020-bcb
I 0__231 -cd,e0 0-020-bcb
1 l*310-d,ab
0 1 -120-ecb1 0_-231 :cd,e
0 0:020*bcb

Theorem 21. l,et K:{(Ii:Qr+X*Rrli,:t,...,n) be a
family of weakly ä-definite languages in their k-forms, c the family of
the partition§ ?i: {4, ,Xo - R* (i - 1,. ..,n), and tI themaximal
automaton /c-refinement of C. Then A@) is the minimal transition
system in which the languages of f{ are all k-representable.

Proof . Let A' : (§' , d') be a transition system in which the languages
of K are all fr-representable. Because any subsystem of 24., k-represents
the same languages as A', we ma,y suppose \hat A' is strongly connectecl.

Assume that there exist two states s, and s, in §' such that for some
word p € Xe

si : ä'(sr ,p) + ö'(sr,7t): si.

clearly the languages of K are k-representable in the transition system
obtained from a' by removing sj and repracing the occurrences of it
in the transition table by s', . Hence if A' is minimal it must be weakly
k-definite. Then A' defines a partition

fr'-{n: ls€S'}
on X* , where for each s € ,,S'

il: :{peXeld'(s',p):s for anv s,€S}.

This partition refines every partition \)i, ,i,:1,...,n. Let n: be
any class in fI' and r any letter. Then II! xc X.ff",, where s,:
ä'(s, r) . Thus I/' is an automaton k-partition. Hence II, < il and so
l§'l : III'I> lill. X'urthermore we c&rr map A, homomorphically on
A(II) by mapping each state s € §' to the class If o e II fo.w,hich
Ir'" c il,. Hence the minimal transition system is uniquely determined
up to isomorphism.

Figure
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CHAPTER III

MULTIDEFINITE AUTOMATA

§ 9. Reverse definite automata

9.1. Before defining the multidefinite automata we discuss a special
case known as reverse definite automata (cf. lt]). we shall define and treat
them in a way similar to that adopted above in the discussion of definite
automata.

A word p, is called lhe k-prefir of the word p , denoted lry klp ,
iff p :ptrgt, and L(pr) : k .

A language U is termed, wealcly reuerse (w.r.) k-d,efi,nite (k > 0) iff,
foranyword p satisfying L(p)>lo, peU exactly incase klpeU.

The notions of reaerse (r.) k-d,efini,te and reuerse d,efi,ni,te languages, and
the d,egree are derived from this in analogy with Definition I.

clearly, a language is w.r. fr-definite iff its reverse is weakly ft-definite.
Every w.r. /c-definite language U has a unique representation -we call it the k-form -

U-A+AX*,

where L(Q)<lc, RCXh andthewordsin Q and R areorderedasin
the /r-form of a definite language.

9.2. A transition system (8, ä) iswealclyreuerse (w.r.)k-defi,ni,te (k> 0)
iff,foranystate s in §, words p and q, ä(s,ro) :d(s,pq) , when-
ever L(p) : lc . Reverse (r.) k-definiteness, reverse definiteness and the
degree are again introduced as in Definition l.

This definition is equivalent to that given by GrNznune [4], but com-
pleted by the degree.

We now present a method for testing the reverse å-definiteness of a
transition system from its transition table.

Definiton 8. A state s of a transition system (8 , d) is |-absorberl
iff, for aray leLher r , d(s, z) : s. A state s is (i I l)-absorbed, (i :
0 , I , . . .) iff, for any letLer r, ö(s , r) is i-absorbed,.

41

Itistobenotedthatan,7L-absorbedstateisn,-absorbedforanyyl,,>
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Lemma 12. A transition system is w.r. fr-definite if and only if allof its
states are k-absorbed.

Proof. Let, (S , ö) be a w.r. k-definite transition system and s € B
arbitrary. If k:0, then sr : s).: s for any z, and thus s is 0-

absorbed. Suppose that ft>0 and let P:nfi2...fr* be any word of
length fr . Now (sp)r : s1t , for arty n, implies lhat sp is a 0-absorbed

state. Because this holds for arry rp, we can conclude that Ö(s , (k - t)lp)
is l-absorbed. Ingeneral,weseethat, forany 0 <i <k, ö(s,(k-i')lp)
is rl-absorbed, and especially for i, : lc , lhal s is ft-absorbed.

On the other hand, if aII states are /c-absorbed, then sp is 0-absorbed

foranystate s and pexk. Hence s?q:sgt, for anyword q.
We caII a state s of (S , ö) quasi-absorbi,ng iff there exist letters r

andy suchthat ä(s,r) :s, but ö(s,A);Es. Clearly,aquasi-absorb-
ing state cannot be z-absorbed for arry n.

