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Introduction

In this paper we study linear mappings in Banach spa,ce, especially

their deficiency index. My purpose is to prove that the deficiency index
of a mapping-valued function with complex variable is constant in a con-

nected subset of the complex plane when some natural continuity conditions

are valid. This problem has been solved before in some cases. (See Kras-
noselski [7], Krein-Krasnoselski-Milman [8], Kato [5], [6], Neubauer

[11].) x'urther, .we shall show by counter-examples that none of the assump-

tions that, have been made ca,n be omitted.
In Section l, the deficiency index and regularity region are defined and

the natural continuity conditions for a mapping-valued function a,re also

given. In section 2, complements and finite-dimensional manifolds are

examined. The auxiliary theorems given here are needed in the proof of
the main theorem. The main theorem is presented in Section 3. Section 4

deals with topological isomorphy and with two formal generalizations.

In Section 5 three examples are presented.

The present pa,per will deal with vector spaces, and scalars a,re assumed

to be complex numbers. The notations and definitions are the same as in
Taylor: Introduction to Functional Analysis [12]. The notation »Taylor

4.2.-JJ» refers to Theorem 4'2.-H in this text-book.

1. Regularity region

1.1. Let T be a linear mapping, the domain of which is a linear mani-

fold D in the Banach space B and the values of which are vectors in B.

We denote

T(P) : T-PI ,

where p is a complex number and 1 is the identical mapping. I{ow 7(p)
is a linear mapping with domain D. The regularitv region of 21 is said

to be the set of all the complex numbers p wilh rvhich ?(p) has a con-

tinuous inverse mapping. The regularit;'- region is knou'n to be an open

subset of the complex plane (Ta-vlor 5.1.-B). It will be denoted b"v the
symbol Z(T).
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The d,efi,ciency ,i,nder of the mapping 7 is defined as the dimension of
the quotient space BP(D), where f@ is the closure of the set
{Tm I r e D). (See Gohberg-Krein [3].) The abbreviation »d.ef» is used
for the deficiency index. Hence,

(1) def T : dim (BlT@'1) .

If the vector space Z is infinite-dimensional, we denote dim Z : co.
Accordingly every infinite-dimensional vector space has the same dimension
in this paper.

Krasnoselski l7l has proved the following theorem: The d,eficiency ind,e*
of the linear operator T-gtI i,n a compler Hilbert sgtace wi,th p e C ,i,s constant
i,n any connecteil, subset of the regulari,ty region of ?.

The result has subsequently been generalized to apply to linear operators
in a Banach space (Krein-Krasnoselski-Milman l8]).

1.2. In the following this theorem will be proved in a new way, at the
same time moderating the hypotheses. 'We examine a general mapping
family f(d with complex parameter p. fn order to find the natural
continuity conditions, the operator T(p) : T - pI defined above u'ill
first be examined.

According to the definition of the regularity region, T(p)-, exists and.
is continuous whenever p e Z(T).

Calculations show that
r@) T(p)-L : (T -qI) (T -pl)-r

: (r-pI) (T-pl)-r * (pI-qI) (T-stl)-r
: Ip * (p-q) (T-pI)-t ,

'rvhere p, q € Z(T), while Ip is the identical mapping in the range of
?fu0). Since I, and (T-gtt1-r are continuous, ?(q) Q@)-, is continuous,
too. Furthermore,

llr@) r(d-' - /,ll : il@-q) (r-pl)-,ll
: lp-qlllr(p)-'ll.

On the basis of the above, the mapping family f @) : T -pI with p e Zg)
can be concluded to satisf;r the following continuity conditions:
(a) T(p)-, exists and is continuous rrhenever p e Z(T) ,

b) f (il T(p)-, is continuous lr-henever ?, g e Zq) ,

(c) lim7(q)T(p)-': T(p)T(p)-': Io in the sense of uorm conver-
q+P

gence, that is,

lim ll"(q) T(p)-'- lrli : 0 r.vhenever p e Z(f) .
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1.3. Let B and Bo b" Banach spaces, D a linear manifold i.t Bo,

Z an open subset of the complex plane and T(p) : D --> B a linear mapping
whenever p e Z. T(p) can be interpreted to be a function of the parameter
p withdomain Z anditsrangeasubsetof theset {§:D-->Bl§ isa
linear mapping). This function of the mapping value is called a mappi,ng

fami,ly. The same symbol ?(10) has been used here both for the function
and for its value. This is unlikely to create confusion, since the expression
»mapping family» rvill precede 7(p) whenever the function of the parameter
p is meant. W-hen p e Z, 7(p) refers to a linear mapping with domain D.

This mapping family is said to have the progterty E if
(a) T(p)-' exists and is continuous u'henever p e Z ,

(b) to each point p e Z there corresponds a positive number cl such
Lhat, qe Z and T(q)T(p)-'iscontinuouswhenever qe.C and lp-ql<d,
(c) lim ll?(q) T(p)-' - Ioll:0 whenevet p e Z and Io: T(p)T(p)-1 is

q+p

the identical mapping in the range of T(p).
If the mapping family T(p) has the property Z, then its domain Z

is called the regular'i,ty reg'i,on of the mapping fam:ily T(p).
An example of a mapping family with the property .O is, as we have

seen, the operator f@):T-pI, where ? is a linear mapping with its
domain and range both in the same Banach space and the complex para-
meter p an element of the regularit5r region of T. The regularity region
of the mapping family T -pI is the same as that of the mapping ?.

1.4. A general mapping familv ?(p) with the property E is studied
in the following. The deficiencv index of the mapping 7(p) will be proved
to be constant rvhen p is an element in a connected subset of the regularity
region of the mapping family 7(p).

It will also be proved b1' means of counter-examples that the a,ssump-

tions associated with the propertv E eannot be reduced. Continuitl- of the
mapping T(p)-' is found to be indispensable. The assumption (c) cannot
be replaced b;,'weak conYergenee, that is limT(q) T(p)-'*: e' lvhenever

r is a vector in the range of T(1t). It ll'ill'o-låo be shorrn that' the Banach
space cannot be replaced by a general topological vector space. The assump-
tion (b) is contained in the assumption (c), but it lias been separately,'

written for the sake of claritv.

