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1. Introduetion

Suppose that f is a diffeomorphism of a 3-space domain £ onto Q.
Then f is locally affine; that is, if Pe 2 the differential mapping df(P)
carries the unit ball onto an ellipsoid with axes of lengths « > b > c.
The dilatation functions

11
12

N

‘ab a?

measure how much infinitesimal balls are distorted, hence providing a
natural measure of how much f differs from being conformal at P. These
functions are bounded below by 1, and are 1 at a point P if and only
if f is conformal there. We say that f is quasiconformal if either, and hence
both, of these dilatations is bounded above in Q.

One research goal in the study of quasiconformal mappings is to deter-
mine their distortion properties. This can be accomplished by assigning
to each ring R a modulus mod R which is invariant under conformal
(M6hius) transformations and which has the property that for each quasi-
conformal mapping f there is a number K = K(f), 1 < K < o, with

(2) }l‘: mod B < mod f(R) < K mod R .

If one can show that among all rings with a certain geometric property a
particular ring is extremal, that is, has the maximum modulus, then this
fact can be used to determine distortion properties for quasiconformal
mappings (Cf. [10], [11]).

It is comparatively easy to prove that certain plane rings are extremal,
because one can employ conformal mappings [22]. Frequently it is also
intuitively evident which rings in space ought to be extremal, but since the
only conformal mappings in E? are the Mdobius transformations (Cf. [11,
§ 29]), the proofs there become more difficult. The only method so far
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successful has been symmetrization. In § 2 of this paper we define the
Steiner and Schwarz symmetrizations of space rings and state theorems,
proved in [2], that these processes do not decrease the moduli of space
rings. These symmetrization theorems enable us to show in § 3 that two
given rings are extremal.

These extremal rings, designated by R, , and R; ,, may be described
as follows. For fixed @, 0 < a <1, the ring R, ;= R; ;(a) consists of
the unit ball minus the disk |2| <a,a; =0, while Ry = By  (a) is
obtained from the unit ball by omission of the slit |x,| <a, x, = 23 = 0.
In § 3 we show that these rings have the following extremal properties.
Let R be a space ring consisting of the unit ball minus a continuum C.
If the projection of C on some diametral plane is at least za® in area,
then mod R < mod R, ,(a). If the diameter of (' is at least 2a, then
mod B < mod R, _(a). In the same section we show that if the complement
of a space ring R, lies in a plane [/ and forms there a plane ring R,,
then point symmetrization in /7 induces an operation on R; which does
not decrease mod R.

We continue the study of these extremal rings in § 4. We first show that
mod R, , < mod R,, where now R, denotes the plane ring consisting of
the unit disk |z 4+ dx,] <1 minus the central slit || <a,x, =0.
This, together with a reference to [9], completes the double inequality
mod R; , < mod R, <mod R; .. In § 5 we obtain upper and lower bounds
in terms of a for mod R; ,(¢) and mod R; , (). Our main tool is the use
of inequalities for elliptic functions [3]; these have also proved useful in [1].
In § 6 we use the bounds obtained in § 5 to study the asymptotic behavior
of the moduli of these rings as @ tends to 0. In § 7 we introduce a genera-
lized notion of quasiconformality, together with some material on extremal
lengths, and in the final two sections we employ this theory to investigate
the behavior of mod R, , and mod R;  as a tends to 1. We discover
that these moduli behave essentially like the modulus of the spherical annu-
lus @ < |/ <1 as a tends to 0. But as @ tends to 1 the asymptotic
behavior of these three rings is markedly different one from another.

2. Symmetrization of space rings

2.1. Space rings. A space ring R is a domain in E? whose complement
consists of a bounded component C, and an unbounded component C}.
The conformal capacity of R is defined [16] as

cap B = inf/{VuP dw ,

u
R
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where the infimum is taken over all real-valued functions u = u(x) which
are continuously differentiable in R and have boundary values 0 on
0C, and 1 on 00,.

Next, the modulus of R is defined [11] as

(3) mod R =

This is analogous to the modulus of a plane ring, usually defined by means
of conformal mappings. The modulus is invariant under conformal (Mobius)
transformations and satifies an inequality of the type (2) for each quasi-
conformal mapping f. If R is the spherical annulus », < |x| <, then
the modulus of R is logry/r; [13].

2.2. Symmetrization methods. Symmetrization is a geometric operation
invented by Jacob Steiner and developed by Pélya and Szegé [19]. Two
well-known kinds of symmetrization in the plane are the Steiner and point
symmetrizations. In this section we consider analogues of these in 3-space-
— known as the Steiner and Schwarz symmetrizations [19], respectively —
in which the corresponding plane symmetrization is performed in each
plane normal to the x, axis.

