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1. Introduction

Starting from the idea of Grunsky there has recently been an important
development in extremal problems of univalent functions. rn these works
the emphasis has been laid upon the functional side, while the question of
the extremal function is often left without detailed discussion.

The present paper is concerned with the problem of determining all the
extremal functions. It appears that, on each occasion when the functional
in question can be maximized, the related conditions for the Grunsky
parameters are able completely to characterize also the extremal function.
This is a remarkable state of things, not encountered in extremal methods
based on sequences [3].

fn many cases, there pre-exists a conjecture of the extremal function.
The sta,te of things mentioned above accordingly provides an indication
in attempts to effect further development of the Grunsky type of methods
for more advances problems.

Let us concentrate on the class S(år). This consists of functions /, for
which we suppose that

(1)
I

l.

The §(br)-functions &re analytic, univalent and bounded in the above
manner in the unit disc. In §(år), the first positive coefficient b, is kept
constant. This means the division of class § of all univalent functions in
certain subclasses, which also approximate arbitrarily the unbounded
univalent functions § . Clearly, the solution of an extremal problem for
a,ll b, implies determination of the extremal functional in § also. How-
ever, this leaves open the question of all the extremal functions in §.
The complete solution in B requires that the corresponding Grunsky tyle
of condition is first transformed to §.
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2. The area inequality for S(bJ

Lel g(w) be analytic in D, where D is a simple domain of integration
in the to-plane. The starting point of all the inequalities to be used is the
integral inequality

(2)

This is a direct consequence of Green's basic formula and remains true also

if Im {S@)} is multivalued in D, while Re {S@)} is single valued there.
In the case that g(ar) itself is single valued in D, (2) gives

f f t f-
o - J J ls'(u)i, : zi J s(u)) s'(w) dr,o .

OD

(3)

We first use this formula by choosing

0D-iKrUyU CUy,

in accordance with tr'igure 1. Ilere

K1

-f(aK,)

a
a)

The function

(4)

Since r_
,l s(u)

tr'igure 1.

g(u) is choosen as

IL \
s(w): u,\; _ u,) .

r f__
OK, C
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arrd f vanishes, there is obtained
OK,

1 f_ | f

ODC

1 -i-- 
(t

, .l s$@)) a, sff(z)) ,d v , z - Ysiv -

\\re will utilize the 
"*jurrsion

b1

which gives

{g(f(")) : z-r * oo *2fi,"', o < lzl < l,
)rl,lF,:a,-brb, (z: 1,2,...);

t- d ) * @(7) 
1t$@))z * tff@J,:,",, : - r-z llrtl,l' r" + _ä 

K*ei*v .

(p+o)

From this and (5), there follows

of

4rl|,l'r"srr, o(r.:-ri
rvl

4'l|,l""5- rr, o{r.--r'
Passing to the limit by letting, ?'--> l, -ly' -> oo is permitted in the present
case and gives

(s) i,o,-bp,lz<l.
Apply now the rotation' ,-t71r4,|ri : L, to f(z). This gives

(9) g(r-LfQz)) : p-r -1- r.o + i r''-r(rza, - brb,) z'

and hence we have got: 
r

Theorem: If f(") € /S(bl), the followi,ng area-i,nequality hold,s

@

(10) Zly,l, {1, T,:722q,,-brb", izl : I.

Here a,:s are the)oeffici,ents of (6).
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The main meaning of (10) is the condition

(1 1)

Equality here

(r2)

is possible exactly for

TZ:Tg:o..-0.

As will be seen, equality in (ll) is actually achieved, and hence the extremal
case is characterized by the conditions (12).

Choose z so that rzu, is real and negative. The corresponding coeffi-
cients o, ,-tf(rz) are again denoted by b,. fn this rotated extremal case,

accordingly,

ar: - latt,

and (tl) gives lorl * b1< I;
(13) lo,l : lor-oZi < I -b?.