1.5. An auxiliary theorem 'n'ill first be proved. To a'i'oid recurrent,
repetition of the same a,ssumptions. the following notations shall be agreed:

B and Bo are Banach spaces;

T(p) is a mapping familv with the propertv -E;

Z is the regularity region of the mapping famil"v T(p);
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D is a linear manifold in Bo, and D + {A};
when p e Z, lhen T(p): D ---> B is a linear mapping;
Ro : {T(p)r I r e D} is the range of. T(p).
Theorem 1. When p e Z, there are posi,t'iue numbers d, q,nd' m such

thut the mappi,ngs T@) f @)-' and, T(p) ll(q)-' do ex'i,st,

(2) llr@ r@)-'ll < 2 , llr(p) r@)-'ll S 2

and,

(3) lr@al 2 mlal ,

wheneuer qeC,lp-ql<il, and, AeD.
Proof. Since the mapping family T(p) has the property .E and since

p e Z, such positive number d, exists lhat q e Z and. f @) T(p)-' exists
and is continuous whenever q e C and lp-ql < dr. According to the
assumption (c) of the property E there exists a positive number d, such
rhat llT(q) T(p)-'- /rll < $ whenever q e C and lp-r1l < d,r.

We denote d : min (dr, dr). fn the following q is an elemelnt in Z
lvith lp-ql < d.

Now llr@) r@)-11 S ll"(q) r(p)-'- /,ll + ll1,ll < å + r ,

and for every vectot r e Rp,

lr@) r@)-'rl: \r@) T(p)-' - I) r I rl
>- lrl - llr@ r(d-' - I,l lrl ä ålrl .

It follov's from the above inequalities that

llr@r@)*'ll<2,
the mapping (?@) T(p1-t1-t : f @) T(q)-' exists, and ll7(10) f @)-'il S 2.

(See Taylor 3.1.-8.)
Let y be an arbitrary element in D. We denote

r:T(p)y or y:T(p)-tr.
By using the inequalities

lsl : lr(d-, T(t)y'. !,,,T(p)-rll lr@)yi
and

lr@) r@)-'a:i Z älri ,

rve obtain

V@)yl : lT(q) T(p)-'rl >- Lt,rl : ilr(dyl
>- *(lV@)-'ll-') Ivl .

We denote m: illT(p)-rll-r.
Now lf@)ylZmlal whenever AeD and lp-ql<d. The theorem
is proved.
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2. Auxiliary theorems

2.1. Linear manifolds and their complements will be discussed in the
following. The theorems presented are primarily auxiliary theorems re-
quired for later proofs. Theorem 4 is the same &s Exercise VI.9.f6. in the
textbook of Dunford-Schwartz [2].

Two closed linear manifolds M and N in the Banach space B are

saidtobecomplementsif MnN:{6} and. M +nf :.B. NoweYery
vector z in B canbeuniquelypresentedintheform z:r*y wiLh
r e M and y €.0/ (Taylor: p. 240). We define the operator P by vT iting
Pz : r. The domain of P is B and the range is M. We call the rnapping
P a projection of B onto M, and we denote p:proj (M,N).

The following theorem deals with some important properties of a pro-
jection (Taylor: pp. 241-242):

Theorem 2. If the closed, linear manifolils M ancl N in the Banach

s,pace B are complements and, i,f P : proj (M, N), then' P i,s cr, conti,nuous

linear mappting, Pz : P,

CLNCI

M-P(B)-{PzlzeB}

JV P-'{0}: {ye BlPy -0}
In a Hilbert space every closed linear manifold has a complement

(Taylor 4.82.-A). This does not hold for a general Banach spa,ce. Muray
[10] has constructed a closed linear manifold which has no complements.

Since a complement does not alx,ays exist for a closed. linear manifold, we

cannot define the deficiency index of a lintar mapping ? with the domain

D as the dimension of a complement of 7(D).

2.2. When M and -l[ are closed linear manifolds, fuI + ]i is not
necessarily closed, not even in a Hilbert sp&ce. (See Halmos [4]: pp. 28-29.)
In the following theorem we present a condition under which M + N
is closed.

Theorem 3. If M and, N q,re closed, linear munifold,s in the Banach

sgtace B, then the followi,ng two cond,itiouls dre equi,aal,ent:

(a\ MnN:{A} and, M+N'i,sclosed,,
(b) there eri,sts a constant lt>0 such that lr*al2lt wheneaer re M,
yeN and, lyl:L.

Proof. We suppose, first, that lr*yl>-k> 0 rvhenever re M,
y € -l[ and lAl : t. We proceed to show t'hat XI n ]tr : {0} and that
M+N isclosed.

I1
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If there exists a, vector z e YI n 
^' 

and z + A, then
ry

-, , e l['
12
l"l

L

- 
>rk.

lzli-I*tl

n i\' no

ry',:- € i\r and -lz I lzl
ln I i"l

=- 1. Ifor,r,, acicordirg to the assumption,
ry

I
I-irllry)

l"i

zz
This is impossible for ; + ;l - 0. Since there is in M

lzi ,z

vector differing from zero, M n I{: {0}.
Let, zo be an arbitrary element, in M I N. According to the definition

of a cluster point there exists a vector sequence {""}c II + N such
that lim z^ : sr. (W" use the following brief notations: {2"} :
{z*r,n: L,2,3,...}, and lim z^:limzn.) Since en e M + -n'r, it can be

presented in the form zn : no a"i,* *ith r^ e M and, y, e N. \tr'hen

lA" - A-17 0, then, according to the assumption

frn-fr* U"-!*
ly"-U*!,' iu*-'U*',

= |yn-a*lk.
\Ve find that for all r'alues of n and" w,

(1) \u" - y*i
1

al

- 
fumt

Since {2"} is a convergent sequence, it is a Cauchy sequence. From the
inequality (4) it follows that {y"} also is a Cauchy sequence. Since B is
a Banach space, lirn y^ : yo exists. On the other hand t ftn : ?n - Uo

and hence, lim r, - zo yo. Since M and. -l[ are closed and. {r"} c nI ,

{y"} c -tr/, necessarily zo - Uoe M und Uoe N. Now ,4y' f -l[ contains
its arbitrary cluster point zo. Accordingly, M + -try' is closed.

