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I. INTRODUCTION

Throughout this paper we shall let D denote the open unit d.isk and
C denote the unit circumference.

First we recall two classical theorems in the theory of the boundary
behavior of functions bounded and analytic in D.

Xatou rad,i,al li,mit theorem, ([9], p. 45). If /(z) is bounded and analytic
irr ,/), then limf(reto\ exists for almost all @ in 10,2n).

?. and M. Rieszuniqueness theorem, ([9], p. 47).If /(z) is bounded and
a,nalytic in D and if lim f(re'o) : 0 for a set of @ of positive measure

irr. [0, 2n), then f(z) : 0.

It is well-known ([8], p. 208-209) that the above theorems also hold if
f(z) is meromorphic and of bounded characteristic. It also follows from
well-known results that if /(z) is normal in the sense of Lehto and \rirtanen
then the uniqueness theorem holds also (for the sake of completeness we
shall include this as Theorern 3). Tlie elliptic rnodular function shor,vs that
even for normal analvtie functions there is no Fatou radial limit theorem.

A natural question to ask is rryhether the h1'pothesis »/(z) is bounded»
irr the Fatou theorem can be u,eakened for analvtic functions to »XI(r,f)
(: max lf(r""'\l) grows slou'er than 'so and so'»?

o
Recently, after it had been an open question concerning a number of

authors (Ul, [4], [5]) for several )'ears, Maclane [6] shorred that no matter
how slowly an unbounded M(r,./) is required to grow the lim/(ret') -uy
fail to exist for all @ (i.e., there is no analog of the F*t;; rad.ial limit,
theorem for functions of slow growth). The main result of this paper is to
show that, no matter how slowly an unbounded M(r, f) is required to grow
tlre lim f(rete) may be equal to zero for a set of @ of measure 2n on

10,2n'i1r."., there is no analog of the R,iesz

of slow growth). The proof is based, to a

technique first used b.r. Maclane irr [ti].

uniqueness theorem for functions
large extent, on a variation of a,
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2. PROOF OF MAIN THEOREMS

Theorem 1. Let ,p(r),0 ( r 4 I be positive and monotone increasing

to f oo as r --> I. Then there exists a function 9(z), holornorphic in 'l),
with the properties:

i) lT U" g(r""') - - co for ahnost all @ in 10,2n) ,

ii) LI(r,g)<p(r) for 0(r{1.

Proof . Given any e (0 ( e < min{}, e(0)}) choose {."} u'it'h the

properties:

i) c,.lo,
ii) t:,, < p(0)f2 ,

q

iii) It,<o.
At*u pi"t {ä,,} with the properties;

i) å,.1 0,
q

ii) )0,,<t/to.

"* 
,tr"l be a Cantor set on C with the propert)' that 2n - 6,, <

rrreas J?(ö,,) 12n .

Let, F(a") : {z : reio : $ I r 1.. L, eio r J?(ö")}.

Also let {fi"} b" a sequence of negative numbers such that §" I - *.
Using Mergelvan's theorem f7l, u'e can find polvnomials 9"@) u'ith

the properties:

(Wlrerelt,,(z)istIrefunctiorrt}rateqtlalSZerofor,='<

t'<å,a"'€fr(ö,,)).)
lVe now choose a sequence of positi\re integers { 2, }

equals rt"

-.1- cc ) As

follor.vs:
Let M,,: max lg,(z)| (note M," is finite sinee g"(z) is a llollnomial)'

Choose a sequence of positivenumbers {g,}(S" f t) suchrhabp(g")> 2"il1,

(this is po**iblu since p(r) t + .o). Now pick a /,, such that, lg,@'\l <-

'p(lzl)l2 for 0 ( lzl '< 1 '

L 12,
f n:[-

().,, t



To see that it is possible to find such a sequerlce l, we note that all
t'hat is needed is to pick a .1, large enough that the disk {z: lzl { g,]
is mapped into the disk {ur : lwl < å} by vs:7)'u. Nou', since p(r) is

increasing, we have the following inequalities:

i) for izl S p^ :

Jg,.(r'")l < e"

1p(0)12"
< p(lzDll" "

ii) fbr s" < lzl< I:
lg,@,")1 < LtI"

l gt(s")f2"

4 7t(1zl)12" .

Nou' let, SG): l,fl,lr'^). 'I'his selies cotlvergcrrj lrr.' the \\'eierstrass

M-test, to afunctiorrttoto*orphicin D .ir."" f V,1"'^11 < å p(lz)lz":
p(lz!. lt, also follows that lg@)l <p(lz l) and iriir"" U1r, gi'-; ef"1 .

It remains now for us to show that Re g(z) has the radial Iimit - oo

on a set of measure 22.

Consider å(4") as a set, in the co-plane. Let S(d.) be the seb in the
z-plane which is the pre-image of .810"; under the map qs : si'n. It is

clear that meas (§(ä,,) n C) : mcas 181d,; n 0'1 and hence 2n - ö,, I
neas (§(ä,,) fi C) < zn.

c).r^
Let, T:U n3(ä,,) (nol,ct,hat I'cU).

Å: I n:k
Let l" be the set, of all unit, radii rvhich terminate at a point, of T.

Let I;o() 2) be the first, iutegerr I such thtr,t, 7 O (n S(ö")) -+ t).
Äo-L:&o

I)efine Mo as Mu: » Mi @o chosen greater than one in order that
j-t

LIu make sense).
a1

l{ory ch«rose i,, such that i I tlil > Jllo (this is possible siuce p; { - *) .

j:ko l',
l'or any L ) 0 pick å, such that l7'. . 0S > f .

