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l. Introduction

Suppose fhaf f is a diffeomorphism of a 3-space domain Q onto {)'.
Then / is locally affine; that is, if P e I? the differential mapping d/(P)
carries the unit ball onto an ellipsoid with axes of lengths a ) b )> c.

The dilatation functions

(1)

(2)

me&sure how much infinitesimal balls are distorted, hence providing a
natural measure of how much / differs from being conformal at P. These
functions are bounded below by 1, and are I at a point P if and only
if / is conformal there. We say that f is quasi,conformal, if either, and hence
both, of these dilatations is bounded above in Q.

One research goal in the study of quasiconformal mappings is to deter-
mine their distortion properties. This can be accomplished by assigning
to each ring -B a modulus mod -B which is invariant under conformal
(Möhius) transformations and which has the property that for each quasi-
conformal mapping / there is anumber K:K(f), l<K 4 co, with

If one can show that among all rings rvith a certain geometric property a
particular ring is extremal, that is, has the maximum modulus, then this
fact can be used to determine distortion properties for quasiconformal
mappings (Cf. [10], [1]).

It is comparatively easy to prove that certain plane rings are extremal,
because one can employ conformal mappings 122]. Frequently it is also
intuitively evident which rings in space ought to be extremal, but since the
only conformal mappings in Es are the Möbius transformations (Cf. [1],
§ 291), the proofs there become more difficult. The onlv method so far

1) This research was supported in part by the National Science Foundation, Grant
18913, and by a Fellowship from the Institute of Science and Technology University
of Michigan. A port'ion of the work is included in a Ph.D. thesis rvritten under the
direct'ion of Professor F. W, Gehring at, the University of Michigan.

I

Ii



Ann. Acacl. Sci. tr'ennica A. I. 438

successful has been symmetrization. In § 2 of this paper we define the
Steiner and. Schwarz symmetrizations of space rings and state theorems,
proved in [2], that these processes do not decrease the moduli of space

rings. These symmetrization theorems enable us to show in § 3 that two
given rings are extremal.

These extremal rings, designated by Br,, and 43," , rrr&5r be described
as follows. For fixed a,01q, 11, the ring Rt,a: Ru,o@) consists of
the unit ball minus the disk lrl la,ns:0, while Ar,*: Rr,"(a) is
obtained from the unit ball by omission of the slit lrrl <a,nz: nz:0.
In § 3 we show that these rings have the following extremal properties.
Let R be a space ring consisting of the unit ball minus a continuum C.

If the projection of C on some diametral plane is at least naz itr area,
then modÄ { mod Rr.o@). If the diameter of C is at least 2a, then
mod -E ( mod R, , " 

(a). In the same section we show that if the complement
of a space ring -8, lies in a plane II and forms there a plaue ring rB2,

then point symmetrization in ,I1 induces an operation on -8, u.'hich does

not decrease mod -Br.

We continue the study of these extremal rings in § a. We first, show t'hat
mod .8r,, { mod -Br, where now -8, denotes the plane ring consisting of
the unit disk lr, ! i,mrl < I minus the central slit l*rl I e, , nz - o.

This, together rryith a reference to [9], completes the double inequality
mod -8,,0 ( mod.B, {mod-8r.". fn § 5 we obtain upper and lower bounds
interms of a for mod-B,.o@) and mod-8r,"(n). Ourmaintoolistheuse
of inequalities for elliptic functions [3]; tliese have also proved useful in II].
In § 6 we use the bounds obtained in § 5 to study the as; mptotic behavior
of the moduli of these rings as ru tends to 0. In § 7 we introduce a, genera-
lized notion of quasiconformality, together with some material on extremal
lengths, and in the final two sections we employ this theory to investigate
the behavior of modÄu,, and mod.Br,s&s o tends to 1. \Ve discover
that these moduli behave essentially like the modulus of the spherical &nrllr-

lus a I lrl 4 I as a tends to 0. But as ru tends to I the asvrnptotic
behavior of these three rings is markedly different one from another.

2. Symmetrization ol space rings

2.L. Spacerings. A spacering -E is a domain in -OB rrhose complement
consists of a bounded component Co and an unbounded component C1.

The conformal, capacity of -E is defined 116l as

I
cap R : inf / ll uls d,@ ,

,'I
ft
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where the infimum is taken over all real-valued functions u : u(r) which
are continuously differentiable in E and have boundary values 0 on
7Co and I on 1Cr.

Next, the mod,ulus of R is defined [ll] as

(3)

This is analogous to the modulus of a plane ring, usually defined by means
of conformal mappings. The modulus is invariant, under conformal (Möbius)
transformations and satifies an inequality of the type (2) for each quasi-
corrformal rnapping f . If R is the spherical annulus r, I )rl .--rr, then
the modulus of R is log rrlr, ll3).