Definition 9. The nth red,uction (5", ö") of a transition system (§ , Ö)

is defined. recursively as follows.
I. The 0lå reduction is (8, d) '

2. Suppose that the 'i,th red:uclion (S' , d') (t : 0, I , ' . .) is given.

All 0-absorbed st'ates in it, except those quasi-absorbing in (§ , ä) , are

removed. The remaining states constitute S'+r. For any s € §'+1 and

Ietler r, we put,

Lemma 13.Let (§, ö) be atransitionsystem' Forany n:0,1,.'.
(*) B"+'C §",
(b) if §"+1:,So, then (S"*' , ä"+'): (§", Ö"), forany 'i : 1,2, . , . ,

and
(c) if (§ , ö) is connected, for some initial state, then also (S" , ä")

is connected. or ,S" : O .

These properties follow easil;r from Definition 9.

Lemma 14.Astateof (§,d) isastateof (8"+',ä"+1) , n:0,1,...,
if and only if it is not z-absorbed in (S , Ö) .

Proof . The statement, is true for n : 0. We suppose that it is true
for some n : i,'i : 0,1....

If s € §'+1 is (a -l- I)-absorbed in (§, d) , then, for any n, ö(s,r)
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is i-absorbed and hence d(s , r) C ,S'+ I by the ind.uction hypothesis. Clearly,
ä'(s,r)e§'+r or di(s,r) :s. fn any case, ö'+'(§,fr)-s. Because
s cannot be quasi-absorbing in (§, d), this implies that s e S'+2 .

Suppose that s€§i+2. If s€,S'+1, then s is O-absorbedin
(§t+1,5i+t1 and not quasi-absorbing in (B,d) . Hence di(s,a)e§'+r
or äi(s,r):s, for any fr, and if ä'(s,r) :s, then d(s,r) €§'.
In any case, ö(s, r) e B'+1 and ö(s, a) is by the induction hypothesis
i-absorbed. Hence s is (i f l)-absorbed. The case s €§i+r is trivial.

Combining Lemmas 12, 13 and 14 we obtain the following criterion
for reverse definiteness (for another criterion cf. [+]).

Theorem 22, A transition system (,S, d) is reverse k-definite if and
onl;r if

§-§o=§1= f /Sk f §k+l : fr

Especially we note that a transition system having a quasi-absorbing
state cannot be reverse definite. X'urther we get immediately the

Corollary 22.1. If the transition system (§ , ö) is reverse fr-definite,
then lSr >k+I.

9.3. The notion of reaerse d,efinite automaton is introd.uced in the natural
way'. As shown by GrNznunc l4], a reduced w.r. k-definite automaton
has a r.r..r. k-d.efinite transition system. This fact can easily be established
by means of derivatives. Let U : Q * -BX* be a w.r. k-definite language
in its k-form. Then for any p e Xk

: rr- lb, if pqR,
uPv -lX*, if p€ä

In anv case 1rrU : 1pU, for any word q .

Thus Theorem 22 provides an efficient method for testing reverse
definiteness of an automaton, for obviously any language representable
in a w.r. fu-definite transition system is w.r. k-definite. Another criterion
using the graph of the automaton was given by Bnzozorvsr<r [l].

It is easy to develop an analysis method for reverse definite automata
similar to Method II in § 3.

Suppose !I : (§ , d , so , .F,) is reduced and reverse Ä:-definite. X'or
any st'ate s € -F, a graph l-,(AI) is constructed as follou,s.

l. The initial node s is the only node of ord.er 0.
2. Givenanode s' of order i (i:0,1,...), anode s" of order

i f I is introduced for any lettey r and s" I s' such that äi(§" , n) : s' .



44 Ann. Acad. Sci. Fenniere A. r. +1+

A transition labelled by r is led from s' to s". Nodes corresponding to
the same state of 2[ may be identified.

Clearly J-"(2I) is a directed tree whose terminal nodes correspond to
so . ff s' e X occurs as a node of "l-"(?t) , then I", (U) is a subgraph.
of /i(U) and need not be constructed separately. A regular expression
f Q» : Q + AX*, where Q and -B are finite, is obtained from these
graphs as follows. To -E we take the reverse of any word leading to a node
so from s in /l(U) , where s is the 0-absorbed state in -F' . Alt rvords
obtained in the same wey from the other graphs constitute @ .

Example 6. Consider the automaton 2[ given by Table 7, where so :
1 and ! : {a , b} . The reductions are also shown in this table. Note
t'hat there &re no quasi-absorbing states in (§ , ä) .

Table 7.

d lr 45 b I O-u,Ur. states

fr

a
d1

fr

v
d2

fr

a
d3

fr

a

33b3b
3bblb

o
2

a"4 15a
25454

a,

2

3rb

4r5

2, cL

The automaton is reverse 3-definite because
fr(U) is shown in Fig. 3. We note that f"(2I) is

n(U) we obtain

R-nyy*yruA*yyr*yyy,

and. from .l-"(U) A =- n .

