ANNALES ACADEMIAE SCIENTIARUM FENNICAE

Series A

I. MATHEMATICA

436

EXTENSION OVER QUASICONFORMALLY EQUIVALENT CURVES

 $\mathbf{B}\mathbf{Y}$

SEPPO RICKMAN

HELSINKI 1969 SUOMALAINEN TIEDEAKATEMIA

doi:10.5186/aasfm.1969.436

Communicated 8 November 1968 by Olli Lehto and K. I. VIRTANEN

KESKUSKIRJAPAINO HELSINKI 1969

.

1. Introduction

Two Jordan curves γ and γ' lying in the extended complex plane $\mathbf{C}^* = \mathbf{C} \cup \{\infty\}$ are called *quasiconformally equivalent* if there exists a quasiconformal mapping of \mathbf{C}^* onto itself which maps γ onto γ' . In [5] there is given a metrical condition which characterizes this equivalence relation in terms of the existence of homeomorphisms $\varphi : \gamma \to \gamma'$ which can be extended to quasiconformal mappings of \mathbf{C}^* . Those Jordan curves which are equivalent with circles, called quasiconformal curves or quasicircles, form a special equivalence class denoted here by Γ_0 . The class Γ_0 can also be described to consist exactly of those Jordan curves which permit a quasiconformal reflection ([2]).

Let G and G' be Jordan domains. We denote by E(G, G') the family of quasiconformal mappings $f: G \to G'$ which can be quasiconformally extended to \mathbb{C}^* . By Satz II.8.1 in [3] it follows that if a quasiconformal mapping $f: G \to G'$ has a quasiconformal extension to a domain which contains the closure \tilde{G} , then $f \in E(G, G')$. Quasiconformal curves have the following property with respect to quasiconformal extension: If the boundaries ∂G and $\partial G'$ belong to Γ_0 , then every quasiconformal mapping $f: G \to G'$ belongs to E(G, G'). This result is an immediate consequence of the definition of Γ_0 .

In this paper we study to which extent the extension property of Γ_0 is valid for the other equivalence classes. Especially we ask whether there is some equivalence class Γ different from Γ_0 such that every quasiconformal mapping $f: G \to G'$, where G and G' are Jordan domains with boundaries in Γ , belongs to E(G, G'). That no such class exists is established in Theorem 2. It is also natural to ask how small E(G, G') can be. Theorem 3 gives an answer in this direction and shows that there is even an equivalence class Γ such that all mappings in E(G, G'), where the boundaries ∂G and $\partial G'$ are in Γ , coincide on the boundary, that is, E(G, G') is smallest possible according to Corollary 1 of Theorem 1.

Research supported in part by the Air Force Office of Scientific Research, Contract AF 49 (638) 1591.

2. Extension properties

We first restate Theorem 3 in [5] in a special case which is more appropriate for our present purposes:

Theorem 1. Let $f: \mathbb{C}^* \to \mathbb{C}^*$ be a homeomorphism which is quasiconformal off a Jordan curve γ . If there exists a quasiconformal mapping $q: \mathbb{C}^* \to \mathbb{C}^*$ such that $q|\gamma = f|\gamma$, then f is quasiconformal.

Corollary 1. Let f_1 and f_2 be quasiconformal mappings of a Jordan domain G onto a Jordan domain G' such that they coincide on the boundary ∂G . Then $f_1 \in E(G, G')$ if and only if $f_2 \in E(G, G')$.

Corollary 2. Assume $f \in E(G, G')$ where G and G' are Jordan domains. If $g: \mathbb{C}^* \to \mathbb{C}^*$ is a homeomorphic extension of f which is quasiconformal in $\mathbb{C}^* - \overline{G}$, then g is a quasiconformal extension of f.