We now suppose f}rat M l-l -ly' : {0} and lhat M f -ltr is closed. \\-e
prove that, a positive constant /c exists such that lr * yl2 fu whener.er
re M, y€-l[ and lAi-l.

I{ow JI,I f .tr/ is a Banach space (Taylor 3.I3.-B). The manifolds ,&/

and I'r are complements in the Banach space M + N, \\'e denote
p: proj (N,LW). According to Theorem 2, the projection P is a con-
tinuous linear mapping.

fn order to prove the claim we assume the contrar5r. If the claim is not
true, such vector sequences {*"} c M and {y"} c.l[ would exist that
lim lr" -f yÅ :0 and ly"l : 1 for every value of z' Since P is con-
tinuous and P(r, * y,): Un, obviously limy,: P (lim(r" * y")) :0.
This is impossible for ly"l : I (n : 1,2,3, . ..). Since the contradiction
is wrong, the claim is true. This completes the proof.

l2



Juue Ttnx,t"nr, Deficiency inclices of linear mapping

Theorem 4. Supgtosi,ng M i,s a cl'osed, li,near manifold, in the Banach
space B, anil, N isafi,ni,te-ili,mensi,onullinearmani,fold,i,n, B, then M + N
is closed,.

Proof. Now M n N is a linear manifold in the finite-dimensional
vector space -Iy'. Hence there exists a linear manifold llo i, -l[ such that
Non(MnID:{0} and Nol(MnN) :.ly'. Furthermore ly'lM:
No-|M and. I{onM:{O}. If lfo:{0} or M+N:M, there is
nothing to prove.

According to the above we can assume that M n N : t0) and
dim År > 0. The claim is proved. by using Theorem 3. Because -l[ is
finite-dimensional, -If is closed (Taylor 3.12.-C). The existence of a
positive constant lt meeting the following condition must be shov,n:

ir-fyl2k whenever xe M,yeN and. lyl:1.
To prove this, we denote by A the set Q:{y €Ifllyl : l}. The

function ä is defined by the formula

n e ff) for every Yectcr y e Q

Now ä is continuous at every point of Q (Taylor: p. 72). Moreover, Q
is a closed and bounded subset in the finite-dimensionaln ormed vecior
space -nf. Consequently there exists a vector Uo e Q v'ith which h(yo)
is the smallest value of h, that is, h(y) > h(yo) whenever y e Q (Taylor:
p. 100).

It h(yo): 0, it rvould follow t]r'at yo is a cluster point of M (Taylor:
p. 73). According to the assumption .l/ is closed, and yo rvould conse-
quently be an element of M. This is impossible for yo €rY, lyol : I and
M n I{ : {0}. Hence necessarily h(yi > 0. We denote k : h(yo).

According to the definition of ä,

ly*ri>h(a)>h(y,):k>0
whenever u e M, A e N and 'ty'i: 1. This completes the proof.

2.3. Theorem 5. If M is a closed, li,near mani,fold, i,n the Banach
sltace B and, the quotient space Bf M of M i,s fi,nite-dimensional,, then the

mani,folil, M hasacomplement I{, and, dim-lfl:dimBlM.
Proof. Since BIM is finite-dimensional, it has a finite basis. Conse-

quently there exist in Blll[ linearly independent e]ements rr* M,
rr! M,...2un{ M and. every element of BIM can be presented as

their linear combination. The integer ra equals the dimension of BlM.
First, the vectors fr1,fr2t...,frn are proved to be linearly independent.

If pr, pz, . . . , pn are complex numbers and

13

hr(y) - inf {ly -r "li

'P#:t * Pztz + ! p,rn - 0,
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then

pt@t* ilI) + pz@z* ilI) +...+ p,(r^ * l[):A + A.
Since nr * M, rz * M, . . ., fr, * M are linearly independent, in BlM,
the numbers pr, ?2, . . . , pn equal zero.

The linear manifold generated hy the vectors r,1. fi2t .. ., r, is denoted
by Å', that is,

N : {pr*, * pzrz+ . . . { por,l ?t, p2, . . ., p* e C} .

The vectors fr11 fr2t . . . , trn form a basis of -l[ and hence the dimension
of -l[ is za. Being finite-dimensional, -ly' is closed. We show now that
-l[ isacomplement,of M, thatis, MnI{:{0} and M +X:8.

Let r be an arbitrary vector in M n N. Since r e l{, r can be
presented in the form r.:prfrr*pzrz+..'*pnrn, where ?r,p2,...,
p"eO. On the other hand, r e M, and therefore

pt@rl M) +pz@z* M) +.'.+ p^(r** M): n + M:i + U .

Since frt*M,rzlM,...,r^*M &re linearly independent, ?r:
?z:... : p": 0. Hence M n N :{6}.

X'inally an arbitrary vector z in B is chosen. Since z + M eBlll ,

it follows from the properties of the basis that there exist, complex numbers

Pt, Pzr''', ?,, such t'hat

z + M : ?t(h+ M) * pz@z+ lW) + . . . * p,(r^ + lW) .

We denote

n : p&r * pzrz+ . . . { pn:,-n.

Now r€-l[ and z-ue M. Hence a isanelement,in J1 -i-§. This
completes the proof.

Theorem 6. Let M be a closed,linear mani,fold, i,n tlte Bcmctch space B
and, let the quotient space BIM be i,nfinite-ili,mensi,onal. Ior euery posi,tiue
'i,nteger n there etists a linear mani,fold, Å- such that M n N : {0},
dim lv- : n, and, fuI + N ,is closed,.

Proof. Since dim BIM : a, Bf M has linearly independent elements

h* M,nz* M,...,rnf M for every positive integer z. We denote
by lf the manifold generated by n11fr2t...,nn. Now MnI{:{0}
and dim I{ : n. This can be proved as for Theorem 5 above. According
to Theorem 4, M f -l/ is closed. This completes the proof.