If R is a bounded space ring and R’ is obtained from it by one of
these symmetrizations then mod R < mod R’. This inequality was proved
by Gehring [13] for spherical and point symmetrization. The proofs for the
Steiner and Schwarz symmetrizations, while embodying certain additional
technical difficulties, follow the outline of Gehring’s argument; proofs in
detail are included in [2]. Similar results for radial symmetrization have
been obtained by Pfaltzgraff [18].

2.3. Steiner symmetrization of rings. Let G be a bounded open set in
B2 We define a second set (*, called the Steiner symmetrization of &
with respect to the .wyv, plene, as follows: Let L = L(x,x,) denote
the line in A3 through (ry. ., 0) that is parallel to the x, axis. Then
LNG* =0 if and only if LNG = 0. If LNG £ O, then LN G* is
an open segment of length m,(Z N ) which is bisected by the x,x, plane.

If F is a bounded closed set in B3, we define F* as above except in
the second case, where we take L N F* to be a closed segment of length
my(L N F) which is bisected by the a2, plane. If m,(L N F) = 0, then
LN F* is the single point (2, @,, 0).

If ¢ and F are a bounded domain and a continuum, respectively,
it is easily verified that G* and F* have the same properties. It is also
easily shown that if £ is a bounded open or closed set, then C(E*) is
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connected. Hence if R is a bounded ring in E? and C, and () are the
two components of C(R) then the set

R* = (RU Cy)* — Cy*

is a ring, and we define this to be the Steiner symmetrization of R. Then
R* has the following extremal property [2].

Theorem 1. Lel R be any bounded ring in EP and let R* denote its
Steiner symmetrization. Then mod R < mod R*.

2.4. Schwarz symmetrization of rings. Let G be a bounded open set in
B3 Then G**, the Schwarz symmetrization of G with respect to the xg
axis, is defined as follows. Let [I7 = [I(x;) denote the plane through
(0,0, 25) that is normal to the a; axis. Then IIN G** = O if and only
if TNG=0. If IING + O, we take ITN G** to be an open disk
of area my(II N G) with center on the x; axis.

If F is a bounded closed set in K3, we define F** as above except
in the second case, where we take /1 N F** to be a closed disk of area
mo(IT N F) with center on the w, axis. If my(/IN F) =0, then [T N F**
is the single point (0, 0, x3).

If R is a bounded ring in E? and (; and C; are the two components
of C(R), then it is easily verified that the set

R¥* = (R U Cp)** — O

is a ring, and we define this to be the Schwarz symmetrization of R. It
can be shown that R** enjoys the following extremal property [2].

Theorem 2. Let R be any bounded ring in EP, and let R** denote
its Schwarz symmetrization. Then mod B < mod R**.

3. Extremal space rings

3.1. Space rings with complement in a plane. An interesting type of
ring R, in 3-space is one for which both components of C(Rj) lie in a plane
II, say x3 =0, and for which the configuration R, = ITN Ry is a plane
ring.

If R, isa plane ring and C is the bounded component of C(R,), then
point symmetrization in the plane replaces R, by a circular annulus
Ryir < @ + iay| <1y with my(C) = 71 and my(RUO) = ars. It
is known that mod R, < mod R; (Cf. [6]). But this process of plane sym-
metrization also replaces R, by a new space ring R; with C(R;) = C(Ry),
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and we shall show that the plane symmetrization increases the space
modulus also. In the proof of this result we shall need the following.

Lemma 1. Let R; be an unbounded space ring with mondegenerate
boundary components C, and C,. Given & > 0, there exists a bounded
ring R separating the components of C(Rj) for which
(4) mod R; < (1 + a)% mod R .

Proof. This proof assumes a certain familiarity with the terminology
of [13]. Since the boundary components of R, are non-degenerate, it fol-
lows by [16] that cap Ry > 0. Therefore there exists a simple admissible
function w [13, § 7] for R, such that

(1 + &) cap Ry >/ IV ulPdo .
R,

Now let HK; be the component of {x:wu(x) = ¢} which contains
Ci,v = 0,1. Since u(x) = 1 for sufficiently large |z|, C(E,) must be
bounded. Next, we see that K, and K, are disjoint continua. Hence by
Lemma 3.5 of [14] there exists a ring R, with C;, and C, as the
components of C(R), such that 90;c E,c C, for i =0,1. Because
Rc O(E,), R isbounded. Since C; C E;,c C;, R separates the components
of C(R,). Finally, since 0C;C E;,u =0 on a0, and 1 on 9C;. Thus
u is an admissible function [13, § 3] for R and hence

cap R g/ IV i3 do g/\VuFdw < (1 + ¢) cap Ry,
R R,

from which (4) follows.