We need some notation. The complement and the euclidean diameter of a set A are denoted by C_A and d(A) respectively. We denote by $B_r(z)$ the open disc and by $S_r(z)$ the circle with radius r and center z. By z_1z_2 we mean the open line segment with endpoints z_1 and z_2 . If α is a Jordan arc and $w_1, w_2 \in \alpha$, then $\alpha(w_1, w_2)$ is the open subarc of α with endpoints w_1 and w_2 . The absolute value of the cross-ratic of the sequence z_1, z_2, z_3, z_4 is denoted by $|z_1, z_2, z_3, z_4|$. For finite distinct points we have

$$|z_1,z_2,z_3,z_4| = \frac{|z_1-z_3| \ |z_2-z_4|}{|z_1-z_4| \ |z_2-z_3|} \, .$$

By $\mu(r)$, 0 < r < 1, we denote the modulus of the unit disc slit along the real axis from 0 to r.

The following result ([1]) is a consequence of a distortion theorem of Teichmüller:

Lemma 1. If $f: \mathbb{C}^* \to \mathbb{C}^*$ is a K-quasiconformal mapping, then

$$|f(z_1), \ldots, f(z_4)| \le L(K, |z_1, \ldots, z_4|)$$

holds for distinct points $z_1, \ldots, z_4 \in \mathbb{C}^*$, where we have used the notation

(2.1)
$$L(K,t) = \frac{1}{(\mu^{-1}(K\mu((1+t)^{-1/2})))^2} - 1$$

The fact that the class Γ_0 of quasiconformal curves is the only class which has the special extension property mentioned earlier is stated as follows.

Theorem 2. Let G and G' be Jordan domains. Then every quasiconformal mapping $f: G \to G'$ has a quasiconformal extension to \mathbb{C}^* if and only if ∂G and $\partial G'$ are quasiconformal curves. Moreover, if ∂G is not quasiconformal, then for every K > 1 there exists a K-quasiconformal mapping $f: G \to G'$ which cannot be extended quasiconformally over ∂G .

Proof. We already pointed out that if $\gamma = \partial G$ and $\gamma' = \partial G'$ are quasiconformal curves, then every quasiconformal mapping $f: G \to G'$ belongs to E(G, G'). Since the inverse of a K-quasiconformal mapping is K-quasiconformal, it suffices to prove the last part of the theorem.

Let K be greater than 1. We can assume that $\infty \in \gamma \cap \gamma'$. Suppose that γ is not quasiconformal. If γ' is quasiconformal, the family E(G, G')is empty. Suppose therefore that γ' is not quasiconformal at a point z'([4]). If now γ is quasiconformal at a point z, the conformal mapping of G onto G' whose extension to the boundary maps z onto z' has no quasiconformal extension to **C***. Consequently, we can assume that γ is not quasiconformal at any point.

Let now $Q = G(z_1, z_2, z_3, \infty)$ and $Q' = G'(z_1', z_2', z_3', \infty)$ be quadrilaterals with modulus 1, and let g and g' be the canonical mappings of Q and Q' respectively onto the square A = A(0, 1, 1 + i, i). Using the same notation for the extension of g to the closure \bar{Q} we denote $w_n = g^{-1} (2^{-2n+1}), n = 1, 2, \ldots$. Choose δ such that $0 < \delta < 1$ and $1/(1 - \delta) < \sqrt{K}$.

Let $\gamma_{n,1}, \gamma_{n,2}, \ldots$ be a sequence of open subarcs of $\gamma - \{\infty\}$ such that $\gamma_{n,m} \ni w_n, m = 1, 2, \ldots$, and $\lim_{m \to \infty} d(\gamma_{n,m}) = 0$. Since γ is not quasiconformal at w_n , there exist for every m successive points $a_{n,m}^1$, $a_{n,m}^2, a_{n,m}^3$ of $\gamma_{n,m}$ such that