Theorem 7. Let M be a closed,linear mani,fuld and, N a fi,ni,te-d,imen-
sional li,near mani,fold, i,n the Banach space B.
(") If N n M: {0}, then dim -l[ { dim BlM.
(b) If n'r ,is a com,plement of M, then dim.lfl : dim BlM.
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Proof. Since N isfinite-dimensional, N hasabasis fr11 n2t...,frn'
If MnN:{0}, the elements h*M,rz*M,..-,n^*M &re

obviously linearly independent in BlM, and di:r,- BIM 2 n : dim Är'

If. Mnff :{0} and M *Å-:,B, the elements nr* M, nz* M,..',
r,* M form a basis of BlM, and dimN:dim BlM. This completes

the proof.

3. Proot of the main theorem

3.1. In this section we use the same notations as in section l. First, we

prove two auxiliary theorems. Then we shall present the main theorem.

Theorem 8. It i,s suptgtosed that I{ i,s a closed, l,i,near manifol'd' i'n the

Banach sltace B, p eZ, 4 n ]V-: {0} and, Ro f N is closed' There i's

nowanumber d,>0 suchthat qez, -EqnItI:{6} and, EralT ds

closed, whenel)er q e C and, \p-ql < d-

Proof. If -l[ : {0}, there is nothing to prove. It is now supposed t'hat

.l[ contains non-zero vectors.
According to Theorem I there is a number h) 0 such thah q E Z,

W@)f@)-rll < 2 and, llT(p)T(q)-tll 5 2 whenever lp-q', ltlr.
Since & n lf: {0} and E, + I' is closed, there is according to

Theorem 3 a numbet tc> 0 such that if re Rp, a€N and lct'l:|,
then l* * a12 k. I{ow k < l, because for every a € Är u'ith lal: I
necessarily k < l0 * al : 1.

fn the following it will be shou'n that lo -f yl Zf *n",,".r," t y e Rq,

a e I{, loi : I and' lp-ql is sufficientl.v- small.

ft, is agreed that q € C and |P-qt, <dt.
If y Q. Rr, 1y12 2, a, € 

^r 
and ln - 1, then

We no\r suppose that U e R,

or

Now ne Rp and

a - r@) r@)-t n

lnfvk>z(5)

i*i < lV@) r@)-'ll iyi < 4
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Furthermore, A - ?@) f@)-L n - x * g(q) f@)-I - Ir) *
and iy*al - lr*a { V@) f (p)-1 - Io) *l

If o € fr,' and i"l - 1, then lr*ai > k and

(6) iy*al > k - li)rz) T(p)-l _ rnll .

Since the mapping family r @) has the property E ,

limllf@f(il-,-,rtl-0.

Hence there is a ,o*Jli d,20 such ttrat llr @) T (p)-,

whenever qe,Z and. lp-ql < rJr. \'[e denote d: min (dr,dr). From the
inequalities (5), (6) and (7) it follou-s that ly*al>_ $fu whenever y e R*
ae N, lol : t and lp-ql<d.

I{ow we must prove that E, n }- : {0} ana that E, f -l/ is closed
whenever \p-ql < d,. We choose a fixed element g e C with lp-qi < d.
Let yo be an arbitrary element of Er. Now there is a vector sequence
{y"} irl "8, such that lim Un : Uo. Since y, e Rq for every integer n,
iA" * al Z äk whenever o € iY and lal : I. Hence lyo*al :
lim ly"lal >- !k. As /o e -8, is arbitrarv, it follows from the above that

k
iy*ai>7 whenever ye Rq, o€-]'and lol :I. AccordingtoTheorem

3, Ern i'r: {0}, and En * -l[ is closed. The theorem is proved.

3.2. Theorem g. If p e Z and, the manifolil, R, has a complement )i,
there er,i,sts a number d > 0 such that N i,s a compl,ement of R, wheneuer
q€C o,nd, \p-ql<d.

Proof. Since .Ernff:{O} and 4+-l[ :B is closed,there exists,
according to the preceding theorem, a number da> O such that q e Z,
&nlf :{0} and Eof -l/ is closed ufienever qe C and, lp_,ql<dr..

We choose a fixed element, q e Z wilh lq-pl < dr. We now suppose
that fr, f -l[ is different from B, in other words, & + ff is a pråper
subset of B. This is proved to be impossible if lp-ql is sufficienfly small.

The following Riesz's lemma is first used (Taylor 3.12.-E): If M i,s
a closed,li,near manifold, of the Banach space B and, M + B, then for euery
realnumber t u:i,th 0<r<l thereerists y€B suchthat lUl:t and
ly*rl>t wheneuer re M.

k

-Ioll .Tor
(i)
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According to this lemma there exists U, e B such that larl : I and

lyo * yl >- ä whenever y e E, a N. Let P be the projection with
range .8, and null space -ly', in other words,

P : proj (Eo, N).

It follows from Theorem 2 that P is a continuous linear mapping. Since

UoeB:Rr+N,
Yo:no+a

with ro: Pyo e Rn and o € -l[. I{ow there exists a vector sequence

{r"} c Ro such that lim x, : vr. Being an element of Rp, *n can be
represented in the form

r": T(P) z" with z* e D .

Since T(q) z" e R, and T(q) z" * a e E, + iV,

* < lAo - f@) z" - al { iyo - t:. - crl * lr" - f@) zÅ .

Now lim lAo-r"-al : lAo-ro-al : 0 and hence lyo-r"-al < | v'hen
n2nr.
Hence

(8) lT(q)2"-*"12[ when n2nr.
On the other hand, z": T(p)-' r, and

T(g) z" - ?)n : T(q) T(p)-' ro - Ior,,

: g@) r(p)-' - I) *^.

The projection P is continuous and no: PUo. Hence,

lrrl s llPll lvol: llPll.

Since lim fro : fr,, there exists an integer rz, such that

(e) irÅ<lrol *r<llPll +l
whenever nZnz,

Since the mapping family 7(p) has the propert -v E, it follows that

Iim il"(q) T(p)-'- -rpll : 0 .

