Series A

I. MATHEMATICA

433

TWO REMARKS CONCERNING DIRICHLET'S L-FUNCTIONS AND THE CLASS NUMBER OF THE CYCLOTOMIC FIELD

TIMO LEPISTÖ

Communicated 10 May 1968 by P. J. Myrberg and K. Inkeri.

TWO REMARKS CONCERNING DIRICHLET'S L-FUNCTIONS AND THE CLASS NUMBER OF THE CYCLOTOMIC FIELD

1. In the following we denote by K an algebraic number field of degree n over the field P of rational numbers. In addition let denote the discriminant, R the regulator and h the number of classes of ideals of K. Brauer (cf. [3], p. 745) has proved the following ${ }^{1}$)

Theorem 1. If K ranges over a sequence of fields normal over P for which $n / \log |d| \rightarrow 0$, then

$$
\log (R h) \sim \log \sqrt{|\bar{d}|}
$$

This theorem treats very general cases. If we restrict ourselves to the cyclotomic field $K=P(\zeta)$, where ζ is a primitive p th (p is an odd prime.) root of unity, we have

Theorem 2. For any positive ε,

$$
2 p^{\frac{1}{2} p}(2 \pi)^{\frac{1}{2}(1-p)} c(\varepsilon) p^{-\varepsilon}<R h<2 p^{\frac{1}{2} p}(2 \pi)^{\frac{1}{2}(1-p)} \log ^{c} p .
$$

where c and $c(\varepsilon)$ denote respectively an absolute positive constant and a positive constant depending on parameter ε alone.

This result introduced by Tatuzawa (cf. [8], p. 111) gives in this special case a sharper estimation than the one of theorem 1.

In this paper we consider the cyclotomic field $K=P(\zeta)$, where ζ is a primitive m th root of unity. We suppose that the natural number m is >1 and in addition we exclude those even values of m, which are not divisible by 4 . This restriction is not essential because both the primitive m th and ($m / 2$)th roots of unity generate the same field if m has some excluded value. We are able to extend theorem 2 and prove

Theorem 3. If c and $c(\varepsilon)$ are defined as above then

$$
c(\varepsilon) m^{-\varepsilon}<R h / G<\exp (c(\log \log m+\omega(m))),
$$

[^0]where
$$
G=(2 \pi)^{-\frac{1}{2} q(m)} w \sqrt{|d|}
$$
(As usual, φ denotes Euler's function.). Here
\[

w=\left\{$$
\begin{aligned}
2 m & \text { if } 2+m, \\
m & \text { if } 2 \mid m
\end{aligned}
$$\right.
\]

is the number of roots of 1 contained in $P(\zeta)$.
It should be mentioned that it is possible to apply theorem 1 in the case of the cyclotomic field. It is known that this field is normal over P and in addition we have

$$
\log |d| \geqq 1 / 2 \varphi(m) \log m
$$

(cf. [6], p. 27 and [5], p. 508). This yields

$$
0<n / \log |d| \leqq 2 / \log m \rightarrow 0
$$

when m tends to infinity. It is, however, easy to see that in the case of the cyclotomic field the result of theorem 3 is sharper than the one of theorem 1.
2. In addition we consider the so-called Dirichlet's L-functions

$$
L(s, \chi)=\sum_{n=1}^{\infty} \chi(n) n^{-s} .
$$

Here $\chi(n)$ denotes a character $(\bmod k)$, where k is an arbitrary natural number and s is a real variable. For these functions we have (cf. [6], p. 31)

Theorem 4. Let ε be an arbitrary positive number, δ a positive number $<1 / 2$ and

$$
\tau=\tau(k)=\left\{\begin{array}{l}
\omega(k) \text { if } 2+k \\
\omega(k)+1 \text { if } 2 \mid k
\end{array}\right.
$$

where $\omega(k)$ denotes the number of different prime factors of k. If the extended Riemann hypothesis is true, there exists for every given pair s and $k(\geqq 3)$, where

$$
s \geqq(\tau+\delta) /(\tau+1), k>k_{0}(\varepsilon, \delta)
$$

a non-principal character $\chi(n)(\bmod k)$ so that

$$
\begin{equation*}
|L(s, \chi)|<1+\varepsilon . \tag{1}
\end{equation*}
$$

If k is an odd prime, the above theorem gives the result of Ankeny and Chowla (cf. [1], p. 487).