$$\frac{|a_{n,m}^1 - a_{n,m}^2|}{|a_{n,m}^1 - a_{n,m}^3|} > m$$

Denote by $b_{n,m}^j$ the first point of $\overline{\gamma_{n,m}(a_{n,m}^j, a_{n,m}^2)}$ from $a_{n,m}^2$ which belongs to the line segment $\overline{a_{n,m}^1, a_{n,m}^3}, j = 1, 3$. Let $H_{n,m}$ be the bounded Jordan domain whose boundary is $\overline{b_{n,m}^1, b_{n,m}^3} \cup \gamma_{n,m}(b_{n,m}^1, b_{n,m}^3)$ and let $U_{n,m}$ be a circular neighborhood of $a_{n,m}^2$ such that $U_{n,m} \cap ((\gamma - \gamma_{n,m}(b_{n,m}^1, b_{n,m}^3)) \cup b_{n,m}^1, b_{n,m}^3) = \emptyset$. Then for every n at least one of the following cases occur:

- (a) $G \cap U_{n,m} \subset H_{n,m}$ for infinitely many m,
- (b) $C_{\overline{G}} \cap U_{n,m} \subset H_{n,m}$ for infinitely many m.

Let E_n be a disc such that $E_n \subset G'$ if (a) occurs for n and $E_n \subset C_{\overline{G'}}$ otherwise, and such that ∂E_n contains a point a'_n of $g'^{-1}(\omega_n)$ where ω_n is the interval

$$\left(rac{1}{2^{2n-1}}-rac{\delta}{2^{2n}}\,,rac{1}{2^{2n-1}}+rac{\delta}{2^{2n}}
ight)$$

of the real axis. Now denote

$$\sigma_n = Lig(n, rac{|z_1'-a_n'|}{|\zeta_n'-a_n'|}ig)$$

where L is defined by (2.1) and where ζ'_n is the center of E_n .

For every n we choose $m_n > n$ such that γ_{n,m_n} is contained in a disc D_n for which

(2.2)
$$\frac{|u-u^*|}{|u-z_1|} < \frac{1}{\sigma_n}$$

if $u, u^* \in D_n$, such that $g(\gamma_{n,m_n}) \subset \omega_n$, and that $G \cap U_{n,m_n} \subset H_{n,m_n}$ if (a) holds for n and $C_{\overline{G}} \cap U_{n,m_n} \subset H_{n,m_n}$ otherwise. For simplicity we write $a_n^j = a_{n,m_n}^j$, $b_n^j = b_{n,m_n}^j$, j = 1, 2, 3, $H_n = H_{n,m_n}$, and $U_n = U_{n,m_n}$.

We define now subsets of A for every n, n = 1, 2, ..., as follows:

$$egin{aligned} &V_n = \left\{ z \in A \mid rac{1}{2^{2n}} < ext{Re} \; z < rac{1}{2^{2n-1}}
ight\}, \ &W_n = \left\{ z \in A \mid rac{1}{2^{2n-1}} < ext{Re} \; z < rac{1}{2^{2n-2}}
ight\}, \ &X_n = \left\{ z \in A \mid rac{1}{2^{2n}} < ext{Re} \; z < v_n
ight\}, \ &Y_n = \left\{ z \in A \mid v_n < ext{Re} \; z < rac{1}{2^{2n-2}}
ight\}, \end{aligned}$$

where $v_n = g(a_n^2)$. Let $h: A \to A$ be a homeomorphism for which the restrictions $h|V_n$ and $h|W_n$ are the natural affine mappings onto X_n and Y_n respectively, $n = 1, 2, \ldots$. A homeomorphism $h': A \to A$ is defined similarly by the use of the numbers $v'_n = g'(a'_n)$.