In the normalized extremal ca,se, we have yr: - I and (12) is true.
From (9) there follows for the extremal function:

This is the necessary condition for the extremal / forvr-hich 7, : - I
is achieved. Because (I4) actually yields functions of §(är) tYe have checked

that (1a) is the necessary and sufficient, condition for the extremal /.
Consequently it gives all lhe extremal functions connected to (13) and
normalized by rotation.

The righb side of (1a) is + co for izl

of z2 + &zz - I - 0 are of the form i,a

assumes the form

:bL

(14)

I

iL \ I

fi
-Lfz- I u1 zz+az3 I '

1

: __ with lrol :- 1. Hence, (14)
A(o

f2-1 I

(z - ro) [, -L
t))
zo'(15)
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The function

t L\
(z-ro) 

[,* %)

s illustrated in Figure 2.

U 6'r

ll izo-iiz
il
il

il

starting n"r;, the maps of the
of (15) are dravvryr in Figure 3.

lt
il

lli
U h234

,(0) : lz',

axes, A

i

maps the unit circle K
and negative imagin ary

bo -T

I*;
a0

zo__i

tr'igure 2.

mapping taken as the
the left and right side

With this basic
unit circle given by

II

lliUT

n--b,#
lt
il
illt

ry

I,

q
4

btf
Frf ;)(z - =o)(, +

Figure 3.

o
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The requirement needed for a §(ör)-mappirg

r^rw4l 
\ leo + il' ' t,=o i',' | :

11
ld1-f Ll ,.0 ol

Thus, in this case

-r |ro-i',' : 
2

I

1{fm{*} <0 wefind
(1 br) 

-< 
Im {rr} < 0

extremal domains illustrated in f igure

t -b,
L--b,

.)o

.)

Figure 4.

is

I
2

(17 )

Similarly, for

(18)

This leads to the 4.

2

Theorem.

(1e)

In §(ör) , there Tr,olds

la, a,ll

the inequctlity

=1 
b?

slit fu,nctio'ns ultich satisfy

?)
l/

Equali,ty ltolds only two-radiul

I
I

i

or

r
Arz

lo
lPl

uz

zo

f,

t

l

I

)
)
I

I

t

(z

l\', *)
t , lfm trr):

'or the t

f
fr-L

ArZ:

,,)(,_j_
*)
fm

bL.
=1

{ro} i ,

20

3"

(20)

10

4"

1"

OO
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Thus,for each bt, therebelongs a, onepcffametri,cfamily of ertremal,mappings

(Xigure 4), where a,z or zo is a parameter.

It should be noticed that in the class § ofunbounded functions /(z) :
zlarzz +..., a similar result can be derived from t'he area inequality,
obtained formally from (10) by taking br : 0. There holds

lar-all{t,
and the normalized extremal function is

z

where a,z is a free real pa,rameter.

In [7], [8], tgl a study was made of the functional

of extremal functions was encountered in this case.

peculiar, since a one parametric family of extremal
belong to each value of bL.

3. The generalized Nehari inequality for l[ - 1.

In [5] formula (2) is applied by the choice of D as in X'igure 1, and by
taking

the mith

give the followit g

/ 1\I

- \ p' '
ne parametric family
The present result is
functions is found" to

(;)l

F *(tu) isHere fro is real and ffm are complex parameters.

Faber polynomial of f.
I'or g(f (r)), the properties of Faber poll'nomials

development

/or\ )\""r ) n
0, L,2,

The coefficients A*o, B^o are certain combinations of the coefficients

b, of. f(z), according to the definitions
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Expression (21) of g implies lhat g(w):0 for we OKr. Hence (2)
gives

(23)

(24)

(27)

-2 t^N ^^ t ^^ D^ (rt .t , I [ ..l lr*rl' .)* cc

z L *=1 ZTL

As in the former case, it is deduced from this that

Clearly, if no is so chosen that

(25)

then (24) gives

(26)

N

rlf

tt

s lr*1,

k, 'tn

and equality here is ,"..r;: onty for

Crl-l:Ct-2:...r0.

It will a,ppear, that those coefficient problems rvhich can be solved by
the use of (26) belong to cases (25), (27). Further, these conditions are able
completely to characterize the extremal function.