Theorem 3. Let Ry be a space ring such that both components of
CO(Rg) lie in a plane 11 and determine a plane ring R, there. Let R, be
the space ring obtained by point symmetrizing the plane ring R,. Then
mod R; < mod R;.

Proof. For convenience let [I be the plane a3 = 0. We may assume
that mod Ry << oo, for otherwise [16] shows that mod R; = oo and
there is nothing to prove.

Given &> 0, by Lemma 1 there exists a bounded ring R separating
the components of C(R,;) for which (4) holds. Then by Theorem 2,

(5) mod R < mod R**,

where R** is the Schwarz symmetrization of R with respect to the =,
axis. But since R** separates the boundary components of R;, Lemma 2
of [13] vields
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(6) mod R** < mod R; .

Combining (4), (5), and (6) we have (1 -+ ¢) * mod Ry < mod R,.
from which the theorem follows when we let & approach zero.

3.2. Eatremal rings R, ; and R, ,. Nowfix a, 0 < a < 1. Throughout
the rest of this paper R, will denote the plane ring consisting of the unit
disk minus the symmetric slit |z, <a, 2, =0. By R; , and Ry, we
shall mean the space rings obtained from R, by rotation about the .,
and x; axes, respectively. The ring R, , = R, ,(a) consists of the
unit ball minus the closed central disk x| < a,x; = 0, while the ring
R, ,= Ry ,(a) consists of the unit ball minus the slit || <a, 2y = w3 = 0.

The ring R, , is extremal in the following sense.

Theorem 4. Let R be any space ring consisting of the unit ball minus
a continuum C, and suppose that the projection of C on some diametral
plane IT is at least wa® in area, 0 < a <1. Then mod R < mod R, ,(a).

Proof. For convenience let I7 be the plane w, = 0, and let R* be
the Steiner symmetrization of R with respect to /I. Then by Theorem 1,
mod R < mod R*. Now replace the continuum C by its projection on
the , 2, plane. This yields a new ring R’, and by the monotoneity of
the space modulus [13, Lemma 2] mod R* < mod R’. Finally, Schwarz
symmetrization with respect to the w, axis replaces R’ by a ring R, ,(D)
for some b, 0 < a <b < 1. But then by Theorem 1 and monotoneity
we have mod R’ < mod R, ,(b) <mod R; ,(a), and the proof is complete.

The ring R, , enjoys the following extremal property.

Theorem 5. Let R be any space ring consisting of the unit ball
minus a continuum C whose diameter is at least 2a,0 << a << 1. Then
mod B < mod R, («).

Proof. Let P, and P, be points of C such that P, — Py = 20,
b > a. For convenience we may assume that P, P, is parallel to the @,
axis. The Schwarz symmetrization of R with respect to the a; axis yields
a new ring R’ and, by Theorem 2. mod R < mod R’. This inequality
follows also from Gehring’s result on spherical symmetrization [13. Theo-
rem 1] or the work of Sabat in [21].

Now the bounded component €’ of C(R') contains a segment
p <@ <p+2bw,=wx;=0, and if (" is replaced by this segment a
new ring R’ results such that mod R" < mod R”’. Finally, Steiner
symmetrization of R’ with respect to the x,xy plane vields Ry (b) and,
by Theorem 1 and monotoneity, mod R” < mod R, (b) < mod R, ,(a).
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4. A double inequality

In this section we begin our investigation of the properties of mod B, ,
and mod R, . Our first goal is the following result.

Theorem 6. Let R, be the plane ring consisting of the unit disk minus
the slit x| < a,xy =0, and let Ry ; and Rs , be the space rings obtained
by rotating R, about the x, and x; axes, respectively. Then

(7) mod R; ;, <mod By, <mod R; | .

Proof. TFor the first inequality in (7) we shall obtain a diffeomorphism
fu of a spherical annulus A4 < |z! <1 onto R, ,. This mapping can
be shown to have positive Jacobian .J(x) and to map each radius of
A < |x#l <1 onto a curve that is normal to the image of each surface

e =r, 4 <r< 1. Under these conditions it follows from a result in
[9] that
! 1
’ dr 4 dr
(8) / Di(fy.7) L < mod Ry ; < / D, (f,,7) o
B 4

where, for 4 < r <1,

D.(/ ) [N(aﬁ)f‘:‘i D.(f, ) [N(a})“ 3
, ,r) = min |~——| , Dy(f;,7) = max | | .
Waon) i [y | Pelae ) = )
Here N(z) is the stretching normal to 'z' = .