2.2. Sym,metrization ,method,s. Symmetrization is a geometric operation
invented by Jacob Steiner and developed by P6lya and Szegö [I9]. Two
well-knorvn kinds of symmetrization in the plane are the Steiner and point
symmetrizations. rn this section we consider analogues of these in B-space-

- known as the Steiner and Schwarz symmetrizations [19], respectively -in which the corresponding plane svmmetrization is performed in each
plane normal to the r, axis.

If A is a bounded space ring and -B' is obtained from it by one of
these symmetrizations then mod,E { mod,E'. This inequality was proved
by Gehring [I3] for spherical and point symmetrization. The proofs for the
Steiner and Schu,arz svmmetrizations, while embodying certain additional
technical difficulties, follow the outline of Gehring's argument; proofs in
detail are included in [2]. Similar results for radial symmetrization have
been obtained b;, Pfaltzgraff [18].

2.3. Bteiner symmetri,zati,on of rings. Let G be a bounded open set in
83. We define a second set (,,1*, called the Steiner symmetri,zati,on of G
with respect to the rtfrz plane, as follows: Let L : L(rr, rr) denote
the line in Et through (rr, ;u,, 0) that is parallel to the r, axis. Then
LnG*:Aif andonly if LnG:A. If LnG+A, then Lt-lG* is
an open segment of lengtli mr(L i G) u'hich is bisected by the rrr, plane.

If l, is a bounded closed set in ,E3, we define -E 
* as above except in

the second case, where we take L n F* to be a closed segment of length
mr(Lf\ I) which is bisected by the rrr, plane. If mr(L n 7) :0, then
L n I* is the single point (rr, rr,0).

If G and n are a bound-ed domain and a continuum, respectively,
it is easilv verified that G* and -ä'* have the same properties. rt is also
easily shown that if E is a bounded open or closed set, then C(,8*) is

I nn l+
L.äp al
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connected.. Hence if .B is a bounded ring in 73 and Co and C, are the

two components of C(,8) then the set

l?,i( - (AUCo)* -Co*
is a ring, and we define this to be the Ste'i,ner symm,etrizat'i,on of 1?' Then

-B* has the following extremal propert5r l2l.

Theorem 1. Let R be any bound,eil'ri,ng dn 83. and,let Rx d'enote its

Ste'iner symm,etrizat'ion. Then mod R ( mod -E*'

2.4. Schwarz symmetri,zation of rings. Let G be a bounded open set' in

tB. Then G**, the Schwarz syrnmetri,zation of G 'r,vith respect t'o the r,
axis, is defined as follows. Let II : II(rr) denote the plane through

(0, 0, er) that is normal to the r, axis' Then -Il n G** : A if and only

if ilnG:b. If nnq*b, wetal<e IInG** tobeanopendisk
of area mr(il fi G) with center on the r, axis.
' If ? is a bounded closed set in ,U3, we define F'** as above except

in the second case, where we take II n n'** to be a elosed disk of area

mr(If n]7) with center on the r, axis- Tf 'mr[f n 1r) :0. then IIn F**
is the single point (0, 0, rr).

If .B is a bounded ring in .83 and Oo and O, are the t§,o components

of C(R), then it is easily verified that, the set

R**: (AUCo)** -Ctr*
is a ring, and we define this to be the schwarz symmetri,zati,on of R. It
can be shown that, E** eniovs the following extremal property [2]'

Theorem 2. Let R be any bound,ed, ring in 83, anil, let R** d'enote

its Schwarz sgmmetri,zation. Then mod -E ( mod A**.

3. Extremal space rings

3.1. Sgtace ri,ngs wi,th comgtlement 'i,n a plane. An iuteresting tSzpe of

ring ,8, in 3-space is one for which both components of c(Är) lie in a plane

ff, say rB:0, andforwhichtheconfiguration Rr:II O'8, isaplane
ring.

If .8, is a plane ring and C is the bounded component of C('Er), then

point symmetrization in the plane replaces R2 b5 a circular annulus

Rr:rr( lr, * 'i,rrl <r, with mr(C): vvl and mr(RUC): nr\' It
is known that mod -8, ( mod R; (Cf. [6]). But t'his process of plane sym-

metrization also replaces .8, by a ne.w.spacering -Bl rvith C(R'o): O(R;),
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and we shall show that the plane symmetrization increases the space
modulus also. In the proof of this result we shall need the following.

