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I. INTRODUCTION

Throughout this paper we shall let D denote the open unit disk and
(' denote the unit circumference.

First we recall two classical theorems in the theory of the boundary
behavior of functions bounded and analytic in D.

Fatow radial limit theorem ([9], p. 45). If f(z) is bounded and analytic
in D, then lim f(re”) exists for almost all @ in [0, 27).

r>1

F. and M. Riesz uniqueness theorem ([9], p. 47). If f(z) is bounded and
analytic in D and if lim f(re’’) = 0 for a set of @ of positive measure

r—>1
in [0, 27), then f(z)==0.

It is well-known ([8], p. 208 —209) that the above theorems also hold if
f(z) is meromorphic and of bounded characteristic. It also follows from
well-known results that if f(z) is normal in the sense of Lehto and Virtanen
then the uniqueness theorem holds also (for the sake of completeness we
shall include this as Theorem 3). The elliptic modular function shows that
even for normal analytic functions there is no Fatou radial limit theorem.

A natural question to ask is whether the hyvpothesis »f(z) is bounded»
in the Fatou theorem can be weakened for analytic functions to »M(r. f)
(= max |f(re’)]) grows slower than 'so and so0’»?

6

Recently, after it had been an open question concerning a number of

authors ([1], [4], [6]) for several years, MacLane [6] showed that no matter

how slowly an unbounded M(r, f) is required to grow the lim f(re'”) may

r1
fail to exist for all O (i.e., there is no analog of the Fatou radial limit
theorem for functions of slow growth). The main result of this paper is to
show that no matter how slowly an unbounded M (r, f) is required to grow
the lim f(re’”) may be equal to zero for a set of @ of measure 2z on

r—>1

[0, 27) (i.e., there is no analog of the Riesz uniqueness theorem for functions
of slow growth). The proof is based, to a large extent, on a variation of a
technique first used by MacLane in [6].
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2. PROOF OF MAIN THEOREMS

Theorem 1. Let p(r), 0 <r << 1 be positive and monotone increasing
to 4+ o as 7 — 1. Then there ex1sts a function ¢(z), holomorphic in D,
with the properties:

i) lim Re g(r¢”) = — oo for almost all & in [0, 27),

r—-1

iy M(r,g) <p(r) for 0 <r<1.

Proof. Given any e (0 < &< min{}, p(0)}) choose {e,} with the
properties:

&n J( 0,
i) e, << p(0)/2",
i) e <e.
n=1

Also pick {d,} with the properties:
i) O l, 0,

i) o, < 1/10.
n=1

Let R(d.) be a Cantor set on C with the property that 27 — 0., <
meas R(d,) < 2m.

Let B(0n) = {z=ré":1 <r <1,¢" ¢ R(d)}

Also let {f.} be a sequence of negative numbers such that g, | — <.

Using Mergelyan’s theorem [7], we can find polynomials ¢.(z) with
the properties:

1) 1ga(z) — hu(z)| < e, for 2zl 1
i) 1ga(z) — ha(z)] < ea for z € R(d,).

(Where h.(z) is the function that equals zero for 'z < 1/2, equals Pn
for z € R(0,) N {% < |z| < 1} and islinear on each segment fz=re?:1 <
r <%, ¢ € R(0a)}.)

We now choose a sequence of positive integers {Z.} (Z. 1 -+ as
follows:

Let M, = max |g.(z)] (note M, is finite since g,(z) is a polynomial).

<1
Choose a sequence of posmve numbers {o.} (0. } 1) such that p(0.) > 2" M,
(this is possible since p(r) } + o). Now plok a 4, such that |g.(z"")] <
p(lzn/2r for 0 < |zf < 1.
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To see that it is possible to find such a sequence A, we note that all
that is needed is to pick a 1, large enough that the disk {z: |z] < 0.}
is mapped into the disk {w: |w| <1} by w = z'». Now, since p(r) is
increasing, we have the following inequalities:

i) for |z] <ou:
gu(2)| < e
< p(0)/2"
< p(lz)/2".
ii) for g, < z|< L
\g,,(z ny| < M,
< plon)2"
< p(izh2".

Now let z) = \j Gul('n This series converges by the Weierstrass
g\z q g
n= 1 s

M-test, to a function holomorphic in I since Z Gu(Z'm)| < D ) p(@z;)/zn =

n=1 n =

p(lz]). 1t also follows that |g(z)| << p(|z]) and hence M(r, g) < p(r) .

It remains now for us to show that Re g(z) has the Iadlal limit — o«
on a set of measure 27.

Consider R(4,) as a set in the w-plane. Let S(d,) be the set in the
z-plane which is the pre-image of R(d,) under the map w = z'». It is
clear that meas (S(5,) N C) = meas (R(,) N €) and hence 27 — 9, <
meas (S(9,) N C) < 27,

Let T'==U N8, (note that 7 c ().

k=1 n=k
Let I" be the set of all unit radii which terminate at a point of 7.

Now consider a fixed radius y € .