Hence there exists a number dr) 0 such that,

(10) lr(il r@)-, - /,ll . I
' 8flPll + 1)

whenever q€C and lp-ql<dr.

t7
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If nou' lp-qi < dr, it follo.ws from the inequalities (8), (9) and (10) that

lT(q) z" - *"12 ! whenever n )- nt

and

lT(q) z" - *"', { llf @) f (p)-t - I)l lr"l
t1< 

S(tPPll + 1) 
(llPll + I) : T

whenever n 2 nr.
Since this is impossible, Ro * -l[ cannot be a proper subset of B u,hen

\p-qi < d : min (dr, dr) .

Hence it, follows from the assumptions q € C and lp-qi < d, tlnat

Erniv:{o} and &+r-:fi,
that is, Ä' is a complement of Rr. The theorem is proved.

3.3. Theorem 10. If G is a,% open conruected, subset of the regularity
regi,on of the mappi,ng fatrui,ly T(p), then def T(p) i,s the same for euery
peG.

3.4. Proof. As a connected set, G is nonvacuous. \{:e examine the
deficiency index of the mappin1 T(p) u,ith p € G. There are two possi-
bilities:
L def T(p): dim BlRo: co for every element 1t e G ,

2. there exists pe G such that dimBlBr:m 1@.
In the former case there is nothing to prove.

It is now supposed that there exists an element p in G u,'ith dim B lRp:
nx < @- fn the following the element p and the integer ?n are kept fixed.
We will prove that, for everv element qe}, dimBfBr:m, that is,
def T(q) : def T(p).

Let n:{q€GIdimBlRo:m). \Ve shou'that G:f. Since G
is open and connected, then G : X if the follou'ing conditions are true:
l. -[' is nonvacuous and open,
2. it always follows from the assumptions {q,} c -F and lim q, : q € G
that ge ?.

3.5. X'irstly, I + 0 because peE. fnordertoprovethat -F isopen,
we chooseanarbitraryelement q in n. Now q€G and dimBfBr:m.
Since the quotient space of Eo is finite-dimensional then, according to
Tlreorem 5, -8, has a complement .l[, and dim N : fit. Now, according
to Theorem 9, there exists a number dr.) 0 such that År is a complement
of E" whenever s € C and lq-sl <dr. Since G is open and q e G,

18
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there exists a number d, ) 0 such that {s
d.enote

lq-ri < dr\ c G. \Ye

d : dim (dr, dr) .

When s € C and lq-sl < d, it follows from the above that s € G, -n'r

is a complement of .8", and dimBlR":dim N:m. Hence {s€Cl
iq-sl < dlc ?. Since q is an arbitrary element of 7, X is open.

3.6. It is secondly supposed lhat {q"}c -E and limq": Qe G. We

have now to show that q € .tr'. At first, v'e prove that the quotient space

BlR, is finite-dimensional.
We make contrahypothesis: dim BiE, : m.

According to Theorem 6 there exists a linear manifold -If so that
,8, n ltr : {0}, E, + ltr is closed and dim -l[ : m*L According to
Theorem 8 there existsanumber d>O suchthat E"nltr:{O} and

E" + Itr is closed whenever lq.-sl < d. On the basis of Theorem 7 it is

seen that dim BlR" 2 mll when \,q-sl I d,' Since lim lq"-qtt : 0'

necessarily lq"-ql < d, and dim Bf Ro.2 m* I for a sufficiently large

value of the integer n. This is impossible since q" e I and dim Bf Er^: m

(n:1,2,3,...). Since BlRo cannot be infinite-dimensional, it must

be finite-dimensional.
We denote k : dim BlEo and prove that m: k. According to Theo-

rem 5, E, has a complement N and dimÄ':dim BlRq:k. Now,

according to Theorem 9, there exists a number d > 0 such that -M is
a complement of .8" whenever s € C and lq-si < d. Hence dim B/8" :
dim -l[ : k for every element s € C witlr" iq-sl < d. Since limlq"-ql:o
there is, for a sufficiently large value of n, iQ^_1 < d and dim BlEr^: lc.

On the other hand, dim Bfhr,:nt, for every value of the integern
because q. e F. From the above it follor.vs tlnat m: fr. Now q e G and'

dim BlR,: n1. Hence q. e I.
We have proved that ? : G and hence, for every element q e G,

def T(q): def T(p): *, and the theorem is thus proved.

4. Comments

4.1. We firstly define the concept, of topological isomorphism, and then

we present two theorems which deal *'ith -R, and BlRo. trVe use here

same notations &s in Section 1.

Two normed vector spaces 7* and Vz are said' to be toltologi'cally
,i,somorphi,c if there is a continuous linear mapping T : V1-+ 7, such that

eci



2A Ann. Åcacl. Sci. tr'ennicre A. I. 430

T(Yr) : Vz, if the inverse mapping T-7: Vz-+ 7, exists and if ?-1 is
continuous and linear. (Taylor: p. S5).

Topological isomorphism is denoted by V, = Yr. ft follows from the
properties of continuous mappings that topological isomorphism is an
equivalence relation, whereby is understood that

V - V whenever Z is a normed vector spa,ce;

whenever V, = V, holds, so does V, = Vr;
rvheneyer V, = Y, and V2 - Z, holds, so does V, - V, .

4.2. Theorem 17. Let G be an open connecteil, subset of the regulari,ty
regi,on of the mapping farni,ly f (d. If the mani,folil, Ro has the complement
I{, for eaery pe G then .N', =X, and, BlEo=BlR, wheneaer p,qe G.

Proof. The proof is similar to that of Theorem 10. We choose a fixed
element r€G and denote I:{p €Glnfr:Å',}.

Since r eX,P t' fr. Let p be an arbitrary element of -F'. According
to Theorem g there is a number dt) 0 such that .l/, is a complement
of Eo whenever q € G and ip-qi < d,r. We use the following theorem:
If the closed, li,near mani,fold,s M and, I{ are complements in the Banach
space B, then N and, BIM are topologi,cally isomorgthic. (See:Liusternik-
Sobolev [9]: p. 58).

