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On numbers with small prime divisors

L. For ®>0,y =2, let Y(x,y) denote the number of positive
integers not exceeding « which contain no prime factors greater than Y.
Various estimates for ¥(x,y) have been given by several authors (see
[1], [2], [3], [5], and the further literature cited in these papers). The results
of de Bruijn show how the asymptotic behaviour of ¥(x,y) changes
around y = log . In this paper we investigate the case when y is much
smaller than log x.

For Re s > 0, denote

Fo) =TT —p=)yt =Y n,
P=y n

where, as throughout this paper, the notation X’ indicates a sum over

positive integers n such that p | implies p =<y. By well known argu-

ments, if x is not an integer,

(1) Y,y = 5o | @ f(s) s7hds,

where o > 0. Hence, as noted by de Bruijn [1], it can be expected that the
residue of the integrand at s = 0 will furnish a good approximation to
P(x ,y). For small values of y, we shall show that this is the case. Owing
to some difficulties concerning the estimation of the coefficients in the
Laurent series about s = 0 of the function f(s), we are able to prove the
result only for 2 =<y = (log2)”, where @ <<%, but it can probably be
extended to O < 1.

The method is to use integration with a suitable kernel. Qur kernel
exp (— Aw® 4 ww), for s = g(1 + iw), seems to be particularly serviceable
in this case. Otherwise our method is in many respects similar to that of
Ingham [4].

2. At first we consider a trivial case. Put

(2) Z=logx, N=ay) =>1.
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Now Y(r,y) is the number of solutions of the inequality

N

Duilogpi = Z

i=1
in non-negative integers wu;, where the pis denote the primes =y.
Interpreting this as a question about the number of lattice points in a
certain N-dimensional simplex, we easily find, by elementary geometrical
considerations, that

PN)ZY =¥,y =P () HZ +q)",

where
N
q =2 logpi~y
and
(3) P =TT (log p)*.

P=Yy

Observing that N ~ y(log )™, we obtain*)

Theorem 1. For 2 <y = Z'2, we have uniformly
(", y) =P (N)1Z"(1 + 02 Z7 (log y)™) -

3. We shall need some facts about integrals of the form

W

Tulf) = / exp (— 2u? -+ ipw)(1 + iw)* du,

—

where A is a (small) positive constant to be chosen later, § is real, and &
is a non-negative integer. We have

2
(4) Jo(p) = 72 i 12 exp (\— f)\) .

We use the notation

o

Erfe (¢) = /exp (— w?) du .

t

For t >0,

*) We would like to take this opportunity to point out an error in the paper of
A. I. Vinogradov [5]. Our Theorem 1 clearly shows that the result stated as case 2)
of Theorem 1 in [5] cannot be true.
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(5) Erfe (f) < Yt texp (— 3) .
Using integration by parts, we obtain
B — 24 ) 22
(6) i) =71 JelB) + 7 SialB) (R =2).

Since

d
&B JiB) = Jo(B) — J1(B) ,

we find that J;(f) is a solution of the differential equation

Y , B
(7) a 4+ Y = a2 12exp (—— H)
The general solution of (7) is
(8) Y=Ce L 27e7 <1 — a12 Erfe (ﬁ — 2_2>> .
24/ 2

For — — o0, the second term in (8) approaches zero, and, by Riemann’s
lemma, so does J;(f). Hence (' = 0, and we have

) A I /;)) |

Let Ji=Jw(l) (k=0.1,...). Assuming that 21 is sufficiently
small (e.g. A< %), we have

Jo <y
and

(10) (1 —25)J, < Jy < Jy.

Furthermore, it is easy to see. by (6), that

Jy < T (k=2).
Now (6) implies, for £ = 3,
S > 1 Ji 1
so that, by (10),
1 —24

(11) Jk>(k—_1—)! Jy
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On the other hand, for 3 <k < N 4+ 1, we have
k—2

Jk—2<1_72/1 Jk—l 2/1 Jk 15
whence
1 2)N
Jk<k_1 1—1—1_22 — 22 J_4
1L 3N
= k-1 Jer

By (10), this is also true for k= 2. Hence we have

(14 3AN)Y

(12) Jr < k —1)!

J; 1=k=N+1).