Figure 3.

§4- b The sraph
a subgraph of it. From
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§ 10. Multidefinite languages

10.1. Let gt,pz,...,p" (n22) and p be some words. We call
(pr,?r,..,,po) a (4,kr,...,k^)-subword, sequenceof p iff L(p):
ki, for each ,i,:1,...,n, and there exist word.s gr,... tgo_t such
that p : ?rgtpz.. . ?n_rgo_r?n.

Definition 10. Alanguage U isueakly (w.) (kr,kr,...,k*) - itefinite
(n)2i ki)0, i:1,...,n) iff, foranyword p satisfying L(p)>
kr=...+4t", peU exactly in case there exists a (kr,...,k,)-
snbr,r,ord sequence (pr,...,p,) of p such that, prytr.,.p,eu .

Å language is multidefinite iff it is rp . (k, , . . . , lc,)-definite, for some
n) ) and /r, ,...,k,) 0.

Tiris concept generalizes both definite and reverse definite languages.
A language is weakly ä-definite iff it is eo. (0 , ft)-definite, and. w.r. k-
definite iff it is rp. (å, O)-definite. The following lemma is easily estab-
lishecl.

Lernma 15. A language [/ is It) . (k, , . .. , k,,)-definite if and only
ifit can be expressed in the form

(I0.1) U:Q +öp^X*pizX*...X*p,,,

rvlrere m)0, L(pri):ft; for:any i:1,...,?h and j-1,. ..,tu,
ancl Z(Q) <-kr*...+k".

\Ye call (10.1) the (br,...,k^)-form of fJ , v-hen the words in A
are orclered according to increasing length and words of equal length
alphabetically, and the terms in the sum in alphabetical order of prpiz
. . . pin. Clearly the (k, , . . , , lc,)-form is then unique.

Lemma l6.Tf U is w. (\cr,..., fu,,)-clefinite,thenit is w. (hr,...h,)-
definite foranynumbers hr,...,h1 )> O and I satisfvingthe conditions:

(l)/>n, and

k, 1 k,_, k, Ah,", . . ., ltn I h;n.

Proof.Let U be a w. (hr,...,fu")-definite language of the form
(i0.I.). and hr,...,h, a set of numbers satisfying the conditions of
Leurnra 16. Each language prrX* g;2. . . X*p,^ can be written in the
form
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(r0.2) Q, RrrX*Rrr...X*Rt,

,

pr.i Xo,-ki , if c : di ,

Xh', if c*h,ir..,,in,

The languages (10.2) can further be written

+

,l

t
IR,":

in the form

(10.3)

+ht

Q, + U r,rX*'rrrX* . . . X*ril,

where the sum ranges over all sequence§ (r,,, riz,. . ' , rn) e Rrrx Rrr>'. ' ' ' x R*
The languages (10.3), and thustheirsurnand U, are w'(hr,"',h,)-
definite by Lemma 15.

Lemma 17. The union of two w . (k, , . ' . ,lc^)-definite languages is to '

(k, , . . . , k,)-definite, and the union of two multidefinite languages is

multidefinite.

Proof. The first proposition follows directly from Lemma 15. Let UL

be a w. (kr,...,k")-definite, and Uz a 'w. (k'r,.",ki;-definite
Ianguage. Because a, w . (kr, . .. , k,)-definite language is ahvays

(kt-,O,k2,...,k,)-definite, we may suppose that l:n' Then UL

and (r, are b5r Lemma t6 both w. (k'i,,...,k"*)-definite, if rve choose

k'! :mu*{kt,k:\, i: I, ...)n. Hencetheirsumisalso w'(k'i,"',li':)-
definite.

From Lemmas 15 and l7 the following characterisation of muitidefinite

languages is easily obtained.

Theorem 23.
expressed in the

(10.4)

A language U is multidefinite if a,nd. onlv if it carl be

form

cr - Rrr,X* R rrX* . 3 . X * R.r,,;,

where fiL > 0 , tr,nd the languages A and Rri are all finite.

10.2. Consider the w . (2,1)-definite language XLX*X ' Writing it
in the form XX*XX*X we see that it is zrr. (1 ,1, I)-definite, in the

form xsx*^ w . (3, 0)-definite, and so forth. From this example it is

eviclent that a multidefinite language cannot be termed (k, , '" , h)-

n1,

a + u
i:1

46
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definite by simply demanding the minimality of the numbers k; . One
way to obtain uniqueness is presented in the following definition.

Definition ll. A language U is (kr,. . ., k.)-defnni,te iff it is w .