According to our choice of δ , the mapping $f = g'^{-1} \circ h' \circ h^{-1} \circ g$ of G onto G' is K-quasiconformal. We claim that f has no quasiconformal extension over γ . Suppose such an extension exists, i.e. there is a K_0 -quasiconformal mapping $F: \mathbb{C}^* \to \mathbb{C}^*$ for some $K_0 < \infty$ such that F|G = f. Assume $n > K_0$. If we apply Lemma 1 to the mapping F^{-1} and the sequence $z'_1, \zeta'_n, a'_n, \infty$, we obtain from (2.2) that $F(D_n)$ and hence $F(H_n)$ do not contain the point ζ'_n . Let T_n be the circular annulus with boundary components $S_{r_n}(b^1_n)$ and $S_{t_n}(b^1_n)$ where $r_n = |b^1_n - b^3_n|$ and $t_n = |b^1_n - a^2_n|$. Suppose (a) holds for n. Then $E_n \subset G'$ and hence $l_n = F^{-1}(a'_n \zeta'_n) \subset G$. Let c_n be a point of $U_n \cap l_n$. Since $c_n \in H_n$ and $F^{-1}(\zeta'_n) \in C_{H_n}$, there is a point $d_n \in l_n \cap \partial H_n$. But this is possible only if $d_n \in b^1_n b^3_n$ and there must therefore be a point $e_n \in l_n \cap S_{r_n}(b^1_n)$. The ring

 $T'_n = F(T_n)$ separates the points $F(b_n^1)$ and $F(e_n)$ from the points a'_n and ∞ . Since $|F(b_n^1) - F(e_n)| \ge |a'_n - F(e_n)|$, we get by the modulus theorem of Teichmüller ([3], p. 58) the following estimate

$$M(T'_n) \leq 2\mu\left(rac{1}{\sqrt{2}}
ight) = \pi \; .$$

The case that (a) does not hold for n is treated similarly. But $\lim_{n\to\infty} M(T_n) = \infty$ because

$$\frac{|b_n^1 - a_n^2|}{|b_n^1 - b_n^3|} > m_n - 1$$

and $m_n > n, n = 1, 2, ...$, and we have a contradiction with the quasiconformality of F. The theorem is proved.

Remark. By a similar but more complicated argument one can actually show that the statement in Theorem 2 holds also for K = 1.

3. An example

Let γ and γ' be quasiconformally equivalent and let $g: \mathbb{C}^* \to \mathbb{C}^*$ be a quasiconformal mapping such that $g(\gamma) = \gamma'$. Let G be one of the complementary domains of γ and denote G' = g(G). Then $f_0 = g|G$ $\in E(G, G')$, and Corollary 1 of Theorem 1 says that every quasiconformal mapping $f: G \to G'$ which coincides with f_0 on the boundary belongs to E(G, G'). Note that if Jordan domains D and D' with $\partial D = \gamma$ and $\partial D' = \gamma'$ are chosen so that $g(D) \neq D'$, then E(D, D') may be empty. We shall now establish an example which gives the following result.

Theorem 3. There is an equivalence class Γ such that if G and G'

A. I. 436

are Jordan domains such that $\partial G, \partial G' \in \Gamma$, then all mappings in E(G, G') coincide on the boundary.

This follows immediately from the following theorem.

Theorem 4. There is a Jordan curve γ such that if $f: \mathbb{C}^* \to \mathbb{C}^*$ is a quasiconformal mapping which maps γ onto itself, then $f|\gamma$ is the identity mapping.

Proof. To construct a Jordan curve with the required property we start with the segmental Jordan curve C_1 and a point c_1 on C_1 as shown in Figure 1 where $d_{1,1} = h_1 = 1/5$. We shall form a sequence C_1, C_2, \ldots of segmental Jordan curves inductively as follows. Suppose C_{l-1} is constructed and the point c_{l-1} on C_{l-1} chosen. To construct C_l we deform, starting from the point c_{l-1} , the line segment parts of C_{l-1} into successive wavelike closed arcs $C_{l,1}, \ldots, C_{l,n_l}$ as shown in Figure 2 (which is an illustration of the case where l is even) such that the height and the width of the waves satisfy certain conditions stated below. We set

$$C_l = \bigcup_{n=1}^{n_l} C_{l,n}$$

and define c_l to be the common point of $C_{l,1}$ and C_{l,n_l} . With this construction every C_k , $k \geq 2$, is the union of successive wavelike arcs $C_{k,1}, \ldots, C_{k,n_k}$ which come from successive line segment parts of C_{k-1} . We denote by h_k the height and by $d_{k,n}$ the width of the waves of the arc $C_{k,n}$