Let ky(> 2) be the first integer & such that ¢ N (h S@.) = 0.

ky— 1 =k,
Define M, as M, = > M;(k, chosen greater than one in order that
=/

M, make sense).
Now choose k; such that | fl fil > /l[ (this is possible since fi; | — w0).
For any L > 0 pick £k, s{;(fh that [3 [)‘k{ > L.
Determine o* such that: S

y¥e=yN{z:1—0o* <z <1
is not mapped into {w: jw| <%} by the mappings w = 27 for j =1,

2 k.

2
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For any z € y*

(recalling that the p;’s are negative) we have:

Re gz) = Y Re ()
j=
ku;l "“ ..
= X Reg(z¥) + > Reg(z")
j=1 1=k
k, . z
+ 2 Regi(z) + > Re g,(z')
J=ky 1 J=hRy—
k, Es
< M, + Z ) + Bi + &) + Z Re gi(z"7)
=k, j=k 41 J=ky+1
k, ©
RN TANES Y S i+ )+ X e (sinee 2 €5)
Jj=k, J==kyt j=k. i1
< My — M, — L + }_ ¢
=k,
é — L + [

This implies that if z, €y, then lim Re g(z.) = —

Now it remains only for us to prove that meas 7' ==

W .
[2)->1

27 .

Consider any » > 0. Since Z 0n << 1/10, we can find an .\ such that

> 8. <. Thus we have:
n=N

meas 17" >

v

=

=

n=1

Ve

meas (N S(d,))

n=N
meas [C' — U (C — 8(d.) ) |
n=N

x

meas (' — meas [ U

(€ — 8(da))]

n=2>N
- ~
meas (' — Y meas (C' — S(0,) )
N

20 — ¥ 0,

—

n=N
20 — vy .

Hence meas T' = 2z which completes the proof of Theorem 1.
Clearly we can obtain an analog of Theorem 1 for harmonic functions
just by considering the harmonic function Re g(z).

Theorem 2.

Let u(r) be a positive function such that pu(r T + 0
as 71 1. Then there exists a nonconstant function f(z)

holomorphlc in D

with the properties that:
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i) f(z) has radial limit zero at each point of 7(c C) and meas T = 2z,
i) M f) < p0).

Proof. First we suppose u(0) > 1. In this case p(r) = log u(r) satisfies
the hypothesis of Theorem 1. Therefore by Theorem 1 there exists a function
g(z), holomorphic in D, such that the Re g(z) has radial limit — oo at
almost all points of C and M(r, g) < p(r). Hence f(z) == ¢*® has radial
limit zero at almost all points of C' and M(r, f) < u(r).

If u(0) <1, then there exists a positive number %k such that k- u(0)
> 1 and hence by the above argument we can find a function #A(z) such
that M(r, k) < k- pu(r). Now clearly f(z) = h(z)/k has the desired pro-
perties.

3. PROOF OF THEOREM 3

Theorem 3. Let f(z) be a normal meromorphic function in D. If
f(z) has radial limit zero on a set 7(c (') of positive measure, then
) =0

Proof. Since for normal functions the existence of a radial limit implies
the existence of an angular limit ([3], Theorem 2) f(z) has angular limit
zero at each point of M. Hence by the angular uniqueness theorem of
Lusin and Priwalow ([9], p. 212) we have f(z) = 0.

4. REMARKS

Either by the Lusin—Priwalow radial uniqueness theorem ([9], p. 232)
or by direct computation it can be seen that the set of points where the
function f(z), in Theorem 2, has radial limit zero is a set of first category
on C. Since the R(0,)’s are such arbitrary sets (as long as they are metri-
cally large, closed and nowhere dense) we could have proved Theorem 2
not just for a set 7' of measure 2z but 7' could also have been chosen so
as to contain any set S (given in advance) of first category. Hence in this
sense Theorem 2 is best possible.

The authors’ original proof of Theorem 2 was a very long, involved and
highly computational potential-theoretic one. Afterwards the authors
noticed that the use of the highly ingenious device of MacLane ([6], p. 22)
of precomposing by the map w = 2z* made it possible to sweep away almost
all of their original difficulties.

We might also remark that while there seems to be no easy way of getting
Theorem 2 without this device one can still get, without this device, a very
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short and very intuitive proof of MacLane’s original theorem [6] on the
impossibility of extending the Fatou radial limit theorem to functions of
slow growth.

Proof of MacLane’s theorem. First one considers any entire function
f(z) which has asymptotic value one on the spiral » = 6@ 4 (0 <60 < )
and asymptotic value zero on the spiral r =0 4 1(0 <O < ) (by
Bagemihl and Seidel’s Tress theorem ([2], Theorem 1) such functions exist).
Now consider a gap series ¢(z) = Z,’f:, a; Z'n with the properties:

i) M(r, g(z)) grows so slowly that M(r, f(g(z))) << u(r),

ii) The gaps are so large that on a disjoint sequence of concentric
annuli 4, (approaching C) g¢(z) is approximately equal to c&,:’lz"n
and ¢g(A,) contains annuli B, of larger and larger widths (=outer
radius — inner radius) as » goes to infinity.

(That such gap series exist is easy to verify.)

Now &(z) = f(g(z)) will be of slow growth. Also %(z) has no radial
limits since the image of each radius under f cuts each spiral infinitely
many times.

Syracuse University
Syracuse, New York
US.A.
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