Lemma 1. Let Rs be an unbound,ed, space r,i,ng with nonil,egenerate
bound,ary components Co and, CL. Giuen e ) 0, there erists a bound,ed,

ring R separating the components of C(Rr) for whi,ch

mod A, { (1 + e)å mod A(4)

I

(I * e) cap R, = / lV ulsd,a.
l"

Now let Ei be the component of {r : u(r) : i) which cohtains
Ci ,'i : 0, l. Since u(r) : I for sufficiently large lxl, C(Er) must be
bounded. I{ext,, we see that E, arrd E, are disjoint continua. Hence by
Lemma 3.5 of [14] there exists a ring R, with C; and C'r as the
components of C(R), such that aC', c E, c Ci for i : 0, t. Because
R c C(Er), .rB is bounded. Since C, c E, C C'; , -E separates the components
of C(,Br). Finally,since äC',c8,,%:0 on AC'o and I on OCi. Thus
z is an admissible function [13, § 3] for -B and hence

;r
cap -B < I ',1 ulB dt» I I lV"l, dr, < (t -f e) cap.Br,

JJ
from which 1+y foilows. 

Rs

Proof. This proof a,ssumes a certain familiarity with the terminology
of [13]. Since the boundary components of ä, are non-degener&te, it fol-
lows by [16] that cap A, ] 0. Therefore there exists a simple admissible
function u lI3, § 7l for -8, such that,

Theorem 3. l,et l?, be u, sgtace ri,ng such that both components of
C(Rr) lie in a pl,ane II and, d,etermine a plane ri,ng R, there. Let R', be

the space r,ing obtained, by point syru,m,etri,zi,ng the gilane ring Ra. Then
mod Ä, < mod,Ej.

Proof . For convenience let II be the plane rs: 0. We may &ssume
that mod -8, < oo, for otherwise [16] shows that, mod Ai : oe and
there is nothing to prove.

Given e ) 0, by Lemma 1 there exists a bounded ring A separating
the components of C(Ar) for which (a) holds. Then by Theorem 2,

(5) mod ^E ( mod -B** ,

where -B** is the Schwarz symmetrization of -B with respect to the r,
axis. But, since l?** separates the boundarv components of R'r, Lemma 2

of [13] vields
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(6)

Oombining (4), (5),

from which the theorem

mod.B** { mod ft; .

follor,lrs when we let e approach zero.

3.2. Ertremalrings Rr,o and,4r,". Nowfix a,Ola < l. Throughout

the rest of this paper -8, will denote the plane ring consisting of the unit
disk minus the symmetric slit irrlSa, if,2:0. B)' 4r,,, and -8r,, we

shall mean the space rings obtained from A, by rotatiou about the ;u,

and xL axes; respectively. The ring Rt,a : fir,,,(a) consist's of the

unit ball minus the closed' central disk ::ul {a'tz:0' r'i'hile t'he ring

är,, : Ar,, (o) consists of theunitballminustheslit lrtl <cL,nz: ns:0'
The ring fi*,, is extremal in the following sense.

Theorem 4. Let R be any sltace ri,ng consisting of the uni,t ball minus

a cont'i,nuum C, and, sugtytose that the projecti,on of C on some d''i'ametral'

Ttlane II 'i,s atl,east naz 'i,n area, 0 <q,<1. Then mod-E { mod Rr,o@)'

Proof. n'or convenience let II be the plane le : 0, and let -E* be

the steiner symmetrization of -E with respect t,o IL Then by Theorem I,
mod,E { mod -B*. Now replace the continuum C by its projection on

the rrr, plana This yields a new ring ,E', and bv the monotoneity of

the space modulus [13, Lemma 2] mod -E* ( mod -B'. ]-inalll-, Sch$'arz

symmetrization w-ith respect to the a, axis re1:laces A' b)' a ring R,,, (b)

for some b, 0 <a <b < I. But then bv Theolem l and rnonoto[eity

we have mod -E' { mod Rr,o(b) ( mod Rr,o(a), and the proof is complete'

The ring .8u," enjoys the following extremal property'

Theorem 5. Let R be any sltace ri,ng consi,sting of the u'ni't bal'l'

m,izus q, continuum C whose d,iameteri's at least 2a,0<a <L' Then

mod-E ( modAr,,(,r).
Proof . Lel P, and P, be points of O such that 14 - Pzl : 2b,

b t q,. For convenience we rnay assume that PrP, is parallel to the r,
axis. The Schwarz symmetrization of -B n'ith respect to the rr axis vields

a new ring R' and, b;r Theorem 2. niod,R { mod A'. Thi'q inequality

follows also from Gehring's result on sphelical sr-muretlization [13. Theo-

rem 1l or the work of Sabat in [21].
Now the bounded component c' of c(R') contains a segment

p ahsp 1- Zb,rr: ns:0, and if C' is replaced b1- this segment a

new ring R" results such that mod -B' ( mod -R". Fina,llv, Steiner

symmetrization of -8" withrespecttothe e;re', planel-ields -Br,"(b) and,

by Theorem I and monotoneity, mod -8" { mod Er,"(Ö) { mod Rr."(a).