We shall then use some inequalities for elliptic functions to prove that
Dy(fy. 1) < 1 and finally apply the second half of (8) to achieve the first
half of (7). The functional D,(f,.r) and the first half of (8) will be needed
in the proof of a theorem in § 5. The second half of (7) follows directly
from an inequality obtained by Gehring in [9].

The plane annulus A4 < @y + v, <1 is mapped conformally (See
[5, p. 28] or [17, pp. 280—295]) onto R, by the Jacobian elliptic sine

function

(9) Yo b s = flay i) = kEsni(u + iv) L k),

where

¥ . 2K | xy + o4 —nK’ .
(10) w + w0 = - log y — K. A =exp o, k= a?,

log (@, -+ txy) denotes the principal branch of the logarithm, and
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1

K — K(k) — / (1 —2) (1 — 2wy b de,
(11) .
K = K(&), kK = (1 — k).

For our purpose it will be convenient to employ Jacobi’s imaginary
transformation sn(iz, k) = ¢ in(z, k') ([4, p. 37], [6, #£ 125.02]) to rewrite
(9) as

(12) Yy + iy = [y + ixy) = ik* tn(u + iv, k).

We define the space mapping y = f(x) from 4 <|z| <1 onto
R;., by rotating A4 < |@; + ixy| <1 and R, about the z, and y, axes.
That is, we let

(13) t+ 1wy, = f(s + ix) , o =0,

where (s, ®) and (¢, ¢) are polar coordinates in the w23 and y,y; planes,
respectively. It is easily verified that this mapping satisfies the hypotheses
for (8) and that
. o, N
D, (fs,r) = min "y—f (2 + 125) .
2 ix, =r | J1

(14)

Lo, . 3
Dy (fy,r) = max — f'(a; + 12,)

X ixy|=r | J1

d
Now by (12) and the differentiation formula e (tn z) = (dnz)/(cn?z)
([4, p. 9], [5, # 731.10]) we have “

= 2K i idn(u—i—iv,k)i

ar len?(u -+ v, k') |’

while the addition theorems ([4, p. 38], [5, # 125.01]) give
2K, (d2C2D? + k*s2¢282)% (1 — S2d?)

(15) = ar k* c20? - s2d282 2
and
N sD — icdSC L Sd(c2C? + s2D?)
yp = — k¥ Im ~—— 557 = k* ,
cC + 1sdSD c2C2? 4 s2d2 82 D?
16
(16) ! sD — isdSC , scCD(1 — S2d?)
Yo = k¥ Re — 5~ = k? .
c¢C -+ 1sdSD c2(0? 4 s2d2S2 D2

Here we have used the notation
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(17)

(ZKI r k') p (2Kl s k') d—d <2K1 r k’)
s =sn|-_~log—, , c=dn |-~ log -, sd=dn|\— log—, ,

N <2K k) C <2K k), D=ad <2K k)
= sn 7;77 {l/) 2 2 = CNn 7;_[77 1/) > 2 = n 7;[‘ ’lp > 2

. ‘
where ‘\r, 5 = «zp) are polar coordinates in the @, plane.

But using the identities C* =1 — 8% D> =1 — k282, 24 s> =1,
c® + k?s? = d? ([4, p. 9], [5, #~ 121.00]) we achieve

(18) 2C? + s2D? =1 — §%d*.
Hence from (15), (16), (18), and the fact that «; = rsiny, there results

& 2K [(12 D? s2et|z
1 ,, L. ‘ o
i sinyl g+ k e
B 5

19
(19) ” . |

We wish to show that D, (f,.r) < 1. 4 < r<C1. For this it is sufficient
to prove that sup Dy(f,,r) < 1. According to Landen’s Transformation

(14, p. 72). [5. # 163.01)),

% e e 2 e 1—'61
(20) = (U )y ten (L k) dog

Since sn(u, k) is maximum when u = K ([5, # 121.02], [24, p. 499]) and
because K((1 — k)/(1+-k)) = (1 - k)K'/2 ([4, p. 72], [6, # 164,02]) we

see that sc/d has its maximum value (1 + k)~' when logr/4 = aK'[4 K
= log 1/4, that is, when » = 1. Thus

2K c2D? 2
(21) sup Dy (fy, 7)> = sup — (siny) | + (I — k)?| .
r " T S’
Now by use of the identities (2 = 1 — 8% D? = 1 — k2S?