In the following we denote a character by χ^{*}, when it is a primitive character and we especially want to lay stress on this fact. In this paper we restrict ourselves to the case $k=p^{u}$ (p is a prime). In this special case we are able to reach a slightly deeper result than the one of theorem 4. We prove

Theorem 5. Let ε and δ be defined in the same way as in theorem 4. If the extended Riemann hypothesis is true, there exists for every given pair s and p^{u}, where

$$
s \geqq\left\{\begin{array}{l}
(1+\delta) / 2 \text { if } p>2 \text { and } u \geqq u_{0}=u_{0}(\varepsilon, \delta, p), \tag{2}\\
(2+\delta) / 3 \text { if } p=2 \text { and } u \geqq u_{0}=u_{0}(\varepsilon, \delta),
\end{array}\right.
$$

an odd primitive character $\chi^{*}\left(\bmod p^{u}\right)$, which satisfies the inequality (1).
As a consequence of this we get
Theorem 6. If the conditions of theorem 5 are satisfied, then there exist for every given pair s and p^{u} at least $u-u_{0}+1$ odd characters $\chi\left(\bmod p^{u}\right)$, which satisfy the inequality (1).
3. Consider theorem 3. It is known that there exists for each character $\chi(\bmod m)$ a unique character $\chi^{*}(\bmod f)$ equivalent to χ, where $f=f(\chi)$ is the conductor of χ. We denote by S the set of all these characters χ^{*} $(\bmod f(\chi))$. Obviously S is also the set of all the primitive characters each of which is equivalent to a character $(\bmod m)$. We need the following lemmas:

Lemma 1. If S^{\prime} is the set S excluding the principal character χ_{0}, we have

$$
h=(2 \pi)^{-\frac{1}{2} q(m)} R^{-1} w \sqrt{|d|} \prod_{\chi \in S^{\prime}} L(1, \chi)
$$

(cf. [4], p. 402).
Lemma 2. Let $\chi\left(\neq \chi_{0}\right)$ be a character $(\bmod m)$, which has the conductor f. Then

$$
L\left(1, \chi^{*}\right)=L(1, \chi) \prod_{p \mid m}\left(1-\chi^{*}(p) / p\right)^{-1}
$$

where χ^{*} is the corresponding primitive character $(\bmod f)$ and p runs through the prime factors of m (cf. [7], p. 127).

Lemma 3. $\omega(m)=O(\log m / \log \log m)$
(cf. [8], p. 108).
Lemma 4. Let $N(k)$ denote the set of the characters $(\bmod k)$. Then

$$
c(\varepsilon) m^{-\varepsilon}<\left|\prod_{\chi \in N} L(1, \chi)\right|<\exp (c(\log \log m+\omega(m)))
$$

where N^{\prime} is the set $N(m)$ excluding χ_{0} (cf. [8], p. 110).

Lemma 5. If $m_{\boldsymbol{t}}$ is the greatest divisor of m prime to t, then

$$
\sum_{\chi \in S} \chi(t)=\sum_{\chi \in N\left(m_{i}\right)} \chi(t)
$$

The proof of this lemma is analogous to the proof of the corresponding result of lemma 7 in [6].

We write, by lemma 2 ,

$$
\prod_{\chi \in S^{\prime}} L(1, \chi)=\prod_{1} \prod_{2} \prod_{3}
$$

where

$$
\begin{gathered}
\prod_{1}=\prod_{\chi \in N^{\prime}} L(1, \chi), \quad \prod_{2}=\prod_{\chi \in S} \prod_{p \mid m}(1-\chi(p) / p)^{-1} \\
\prod_{3}=\prod_{p \mid m}\left(1-p^{-1}\right)
\end{gathered}
$$

We get an estimation for the product \prod_{1} from lemma 4. Consider the product \prod_{2} (cf. [6], p. 26). It can be expressed in the form

$$
\prod_{1}=\exp \left(\sum_{\chi \in S} \sum_{p \mid m} \sum_{j=1}^{\infty} \chi\left(p^{j}\right) j^{-1} p^{-j}\right)
$$

Further we have, by lemma 5,

$$
\sum_{\chi \in S} \chi\left(p^{j}\right)=\left\{\begin{array}{c}
\varphi\left(m_{p}\right) \text { if } p^{j} \equiv 1\left(\bmod m_{p}\right) \\
0 \text { otherwise }
\end{array}\right.
$$

where m_{p} denotes the greatest divisor of m prime to p. Let σ denote the least positive exponent so that

$$
p^{\sigma} \equiv 1\left(\bmod m_{p}\right)
$$

Now if

$$
\begin{equation*}
p^{\nu} \equiv 1\left(\bmod m_{p}\right) \tag{3}
\end{equation*}
$$

then $\sigma \mid \nu$ and, on the other hand, if $\sigma \mid \nu$ then (3) holds. Since we can write

$$
\sum_{j=1}^{\infty}\left(p^{-\sigma}\right)^{j}=\left(p^{\sigma}-1\right)^{-1} \leqq m_{p}^{-1}
$$

we have

$$
\sum_{\chi \in S} \sum_{\left.p\right|^{m}} \sum_{j=1}^{\infty} \chi\left(p^{j}\right) j^{-1} p^{-j}=O\left(\sum_{\left.p\right|^{m}} \varphi\left(m_{p}\right) / m_{p}\right)=O(\omega(m)) .
$$