Ann. Acad. Sci. Irenni,car
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4. A ilouble inequality

In this section we begin our investigation of the properties of mod -8,,,
and mod-Br.". Our first goal is the following result.

Theorem 6. Let R, be the plane ring consi,sting of the unit il,islc mi'nus
thesli,t lrrl ( a,nz:0, anil, l,et Rr,o anil, Rr," bethespaceringsobtaineil,
by rotating R, about the r, anil r, ares, respecti,uely. Then

mod Rr, n ( mod .^8, { mod Ar, 
"

Proof . For the first inequality in (7) we shall obtain a diffeomorphism

f a of a spherical annulus A < t,rl < I onto Br, o. This mapping can
be shown to have positive Jacobian J(") aud to map each radius of
A < lx) < L onto a curve that is normal to the image of each surface

irl:r,A<r(L. Under these conditions it follows from a resultin
[e] that

(7)

(8) I dr
1

f
I

J D'ffu
A

dr
, /') ,'r

, Dr(fo,r)- rnax
rl -:7

i Å'(*)'ii
l,___l
I J(e,) I

lrlr;'lå
l-t r.t )

Here lY(z) is the stretching normal to l*i : r'.

We shall then use some inequalities for ellipt'ic functions to prove that
Dr(f o , r) { I a,url finalll. apply the second half of (8) to achieve the first
half of (7). The functional Dr(fo, r) a,nd the first half of (8) rvill be needed

in the proof of a theorem in § 5. The second half of (7) follows directly
from an inequality obtained b1' Clehling nt l9l.

The plane annulus A { i)'r * i;r, I t is mapped conforrnally (See

[5, p. 28] or [7, pp. 280-295]) onto ä, by the Jacobian elliptic sine

function

(e)

where

(10)

!/t -l- 'i'y, ,- J@, * 'iur) - ki sn('i(tt + ir) " k) ,

2K - frL +'i*, -irK'

log (;i;, *i* i*r) clenotes the principal breurch of the logarithm, arld
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iK : K(k): / ttt - ,') (1 - 1rz1z11-i 41 ,
(11) ,l

K' : K(lc') ,lc' : (l - tszf .

1'or our purpose it will be convenient to employ Jacobi's imaginary
transformation sn(i,2, k) : i tn(2, k') ([4, p. 37], [5, # 125'021) to rewrite
(9) as

(12) h * iUz: f (h * irz) : i,kt tn(u ! ia ,lo').

We define the space mapping g : lo@) from A < lrl < L onto
Ar,, byrotating A <l*r*drrl < I and -8, about t'he *, and y, axes.

That is, we let

(I3) t * iyz:,f(s *'i,rr),q:@,
where (s,@) and (t,g) arcpolarcoordinatesinthe *rr, antd yryrplanes,
respectively. It is easily verified that this mapping satisfies the hypotheses

for (8) and that

Dr(fa, r) : min 
'* l'@, + i*r)1ä ,

lx'+ix,:t ) 9l(14) n. L

Dr(fo,r) : m&x ' -l f'Q'r- itz)
xraixnl:t 1 97

Now by (12) and the differentiation formula * U"z) : (d,nz)l@nzz)
([4, p. 9], [5, #73t.r0)) we have

2K ,'.il,n(uli,a,k')tf'l: n, ku';nz«t+6a,Ä ,

while the addition theorems ([4, p. 38], [5, ff 125.01)) give

(r5) ir,t:# rr919!!#,'Z**:!'o't
and

(16)

r _ sD icd,SC _ _L Sd,(cz Cz + sz l)z)

1 sD - i,sd,SC - I scO D(L - Sz dz)

Here we have used the notation



(r7)
lzK r \ tzK r \ l2K r \

s :sn (rlt,r* a,k'), c:d,n\-n tol A,r'),0:0"\ n log A,l{),
/2K \ /2K t lzK \

§:sz\" r,f) ,,:""\nrt',k) ,D:d,n\n-rp,ttl' ,

where (r, , 
', - *') are polar coordinates in the rru, plane.

But using the identities C2: t - 52, D2: I - fu2§2, sz f s2: I,

"z 
a lczsz : d,2 (14, p. 91, [5, #121.00]) we achieve

G. D. Ar+oltn,soN, Symmatrrzation ancl extremal rings in space 11

( l8)

Hence from (I5), (16), (18), and the fact, that nt:r sin'rp, there results

;r., 2 K I C2 D2 .s2 c2f|
( I9) -: f isirr ri, I - h'4 I\.,,, 

!1, 
J :f In"r v i N' * 

d2 ) '

We wish to sholt'that Dr(.fa, r) I I, A < r'< 1. l'or this it is sufficient
to prove that sup D, (f I , r) I l. According to Landen's Transformation

([4, p. 72), 15. # L63.0r1,

§.0 I zx r r-kl(20) ,, : (I + k)-' szr 
f(t 

-lk) n-log A. I +/, l.