Ifence I{, - Bf Rn and Nn = BlRr. Since topological isomorphism
is an equivalence relation and itr, : l/,, it follows that Ä,', - Är" for
every q€G with lp-ql<dr. Since G isopen and p €G, thereexists
a number dr) 0 such that g€G whenever lp-ql <d,. \'hen qe C
and lp-ql ( min (dt, dz), then q € -F', and hence -t' is open.

ft is now supposed tlnat {p"} C -F' and lim p, : q e G. It will be shov-n
that qe F. Since qe Gc Z there exists, accofding to Theorem g, a
number d > 0 such that t/, i. a complement of B, whenever p e C
and iq-pl < d. Since lim ?n: g, there is lp"-ql ( d, provided that
the values of n ate sufficientlv large. Hence,

\, = B,'Rr, arrd )i, = Bf Rr,

for sufficiently large values of n. Since p, €-F, and Nooa ff,, there is

^\ = If, ar'd q € ?. Since G is open and connected, it follows from the
above that F : G. Hence l/, = i[,, i[, - Är, and N, = I{o when-
ever p, q e G. Since If o = BlRo and ){, = Bf E* also BlEo - BlEo.
This completes the proof.

,4.3. Theorem 12. If G

region Z, the man,ifolds Rp

P,QEG.

is cln ope?L co'llnected subset ,f the regxelari,ty
end Rq el"e topologically ,isomorphic wh,eneaer
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Proof. When p e Z, the domain of. T1p1-r is ,8, and the range of
T(p)-' is D. Hence the domain of T(q)T(p)-1 is -8, and the range of
T@)f@)-L is Rq. X'urthermore, the inverse mapping of T(q)T(p)-t is
T@)f @)-'. If we succeed in proving that f @)f (p)-L is continuous when-
evet p, q e G, it follows lhab Ro and -8, are topologically isomorphic,
according to the definition of topological isomorphism.

We choose a fixed element r e G and denote E:{peGlT(r)T(p)-L
and T(p)T(r)-r are continuous) .

The set "E' is nonvacuous because r € -n'.
In order to prove that the set -E is open, we examine an arbitrary

element p in I. According to Theorem I there is a positive number
dr) 0 such that f @)f @)-' and T(p)T(q)-r are continuous whenever
q e C and lp-ql < dr. Since G is open, there is a positive number
dr) 0 such that q € G whenever lp-ql < dr. We denote

da : min (dr, dr) .

When lp-ql < dr, lhe mappings

T(q) T(r)-1 : T(q) T(p)-'T(p) ?(r)-L

and

T(r) T(q)'r : T(r) T(p)-'T(p) T(q)-'

are continuous becausethey are composite mappings of continuous mappings.
Since p is an arbitrary element of -ä' and since q € l' whenever lp-ql<dr,
"F is open.

It is finally assumed that' {p"} c I' and limp^:qe G. We prove
that q.e?. Since qec, there is, according to Theorem I, a positive
number d with which T@)f @)-' and T(q)T(p)-L are continuous 'when-

eyer p e Z and lq-pl < d. Consequently, T(p")T(q)-L and T(q)T(p")-L
are continuous for sufficiently large values of ra. I{ow p^ € -t' for every
integer n, and hence T(p")T(r)-L and T(r)T(p")-L arc continuous. By
forming composite mappings, we find that T(q)T(r)-r and T(r)T(q)-L
are continuous, and hence g € .F,.

X'rom the above it follows that F : G. Consequently, whenever
g, Q e G, lhe mappings

and"

r@) T(p)-' : r@) T(r)-t T(r) r(p)-'

r@) T(q)-' : r@) Tt )-r T(r) T(,r)-'

are continuous. Hence the manifolds Rp and -8, are topologically iso-
morphic. The theorem is proved.

2L
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4.4. Before proceeding to counter-examples, we shall examine some
formal generalizations.

So far we have dealt with Banach spaces. On the other hand, eyery
normed vector space 7 can be completed to a Banach space Bn so that
V c B, and that the closure of 7 in B, is Br. (Taylor: pp. 98-99.)

When D and V arenormedvectorspa,cesand T:D--> 7 isalinear
mapping, we define

def T : dim?(r)': dim {f ey'lf(y):0 whenever y eT(D)},

where 7' is the dual space of. Y.
Let' B, be the Banach space obtained by completing V. Since the

dual spaces of V and Br can be identified (Taylor 3.13.-A), since

T(D)' - T(D)' (Taylor: p. 225) and since dim 1"1D1"1 : dim (BrF@)\
(Taylor: p. 227),

def T : dim ?(D)' : dim EO1" : dim Bt IT(D) ,

where f1A) i* the closure of T(D) in the Banach space Br.
In other words, when we change the value space of the mapping 7

to the Banach space Br, the deficiency index of T remains unchanged.
Hence Theorem t0 is still true if the value space of the mapping family
T(p) wrlh the property E is a normed linear space and not a Banach space.

4.5. A second generalization can be made in respect of the parameter p.
We have assumed that p is an element of an open set in the complex plane.
This can be replaced by the assumption: p is an element in a metric spa,ce.

If we allow the parameter p to be an element of an open set Z in lhe
metric space ä, then the theorems presented and their proofs are true,
if we change some of the notations as follows: The set Z is an open subset
in the metric space ä. The letters ?, Q, r and s with or without sub-
indexes are symbols of elements of the metric space ä. n'urthermore, we
write instead of the absolute value lp-ql the distance d(p, q) of the
elements p and q.

5. Counter-examples

5.1. Example 1. In the first example it will be shown that in the pro-
pefiy E all continuity assumptions cannot be omitted if we want Theorem
10 to be true, not even in the case ttlat T(p) : T-pI.

We examine the Banach space

=;1-k--l
lL - { (r*) I (r*) is a sequence of complex numbers, and
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It is well-known that 11 is a Banach space when

p(,s,.) + q(tx) : (psk + qth) and l(s*)l : i l"ol ,
k:1

where p,qe C and (sr), (fr,) €11 (cf. Taylor: pp. 88-89).
We denote by ea the sequence in which the k:th term is unity and

the others ate zeto. Now er e 11, le1,l: 1, and when r: (sÅ) €11,

?: - )srer: lim Zt*nr.
k-L n-->,rc k-L

We define a mapping L: 11 -> lL b), the formula

L(; s*er,) - 2 ,rnr*, \Yith (s*) € 11 .
k:L k:L

(11)

Now

1I1) srer)i : I*f rrrr*,1 :nf lrul .