(kr, . .., k,)-definite, where
(t) z is minimal,
(2) the number of ki s distinct from 0 is minimal,
(3) k, is minimal such that (1) and (2) arc valid, and
(4) each lci, i:2,...,%, has been chosen minimal afterthe choice

of lcr,...,kr_, so that (I) and (2) remain valid.

Theorem 24. Every multidefinite language is (k, ,

for some unique (k, ,. . , kn) .

, k")-definite

The theorem is a direct consequence of Definition ll. We call the
(kr,...,(l^)-form of a (hr,...,k,)-definite language its canoni,cul erpqn-
sion. The canonical expansion of a multidefinite language given in the
form (10.4) can always be found, but we do not know of any practical
algorithm for doing this. We use the canonical expansion to define & meas-
ure for the complexity of a multidefinite language.

Denote for any language V ,

o(v)-{o' i{ v-s'-lr, if V+9,
and for any non-negative integer lt ,

a(to) :-f o' i{ k-o'
lr, if k> o.

Definition 72. Let U be a (k, , . ,

its canonical expansion. Then rnre say that
a(kr) + + a(k")\.

k")-definite language and (10. 1)

tl is of ra,nk rnax {o(Q) , E (kr) +

The empty language A and X* are the only multidefinite languages
of rank 0. All other definite languages are multidefinite of rank l.
If U is å-definite and U : I + X* l? its /c-form, then its canonical
expansion is

( I 0.5) U-A+UlX*p
P€R

Let U : Q I RX* be a reverse k-definite language in its k-form.
Then z :2 in the canonical expansion (10.1) of a . If [/ is not definite,
too, then its canonical expansion is of the form
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U:Q*oVfX*1..

If U is also definite, then its canonical expansion is of the form (10.5).
fn any case [/ is multidefinite of rank I provided that k ] 0 . 'We 

note
that the minimimality condition (2) in Definition 12 guarantees that a
reverse definite language cannot be (k, , /cr)-definite with kr) 0 and
kr> 0, which would imply that the language is of rank 2.

Besides the definite and reverse definite languages there exists a third
tlass of multidefinite languages of rank I. These are the languages of the
cype

Cr-A+X*RX*,

\1.here A and R arefinite,and A+g or R+).,
definite languages distinct from g and X* .

The ge?Leralized defi,n'ite languages considered
multidefinite of rank 2 if they do not belong to some
above. A language is generalized definite iff it can

d(t , Ptgr'Pz .

\Iie call (,S , ö) multi,clef,ini,te

(krr " 'rkn)'

ct_a*Prx*Rr+ +P*x*R*,

u'here m ) 0, and the Ianguages 0 , P; and R; are all finite. It is
an immed.iate consequence of Lemmas 15, 16 and 17 that a generalized
definite language is w . (lc, , kr)-definite for some (k, , kr) . Of course,
the converse is also true.

§ 11. Multidefinite transition systems

I1.1. We now state a definition of multidefinite transition svstems in
analogy with Definition 10. The concept generalizes both definite and
reverse definite transition systems, but it turns out that the correspondence
between multidefinite transition systems and multidefinite languages is
not complete.

Detinition 13. A transition system (S, ö) is weakly (w .) (kr,. . .,k*)-
d,efdnite (n)2i kt,...,k^>_0) iff, for any state s€S, uords
pre Xo't,.,tpne Xk,, and gt,.,.,gn-re X*,

i.e.the w. (0,k,0)-

by GrxznuRe t4] are
of the types mentioned
be written in the form

" 'P")'

, kn)-d.efinite, for someiff itis w. (kr,
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A transition system is w . r . fr-definite iff it is w . (fr , 0)-definite.
A weakly k-definite transition system is always 'u. (0, fr)-definite, and

a connected w. (0 , k)-definite syst'em is weakly k-definite The cor-
respondence could. have been made complete by defining definite transi-
t'ion systems similarly as the reyerse definite transition systems.

Lemma 18. A transition system (S , ö) is w . (k, ,

and §€§,

, k*)-definite if
,?L- l, frex,

" 'Pn)'(11.r)

If (8,ä,so) is connected. for some so C §, then it suffices that (I1.I) is
satisfiedfor s:so.

Proof. Clearly the condition is necessary. Suppose now that it is satis-
fied. Let gr,. . .,?n', Qr,. . .,q^-, and s be as in Definition IS.Denote
F : gflfl2. . .eo-r?o . ff at least one of the words Q; is non-empty,
then L(p)> lh* kz* ... * k" and p' : (kr* ... + k"l r)lp has
at least, one occurrence of some letter dueto someword li . A (kr,,. . ., k.)-
subword sequence of p' can be formed. so that one of these occurrences
does not belong to any of the subwords of the sequence. Let p" be the
word obtained from p' by removing this letter. Then by assumption
ö(s ,p'): ö(s , gt") . Hgnce p' can be replaced by p" in p v'ithout alter-
ing the state sp . The same argument applies to this new word. The re-
movings are repeated until the remaining u'ord is of length k, * . . . + k".
Then all letters due to the words Qt,...,q,-, have been removed and
the remaining word. is prpr. . . pn. Hence d(s ,lo) : d(s , ?rpz. . . ?") .