In the general case, one can proceed by estimating the linear combination

(28)

with free complex parameters
inequality and (26):

t,. This is effected with aid of ,Schu'arz's

tr

t,- L

N
§L
I

i\

I

i\r

I

t,C ,l'

It 12
l" y I

;'

N ll 12 ,ry

a't)?
l*,1'

a

,r)
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On specializing t,

(2e)
't, 

- Lr 2,

Equality here is possible only if (27) is true.
Especial consideration is now given to the case .l[ : l. In [5], the

coefficient oB w&s maximized for e-L < ö1 < I b;z using the corresponding
inequality (29). §ince trl was chosen as I, we observe that (2I) reduces
to the form

(- I ^ lx,,lz

i',
[Re{Co}-0.

+ u,(* -*)g(w) : nolog u;

This function is accordingly the most natural first generalization of (4) used
in derivation of the area inequality. It should further be noticed that the
use of Schwarz inequality may be omitted by the direct, application of (26),
l,hich in the present case gives

I *" {Ar, no * Arr* Brr} 
= 

1,

[n" {*o Aoo + Aro) : o ;

)

I R e {.ar}I',- Lrt7,t '

(30)

(31)

(33)

By rotation norm alize as ) 0

Q,3 (t bi)

and find

( Re {ni} Ilag"'ll: 
:

log br' )

( 32)

X'rom this the maximal o, for e-r ! bt -{ t is found to be t - ör2, and
the maximum occurs onlv for

fact achieved in the maximum case, thenSince ecuality in (31) is in
in this ca,se also necessarily

Cz:Cg:"':0
Åccording to (33) , no - 0, and thus
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For the extremal /, presentations (22) and (30) give

/ r\ Ib,lf-;l:z---\" Jt z

consideration is further given to the point' b' : e-7' Now' in the extre-

mal case, a, is a free real parameter.

flo : R'e {or) : o, 
'

Cr: roAro I Al I Bt : atr I a, - e? + bi : |'

For the extremal /, (22) and (30) now give

/ I\ I
arlogf + br[ - T) 

: aalogz I z - i .

Theorem. In S(br)

0.--%<l-blfot e-r{bt{L.

Ior the total,i,ty of the e:rtremal functi,ons f the following holds

(34) e-L <br1 t:f - f-': blt(z - z-1);

(35) br: s-r:btff -/-t) + arlogf - z - z-L * azlogz '

Here, a, is a free real parameter.

It is known by the Löwner method that the above results (3a) and (35)

hold at ]east for some extremal / [8], [9]. The present completion is needed

since the Löwner-method, as a, sequence procedure, is unable to provide

information of all the extremal functions.

In[7],thefunctional ar-(t- l\Afor 0( p<@ wasmaxim-" \ pt
ized. For this (32) gives

n" [o,-(, - i\ "r\- (1 - b?)

ft I I I

= lA - l,siJ] [R'e {a'}]'z- p trm {o'}l''

It is checked from this that for e-p 1bt I I the totality of extremal

functions agrees with those found in [8].
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4. The Nehari inequality for t/ l@\ and N: 3

In [a] the problem of ao in B(ör) was solyed for ö, close to l, and
close to 0. The result was a,rrived at by replacing f(z) by the related odd
function

\/f("\: Blz * A&s + ...) .

IIere
(Br:blt',
I

I Ar,:0 (, : 1,2, . . .) ,
I

I a,2

l^,: , ,

l""a?
l"s- 2 B'
Ila, ll
lor: i - o ezas* ta"l.

\Me have to take ly':3, no: nz: O, rr: l. This leaves one free
parameter tr1, &rrd g(tr) assumes the form

(86) s(u,) : rLll(w) - ntlr(;) . I iu,t,l - r,(;)l

: Blir* Ae) w - Br(rr* Ar) * *'ri(* - *)

According to [4], p. 77, t", ]: { ö, ( 1

(Bz) *^= X (r - öi) ,

with equality only for

(38)

Co:Aor,
CL-A1B+Brr,
c2 - A23 + Br' ,

Cs:Ass*Brr'

According to (22), in this case

Since for odd p { a
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trre obtain

On a combination of (22) to (36), there is found for the extremal f

b?t2

ä lf@')'tz - f(z\-arz1

1 [t I I

n'lrich implies for f - f (r) :

fz
(3e )

Theorem. In §(å1) 0l-at! f tr-all at teast for fi=,,=,.
Equali,tg hold,s only for the two-rad,ial sl,it function f which sati,sfies (39).