([5. #£ 121.00], [24. p. 493]) we see that

(22) (D% 4 (1 — k)2 S2 = (1 — kS22,

so that (21) reduces to

(23) ap Dyt = sy s

0w
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We have shown in [3] that the expression on the right of (23) is bounded
above by 1. Hence D,(f,,7) <1 for A <r < 1, and by (8) we have
!
dr 1
mod Ry ; < [ Dy(f;,7) o < log u = mod R, ,

A

concluding the proof of the theorem.

5. Bounds for the moduli of R, ; and R, ,

Next, using elliptic integrals, we obtain upper and lower bounds in
terms of o for mod R, ,(a).

Theorem 7. For each a,0 < a <1,

oo Lt el 5) ol

where k= a* k' = (1 — a4)%, and K = K(k) and K' = K(k') denote
the elliptic integrals in (11).

Proof. Since mod R, = log 1/A = n K'/[4 K, the upper bound follows
immediately from Theorem 6.

To obtain the lower bound we apply the left side of (8) to mod R, ,(a).
Thus by (14) and (19) we must determine

b a K’
o] ) = moa @ <50

2K 02 52 027 3
5 Dy — min o jsingl [T
where §,C,D,s, ¢, and d have the meanings assigned in (17). We assert
T
that the minimum is achieved, for each », when y = 5 - To see this,
we use (20), (22), and the identity sn%* -+ cn?z =1 ([5. #£ 121.00], [24,
p. 493]) to rewrite (25) as
2K (1 — loS2)? B

(26)  Dy(fy,7)? = - min |sin | |~ TR (1 —k)2en?(z, ky')
T, _ |

r
where z = (1 + k) log — and &' = (1 — k)/(1 + k). But since
g A 1

|sin p| is maximum when v = /2, and since by (5) of [3] the expression
(sin p) (1 — £S?)/S achieves its minimum 1 — & when o = =/2, we
conclude that the minimum in (26) occurs when y = =/2.
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Hence by (25),

and combining this with (8) we obtain the inequality

1
o7 B = (2K>‘%/<sc)é dr
(27) mo 3,4 = K . . d P

To evaluate the integral in (27) we first apply the half angle formulas
([5, # 124.02], [15, p. 120]) and the identity dn?z + k*sn% =1
([5, # 121.00], [24, p. 493]) to write

SC

1 —d (LKI : lc')
—dn \—log .
p .

(28)

- 4K r )
k'2sn (—n— log E lc')

Now making the change of variables

we have

. <4K1 r ’)*'2 [ 1—F% 2J% ll 1-+% 2}%
—dn |~ log .k | |

2 2
S P St R
e [ log b
and
) dr 7T {1 2(1 1 — & 2)(1 1+ F 2)]~]z p
(30) T 4K (1 — 13 — 2 t/ -‘"-2—~tJ tdt.

When » is A, 1 then ¢ is 0, 1, respectively, and by means of (28),
(29), and (30) we may reduce (27) to

it = b [l et 5%
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Finally, consulting the definition (11) of the elliptic integral K = K(k)
we arrive at the first half of (24), and the theorem is proved.
Our methods also yield the following bounds for mod R; | (a).

Theorem 8. For each a,0 <a <1,

n K’ 1/ = \3 14+ k]2 {1»_/5'%7
(31) 4'15 S mOd R3,S(a/) S ’5 (’éf) [I{ (’:‘"2 ) + 1{ ( L :j “ )J .

where k= a? k' = (1 — a‘l)%, and K = K(k) and K' = K(k') denote
the elliptic integrals in (11).

Proof. The lower bound follows directly from Theorem 6.

To obtain the upper bound we employ a technique introduced in the
proof of Theorem 6. Let f be the conformal mapping (12) of the plane
annulus 4 < [a; 4+ 42, <<1 onto R, and let y = f,(x) be the space
mapping of 4 < |z <1 onto R, , obtained from f by rotating
a << 2, + iy <1 and R, about the x; and y; axes. Then f is a
diffeomorphism satisfying (8), where

£, 2
Di(f,,r) = min *yfz [y + )

xp b, 2

1
2

Dy(f,,r) = max — f'(ay + @ty)
X Rix, er 2
We now apply the right hand side of (8) to mod R, ,. Thus by (15)
and (16) we must determine
. R 2K 3 82 dz |
(32) Dy(f, ,7)? = max = [cos p| ‘]{) 2 D2 —+ 202

Xy Fix, ==

where 8, C, D, s,c, and d are the functions defined in (17).