Assume now that (§ , d , so) is connected and that (f f .f ) is always
satisfied for s: sr. Let s be any state, p, ,.., ,p,, r and ,i as before,
and q a word such that soq:s. Choose any (kr,,..,k")-subword
sequence of r:9h...?irp;+r...9. so that, fi does not belong to
any of the subwords. As in the first part of the proof, all letters not belong-
ing to the subwords of the sequence can be removed from r without alter-
irg s, r . If all other letters except er &re replaced in their proper
places, the final state remains still unaltered. Hence, if we write
9t...?tfrPi+t...9":P'

d(s, p) : d(sr, r) : d(tr, lpt . . . ptpi+ t . . . p,,) - ä(r, prpz . . .p")

X'romthefirst part ofthe lemma it follows that (§, ö) is w . (h,. . ., ko)-

definite.

4
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11.2. We consider now the effect of the contraction operation on multi-
definite transition systems.

Lemma 19. The transition system (§ , d) is w. (1c1, . . . , /c,)-definite,
with k" > 0, if and only if its lsf contraction (§r, ör) is w . (kr,...,
lcn-r t &" - l)-definite .

If (§, ä) is ro. (kr, . . . ,kn-r, 0)-definite, then (§, , dr) is also ur.
(kr, . . ., kn_r, O)-definite .

Proof. Let the transition system (§ , ä) be w . (kr, . .. , k")-definite
and k" > 0. Consider any words pre Xh,...,po-r€X&"'r, go€Xk,-r,
letter r andstate s. Givenanumber r) , 1<i<m-1, wedenote

§r : d(s,pt. . . pifi?i+r. . . p")
and

sz : d(s,pr. . . gipi+r.. .p) .

Then, for arry lettet g,

ä(sr, y) - d(s, pt . . . pifrpi+ I . . . pnU)

- Ö(t, 9L . . . PiQ;at . . . PnU)

,*rr.l s, o'§z , i.e. Crr- Crr, a,nd thus

ör(Cs, gt. .. ?irp;+r. . . p") : dz(Cs,pt. . . pigi+r., .p).

Because Cs ranges over all states in §, , v-e may conclude by Lemma 18

that (§r, ör) is w. (lcr,...kn-r,ho- r)-definite.
Suppose now that (§r,är) is w. (kr,...,kn_r, kn- l)-definite,

with ft")0. Let Pt,...,Pn, r,'i, ar-.d s beasabove. Then

ör(Cs t pL. . . p;frpi+t. . . p*)- ör(t t pL. . . pip;ar . . . p,r)

implies that

ö(s, pt.,.pifrpi+t.. .pn) O1 d(s tpL...pipt+l .. .pn),

and this further that
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for any letter y. Hence the result, follows again from Lemma i8. The
last sentence of the lemma is obvious.

Lernma 20. If (§ , ö) is w
(k, + .+ k,-1)-definite.

(k, ,. . . , kn _1, 0)-definite, then it is ,u). r.

Proof. Let s be an arbitrary state and p any word of length
krl ... * k,_,.. Then, for any letter n, ö(s,gt*): ö(s,?). Hence
every state accessible by a word of length k, I . . . + 10"_, from some
stateis 0-absorbed. Thisimpliesthateverystatein § is (ä, + . . . * tc,_r)-
absorbed. Lemma 15 implies now the assertion.

We consider now an arbitrary multidefinite transition system (S , ö) .

If it is r.u. (hr,..., k,,)-definite, with k"> 0, we applythe contraction
operator fu, times on it. The obtained contraction (86, dr,) is by Lemma
19 w, (kr,...,kn_r,0)-definite, and hence by Lemma Z0 w,
(kr* ...+ h,_1,0)-definite. Using now Lemma Ig in the converse
direction we obtain the following

Theorem 25. Every multidefinite transition system is weakly (h , k)-
definite, for some numbers h and k .

The (k, , . . . , k")-d,eJi,nite transi,ti,on systems can be defined in a way
similar to Definition 11, and then ttre rank of a (kr,..., k..)-definite
systemis q(kr) +...*g(k"), where g isasinDefinition12. Itfollows
from Theorem 25 that the rank of a transition system cannot exceed 2.

I1.3. The previous results provide also a method for testing the multi-
definiteness of a transition system, when we add to them the following
lemma. The easy proof of this lemma is omitted.

Lemma 21. If there exist numbers h and k such that k ) 0 and
(S, d) is zo. (h,lc)-definite, but not w. (h,le - 1)-clefinite, then there
exist two distinct l-equivalent, states in § .