Since sza(2, &) is maximum wheu u : K (15, # 121.02f,124, p.4991) and
because 1(((1 - k)10+k)): (1 + k)K'12 ([4, p. 72), 15, ff164,02))we
see that scfd, has its maximum value (t 116;-t when log rlA: nK'f4K

- log llA, thab is, when r : 1. Thus

2K lC2D2 lå(2r) sup D2 (fo,r), : .ll - (sirr *) l-* + (I - fr)'l

Now by use of the ideutities Ciz : 1 - §', Dz : | - kz Sz

$5,# 121.001, 124, p.4931) rve see that

(22) 02 D2 + (1 k)z gz -: (1 ksr), ,

so that (21) red.uces to

(28) s LLt) Dz(f ,t , r)z ---- sup 
) K (tlt'] (t å§')IT,
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We have shown in [3] that the expression on the

iitrl
1,

concluding the proof of the theorern.

right of (23) is bounded
and by (8) we have

: mOd Rr,

5. Bounds for the moduli of Rr,o and Rr,"

Next, using elliptic integrals, we obtain upper and lower bounds in
terms of a for mod-Er,o(o).

Theorem 7. For each a,0 I a < L,

(24) +(*)' L" ffY']l - " ([l;21-)l = 
mod B, ,,(ot <!fi ,

where lc: uz,k' : (l - on)ä, and, K: K(k) anil, K' : K(k') d,enote

the el,l,iptic ,integrals i,n (ll).
Proof. Since mod-8, - log LIA: nK'f 4K, the upper bound follows

immediately from Theorem 6.

To obtain the lower bound we apply the left side of (8) to mod Rr.o@).
Thus by (la) and (19) we must determine

(25)
2 K I Cz Dz tz s2'ir2

where S, C, D, s, c, and d, have the meanings assigned in (17). \Ve assert

that the minimum is achieved , for each r', when rp : : To see this,

we use (20), (22),and the identity snzz { cnzz:1 ([ö,-#l2:..t)0). 124,
p. 4931) to rewrite (25) as

2K I(r - 7s5'1' ll(26) Dr(fo,r)z : ; tl,, 
sin rpl l' S2 1t - k)2cn2(, , kr')l

2Kr
where z: (r + k) ; log Ä and kr' : (l - tu)/(l + k). But since

lsin rpl is maximum when 1! : nl2, and since by (S) of l3l the expression
(sin rp) (l - fr§'z)/S achieves its minimum L -- k ryhen V : nlz. rve

conclude that the minimum in (26) occurs when y : nfl.
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Ilence by (25),

2K scDt(,fr,r)2- ;k'' ,l ,

and combining this with (8) we obtain the inequalit5r

(27)

To evaluate
([5, # L24.027,
([5, # L2L.o0],

(28)

the integral in (27) we first apply the half
[ 15, p. I20] ) and the identity d,nz z

124, p. 4931) to write

r'4K r \
sc l-dnhlog Ä,n)
d llK r \

k'2 sn [-; lo1 A , k'I

angle formulas

we have

t

(2s) 
I

I

and

los ;,*')l ' L' !-;! ulr - [, lIH u)r
t-_

tos t, ,k'l I 
k't

dr n [ , L -k' \, | -k' rl-å(80) r : +K l(r - 1,) [r , tz)lt , -f t,)l t dt .

When r is A, I then d is 0, 1, respectivelv, and by means of (28),

(29), and (30) we may reduce (27) fo

moda, ,,. )lr"u\r [ /1,, - ur ( , -' I* u)]'' o,

,n
fl , t.-k'\l-l I

/ ftt r't(r , ,')l o,l.

I{ow making the change of variables

l4K
1 - dn l--\n

t4K
k'2 stt, t 

- 
-

'Tt

6z

2-tr2
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Finally, consulting the definition (11) of the elliptic integral K : K(k)
we arrive at the first half of (24), and the theorem is proved.

Our methods also yield the follorving bounds for mod Rr,"(a).

Theorem 8. For each &, 0
JT K'

where k - a2, k' *- (l - (#)*, und K - K(k) und
tlr,e elli,pt'ic integrals 'in (1 1).

Proof. The lower bound follows directly from Theorem 6.