(see Fig. 2). In the construction we require now the following additional conditions for $k \ge 2$:

(3.1)
$$h_k < \min\left\{\frac{d_{k-1,n_{k-1}}}{k \ n_k}, \frac{1}{18}\left(\frac{h_{k-1}}{2k}\right)^k\right\},$$

$$(3.2) d_{k,1} = h_k; \ \frac{d_{k,n+p}}{d_{k,n}} < \frac{1}{24} \left(\frac{1}{2p}\right)^p h_{k-1}^{p-1}, p \ge 1,$$

$$(3.3) L\!\left(p,\frac{4h_k}{d_{k,n}}\right) < \frac{h_k}{8 \; d_{k,n+p}} \, , \, p \geq 1 \; .$$

Here L is the function defined by (2.1). It should be noted in (3.1) that n_k is determined by C_{k-1} .

As a limit of the sequence C_1, C_2, \ldots we obtain a Jordan curve γ . We claim that γ has the property in the theorem. To prove this suppose there is a K-quasiconformal mapping $f: \mathbb{C}^* \to \mathbb{C}^*$ such that $f(\gamma) = \gamma$ and such that $f|\gamma$ is not the identity. Let $c \in \gamma$ be the limit of the sequence c_1, c_2, \ldots . Because of the assumption, there is a point $z \in \gamma$ such that $z' = f(z) \neq z$ and $z, z' \neq c$. Suppose that the sequence c, z', z is positively oriented with respect to the bounded complementary domain of γ . By the Hölder continuity of f there is a constant $M < \infty$ such that $|f(w_1) - f(w_2)| \leq M |w_1 - w_2|^{1/K}$ holds for points $w_1, w_2 \in \gamma$.

We denote by $\gamma_{k,n}$ the subarc of γ which comes as a limit from successive deformations of $C_{k,n}$ in the obvious sense. Let now p > M, K be an integer. We choose $\varrho > 0$ such that $\overline{B_{\varrho}(z)} \cap \overline{B_{\varrho}(z')} = \emptyset$ and such that $4\varrho < \min\{|z-c|, |z'-c|, |z'-f(c)|\}$. Let $\gamma_z \ni z$ be a subarc of γ such that $\gamma_z \subset B_{\varrho}(z)$ and $\gamma_{z'} = f(\gamma_z) \subset B_{\varrho}(z')$. We can then choose an integer k > 4 L(p, 16) such that $d(\gamma_{z'}) > 2 h_{k-1}$ and such that there is an integer n such that, if $w \in \gamma_z$, then $w \in \gamma_{k,n+p+m}$ for some $m \ge 0$, and if $w' \in \gamma_{z'}$, then $w' \in \gamma_{k,n-m'}$ for some $m' \ge 0$.

Since $d(\gamma_{z'}) > 2 h_{k-1}, \gamma_{z'}$ contains a subarc $\gamma_{k,q}$ with $d(\gamma_{k,q}) > h_{k-1}/2$. We denote the common points of $C_{k,q}$ and C_{k-1} by a_1, \ldots, a_r so that the indices correspond to the successive order on $C_{k,q}$. Let \tilde{a}_i be a point on $\gamma_{k,q}$ closest to a_i and let b_i be a point on C_k closest to $\tilde{b}_i = f^{-1}(\tilde{a}_i),$ $i = 1, \ldots, r$. Then $|a_i - a_{i+1}| = d_{k,q}, i = 1, \ldots, r-1$, and $|\tilde{a}_i - a_i|,$ $|\tilde{b}_i - b_i| \leq 2 h_{k+1}, i = 1, \ldots, r$.