To test the multidefiniteness of a given transition system (§, d) we
apply on it the contraction operation repeatedly until a contraction (& , dr)
is obtained which does not allow any further contraction. Then we know
by Theorem 25, Lemmas 19 and 2L Llnab (§, d) is mulbidefinite if and
only if (§r, dr) is reverse definite. This can be tested by the method of
reductions given in § 9. If (&, är) proves to be reverse ä-definite, then
(S, d) is zr. (ä , k)-definite.

51
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ll.4 We consider now the compositions of multidefinite transition
systems. As stated in the following theorem, the closure properties of
multidefiniteness are essentially the same as those holding for definiteness.

Theorem 26. Let A; be a, w . (h , k)-definite transition system,

for each 'i,:1,...,nl . The parallel connection of the systems

A1 ,...,A* is w. (h,k')-def.tnite,where h:rna,x{hr.,...,h^} and
h:m:ax{kr,...,k^}.

Let -41 : (§1 , ä1) be a w . (h, fur)-definite transition system over
the alphabet XL and A2: (82, ö2) a, u. (hr,lcr)-definite transition
system over the alphahet Xr. Then, for any g : §, x Xr+ X, , their
series connection A* is w . (h ,lt)-definite, where h : fr&x {h, , hr)

and /c:h*kz.

Proof. The first part, of the theorem is obvious. We consider the series

connection. Let (s,.,sr)€§1 x /Ss be any state of A,r, Pe Xo,qexu
and r e X* any words. We write 4: Q$2, where L(qr) : k, and

L(qr) : ft, . As in the proof of Theorem 17 we can write

r (sr ,pq)'= q (s, , il v @rp , gr) ? (sr Fh,8z)

A,nd

? (sr, prq) - V (sr, p) V @rp, r) V @rpr, 8) p (sr Prh, Qz)

From these representations we see that

lLzI V (r, , pq) : hzl V (t, , prq)

ilnd, lrecause stqSt : srFTQt, that

g (sr , pq) I kr: V (r, , prq) | k,

Hence

o((sr,sz) ,prq): o((sr,sz) ,prt)

§ 12. Multidefinite automata

12.1. We call an automaton ?I wealcly (w .) (kr, . . . ,lc")-d,eJini'te
iff f (A) is to. (\cr,..., k")-definite, and multid,efinite iff T(21) is multi-
<lefinite. The ranlc of ?I is the rank of T(2{) .
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for any letter y. Hence the result follows again from Lemma lg. The
last sentence of the lemma is obvious.

Lemma 2A. If (§ , ä) is La

(k, + . . . + k,_1)-definite.
(k, , , k, _ t, 0)-definite, then it is u. r.

Proof. Let s be an arbitrary state and p any word of length
kr* .. .l k._r. Then, for any letter n, ö(s ,pr): d(s,?) . Hence
every state accessible by a word of length k, I . . . + k,-, from some
stateis 0-absorbed. Thisimpliesthateverystatein § is (ä, + . . . * lc,_r)-
absorbed. Lemma 15 implies now the assertion.

We consider now an arbitrary multidefinite transition system (S, d) .

If it is ru. (kr,. .., fu,,)-definite, with lt,> 0, we applythe contraction
operator fu, times on it. The obtained contraction (Sr , ör) is by Lemma
19 w. (kr,...,kn_r,0)-definite, and. hence by Lemma 20 w.
(k, * . . . + lc^_, , 0)-definite. Using now Lemma l9 in the converse
direction we obtain the following

Theorem 25. Bvery multidefinite transition system is u,eakly (h , k)-
definite, for some numbers h and lt .

The (k, , . . . , k")-d,efi,nite trans,ition systems can be defined in a way
similar to Definition ll, and then L]^e rank of a (kr,..., k.,)-definite
system is q(är) +... * S(k"), where g is as in Definitiont2.It follows
from Theorem 25 that the rank of a transition system cannot exceed 2.

11.3. The previous results provide also a method for testing the multi-
definiteness of a transition system, when u'e add to them the following
lemma. The easy proof of this lemma is omitted.

Lemma 27. If there exist numbers h and k such that /c > 0 and
(§, d) is w. (h,k)-definite, but not w. (h,tt - t)-definite, then there
exist two distinct l-equivalent states in § .

To test the multidefiniteness of a given transition system (§, ä) we
apply on it the contraction operation repeatedly until a contraction (sr , ö*)
is obtained which does not allow any further contraction. Then we know
by Theorem 25, Lemmas lg and 2L that (S, å) is mulbidefinite if and
only if (& , dr) is reverse definite. This can be tested by the method of
reductions given in § 9. rf (§r, dr) proves to be reverse ä-definite, then
(§, ö) is w . (ä , /c)-definite.