To obtain the upper bound we employ a technique introduced in the
proof of Theorem 6. Let / be the conformal mapping (12) of the plane
annulus A 1l*, I dxri < I onto -Er, and let, y : f"(r) be the space
mapping of A <lrl <l onto -83," obtained from f by rotating
a 1l\ | irrl <L and Rz about the r, an.d y7 axes. Then /" is a
diffeomorphism satisfying (8), where

/ [l - /.'l+\i
-r I{(ltr't l'/i :

Dr(f,,r):::

Dz(jr , r) -':: rrlax
.{, --1- f5, ,- 1'

We now apply the right hand side of (8) to mod-Br,". Thus by (t5)
and (16) we must determine

LDz

,Ll 

"

*_
Uz

f ' (n, + 'irr) 1

f ' (,,', -F i;tr)

where S,C, D, s, c, and il, are the functions defined in (17).
We assert that this maximum is achieved, for each fixed r, r,vhen

V: 0. Because of the special values snO :0, cn 0 : dn 0: 1 ([4, p. 9],

15, #122.011), this is equivalent to the assertjon that,

I §2 d2 l d2
(cosz rp) 

lk,n 
_Cri, + ,r;;l a ,r",

for all g.
By a simple rearrangement and use of the identit5, cosz gr : I - sinz rp,

this is reduced to the claim that

(32)
2K i §2 dzllDr(f,,r)2-,,T.?*.,; icosrpl 

lo'n rypz + irrrl ,

s2 c2 C2 D2
(33)
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Elsewhere [3] we have shown that

^7,,. *(! r,r)
(84) 21'4 < 

i ;" 1 tan s7t ,"\; r,f)

for all real y. Since D > lc' (15, #121.021,124, pp.493, 4991) it, follows

from (34) that

( 35)

(36)

We proved
implied by

the

AD 2k'2 K

sc

Then, comparing (35) with (33), we see that to shov- that the maximum in
(32) occurs when Tp : 0 it is sufficient, to prove

sc 2K
_/

i 1;

2Kr<(r+U;.
'fhe latter inequality, however, is trivial, since ä ) 0 and K > nl2.

We conclude that (33) is valid, and that the maximum in (32) occurs

for rp : Q. Hence

2K d
Dr(f , , r)'

By virtue of (8), this means that

Evaluation of this integral by the iurrr" charrge

proof of Theorem 8 then yields the upper bound in
of variables used in
(31).

6. Behavior of mod Rr., and mod Rr." for small a

Let us turn now to the study of the asymptotic behavior of these extremal

rings. We first obtain, as applications of the theorems of the preceding

section, a pair of asymptotic formulas for the moduli as a tends to 0'
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Theorem 9. As a function of a, (mod.Er,r(a) - log Lla) i,s monotonc
decreas,i,ng in the ,i,nteraal, 0 <a q l, anil,

lim (mod Rr,o@) - log Lla) : sr,

;' x,
where 0.254...: rlog2- +I"r (log2:0.693...

Proof. X'or let 0 <a' <q, < I. If -E is the image of -Er,r(a') under
the conformal mapping y: (ala')r, l}ren mod-Er, o(a'): mod-8. Since
Ru.o@) and I < Irl < afa' are two disjoint rings separating the boundary
components of -8, we see from Lemma 2 of ll3] that

mod .8, ,o@) * log af a' { mod ,B : mod Rr,o(u') ,

from which the monotoneity follov,s (Cf. Lemma 6 in [13]).
To obtain the upper bound we make use of Theorem O, (10), and the

limit lim kzexp (nK'lK) : t6 (Cf. [5, #1L2.04, #90t.OO], [2, p. 88])
/t+ 0

to conclude that

(37)

To obtain the lower

-- log2

1l

4lk)

to

Theorem 10. As a funct'i,on of u,, (modRr,"(a) -logtlu) is ntonotone
d,ecreas'i,ng in the,i,nterual, 0 < o, q l, und,

h1 (mod Rr,"(a) --togLla) : 6r.

3n
where 0.693...-lng2{c, < älogZl +:1.82...

Proof. The argument for monotoneity is the same as that, given
Theorem 9. To obtain t'he lower bound we make use of Theorem 6 as
(37) to conclude that

lnh'
Ä'-.-{) ! +K I (-.-

bound we use Theorem 7 alrd t,he f act, that

Then by rneans of the limit lS {K' Iog

124, p. 52L1) we may reduce the right side of (38)
is the lower bound" in the theorenr.

K ltt*'I, Il :(rr\l 2lll i

jlog8 rl1. u"hich

ln
irr

Ann. Acad. Sci. l'ennica,
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lim (mod Är," - log 1/o) > lim (mod.E, - log tla) : log2 .

Finally, use of Theorem 8, together with a proof similar to that given for
the lower bound in Theorem 9, gives

which is the upper bound in the theorern.
We remark thab the bounds in'Iheorem 10 were obtained by Gehring

([9, § 9], [13, § 21]), the upper bound bv a quite different, method.