Suppose that the arc $\alpha = (C_k - \{c_k\}) (b_i, b_{i+1})$ contains at least 12 successive line segment parts of C_k (Fig. 3). Let $e_0 = b_i, e_1, \ldots, e_{s-1}$, $e_s = b_{i+1}$ be a sequence of successive points on α such that every $\alpha(e_{\mu}, e_{\mu+1})$, $\mu = 1, \ldots, s-2$, consists of four successive line segment parts of C_k and such that $\alpha(e_0, e_1)$ and $\alpha(e_{s-1}, e_s)$ do not contain four successive line segment parts of C_k . Let $\tilde{e}_{\mu} \in \gamma_z$ be a point such that $|\tilde{e}_{\mu} - e_{\mu}| \leq 2 h_{k+1}$ if

 $\mu = 1, \ldots, s-1$, and denote $\tilde{e}_0 = \tilde{b}_i$ and $\tilde{e}_s = \tilde{b}_{i+1}$. Then for every $\mu, \mu = 0, \ldots, s-1$, there exists an integer $\nu, \nu = 0, \ldots, s-1$, $|\nu - \mu| \le 2$, such that the following condition holds:

(*) The arc $\beta_{\nu} = \gamma_{z}(\tilde{e}_{\nu}, \tilde{e}_{\nu+1})$ has a point w_{ν} such that

$$rac{| ilde{e}_{v}-w_{v}|}{| ilde{e}_{v}- ilde{e}_{v+1}|}>rac{h_{k}}{4\;d_{k,n+p}}$$

By applying Lemma 1 to the mapping f^{-1} and the sequence $f(w_r), f(\tilde{e}_{r+1}), f(\tilde{e}_r), f(c)$ we get by the choice of ρ the inequality

$$\frac{|\tilde{e}_{_{\nu}}-w_{_{\nu}}|}{2|\tilde{e}_{_{\nu}}-\tilde{e}_{_{\nu+1}}|} \leq L\left(K,\frac{2|f(\tilde{e}_{_{\nu}})-f(w_{_{\nu}})|}{|f(\tilde{e}_{_{\nu}})-f(\tilde{e}_{_{\nu+1}})|}\right).$$

If now (*) is satisfied for ν , we have by the choice of p that

$$rac{h_k}{8\,d_{k,n+p}} < L\left(p,rac{2|f(ilde{e}_{_{\mathcal{V}}})-f(w_{_{\mathcal{V}}})|}{|f(ilde{e}_{_{\mathcal{V}}})-f(ilde{e}_{_{p+1}})|}
ight)$$

The condition (3.3) implies then that

$$rac{2|f(ilde{e}_{
u})-f(w_
u)|}{|f(ilde{e}_{
u})-f(ilde{e}_{
u+1})|} \!>\! rac{4\;h_k}{d_{k,n}}\,.$$

But, by the construction of γ , this is possible only if

(3.4)
$$d(f(\beta_v)) \le 2 h_{k+1}$$
.

If the condition (*) is not satisfied for $v = \mu$, we estimate as follows. Let $v, |v - \mu| \leq 2$, be an integer such that (*) is satisfied for v. Then there is a point $\zeta_{\nu} \in \beta_{\nu}$ such that

$$\sup_{w\ineta_
u} rac{|\widetilde{e}_
u-w|}{|\widetilde{e}_
u-\zeta_
u|} \leq 8 \; .$$

Again by applying Lemma 1 to the mapping f and the sequence w, ζ_{ν} , \tilde{e}_{ν}, c , where $w \in \beta_{\nu}$, we get by the choice of ρ and p the inequality

$$rac{\sup\limits_{w'\in f(eta_p)}|f(ilde{e}_{_p})\,-\,w'|}{|f(ilde{e}_{_p})-f(\zeta_{_p})|}\,\leq 2L(p,\,16)\;.$$

This together with (3.4) implies

$$d(f(eta_{_{v}})) \leq 4 \; L(p,\, 16) \; d(f(eta_{_{v}})) \leq 8 \; L(p,\, 16) \; h_{k+1} \, ,$$

and since $s < n_{k+1}/4$, we get thus

$$| ilde{a}_i - ilde{a}_{i+1}| = |f(ilde{b}_i) - f(ilde{b}_{i+1})| \leq 2 \; n_{k+1} \; L(p, \, 16) \; h_{k+1}$$
 .