We assert that this maximum is achieved, for each fixed »r, when
v = 0. Because of the special values sn 0 =0, en 0 = dn 0 = 1 ([4, p. 9],
[5, £ 122.01]), this is equivalent to the assertion that

\ N S2 az | d?
(Costy) W Gapp T g = g2

for all .

By a simple rearrangement and use of the identity cos?y = 1 — sin?y,
this is reduced to the claim that

(33) B < tan2 vy .
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Elsewhere [3] we have shown that

(34)

for all real . Since D >k’ ([5, #121.02], [24, pp. 493, 499]) it follows
from (34) that
CcD 2k"2 K

(35) *g— tany > — -

Then, comparing (35) with (33), we see that to show that the maximum in
(32) occurs when y = 0 it is sufficient to prove

sC 2K

(36) P

We proved earlier, after (20), that sc/d < (1 + k)~'. Thus (36) is
implied by

L4k

The latter inequality, however, is trivial, since &k >0 and K > z/2.
We conclude that (33) is valid, and that the maximum in (32) occurs
for y = 0. Hence

: dr

E
o
(oM
=
A
L
_—
—c

Evaluation of this integral by the same change of variables used in
the proof of Theorem 8 then yields the upper bound in (31).

6. Behavior of mod R; ;, and mod R; , for small a
Let us turn now to the study of the asymptotic behavior of these extremal

rings. We first obtain, as applications of the theorems of the preceding
section, a pair of asymptotic formulas for the moduli as @ tends to 0.
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Theorem 9. As a function of «, (mod R; ,(a) — log 1ja) is monotone
decreasing in the interval 0 < a << 1, and

lim (mod R, ,(a) — log 1/a) = ¢, ,

a0

3 7
where 0.254 . .. = 9 log 2 — y < <log2 = 0.693... .

Proof. Forlet 0 <a' <a<1. If R is the image of R, ,(«’) under
the conformal mapping y = (a/a’) x, then mod R, ,(¢’) = mod R. Since
Ry 4(a) and 1 < |z| < ala’ are two disjoint rings separating the boundary
components of R, we see from Lemma 2 of [13] that

mod R; 4(a) 4 log a/a’ < mod R = mod R, ,(a’) ,

from which the monotoneity follows (Cf. Lemma 6 in [13]).
To obtain the upper bound we make use of Theorem 6, (10), and the
limit lim k2exp (wK'[K) = 16 (Cf. [5, # 112.04, # 901.00], [7, p. 88])

k—0

to conclude that
lim (mod R; ; — log 1/a) < lim (mod R, — log 1/a)

a—>0 a0
(37) a K’ N
—_ 1 e 4 1 A o 2.
I\lrf} v og k log

To obtain the lower bound we use Theorem 7 and the fact that
K(0) = =/2 to obtain

) 1] [1+/c’ AV
(38) lim (mod By ;, — log 1/a) > - lim |[log &k + K s ) -
a->( “ k>0 - ~ -
Then by means of the limit lim (K’ — log 4/k) = 0 ([5, # 112.01],

k—0
[24, p. 521]) we may reduce the right side of (38) to 4 log 8 — =/4. which
is the lower bound in the theorem.

Theorem 10. As a function of a, (mod R,  (a) — log l/«) is monotone
decreasing in the interval 0 < a <1, and

lim (mod R;  (¢) — log l/a) = ¢, .

a0

= 1.82....
4 8

3
where 0.693 ... =1log 2 <¢, < 5 log 2 4 -
Proof. The argument for monotoneity is the same as that given in

Theorem 9. To obtain the lower bound we make use of Theorem 6 as in
(37) to conclude that
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lim (mod R, , — log 1/a) > lim (mod R, — log 1/a) = log 2.

a0 a0
Finally, use of Theorem ¢, together with a proof similar to that given for
the lower bound in Theorem 9, gives

CRRST

7
lim (mod R, . — log 1/a) < — log 2 + o

a0

b

which is the upper bound in the theorem.
We remark that the bounds in Theorem 10 were obtained by Gehring
(19, § 91, [13, § 21]), the upper bound by a quite different method.