51
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11.4 we consider now the compositions of multidefinite transition

systems. As stated in the following theorem, the closure properties of

multidefiniteness &re essentially the same as those holding for tlefiniteness.

Theorem 26. Lel Ai be a w . (h; , k;)-definite transition system,

for each 'i, : L ,. . . ,ffi. The parallel connection of the systems

A1 ,...,A^ is w. (ft,,ft)-definite,where h:fiax{hr,"',h^\ and

lc: rolax{kr, . . . ,1c,,} .

Let .41 : (§1, d1) be a w . (h, frr)-definite transition system over

the alphabet X1 and A2: (52,ö2) a, w. (hr,lcr)-definite transition

system over the alphabet X, ' Then, for any g: §, x Xt+ Xr, their

series connection Aq is w . (h , k)-definite, where h : ]0rtax {h, , hr)

and k: kt* kz.

Proof. The first part of the theorem is obvious. we consider the series

connection. Let (sr,sr) €S1 x B2 be any state of Aq, pe Xh,qe Xk

and r e X* any words. We write Q: gtez, where L(qr) : lc, and

L(qr): fur. As in the proof of Theorem 17 we can write

r (sr, Pq) :=- q (tr, P) v @rP, 8r) r (sr Ph, 8z)

&nd

? (sr, prq) - V (sr, dV (srp ,r)V@rpr,8r) 9(sr Prh,8z)

From these representations we see that

hrl,p (s, , 'pq) - hzl V (§, , Pr(il

ilnd, lreetluse .etP(Jr : ltpT1t, that

V (tr, pq)lkr' V (rr, Prq)lk,

Hence

a((sr,§z) ,prq)=- a((sr,sz) ,Pq)

§ 72. Multidefinite automata

12.1. We call an automaton ?I weakly (*.) (kr, " ',k")-d'efinite
iff ?(U) is ar . (kr, . .. , fu,)-d"efinite, and' nt'ulti'defini'te iff T(A) is multi-

tlefinite. The rank of ?l is the rank of 
"(!t) 

.
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Because the rank of a transition system cannot exceed 2, while the
rank of an automaton can get any value, a complete generalization of
Theorem 3 cannot hold. In fact, it follows from Theorem 27 below, that,

the transition system of a reduced automaton is multidefinite if and only
if the automaton is w . (h , k)-definite for some (h ,lc) , i.e. iff it is general-

ized definite. Here we shall restrict our attention mainly to this case, for
which an effective testing and analysis method will be given. But first
we present a result, which may be useful in the general case, too.

Let, §' be a subset of the state set, § of the finite automaton 2[ :
(§ , d , so, /) . If (§' , ä) (ö restricted on §' x X) is strongly connected,
then any state s' in §' defines a strongly connected, subautomaton 2I' :
(§',ö,s',n') of ?I , where "F":§'O.f,'.

Lemma 22. Tlne strongly connected subautomata of a connected u.
(kr,..., k")-definite automaton &re all weakly &"-definite. If the auto-
maton is reduced, then its strongly connected transition subsystems are

weakly fr"-definite.

Proof . Let ?{ and U' be as above, and suppose that ?I

and w . (kr,,. . ., kn)-definite. Let p be a word of length kn,
and r a word such that ssr - s' .

Assume first that p e T(U') . We choose a word 1r * 1

teger rn sothat s'LL-s' a,nd L(ru*p) >kt*...+k,,-t

is
q

connectecl
any word"

and an in-
Then

ö(s, , rlt*p) - ä(r' , p) e Il ,

and thus ru*p €f$) . Because L(ru^gt) ) kr. * . . . a lc,, there
exists a (kr, .. . , k,)-subword sequence of ru^gt such that prpz, . . p" e T(W).

Ifereby ?^:p. On the other hand, (pr,...,p) is a (kr,...,k")-
subword sequence of ru-qp, too. Hence

ö(r' , Qp) - ö(so , r'Lt'"c1p) € /r ,

and thus qp € 7(?[') .

Suppose now that qp e T(2[') .

is strongly connected, there exists a,

non-empty word w such that sttu) -
k, * . . . + kn-L . I{ow

\Ve denote s" - s'q . Becattse U'
word u such that s"'t) - §/ , and a,

ä(sr, r7rfi"'p) - ö(t', qp) e E

I{ence there exists a (k, ,. . . , k,,)-subword sequence (ptr...rPn) of
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rqw-p, where g,:p, such that prpz...p"eT(W). On the other
hand, (9r,...,9") is a (h,...,k,)-subword sequence of rqw^ugt.
Hence

ö(s', P) : d(s", aP) : ö(so, rqw*uP) e I .

Thus p eT(W').
We have shown that T(A') is weakly k"-definite. If 2I is reduced,

then also !I' is reduced and has thence a weakly k,-definite transition
system.