4. Let us now consider in detail the Laurent series about s = 0 of the
function f(s). Put

z [ee]
1 e_,=chz" (2! < 27)

- n=>0

where
kel B
(13) =1, =%, ¢y, 1 =0k =1), cyp=(—1) (2k)! (k=1),
with
By = 2 (2k)! (27)"* £(2k) .

Thus
(14) lea] =277 (n=0,1,2,...).
We have

f&)=Ps T i caloghp s" =Ps N i das",
n=20

psyn=90
say, where P is defined by (3), the series being convergent for
(15) ls] <27 (log ).

From (14) we infer

(16) |dn|

I\

N L n —
(\ - 1)2_"log"y mn=0,1,2,...),
n
~
where the binomial coefficient gives the number of solutions of Z U =n
in non-negative integers u; We shall need the following =t
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Lemma. If n < N and N is large enough, then

(17) d. = 27 ) log p; log p;, . . . log pi, .

ISi<ip<o <ip<N

Proof. By definition, d, is the coefficient of s" in the product

cx logk p s* .

M8

(18) [H)

Py k=0

<

The right-hand side of (17) being the coefficient of s in the product
TT(+ Y% logps),

P=Yy
we must show that the total contribution to d. of all the other terms is
non-negative.
Suppose that ys”, where

N
(19) y =] e log" p;,

i=1

N
with ) k; = n, is any term in the product (18) containing s" such that

i=1

at least one of the kiis is = 2. Put

~
(20) vo= 1| o logi p; .

k

to =

(VA

i
i

We call y, the »support of . Write

z

ki .

ML

m =

YAl

i=1
k=2

I

Denote by ‘K(y,) the set of all primes =y not appearing in (20). Let
“G(y,) be the set of all those numbers y such that ys" is a term in the
product (18) containing s", which have the same support y, Then

(21) Dy =po(Ye) " X log p,log p,. .. . 10g Puy_ s

7&G (vo) 0 << <y _m

where the sum on the right-hand side is to be taken over all primes in
K(yo)-

Suppose now that y, written in the form (19), is negative. Then at
least one of the ks must be divisible by 4. Let j be the first index for

which this happens. Take

Ck: —

- j 2 N_2
Yo = o 7o (log p)~2.
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Observing that

ij—2 2 C(k] - 2)

— =4 4n2
Ck; T k) = &
we have
Yo > 47 |yo| (log y)=2.
Again
(22) Zy = 5;0 (]/2)n—m+2 Z ]ngm logpvg st logpvn—m+2 ’
7¢G (7o) o<ty <. <ip_mo2

where the sum is also to be taken over all primes in ‘X(y,). Let K be the
number of elements in °X(y,). Clearly (20) can contain at most 4m — 1
primes p;, so that K = N — Y%m + 1. Multiplying each product

log p, log p,, .. .10g pe,

in (21) by log p,logp,, where p, and p, are two different new primes
belonging to ‘K(y,), both = N2, we obtain terms such as in (22). The
same new term will come out at most

n—m -4 2
DA

times. The number of choices is at least

(K — (n — m) — N2

H -
2 )= @ —n—wps  — oy gy

if N is large enough. We also have

log p, log p, > 7 log?y .

Combining these facts with (21) and (22), we infer

N2
Dy >dat(logy) 2y D Iyl +—5 tlogdy

G (70) 7€G (70) n
N\2 ,
>(_> Dilvlz=za D Iyl
N /yeG(vo) 7&G (v0)

As the number of negative supports 7, corresponding to the same 7, is
clearly less than n, our lemma easily follows.
We define

N e
RO =2, v =yt
Q) =TT (1 + % N tlog p)
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Then, in fact, P log™ 2 R ((log 2)1) is theresidueat s = 0 of theintegrand
in (1), P being defined by (3).
If >0 and ty is sufficiently small

(23) exp (§ N?%) < Q(t) < exp (Y N*tlogy),

and, especially,

(24) Qi) =1+ O(N*logy) for 0 <t<xy2logy.
Let

(25) 0<t< N-WO 0<6 <

and put

(26) n, = no(t) = elog y max {1, N2} .