I{ext we want to estab}ish, that for b, close enouch to 0 the condition
for g with a proper r, implies the radial slit mapping / defined by

(10 )

fn [4], [10], there was
This estimate is true in
;?:1 was chosen to be

(11)

fz
O:jy:h1r_zy.
derived an estimate for
all the other cases but

n* {,, - i "r'4+ 
b, Re

cL4 when bL is close to 0.

the radial slit ease (40).

{t r}

2(r - ör) - Re {or}

This estirnate allowed to exclud,e the corresponding an. Thus it rvas found
that the radial slit case (40) was the only possible maximum case. Conse-
quently, the extremal function question is completely solved in this pro-
blem. The expression (at) is undetermined for 1aO;. We are interested in
the correct value of r, need"ed to determine g(1D) belonging to the radial
slit case.

14
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*)

fn case (10), we have the followirg coefficients

?, - z 2b,,

lor- 3 8ör+ 5b?,

lru - 4 - zobl+ Boö? Lab! ;

{Ar-I br,
I

I lr: (1 br) (r 2br) ,

l,^, - (r br) (r 5b, * 5b?)

Take nL - q and rvrite (36) in the form

s(u,) - BL@,*1 b,)(- - *)+ å"t
fn the present case (22) gives

'l

l1
Ic3 - 5'

Ilence, for lD (22) and (36) imply:

38, (r, + I br) (ro - 
,tD-L) + Bl lrpt - w-u)

Ry squaring we obtain from this

biffu +l-r) + 6b2r(rr+e) (fr+f-r)
+ lgbr(*, * s)z - 6b2, (r, + s)l (f + f-r)

219b, (r, + s)2 + öil
73- ,- * f-'+ 6*, (å2 + C-z) + (e*i 6*r) (å + 6-') 2(er!

Here, 14,'e have denoted

f inall,v, compare the result rvith the condition

bi ff + f-' - 2)' : (z * z-L 2)'

obtained from (a0). This shows that complete identity is achieved

(*, _

+1)

b5r takit g
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Result. In the inequality method, for l/ffi wi,th N : 3 cond,it,ions

(21) antl, (22) determi,ne the rad,i,al, sli,t mappi,ng f by the cltoice of

(42) no: nz:0,ns,: l;rt: - t.

5. The generalizeil Nehari inequality for N: fl and
A2- ...: fln:$.

In [6], there was solved the problem of maximizing e,n when ä, is
close to one. In particular, for arn*, with the side conditions a2 : . . . :
&o: O the extremal conditions an+r: . . . : az, :0 were determined,
Let us check the uniqueness of the extremal domain in this case.

From the recursion formula

olol(43) 4; r,Oz': - log (1 - tf(z)) : J; r'f{"1'

for the Faber polynomials, there follows for the function

(44) f("):br(zl arn+r?'nt' +...)
in question

(45) I,(t) :6i5' (a : L, . . . , n) .

Because
I

az :, . . : Q,2n : 0, Qzo+t : ; I - br,)'",

we get, for the coefficients 1-, and B^* of (23), according to the formulae
of [6]

Arr: 0,i,:- 0,.. . )n-1 ;i, =k-0,.. 
.?L,

Br^:0,0<i<k{n,
I

B**: T b?o ,7t: 1, . . . .,h .

According to [6], in the maximlrm case

Thus, from (2L)

(46)

1 r /1\ b?
(47)
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From (22) we

ct

(48)

1

Thus, comparison of (a7) and (a8) yields

bi$" - f-") : zn - z-n ;

fz
| 

-ul 
I'

(l - f'")" (I - "'")i
The case ar^ wit]n &z: . . . : an: 0 is further solved in [6]' Deter-

mination of the extremal function succeeds in the above manner. Thus,

we arrive at, the conclusion.