12.2. It was shown by GrNznunc [4] that a reduced generalized definite
automaton remains generalized definite for any choice of initial state and
the final states. This follows from the following theorem, too.

Theorem 27. A reduced. w. (ä, /c)-definite automaton has a w. (h,k)-
definite transition system.

Any language representable in a w . (h, k)-definite transition system
is w.(h,ft)-definite.

Proof. Suppose that !I : (S, d , so ,1) is w . (h, fu)-definite. Con-
sideranywords pexh, qexr, reX* andletter z. Then

)(so , prqr) € -F iff ö(so , pqr) e I ,

because hlp*q, : hlpq, and pxgrlh : pqrlk. Because !{ u.as reduced,
this implies that sopn{l: sop{l , and hence by Lemma 18, that (S , d)

is w.(lb,ä)-definite.
Assume now that (§ , ä) is tz . (h ,lc)-definite. Given a pair of states,

s,s' €§, we denote %,,: (§,d,s,{s'}). Then

7(!I"",):Q+UpX*q,

where L(q<h+k andthesumra,ngesoverallpairs p e Xo, q.e Xh,
for which 8g{l: s' . Any language representable in (§, ä) is a sum of
languages of this type and thus ru . (0, k)-definite.

12.3. The contraction and reduction method described in Il.3 can be
used to test the w . (h , ft)-definiteness of a reduced automaton. From the
analysis point of view it is more conyenient to test the w . (h , k)-definiteness
as follows.
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Let (§', ä) be a strongly connected transition subsystem of the con-

nected automaton ?I : (§, ä, so, I) . We call s' € §' an i,niti,al state

of (§',d) iff thereexistsaword P:ntnz..,nn or trt: l, suchthat
laq :s' and §' n { 8sessru1,...,§o?} : {s'}.

Let §" be the set of all states in ,S which belong to some strongly
connected subsystem, and §o the set of all initial states of these subsystems.

We denote B" : § -(& - &) and define a transition system (S", d")

over X by the condition

ö"(s , fr)

for any s € B" and m e X. The transition system is well-defined, for
s€&-§a implies that ä(s,r) e,S"-§0, i.e. that d(s,r)€§",
for any leLher r. The assumption that 2[ is connected is needed here.

Lemma 23, A reduced automaton ?I : (§ , ö , §o

definite for some h if and only if
(1) (§, , ä.) is reYerse definite, and
(2) all strongly connected transition subsystems

k-definite.

,E) is w. (h,k)-

of U are weakly

Proof. Suppose that (,S" , ö") is r . ä-definite and that also (2) is
satisfied. Consideranywords pexo,4e Xr and letter z. Thestate
d"(so , p) is 0-absorbed in (S, , ö") because s0 is ä-absorbed. Hence

ä"(so , p) is an initial state of some strongly connected subsystem of (§ , d) ,

and å(s6 , p) thus a state of such a subsystem. The assumption (2) implies
now that ö(so, prq) : ö(so, pq) . Hence (§, d) is w . (h, k)-definite
by Lemma 18.

Assume now that 9[ is ru . (h , k)-definite for some (ä , k) . The con-
dition (2)follows from Lemma 22. Consider &nv v'ords p e X^ and q e Xh .

We show that, s, : ö(so , pq) is a state of some strongly connected sub-
system. Lel u be an arbitrary rvord, and denote sz : st%. Now pqrlk :
pquqrlk, for any word r . Hence

ö(trq,r) : d(so, pquqr) € -tr' iff å(sr, r) : ö(so, pqr) e F .

Because 2[ is reduced this implies that srq : s. . Hence ö"(s, , pq) is
an initial state of a strongly connected subsystem of 2[ and thus 0-absorbed
in (& , d") . Because (§" , d" , so) is connected, this implies that all states
of (§" , ö") are (D f å)-absorbed. Hence (§, , ö,) is tn . r .(h + ä)-definite.

,x),tf
if §€

f
I

d(s

§,
s€S"-§a,

§0,
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The analysis of a reduced w . (h ,lc)-definite automaton AI :
(8, ä , s0 , .f,) can now be performed as follows.

l. Ihe strongly connected subsystems of (§, ä) are found and their
definiteness is tested. Let s. , . . . , s, be the initial states of these sub-
systems and let W1 , , , , , QIn be the corresponding strongly connected
subautomata.

2. If the subsystems are all definite, then (S,, ä") is formed and its
reverse definiteness is tested.

3. Suppose that (8", d") is reverse ä-definite. Denote ![i : (§" , d" ,
so,{s;}) and T(At) : RrX*, where L(R,) <ä, foreach'i, : r,...,n.
Then

n

rQ»:O+UfuT(W;),

where @ is the finite language represented by the set -f n (S" - &) in
(§,,ö",s0).

University of Turku
Turku, X'inland
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