Then n, < N23, if N = N,(0) is large enough. Our lemma is thus appli-

cable for 0 <n < n, For n > n, we have, by (16),

N1 || " _ <N +n — 1) o] N!
Moy oy = n gV (N )
< N#(n!)~1 27" log™ y t"
e N% log y)"
1 9—n-—1
< ( 2n - ’
so that
;dn’ tn
(27) N e < ()t <yt

ng<n<2\ (‘\T — 71)!

Expanding Q(f) in powers of ¢, we similarly obtain, for that part of this
expansion which contains powers of ¢ greater than n, the estimate

> (A N2 logh y < (Vo) < y~t.
ne<n<N \77/ -

Observing that, for 0 <n <n, and N sufficiently large,

N! n\" : .
(N:T)!-gzv" I_K" > Nlexp (— 2ng N7Y),

we can conclude that under the assumption (25), for N = N(0),

(28) N!'R(t) > Q(t)exp (— 2nf N-1) — 2 y71.
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5. For Res=0>0, let

F(s) = s71f(s) = X' s 1n—>.
Put s = o(l 4+ tw), multiply both sides by oexp (— Aw? - iw) and
integrate with respect to w from — oo to oco. In virtue of (9), one obtains

1 —oclogn — 2/))

29 e’ ) (1 — a2 Erfe ( —

= /0 exp (— Aw? 4 w) F(o(1l + w)) dw,

the inversion of the order of summation and integration being justified
by absolute convergence. Using (5) we can immediately derive the following
lower bound for the left-hand side of (29)

(30) 271 (1 — 9 lexp (— 92) ¥ (exp (671 (1 — 24 — 20412)), y),

where ¢ is any positive number. As regards the upper bound, we see at
first that the left-hand side of (29) is less than

(31) 2ne ='W (exp (671 (1 — 22 + 20712), ¥)

o ologn + 24 —1
2712 ¢ =1 N Erfe ( — ,
+ n;n1 2 \/ Z. ’)

where again ¢ is any positive number and n; = exp (c7}(1 — 24 + 29112)).
Instead of 7, define a new variable » by

(32) 2/2y =cologn + 24 — 1
and write
(33) D(u) = ¥ (exp (67 (1 — 24 4+ 2uit?)), v).

Then the sum in (31) can be written as a Stieltjes integral

Erfe (u) dD(u) .
5
Integration by parts now shows that (31) is less than

0

(34) 2me' =1 D) 4 0( / @ (u) exp (— u?) du).
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6. We now turn to the right-hand side of (29). The value of ¢ will be
fixed later, but in any case it will be asymptotically equal to Z! = (log x)~.
We restrict ourselves to 2 <y < Z, for some fixed © with 0 <O < %.
Assuming that Z is sufficiently large, as we shall always do in what follows
without further noticing, we can thus write

(35) N=g¢ 1",
where

loc1-0<yp=sl.
Take
(36) T — 1 o1 (log ) *.

We split the integral in (29) into three parts, the first part being the integral
from — 7' to T and the others from 7T to oo and from — oo to — 7.
Denote these integrals by I,, I, I,, respectively. Here, of course, I, is
the complex conjugate of I;. In I, we can use the Laurent series about
s = 0 for the function F(s), the series being convergent in the range of
integration, by (15). We infer

T
0

B87) I,=Po "> d.o" / exp (— Aw? 4 iw)(1 + )" ¥ dw.
n=20 r
For =N + 1 we use the simple estimate
T
l

|
(38) ‘/exp (— Jw? 4+ qw)(1 4 dw)"~ V71 dwi\ < 27(1 + Ty)t0-N-1
Jr

Since for 0 <n < N,
el

r |

(39) / exp (— Aw? 4+ qw) (1 + dw)" = V! dw
I ]
=7 ! / exp (— Aw?) dw = A-12Erfe (TAV2) " —N-1,
T
we obtain from (37), (38), (39)

N
(40) L=Po (Y dio"Jy_,.s
n=10
N
+ 0 (A2 T~ N~ Erfe (TA2) Y |du] (1))
n=20

0 (Y Y 4] oL+ T2 )}

n=N-J1
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Let & << § be an arbitrary fixed positive number and take
(41) A = gmin{21+39}—¢

By (36) and (41), AT? > 1, for o << o(e), say. (Note that ¢ ~ Z1)
Clearly o(1 4 7?2 < (log y)~'. Hence we can conclude, by (16), that the
sum of the O-terms in (40) is

<7y (N T 1) 2= = 2N Y,

n=10 n
so that
N
(42) Iy=Po ™ (Y duo"Iy_ o, + 02V T)).
n=20
The integral I; is
I, = / gexp (— Au? + w) F(o(1 + iw)) duw .