7. Quasiconformality and extremal lengths

Before we can study the asymptotic behavior of the moduli of R, , and
R; .as a tends to 1, we need some additional tools. We begin by returning
to (1), the dilatation functions H,(P, f) and Hy(P,f) defined in § 1. If
[ is a diffeomorphism of a 3-space domain £ onto ', then the functionals

(39) Ki(f) = sup Hy(P.f), Ky(f) = sup H,(P.f)

are known as the tnner and outer dilatations of f, respectively. These dila-
tations are simultaneously infinite or finite. If both are finite, then f is
called a quasiconformal mapping.

These definitions may be generalized, by means of the theory of rings,
to include an arbitrary homeomorphism f of £ onto Q. The inner and
outer dilatations of a homeomorphism f are defined as

] mod R mod f(R)
(40) Kilf) = sup mod f(R)’ Eo(f) = sap 5
where the suprema are taken over all bounded rings R with Bc Q for
which mod R and mod f(R) are not both infinite. If one of these dilatations
is finite the other is also (Cf. (1.10) in [14]) and f is said to be a quasicon-
Sformal mapping. In case f is a diffeomorphism, this definition reduces to
the one previously given [14, Lemma 1.1]. If f is a homeomorphism of a
ring R onto a ring R’. then it follows from Lemma 1 and (40) that

mod R mod R’

Y R > ~ .
(41) Al(f) Z mOd R/ » KO(f) - n,lod R
Next, we shall need a result from the theory of extremal lengths. Let
I" be a family of arcs in £®, and let [7(I") denote the family of density
functions o which are nonnegative and Borel measurable in A3 and for
which
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(42) /st > 1

for each arc y ¢ I. Here the integral is taken with respect to linear measure
[20] if 5 is not locally rectifiable. Then following Véiisild [23] we define
the modulus M(I") of the family [ as

(43) M(I') = inf /93 do .

ozF(I') .
b

(See also [8] and [14]). If R is a space ring and /" is the family of arcs
which join the components of 0 R in R, then by Theorem 1 of [9],

(44) cap R = M(I').

8. Behavior of mod R; , as a tends to 1

Theorem 11. The modulus of R, ,(a) has the following order as « tends
to 1:

X T
(45) lim sup (1 — a) 2 mod R, ,(a) < 5 = 1.57 ...
a->1
and
(46) lim inf (1 — a) % mod R, ,(a) = 0.65 ... .
a->1

Proof. To obtain the upper bound (45) let I3 be the family of arcs
in R, , joining the components of 9 R; ;,, and let /" be the subfamily
of circular arcs y which are normal to the boundary components. Since
1D we have F(I))c F(I') and, by (43), M(I}) > M(I"). We will
prove that

a2

ury = o
(47) *I( ) 2 —3_; '1"":’;5 .

Then, using (43), (44), and (47), we will have

(mOd R:;‘d(a))z < -

from which (45) follows directly.
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To prove (47) let £ be the intersection of the plane quadrant z; > 0,
Xy > 0, 23 = 0 with the union of the curves in I" considered as point sets,
and let ©’ be the image of £ under
. : L4 (v + 12,)
i = Sl =
Then Q' 1is the quarter annulus 1 < |y, + ] < b = (1 + a)/(1 — a),
Yy > 0,9y, > 0,9y, = 0. If ¢ is the inverse of f, then it is easy to see that

2 i

4 g’ )| = e = : - .
48) A Wy oy, 1R " Yy Yy 12

Let ge F(I'). Then for each yeI' in Q2 we have, by virtue of (42),
“‘3 3
o < faal =] [ewad

where ¢ = o(w, + ixy), o = 0'( + i) = o(9(yy + iyy) . and Y = f(y)
is a quarter circle r =1y, 0 << ¢ << x/2, for some fixed . 1 <7, <b.
Then an application of Hélder’s inequality to (49) vields

a .
[t
N i

v

~

/ 0%y g2 ds’

v,

(50) 1<

Using (48) we may reduce (50) to

2 21
(51) / 0wy gt ds" = e
where (r, @) are polar coordinates in the y; + 7y, plane.
Next, we see that
(52) / oddn > 2 /( / 0® ¥y do’) de = 4:'[/ oy g 12do’ .

Y

Es 0 0 o

But using (51) and the fact that b = (1 - a)/(1 — a) we determine that

' 8 a?
o
Hence (52) gives the estimate
A 32 a2
oz T e

K3

from which (47) follows when we take the infimum over all o e F(I').
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Next we obtain the lower bound (46). For this, let (r, @, z,) be cylind-
rical coordinates in X; and define

2l /(1—7) if o <1 —7,0<r<a,

r— a) +”c2]2/l~a if r—a2+o;<0—a)a<r<Il,
ll elsewhere.