Hence, Lm e lL and llnl : lrl ryhenever r €11. The mapping L is
obviously linear and, since it is bounded, it is continuous.

\4/e set

T(P) : L-PI
and

Z : tp e C ' T1p1-t exists and is continuous) .

When r : (su) € 11, then T(p) r: j {r*-, - gsu)eo with so : 0.

Now ?(p)r : O if and only ,t ,rill ?s* :0 for all lc : I,2,3, . . . .

Since so : 0, we obtain sr : 0, s2 : 0, . . ., and hence it follows from
the assumption T(p)r :6 that r :6. Consequently T(p)-, exists
whenever p e C.

Secondly, we prove that

z:tp eclirl < rlu {p e c llet > r}.
\4llren peC and lpl<t, then V@)*l:ttlru-Wl>ll"l-ip*i
> (l - lpD lrl whenever r e lL . Hence T(p)-L is continuous and)

llf@)-'ll < (1 - ipl)-t. According to Theorem I0, def T(p): def f(0
when lpl < l. On the other hand,

Ro : f(0) (r1) : {Lr I r ell)

- {å sn€n+ti (s*) € /'}

- { (t*) e lL Ifr:0}.
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The manifold Å-o

hence
- { aet I a e C) is obviouslv a, complement of Ru, and"

W'hen gteC and. lpl>r, tnen (L-7tI)-r:-*å,n"L^, 1L-pI1-r
is continuous, and the range of L - p/ is the whole Banach space lt
(cf. Taylor 5.2.-C). Hence p € Z and def T(p) : O .

Now {pellwl<r or lpl >r}cz.rf tpeclhi :4nz*O,
Z wotld be a connected subset of C and hence, according to Theorem I0,
def T(p) would be constant wlrcn p e Z. Since this is not lrae, p e. Z
if. peC and lpl:|.

Now {p e C lf@)-' exists}: f. If all continuity conditions are
omitted then we can study the mapping family f@) : L - pI .rvith

p e C. But def T(p) is not constant in the complex plane C since

def r(n\ : [o when lpl> l ,\4'' ll when lp. < t .

5.2. Example 2. We now show by means of an example:
If in the properby E of the mapping famil;' T(p) the assumption

Iim llr(q) T(p)-, - /rll : 0

is replaced by the weaker assumption limT(q)T(p)-rn: n u'henever

r € Ro, the deficiency index will not ,l#;'. be constant in a connected.
subset of the regularity region.

Let B:11. We define the mapping f@):lL--->17 as follows:

(12) Q t/ W,så - §r-r ) en ,

Co

§Lk:L

culation Srields

12{Wlse - §r*,1

s*an € ,1 and so - 0. Direct cäl-
@

§
Z-l

Ic:1

:
le :l

@

Ic:1

mapping and its domain is the whole

=
\i*i u,,henever
linear, T(p) i.
Banach space lt

r,ell, peC and
a continuous linear
fn particular,
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\Ye first notice that T (A) - - L, u'here L is the
in Example 1. (See the equations (I1) and (12).) Hence,
is continuous, and def T (0) - def L - 1.

Secondly, the mapping f (p) is exarnined with 0

n- (s*) elr and T(p)* -0,

same operator as

"(O;-t 
exists and

i/W'*
:rJ

k:L
(2

(13) 2 */',wi

Now 2 */ieltu: sr-r. Since so:0, §r:0 for every value of k. It
follows from the assumption T(p)r:0 that r:4, and hence T(p)-'
existswheneYet p€C and 0<ipl <1.

The range of T(p) and the continuity of the inverse mapping must also

be examined.
@

Let y:)t*en be an arbitrary element of 11. We shall show the

existence 
"t 

l:"Ln a vector r : (sr") in 11 that T(p)r - y. Here p is a
fixed complex number with 0 < lpl < l. The equation ?(p)ru: gr mea,ns

the same as

§k §*-r - tk for every value of k

Now s0:0, ,r:h a.d 'r:'#ä (4,> I). Tle above re-

cursion formula defines the numbers s6 by means of the numbers t*.
It remains to be shorvn that (sr,) € ri rvhenever (til elL .

Since lim t/Wt: I, there exists an integer ko such that
ft+o

I
+ <- <å rvheneyer k2k,4 2VW + "+J

Therefore,

If ?L is an integer and n = ko,

ls*-rl) wheneYer k2ko

å( å Vrl+åls*-,1)
k,:ko k:lto

nrL

å > lt*l + å : ls*l + ål'*,-,1 - åls"l
k:ko k:ko

åå ts*l
It,:ko

k:ko

= *; t*i+ å
k:ko

IIence,

ls*,-, i
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and

(14) ;lsal <e)lrrl *3ls*.-rl whenever n2.ko.
lr:ko ,r:1

It follows from the inequality 1r+1 that j lsrl converges and (sr) e F.
h:r

Now the range of T(p) isthe whole Banach space 11, T(p)r: 0 only
if r:0, and T(p) is continuous and linear. Hence, T(p)-' exists and
is continuous (Taylor 4.2.-H).

The above proof also contains the result:

derr(e) - {l }ffi ;: fl ' ''
fn the following it will be proved that lim f @)f @)-'y: y whenever

lp1 < | and y is a vector in the ,^ng" oT'7l g,'1. When y e E, therc
exists r e lL such that ?(p)ru: y. Obviously lim7(q)T(p)-'y : y if
and only if lim T(q)r: ?(p)r. When q+P

q+P

,:jsre*i_lL,lpl<I and lqi <1, then

lrtol'* - r(q) rl : lirdtlA - t/lql,,onri
k:t

@,: 2: tt/to - Ytqtlt'Å.
le: L

Let e) 0 be given. Since j ls*l < oo, there exists an integer äo rrith

wåich i lsol < e. on rn" ";:; hand, according to operations with limits,
h:ho

ri* 
*i1 i wt - +,/ tqtl t,*t : o

q-p h?r'

and there exists ä > 0 such that
,."-1 , .-

2lVlnl-{/tqll lsnl <e whenever qec and lp-ql<ö.