Theorem. In S(b1) the problem of mari,mizihg &zn+t wi'th the s'id'e con-

d,i,ti,ons &z: . . . : a* : 0 lead,s to the only ertremal functi'on '*^hi'ch satisfies

(4e) --J-(1 fk-l)L-i

Si,m,iturlU,theproblemofmaxi,mizing&2n1L)ithCtz

2

(1 
- 

zk-L)-

has

ond

6. Discussion on the choice ol g(w).

X'inally, let us discuss about modifications of the function g(zo). We

omit the question of irrational functions, rvhich evidentlv is needed for a,

with å, close to 0. We ask here the meaning of the rnost natural generaliza-

tion of the above 'sse of Xaber polynoms (3'). By this is meant the procedure,

in which 7- is replaced by a general polyrtom of m:th d'egree (1"). This

choice is compared with the power method, (2'), v-hich is obtained by re-

placing -E- simply lry *^. All these choices a,ppear to be mutually equi-

valent.
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1o. The polynom
We omit the effect

(50) s(w

where

(5r) p^(w):ic^,*,
t:7

is a polyrom of m:th degree and has free complex coefficients. The numbers
!* are supposed to be free complex parameters. This freedoom of y* and.
C- leaves for the coefficients of

u^ P^(w) : 
frW*C^,) 

w'

the role of new free parameters. This shows us, that the most general poly-
nom method is arrived at by taking

.nr I lf \l(s2) s(w,t: >- la @\ - p- (1Il
^1 L \,w'l

with free complex coefficients C_,.

2". The power method.
Rearrange the sum of (52) as follows:

]Y rr rr ff /rf \(58) Z p^(r) : Z. 7rc*,*, : ),.\,2r,^)*^ .

The freedoo* 
"r 

rn" ,r*;;- 
':i^, 

forth"r-*"*r, ,n ul,, ,o"only effective
free parameters in (52) are

(54) ,*:§.c,^ (m:r,...,ttr).
Accordingly, instead. of (52) \ve are ,;r" the equivalent choice

(55) g@ts) : § 6**^ - t*w*) .

3o. Connection r,vith ,.0""-nrrrnom method..
fn particular, start now from the Faber polynom form for g (equation

(2r)):

(56) s@) : i 11: F^@) - !: r- (1)l .,iitLm nL '-\w,)

method.
of the term trg log us and consider the combination

n[ - ll\l
) - ? lru* P* Pn) - u* P*(;)j,

18
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This means that in (52) we take

(57) P*(w)-#I*@).

The m:lh Faber polynom belonging to / is written

(58) I*(w) : i t f,i *' (m : 1,2, . . .) .

Thus we obtain

A'lY.i§in

Z.P*(w) : Z,; F^1w1 : Z,å Z,@ 
*'

]lr /N,n \

m:l \t-fl

This shows that we are led to the form (55) by taking as new complex
parameters

(5e) ,-:å*,|rg, (m,:l,...,n) .

Clearly, the connection (59) O"r*ä, the complex parameter spaces

C(N) : {t : (t1,..., ä*) lq4- C},

C(rr) : {r: (rr, . . ., fiN) i r eCl
is surjective.

Result. Cons'ider the method,s Lo, 2o, 3" d,efineil by the choi,ces (52), (55),
(56) of functi,on g(w). These methoil,s are so connected, wi,th each other that

lo.>2o+3t.

As a conclusion, it may be noted that in Grunsky type of inequalities
the use of X'aber polynoms may be avoided by the simple power choice (55).
X'urthermore, to construct more effective choices of g than 1o, 2o, 3o,
g(w) must be extended outside the range of polynoms. The coice (21)
with the additional lerm ro log eu provides an example of this. Additional
examples of extensions of this kind are given by pl and [2].

fnstitute of Mathematics
University of Helsinki
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