7. Quasiconformality and extremal lengths

Before we can study the asymptotic behavior of the moduli of ,Br,o and
-tB,, 

" 
as a tends to 1, we need some additional tools. We begin by returning

to (1), the dilatationfunction-t Hr(P, f) urrd Ho(P,f) definedin§ 1. If
/ is a diffeomorphism of a 3-space domain O onto Q' , then the functionals

K,(f) - sup H,(P ,,f),K,ff) --_ sup HuV ,f)

L7

5)

l)

T
1T

1og2 + i,

( 3e)

(10)

P,': (? Pt:{)

are known as the ,inner and outer d,ilatati,ons of /, respectively. These dila-
tations are simultaneously infinite or finite. If both are finite, then / is
called a quo,s'iconformal mapping.

These definitions may be generalized, by means of the theory of rings,
to include an arbitrary homeomorphism / of () onto O'. The inner and
outer rlil,atations of a homeomorphism / are defined as

mod.E

Next, rve shall need a result from the theory of extremal lengths. Let
J- be a family of arcs in 83, and let fl(l-) denote the fa,mily of density
functions g which a,re nonnegative and Borel measurable in EB and for
which

Koff) -_.1p*#) ,

rvhere the suprerna are taken over all bounded rings R with E c () for
which mod "Ii and mod/(Ä) are not both infinite. If one of t'hese dilatabions
is finite the other is also (Cf. (1.10) in [Ia]) and / is said to be a quasicon-

formal mappi,ng. In case / is a diffeomorphism, this definition reduces to
the one previously given [14, Lemma 1.1]. If / is a homeomorphism of a

ring -B onto a ring -B', then it follows from Lemma I and (a0) that

mod R mod R'
(11)
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(42)
/l

I

/*
J

for each arc y e l'. Here the integral is taken with respect to linear measure

[20] if 7 is not locally rectifiable. Then following Väisälä l23l we define
the modulus M(l) of the familv J- as

(48) MQ) : inf I p, a^ .

o, \D 
nJ

(See also [8] and [14]). If -B is a space ring and f is the family of arcs
which join the components of 0 R in -8, then by Theorem I of [9],

(44) cap -E : MQ) .

8. Behavior of mod RB,,r as a tends to 1

Theorem ll. Themod,ulus of Rr.o@) has thefollouing orrl,er q,.s a tencls

to I:

(45) lim-sup Q - a)-t mod ,Br,r(a) < +: r.57 . . .

and,

(46) ,rT,l"t g - a1-,1mod 4,,, (u) > 0.65 . . .

Proof. To obtain the upper bound (a5) let l-, b" the family of arcs
in .8r,, joining the components of 0 Rr,o, and let -/' be the subfamily
of circular arcs Z which are normal to the boundary components. Since
lr= I we have .E'(fr)c f(J-) and, by (43), M(lr) >_ MQ). We will
prove that

(47) M(l)>Z r!-,
Then, using (43), (44), and (47), we will have

32 az
caP-Er,o : M(lr) > Mq), ; 1 _ oz.

By definition (3) of the modulus, this is equivalent to

(mod A" .o(a))' = + ! trt ,

from lr'hich (45) follou-s directl.r,.

18
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To prove (a7) let, O be the intersection of the plane quadrant rr) 0,

rr) 0,frt:0 r,r,-ith the union of the curves in l- considered as point sets,
and let Q' be the image of ,fJ under

Then O' is the quarter annulus I < ly, * i,Azl <b : (L { a)l$ - a),
yr) 0,!lz) O,Ae : 0. If g is the inverse of I then it is easv to see that

(48) lg'(yr*i,yz\l:. - .' ;;,;, ih+iTziz-L
)t : ;,u +itt;f rjz, i\: li,rii,ir+4

Let p e I(f). Then for each 7 e f in Q we have, by virtue of (42),

(4e) , 
= | ,[ no,]" :ll o'0', ct,']'

i' ;/

where Q: Q@t* irz), Q' : Q'(yr* iyz) : p(g@tt- iyr)), and y' :f(y)
is a quarter circle r : ?'u 0 < cp .i nf2, for some fixecl rir, l { ro I b.

Then an application of Hölder's inequalitv to (a9) vield-*

(50) , 
= | f ,', *, is'l, d,'ll I ,n'1.';å a,'l

Using (18) we

(51)

where (r', V) are

Next. \Äre see

(52)

But,

Hence (52) gives the

I
-D- 

:
l'u

the !/t _t_ [y, pla,e.

li'

that b _- (1 -L (L) l0 a) we determine that

I clz

32

fi

o
cto

1 a2'

212
:f,u

may reduce (50) to
,a

I

I Q'3 rr lg' '2 cl,s'

JS
.,,

polar coordinates in
that

i'i

830,l

using (51) and the fact

timate

r
J

E3

rvhen rve take

Q,, ":,J
Q,

ES

the irrfimum oYer a,ll A E FQ).from r,r,'hich (47) {ollorn-s
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Next we obtain the lower bound (46). X'or this, let (r, @, rr) be cylind-
rical coordinates in E, and define

tlrrllQ - r) if )rrl 1r - r,0 1r 1a,t"
u(r) : {ttr- alz-lrlf l1- a1 if (r - a)r+"2 < (r _ o)r,a 1r '-r,

I

I I elsewhere.