Hence

$$
e^{-c \omega(m)}<\prod_{2}<e^{\cos (m)} .
$$

For \prod_{3} we finally get

$$
2^{-\omega(m)}<\prod_{3}<\omega(m)
$$

The above results yield, by lemma 3 ,

$$
\begin{equation*}
c(\varepsilon) m^{-\varepsilon}<\left|\prod_{\chi \in S^{\prime}} L(1, \chi)\right|<\exp (c(\log \log m+\omega(m))) \tag{4}
\end{equation*}
$$

which proves theorem 3. Here $c(\varepsilon)$ and c are not necessarily the same in lemma 4 and in (4).
4. Consider now theorem 5. If s satisfies the conditions (2) and the extended Riemann hypothesis is true, we can write (cf. [6], p. 35)

$$
\prod_{\chi \in Q\left(p^{u}\right)} L(s, \chi)=\exp \left(\varphi\left(p^{u}\right) \psi\left(p^{u}\right)\right),
$$

where $Q\left(p^{u}\right)$ is the set of the odd characters $\chi\left(\bmod p^{u}\right)$, and $\psi\left(p^{u}\right) \rightarrow 0$, when p^{u} tends to infinity. Because $Q\left(p^{u-1}\right) \subset Q\left(p^{u}\right)$, we can decide that

$$
T=T\left(p^{u}\right)=Q\left(p^{u}\right)-Q\left(p^{u-1}\right)
$$

is the set of the odd primitive characters $\chi^{*}\left(\bmod p^{u}\right)$. Further

$$
\begin{align*}
\prod_{\chi \in T} L(s, \chi) & =\exp \left(\varphi\left(p^{u}\right) \psi\left(p^{u}\right)-\varphi\left(p^{u-1}\right) \psi\left(p^{u-1}\right)\right) \tag{5}\\
& =\exp \left(\varphi\left(p^{u-1}\right) \psi_{1}\left(p^{u}\right)\right)
\end{align*}
$$

where

$$
\psi_{\mathbf{1}}\left(p^{u}\right)=p \psi\left(p^{u}\right)-\psi\left(p^{u-1}\right)
$$

If p is fixed and $u \rightarrow \infty$, then $\psi_{1}\left(p^{u}\right) \rightarrow 0$. Let g denote the number of the odd primitive characters $\left(\bmod p^{u}\right)$. We find that

$$
g=\left\{\begin{array}{l}
1 / 2\left(\varphi\left(p^{u}\right)-\varphi\left(p^{u-1}\right)\right) \text { if } u \geqq 2 \\
1 / 2(p-1) \text { if } u=1
\end{array}\right.
$$

In both cases $g \geqq 1 / 2 \varphi\left(p^{u-1}\right)$, and we can see, by (5), that theorem 5 is true.
Because $T\left(p^{j}\right) \cap T\left(p^{j-1}\right)=\Phi(u \geqq j \geqq 2)$ and

$$
\bigcup_{j=u_{0}}^{u} T\left(p^{j}\right) \subset Q\left(p^{u}\right)
$$

we can determine that there exist at least $u-u_{0}+1$ odd characters $\left(\bmod p^{u}\right)$ satisfying the inequality (1). This yields theorem 6.

University of Turku
Turku, Finland

References

[1] Ankeny, N. and Chowla, S.: The class number of the cyclotomic field. - Canad. J. Math. 3 (1951), 486-494.
[2] Brauer, R.: On the zeta-functions of algebraic number fields. - Am. J. Math. Vol. 69 No 2 (1947), 243-250.
[3] -»- On the zeta-funktions of algebraic number fields II. - Am. J. Math. Vol. 72 No 4 (1950), 739-746.
[4] Hasse, H.: Vorlesungen über Zahlentheorie. - 2. Aufl., Springer-Verlag, Berlin-Göttingen-Heidelberg-New York (1964).
[5] -»- Zahlenth orie. - 2. Aufl., Akademie-Verlag, Berlin (1963).
[6] Lepistö, T.: On the first factor of the class number of the cyclotomic field and Dirichlet's L-functions. - Ann. Acad. Sci. Fenn. A I 387 (1966).
[7] Prachar, K.: Primzahlverteilung. - Springer-Verlag, Berlin-Göttingen-Heidelberg (1957).
[8] Tatuzawa, T.: On the product of $\mathrm{L}(1, \chi)$. - Nagoya Math. J. 5 (1953), 105-111.
[9] Виноградов, А. И.: О числе классов илеалов и группе класссв дивизоров. - Изв. Акад. Наук СССР, Сер. Мат. 27 (1963), 561-576.

[^0]: ${ }^{1}$) The result of theorem 1 is an improvement of Brauer's earlier result (cf. [2], p. 243). This estimation cannot, however, be applied in the case of the cyclotomic field, because it treats only the cases, where d tends to infinity in such a way that the degree of the corresponding fields is fixed. It should be noted that Vinogradov (cf. [9], p. 562) has presented estimations, which complete the result of Brauer, but which cannot be applied here, because they also presuppose that the degree of the fields under examination is fixed.