Then wu is admissible for R, ,(a) [13, § 3], and an elementary integration
gives

a 1 47
(VuPdo =a(dp + 7) 7 — daplog 4+ o ;
R3 (@
where p = [7 V2 + log (7 + 5 vV 5)]/8. Then, appealing to Lemma 1 in
[13] we have

lim sup (1 — a) cap R, ,(a) < a(4p + =) .

a1

from which, because of (3), (46) follows immediately.

9. Behavior of mod R; , as a tends to 1

We conclude this paper by proving the following asymptotic formula
for mod R, ,.
,é,

l1+a
Theorem 12. As a function of a, [log ~1%} mod R, ,(a) is mono-

tone increasing in the interval 0 < a <1, and

1+ alt
lim |log ——| mod R, (a) = ¢, ,
w1 1 —a ’
where 1.03 ... < ¢y <q,
/2
(53) g = [ (sin )% d@t = 2P K((3)}) = 2.62. .. .

0

Proof. We first prove the asserted monotoneity. There exists a Mobius
transformation carrying R,  (a) conformally onto the space ring R(b)
consisting of the half space x, > 0 minus theslit 1 <, <b, 2, = a3 = 0,
where

1
e

l—a

(54)



G. D. ANDERSON, Symmetrization and extremal rings in space 21

The mapping
glw) =z 2", p = (log b)/(log b)

is a diffeomorphism of R(b) onto R(b"). Assuming for definiteness that
1 <b <b, we have 0 < p < 1. Applying (39) and (41) it is easily seen
that

Ky(g) = p * = Z wod R(b)

log b ]% mod R(b')
log b’ ’

from which it follows that (log b)’é‘ mod R(o) is a monotone increasing
function of b. Since by (54) @ and b increase together, this shows that
the expression in the theorem increases monotonically with « as asserted.

To obtain the upper bound in the theorem let £ be the slit 1 <a, < b,
@, = 23 =0 and [ the family of ares o in 1 <|z| <b, x>0
which join £ to the plane annulus 1 < |a; + x| < b, 2y = 0. Then
Lemma 3.8 of [14] gives

<

JT
(55) M) ="y logh,

where ¢ is the elliptic integral in (53).
Now let I" be the family of arcs y joining the boundary components
of R(b) in R(b). It follows from (44) and (55) that
27

cap R(D) = M(I) = M(I") = -, log,

and combining this with the fact that cap R; | = cap R(b), one arrives at

47 2 q? q?
e _ _
(56) (mod £, .)* = cap R, | = logb 14+a’
| log 1

The upper bound in the theorem follows from (56) and the monotoneity
already proved.

To obtain the lower bound we use the same method as for (46) in § 8.
Let (r, ©, x;) be cylindrical coordinates in E,, and define

Jr/(l — ) M 0<r <1 — |y Ll <a

w@) = 1 [(2y] — a2+ 2B )(1 —a) if (jay] — a2+ <(1 —a),a<|z| <1,
l 1 elsewhere.

Then w» is admissible for R, [13, § 3], and an elementary integration gives
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R ] (@)

Then, appealing again to Lemma 1 in [13] we have

i cap By ,(a) _ 4m(4 Va2 -1
R N B 5 ’
lo

l1—a

from which, in view of (3), the lower bound in the theorem follows.

Remark. By point symmetrization in space [13, Theorem 2] one can
verify that the spherical annular ring R, ,(a), 0 < a < 1, consisting of
the unit ball minus the closed ball || < a is extremal in the following
sense. Let R be any space ring consisting of the unit ball minus a conti-
nuum C, and suppose my(C) > 4 na?/3. Then mod R < mod R; ,(a).

Next, since mod R, ,(a) = log 1/a, it is easily checked that as a func-
tion of a,
l14+a
l1—a

(57) mod E; ,(a)
is monotone decreasing in the interval 0 < a <1 and that (57) has limit
2 as a tends to 1.

The pattern exhibited by (57) and Theorems 11 and 12 indicates how
strongly influenced is the asymptotic behavior of these extremal rings, as
a tends to 1, by the dimension of the central set omitted from the unit
ball in the formation of the ring. Theorems 9 and 10 in this paper show,
however, that all three of these rings have the same order as a tends to 0,
so that for small a the modulus is much less sensitive to the dimension
of the bounded component of the complement. One naturally wonders if
a pattern similar to this prevails for the analogous extremal rings in higher
dimensions.

Michigan State University
East Lansing, Michigan, USA
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