Determine p* such that: 
r:a'+l

y*:T11{z:L - 0{< < lzl S ti
is not mapped into {w: lwl <$} b5r the mappings w : /'i fbr j : I,
,1,
-rt.trt!2.
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For any z € y* (recalling that the p;'s are negative) rve have:

{
Ii,e g(z) : I He g,1zli1

j:t
Ä.r-t [r

: I n" si@'i) * | Re slQti)
j-, t t:hu

k"tu
* | Re si@'i) + | t4e st(z)i)

j:[' + r .l:[r'l
[,Ärr

I Mo+ I (0;1 e;) * | (§i* ri) * I Res/zii)
j:ko j:k,+ I j:I",+r

Är[!@

I Mr+Z(tlj+sj) + | @i +r;) * I u; (since z€7)
j:,.o .l:ftl"1 t j:L, 1r

t-

4 XIo- llo- L -t 2"i
-ao

{ -L!e.
This implies that if 2,, e 7, then lim Re g@) : - co .

I 
z, i--' I

Now it remains only for us to prove that, meas T - 2n .

Consider a\y tl > 0. Since å ,, a l/lt), u'e can find an J such that
* n:l

| ö"<ri. Thus we have:

U-

meas ? l> meas ( n §(ä,) )
n: IV

!!

= meas [C - u (C - S(ö,,) )]
n:-lf

a

- meas Cr - meas t U (C - §(a,,))J

, ":^
) neas C - )- meas (C - S(a,) )

n-\
/_

) 2.-r - )' »,,
,r-_:r

) 2;t-11 .

Hence meas 7 : 2z which completes the proof'of 'Iheorem 1.

Clearly we can obtain an analog of Theorem I for harmonic functions
just by considering the harmonic function Re g(z).

Theorem 2. Let p(r) be a positive function such that p(r) | { «t
as r t I. Then there exists a nonconstant function /(z) holomorphic in D
u,ith the properties that:
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i) /(a) has radial limit zero at each point of T(c C) and meas T : 2n,

ii) M(r,f) < p(r) .

Proof . First, we suppose p({l) > l. In this case p(r) : log p(r) satisf ies
the hypothesis ofTheorem 1. Therefore by Theorem I there exists a function
g(z), holomorphic in D, such that the Re g(z) has radial limit - oo at
almost all points of C and M(r,g) <p(r). Heuce f("): re(o) 6u* raclial
limit zero at almost all points of C and M(r,f) < p(r).

If p,(0) { l, then there exists a positive number k such that fu .p(0)
;, I and hence by the above argument, we can find a function ä(z) such
that M(r,h) < h. p(r). Now clearly f(z): h(z)lk has the desired pro-
perties.

3. PROOF OF THEOREM 3

Theorem 3. LeL f(z) be a nornral meromorphic Iunction in D. lf
f@ has radial limit, zero on a set, T(c C) of positive measure, then
l@): {t

Proof . Since for normal functions the existence of a radial limit implies
the existence of an angular limib ([3], 'l'heorem Z) f(z) has angular limit
zero at each point of M. Hence by the angular uniqueness theorem of
Lusin and Priwalow ([9], p. 2L2) we have /(z) =: 0 .

4. REMARKS

Dither by the Lusin-Priwalou'r'ad.ial uniqueness theorem ([9], p. 232)
or by direct computation it can be seen that the set, of points where the
function f(z), ir"r Theorem 2, has radial limit zero is a set of first category
on C. Since the fi(d,,)'s are such arbitrar'1- sets (as long as they are metri-
cally large, closed and nou,here dense) u-e coulcl have proved Theorem 2

not just for a set, 7 of measure 2t, but 7 conld also have been chosen so

as to contain any set § (given in adyanee) of first category. Hence in this
sense Theorem 2 is best possible.

The authors' original proof of Theorern 2 u'as a ver.l' long, iuvolverl and
highly computational potential-theoretic orle. Afterwards the authors
noticed that the use of the highly ingenious device of Maclane (16), p. 22)
of precomposing by the map 111 : tt' made it p<lssible to srveep tr,rvay almost,
all of their original difficulties.

We might also remark that while there seems to be no easy \\ray of getting
Theorem 2 without thjs device one can still get, without this device, a, very
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short, and very intuitive proof of Macl,ane's original theorem [6] on the
impossibility of extending the X'atou radial limit theorem to functions of
slow growth.

Proof of Maclane's theorem. X'irst one considers any entire function

/(z) which has asymptotic value one on the spiral r : O + å(0 1@ < o)
and asymptotic value zero on the spiral r:@ + l(0 <O< q) (by

Bagemihl and Seidel's Tress theorem (12], Theorem 1) such functions exist,).

Now consider a gap series g(z) : II:, o,"n" with the properties:

i) M(r,g(z)) grows so slowly lhat, lll(r,f(g(z))) 1p(r),
ii) The gaps ere so large that on a disjoint sequence of concent'ric

annuli 1, (approaching C) g(z) is approximately equal to a,,,,zin

and g(A") contains annuli 8,, of larger and larger widths (:outer
radius - inner radius) as z, goes to infinity.

(That such gap series exist is easy to velify.)
Now h(z) : f(g(z)) will be of slow growth. Also h(z) has no radial

limits since the image of each radius under / cuts each spiral infinitel.v
many times.

Syracuse Universitl,
Syracuse, New York
U.S.A.
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