*o*-:ir1r)r- r(q),r <;'i fi/rer-{rqrl lsr"i f 2å(r+r) Ir-l
,.:1 k:ko

<2e*4e:6e,
v'henever qe C,lqi < I and lp-ql< ä. It follows that lim?(q)r:
T(p) r whenever z € /1 and lpl < t. q+P
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We summarize the properties of our mapping family found in the fore-

going:

lo T(p) is a continuous linear mapping from Banach space 11 to Banach

space 11 whenever peC and lpl <1,
2" T(p)-' exists and is continuous whenever lpl < L ,

3o f @) T(p)*' is a continuous linear mapping whenever lpl < t and

lql<r,
4o limT(q)T(p)-'n:r whenever peC,lpi<L and re Ro,

5. å"i,*, : tå Illl ä I äl . ,

We show, finally, that this mapping family 7(p) has the property Z
when we restrict the values of the parameter p t'o lhe set' Z : {p e C 

1

0 < lpl < l) . We choose an arbitrary complex number p e Z- It follows

from the above that f@) and T(p)-' are continuous linear mappings

with domains lL. Hence the assumptions (a) and (b) of the properby -O

are obviously true. @

We must proye that lim ilf @)f @)-'- 1ll : 0. When * : Z s*e* e l,r

and qez, 
q+P

v(il * - r@) ri : Zii{a - t/wlp-t .

By using the mean value theor"* ", 
Urr*rential calculus, we obtain

o<l;-tu.# when o<Ö <a<I and k>- 1.

If q€Z and lp-q| <*lpl ,

, k/-It/tqt-{wt,=ffih=# and

- 2q-F| +'lq-pl
ir(q) r - r@) *', { 22,ff lsui : Wl: l.l .

Hence,

W@) r(d-' - zll : Il("(q) - r@D r@)-'11 < llr@) - r@)ll llr@)-'ll
(l5) 4< 

OIV@)-'ll 
q - Pt ,

whenever qe Z and lq-pl<+lpl .
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It follows from the inequality ( 15) that

Tlris is an example of a mappirg famil5r f (p)
which cannot, be written in the form T - pL
linear mappings.

9l->p

with the property E and
r,r,,ithTandLdenoting

5.3. Example 3. A counter-example shall be constructed to show that
Theorem l0 is not true in a general topological vector space.

When D is a linear manifold in a topological complex vector space V
and T : D ---> 7 is a linear mapping, the regularity region of 7 is defined
to be the set of the complex numbers p with which (T - pt1*t exists
and is continuous. Here ,I stands for the identical mapping of the space 7.

We denote f@):T-pI and -Br:{f@)"lreD} where p€C.
Since 7 is a topological vector space, the closure R, of B, is defined.
It follows from the continuity of addition and multiplication that Rp
is a closed linear manifold of. V. We set

detT(p): dim VlRo,

where VlEo is the algebraic quotient space of the linear manifold Rn
(Liusternik-Sobolev [9]: pp. 57-58).

We examine the so-called Montel space M. It is the set, of all analvtical
complex-valued functions with the set 0:{,e CIlsl q f} for domain.
The metrics for the space M are defined by the formula

d(* , ?/)

;Vn(r - A)

1 + I{*(:r - y) '
where x,Uelt

co

\ .r-1,
Z_t
k:l

and

Now M is a complete metric vector space, convergence of a function
sequence in it meaning that the function sequence converges uniformly
in every compact subset of Q (Taylor: p. 150). The space ,44 is also sep-
arable and locally convex, but these properties are not required here.

We examine a linear mapping T : M ---> M defined by the formula

whenever r e M and s € 0. It follows from the basic properties of uni-
form convergence that T is continuous.

It will be show-n, first, that T(p)-, exists whenever p eC. When
m e M, then T(p) ": 0 means the same as (s-p)r(s) : 0 for every
§ € 0. Since the analytical function r is continuous in the set Q, it follows
from the assumption T(p) r: 0 that r(s) : 0 for every number s € 0.

Nr(r - y)

(16)
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When peC and y €A* thereexists r€M suchthat

a@) : (s - 1o) z(s)

for every se0.

If lpl21, then :+ is an analytical function of s with s e Q for8-p
every y e.M. Hence Ro: M wher. pec and lpl 2 f.

The case lpl < t will be examined next. If x € M and y(s) :
(s-10)r(s) with s € Q, then U(p):0. On the other hand, if y e M
and y(p): 0, the function r defined by the formula

lJ@)- when s€0 and s+p,
r(s) : l'- P

lu'wt: :l? ry when s:?,
is analytical in @ (cf. Ahlfors [1]: p. 100) and, moreover,

A@): (s-p)r(s) or s:T(p)r.
Hence Rr:{ye Mly(p):o} when lpl<t.

We show next that .8, is closed and dim fulfRr:L, where pec
and lpl < 1. If {U"}c Ro and limy"(s) : y(s) uniformly in every
compact subset of Q, then y"(p) : 0 for every value of n and. A e M.
Hence, a(p) :0 and U e Ro. Since y is the arbitrary cluster point of
Rp, Rp is closed.

Inordertoshowthat dimMlR,: l, wedenoteby h ananalytical
function the value of which always equals l, that is, ä(s) : 1 wheneyer
seQ.When AeM,

y: (y-y(p)h)*y(p)h
and the value of the function y-y(p)h at a point p is A@)-y(p)h(p) : 0.
Hence every vector y e M can be represented in the form

a : h*uz,
where At:U-y@)hekp
and Uz: A(F)he{qhlqec).
Moreover, {qhlq€C}nBr:{0}. Consequently {qhlqeC} is &n
algebraic complement of Ro, and dimBlRo: dim {qhlq € C}: I
(cf. Liusternik-Sobolev l9l: p. 58).

It has been proved above thaf T@) is continuous, T(p)-r exists, and
the range of T(p) is a closed linear manifold of the complete metric vector
space. Hence T(p)-' is continuous (Taylor 4.2.-II).
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The regularity region of 7 is C and

derr(?/\: I1i* Y]Y : o when lPl2r'\'r' 
ldim MlRr: I when lPl < | .

The deficiency index, therefore, is not, constant in the whole regularity
region, which is an open connected set.

University of Oulu
Oulu, Finland
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