T

The path of integration may be deformed to consist of the line segment from
T to T — ¢(N — 1) and the line from 7' — ¢{(N — 1) to o — (N — 1).
Let the corresponding integrals be I; and I7.

By geometrical considerations, it is easy to see that 1 — p
decreases when u increases from ¢ to oN, if

—u—isT

p~ "N > cos (o7 log p) .

The validity of this condition for p =< y is easily derived from (35) and
(36). Hence on the first path of integration |f(o(l -~ tw))! takes on its
greatest value at the end point and we obtain

N-—-1

I < T—lf(aN)/ exp (— AT? -+ 2u? + u) du
0

< T-1f(oN)exp (— AT? + AN? + N)
< TP (oN) " NQ(o(1 + LtoN logy))exp (— T2 + IN2 - X)),

where the last step is easily derived from (13). Using Stirling’s formula,
observing that N127T-1 <1,

(43) AN2 = gmin{m.—1+s} - < ghme < 1,

and putting
(44) o* =o(1 + o"log y),
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we can write this estimate in the following form
(45) Il < Po N (N)1Q(c*) exp (— AT?).

We can deal in a similar way with ;. This leads to

6) I

-

| < N-1f(oN) / exp (— Au? 4+ AN2 4 N) du
T

< Po~ N (N)1Q(o*) A% Erfe (2127)
L P o™ N7 (NN Q(o%) exp (— AT?),

(36), (41). Comparing (45) and (46) we see that the right-

in virtue of (5),
(46) also gives an upper bound for |I].

hand side of

7. We shall now state our main theorem:
Theorem 2. We have, uniformly for 2 <y < Z° with 0 <6 <32,

P’ ,y)=PZ R (Zi) 140z 3+,

where & 1s any positive number and the constant implied by the O-notation
only depends on O and e.

Proof. Consider at first the case 2 < y < Z716_ It follows from Theorem
1 that then

P, y) =P (N)12ZY (1 + O(Z"% ).

On the other hand, by the same procedure that was used to prove (27),
we can easily deduce that, for sufficiently large Z,

S || Z7
n=1 (Av — n)'

< (N 22 < (N2},

whence Theorem 2 is true in this case.

We may thus assume that y > Z716, In particular, we may assume
that the condition N = N,(@), introduced in section 4, is satisfied.

We begin with the upper bound of ¥(e”,y). Take

(47) 9 = ol
and define o by
(48) oY1 — 21 — 20012 = Z

such a choice of ¢ obviously being possible with ¢ asymptotically equal
to Z-1. Clearly

1 —9exp (— 9?) =1+ 0(Z7).



14 Ann. Acad. Sci. Fennica A. 1. 440

Combining (29), (30), (42), (45), (46), we have
(49) 2ae’ 1 (1 + O(Z7Y) P(? ,y) < Po~N{ ZN dn 0" I _ni1
+ 0@V T-N) 4- O(Z(N1)1Q(0*) exp (— 21%)} .

Applying (12), we replace the Jy_,. ;s by (1 4+ 3AN)Y(N — =n)!) 1,
so that the sum becomes (1 + 3AN)"J, R(s). Here, by (43),

(1 4 3AN)Y < exp (3AN2) = 1 + O(Z—577).

Now (27) shows that the influence of the possible negative terms is com-
pensated simply by adding an error term O(y—(N!)~!). Replacing o
in (49) by Z" we must add an extra factor

(1 — 24 — 29212~
The logarithm of this is, by (43), (47), (48),

<K IMRN < Z—5t+,
Clearly, by (9),

Jy = 2 (1 -+ O(Z7Y)) .
It follows from these considerations that
(50) P(e”,y) = P Z" {R(0) 4 O(y™(N)7Y) + 02" T)
+ O(Z(N)7Q(o%) exp (— AT?))} (L + O(Z—5 7)) .
It is easy to show that (23) and (28) imply

(51) (N1« R(o) .