From $n_{k+1} h_{k+1} < d_{k,n_k}/k$ and from the choice of k it follows that $|\tilde{a}_i - \tilde{a}_{i+1}| < d_{k,n_k}/2$. But then

$$egin{aligned} |a_i-a_{i+1}| &\leq |a_i- ilde{a}_i|+| ilde{a}_i- ilde{a}_{i+1}|+| ilde{a}_{i+1}-a_{i+1}| < 4\ h_{k+1}+d_{k,n_k}\!/2 \ &< d_{k,n_k}\!/2 + d_{k,n_k}\!/2 < d_{k,q}\,, \end{aligned}$$

which is a contradiction. Hence the arc α contains less than 12 line segment parts of C_k .

We have now proved that the arc $A = (C_k - \{c_k\}) (b_1, b_r)$ contains at most 12(r-1) line segment parts of C_k . Let now $z_0 = b_1, z_1, \ldots, z_{\lambda-1}, z_{\lambda} = b_r$ be a sequence of successive points on C_k which divide A into subarcs similarly as the arc α was divided by the sequence e_0, \ldots, e_s above. Then $\lambda \leq 3 r$. It is now observed that if $z_{\mu}, z_{\mu+1} \in C_{k,t}$ for some t and if $\mu = 1, \ldots, \lambda - 2$, then $|z_{\mu} - z_{\mu+1}| = 2 d_{k,t}$. Otherwise we have $|z_{\mu} - z_{\mu+1}| \leq 2 h_k$. Since in any case $d_{k,n+p}/d_{k,n} < 1/48$, one can conclude that

$$A \subset \bigcup_{i=0}^{2} C_{k,i+i}$$

for some t. It then follows the estimate

$$| ilde{b_1} - ilde{b}_r| \leq 4 \ h_{k+1} + 8 \ h_k + 6 \ r \ d_{k,n+p} < 9 \ h_k + 6 \ r \ d_{k,n+p} \,.$$

By the use of (3.1) and (3.2) we get

and from k > 4 L(p, 16) > p and $r < 2 h_{k-1}/d_{k,n}$ the inequality

$$|\tilde{b}_1-\tilde{b}_r| < \left(\!\frac{h_{k-1}}{2p}\!\right)^{\!p}.$$

Combining this with $|\tilde{a}_1 - \tilde{a}_r| > h_{k-1}/2$ we are led to the contradiction

- -

. .

- - -

$$|\tilde{a}_1 - \tilde{a}_r| = |f(\tilde{b}_1) - f(\tilde{b}_r)| > p|\tilde{b}_1 - \tilde{b}_r|^{1/p} > M|\tilde{b}_1 - \tilde{b}_r|^{1/K}$$

In the case that the sequence c, z, z' is positively oriented with respect to the bounded complementary domain of γ , the Hölder continuity of f^{-1} is used. The theorem is proved.

University of Helsinki Helsinki, Finland

References

- AGARD, S.: Distortion theorems for quasiconformal mappings. Ann. Acad. Sci. Fenn. A I 413 (1968).
- [2] AHLFORS, L. V.: Quasiconformal reflections. Acta Math. 109 (1963), 291-301.
- [3] LEHTO, O. VIRTANEN, K. I.: Quasikonforme Abbildungen. Springer-Verlag, 1965.
- [4] RICKMAN, S.: Characterization of quasiconformal arcs. Ann. Acad. Sci. Fenn. A I 395 (1966).
- [5] -»- Quasiconformally equivalent curves. To appear in Duke Math. J.

Printed January 1969