Then z is admissiblefor Rr.o(a) [13, § 3], and an elementary integration
gives

faI4n
J lVzl'd,at: n(+p * r) tlo- 4rplog, l; + 

B
Rs,a(o)

where p : U l/ Z +1og (7 f s t/ Zy1a. Then, appealing to Lemma I in
[13] we have

,tijln G - ") 
cap r8l," (a) < ngp I n) ,

from which, because of (3), (46) follows immediately.

9. Behavior of mod Rr. " as a tends to 1

We conclude this pa,per by proving the following asymptotic formula
for mod -8r," .

rheorem 12" As a functi,on of a. f,* I I i]'-"u A,," (o) i,s mono-

tone 'increasi,ng in the i,nteraal, 0 4a <-1, and,

I LlalL
1,1 ['"* *] mod.B, ,"(a) : cs,

where 1.03 . . . 1c, 1q ,

t12

(58) q : I (sin r;-å at : zi K«+)\ :2.62 . . .

J

Proof . W" fir.t prove the asserted monotoneity. There exists a i\Iöbius
transformation carrying Rr,"(a) conformally onto the space ring R(b)
consisting of the half spaee rz) 0 minus the slit | 1x, {b, rr: ne:0,
where

lt+.1,l:(54) ö:1,;l
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The mapping

g(") : r lrf-r, p : (log b')/(log ä)

is a diffeomorphism of R(b) onto -R(b'). Assuming for definiteness that,
l<b' (b, wehave 0<p<1. Applying(39)and (41)it iseasilyseen
that

, I loE b ll mod -r?(å')
Ko@) : p-ä : 

I d?] > _oa nlay ,

from which it follows that, (log ä)å mod -R(a) is a monotone increasing
function of å. Since by (5\ a and b increase together, this shows that
the expression in the theorem increases monotonically with o as asserted.

To obtain the upper bound in the theorem let E he the slit I I r, {b,
n1 : !r,u: Q and f' the family of arcs y' in | <lrl <b, xz) 0

which join E to the plane annulus | <W I i,ru <b, rr: g. Then
Lemma 3.8 of [14] gives

2n
Å,t(r')- -;logb,

q"

where q is the elliptic integral in (53).
I{ow let l- be the familv of arcs 7 joining the boundary components

of -E(ä) in A(ö). It follows from (44) and (55) that

2n
cap R(å) : M(r) > M(r') : 1, log ö .

and combining this with the fact t'hat cap .Bu , s =: cap A(ö), one arrives at

4n 2 q'

cap l?3., - Iog b

The upper bound in the bheorem follows from (56) and the monotoneity
already proved.

To obtain the lower bound we use the same method as for (a6) in § 8.

LeL (r,@,rr) be cylindrical coordinates in Er, and define

ze(r) : l(lrrl-a)2+r\Ll(1- a) tf (lrrl- a)z +rz <( 1- a)2,a<lrrl ( l,
I elseurhcre.

2L

(55)

(56)

o
ql"

::::
I * ct'

log t= a

Then z is admissible for 1?r," [3, § 3], and an elementary integration gives
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| +n$ln-\ t 2n
J lVzt3 da :--5---log r-o f B'

Rg,"(")

Then, appealing again to Lemma t in [13] we have

rim-sup T+? < !:Yt2-1) 
,

tog l-d

from which, in view of (3), the lower bound in the theorem follows.
Remark. By point symmetrization in space [I3, Theorem 2] one can

verify that the spherical annular ring Er,u(o), 0 <a <1, consisting of
the unit ball minus the closed ball lrl < a is extremal in the following
sense. Let .B be any space ring consisting of the unit ball minus a conti-
nuum C, and suppose ms(C) ) 4 nasf\. Then mod -B { mod Rr,u@).

Next, since mod.Br,r(a): log lfa, it is easily checked that as afunc-
tion of a,

(57)
L4a
,=mod R3,bGL)

is monotone decreasing in the interval 0 < a < I and that (57) has limit
2 as a tends to 1.

The pattern exhibited by (s7) and Theorems 11 and 12 indicates how
strongly influenced. is the asymptotic behavior of these extremal rings, as

a tends to l, by the dimension of the central set omitted from the unit
ball in the formation of the ring. Theorems 9 and 10 in this paper show,
however, that all three ofthese rings have the same order as o tends to 0,

so that, for small a the modulus is much less sensitive to the dimension
of the bounded component of the complement. One naturally wonders if
a pattern similar to this prevails for the analogous extremal rings in higher
dimensions.

Michigan State University
East, Lansing, Michigan, USA
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