Hence the first error term on the right-hand side of (50) can be omitted
and so can also the second one, since

4 Nlog y )N

N1 2N T-N « N2 (
eZ

To estimate the third error term we use (28) with ¢ = ¢* (an admissible
choice by (25)). It follows that
Q(o*) (V) < (B(e¥) + 2y~ (V)) exp (20} N)

where n, = ny(c*) is defined by (26). We break the sum R(¢*) into two
parts, the first part consisting of those terms with 0 < » =< »,. The second
part is <y YN, by (27). In the first part we have, by (44),

o** =< o™(1 4 0" log y)™ << 6" exp (0" ny log y) .
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Hence the first part may be replaced by this factor times R(o) plus an
error term yY(N!)71. We thus arrive at

Q(o*) (N1) < (R(o) + 4y Y(N) ™) exp (25 N1 + 0" log ) .
Since
(52) M2 = % gmin{0, —1+3n}—e (log y)2 = gmin{0, — 1+ 3,} —1/2¢ ,

we obtain, by (26) and (51), for the third O-term on the right-hand side
of (50) the estimate

< Z R(s) exp (— gmin{0,— 1435} —1/2¢ +2¢? 10g2y0.min{1—;/.—1+3;7} (1 + 0" log y)?
+ elog?y gmin{n, —1+3n} (1 4 o log )
< Z R(o) exp (— Zi*).

Hence also this term may be omitted. Finally, we replace ¢ by Z! in
R(c). Since o < Z71, this merely increases the right-hand side of (50),
the possible negative terms being again controlled by an error term which
in turn has no affect to the final formula. This proves that the required upper
estimate is valid.

We only sketch the proof of the lower estimate, since the argument is
completely analogous and in some respects even simpler. We define o
by (47) as above, but this time we determine ¢ from

(53) oY1 — 22 - 2941?) = Z ,

This is again clearly possible with o asymptotically equal to Z—1. We then
use the upper bound (34) of the left-hand side of (29) in order to obtain an
inequality of the same type as (49), but with the sign of inequality reversed.
Next we use (11), and the proof proceeds as above. The only essential
difference is the O-term in (34). In order to estimate @(u) (defined by
(33)) for u = ¥, we use that part of our theorem which we already have
proved. Hence, for » = 9,

Du) < Po N1 — 24 -+ 2u2t)” R(o(l — 27 + 2uir?)-1) .

Using the same reasoning as above, we see that in the R-expression u
may be replaced by ¢. Thus, by (53),

®(u) < P Z R(Z) (1 + 2uity)Y

so that
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oC

(54) / ®(u) exp (— u?) du < PZ™ R(Z7) / exp (— u2 4+ 2u2N) du .
b &

By (43), the integral on the right-hand side of (54) is < Erfc (9 — 1).
Clearly, therefore, also the error term (54) is harmless. This concludes the
proof of Theorem 2.

UNIVERSITY OF TURKU
TurkvU, FINLAND

References

[1] N. G. pE Brunx: On the number of positive integers =< x and free of prime
factors > y. - Indag. Math. XIII (1951), 50— 60.

[2] —»— On the number of positive integers < x and free of prime factors > y,
II. - Indag. Math. XXVIII (1966), 239—247.

[3] P. Erp6s and J. H. vax LixT: On the number of positive integers =< z and
free of prime factors. > y. - Simon Stevin 40 (1966), 73 —76.

[4] A. E. IncaaM: A Tauberian theorem for partitions. - Ann. of Math. 42 (1941),
1075—1090.

[5] A.I. ViNoeraDOV: On numbers with small prime divisors (Russian). - Dokl.
Akad. Nauk. SSSR 109 (1956), 683 —686.

Printed April 1969



	IMG_20160423_0001
	IMG_20160423_0002
	IMG_20160423_0003
	IMG_20160423_0004
	IMG_20160423_0005
	IMG_20160423_0006
	IMG_20160423_0007
	IMG_20160423_0008
	IMG_20160423_0009
	IMG_20160423_0010
	IMG_20160423_0011
	IMG_20160423_0012
	IMG_20160423_0013
	IMG_20160423_0014
	IMG_20160423_0015
	IMG_20160423_0016

