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Introduction

In this paper we study linear mappings in Banach space, especially
their deficiency index. My purpose is to prove that the deficiency index
of a mapping-valued function with complex variable is constant in a con-
nected subset of the complex plane when some natural continuity conditions
are valid. This problem has been solved before in some cases. (See Kras-
noselski [7], Krein—Krasnoselski—Milman [8], Kato [5], [6], Neubauer
[11].) Further, we shall show by counter-examples that none of the assump-
tions that have been made can be omitted.

In Section 1, the deficiency index and regularity region are defined and
the natural continuity conditions for a mapping-valued function are also
given. In Section 2, complements and finite-dimensional manifolds are
examined. The auxiliary theorems given here are needed in the proof of
the main theorem. The main theorem is presented in Section 3. Section 4
deals with topological isomorphy and with two formal generalizations.
In Section 5 three examples are presented.

The present paper will deal with vector spaces, and scalars are assumed
to be complex numbers. The notations and definitions are the same as in
Taylor: Introduction to Functional Analysis [12]. The notation »Taylor
4.2.-Hy refers to Theorem 4.2.-H in this text-book.

1. Regularity region

1.1. Let T be a linear mapping, the domain of which is a linear mani-
fold D in the Banach space B and the values of which are vectors in B.
We denote

where p is a complex number and I is the identical mapping. Now 7'(p)
is a linear mapping with domain D. The regularity region of 7' is said
to be the set of all the complex numbers p with which 7'(p) has a con-
tinuous inverse mapping. The regularity region is known to be an open
subset of the complex plane (Taylor 5.1.-B). It will be denoted by the
symbol Z(T).
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The deficiency index of the mapping 7' is defined as the dimension of

the quotient space B/T(D), where 7T(D) is the closure of the set
{Tz | x €D}. (See Gohberg—XKrein [3].) The abbreviation »defy is used
for the deficiency index. Hence,

(1) def T = dim (B/T(D) ).

If the vector space V is infinite-dimensional, we denote dim V = oo.
Accordingly every infinite-dimensional vector space has the same dimension
in this paper.

Krasnoselski [7] has proved the following theorem: The deficiency index
of the linear operator T-pI in a complex Hilbert space with p € C' is constant
in any connected subset of the regularity region of T.

The result has subsequently been generalized to apply to linear operators
in a Banach space (Krein—XKrasnoselski—Milman [8]).

1.2. In the following this theorem will be proved in a new way, at the
same time moderating the hypotheses. We examine a general mapping
family 7'(p) with complex parameter p. In order to find the natural
continuity conditions, the operator 7T(p) =T — pI defined above will
first be examined.

According to the definition of the regularity region, 7T'(p)~! exists and
is continuous whenever p € Z(T).

Calculations show that

T(@) T(p)™* = (T'—ql) (T—pI)—
= (T'—pl) (T—pI)? + (pI—ql) (T—pI)
= I, + (p—q) (T—pI)—,

where p,q € Z(T), while I, is the identical mapping in the range of
T(p). Since I, and (T'—pI)~' are continuous, 7'(q) (T(p)~! is continuous,
too. Furthermore,

(@) T()? = Ll = l(p—9) (T—pI)7]
= p—ql[IT(p)™ -
On the basis of the above, the mapping family 7'(p) = 7'—pl with p € Z(T)
can be concluded to satisfy the following continuity conditions:
(a) T(p)™ exists and is continuous whenever p € Z(T),

(b) T(q) T(p)~* is continuous whenever p,q € Z(T),
(¢) im T(q) T(p)™t = T(p)T(p)t =1, in the sense of norm conver-

=P .
gence, that is,

lim ||T'(q) T(p)™ — I,]| = 0 whenever p € Z(T) .

q9>p
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1.3. Let B and B, be Banach spaces, D a linear manifold in B,,
Z an open subset of the complex plane and 7'(p) : D — B a linear mapping
whenever p € Z. T(p) can be interpreted to be a function of the parameter
p with domain Z and its range a subset of the set {S:D—>B|S§ isa
linear mapping}. This function of the mapping value is called a mapping
family. The same symbol 7T'(p) has been used here both for the function
and for its value. This is unlikely to create confusion, since the expression
»mapping family» will precede T'(p) whenever the function of the parameter
p is meant. When p € Z, T(p) refers to a linear mapping with domain D.

This mapping family is said to have the property E if
(a) T(p)~! exists and is continuous whenever p € Z ,
(b) to each point p € Z there corresponds a positive number d such
that ¢ € Z and T'(q) T(p)! is continuous whenever ¢ € C and |p—q| < d,
(c) lim |T(q)T(p)t — Il = 0 whenever p €Z and I, = T(p)T(p)7is

9>p

the identical mapping in the range of 7'(p).

If the mapping family 7'(p) has the property E, then its domain Z
is called the regularity region of the mapping family 7'(p).

An example of a mapping family with the property £ is, as we have
seen, the operator T (p) = T'—plI, where T is a linear mapping with its
domain and range both in the same Banach space and the complex para-
meter p an element of the regularity region of 7. The regularity region
of the mapping family 7'—pl is the same as that of the mapping 7.

1.4. A general mapping family 7'(p) with the property E is studied
in the following. The deficiency index of the mapping 7'(p) will be proved
to be constant when p is an element in a connected subset of the regularity
region of the mapping family 7'(p).

It will also be proved by means of counter-examples that the assump-
tions associated with the property E cannot be reduced. Continuity of the
mapping T'(p)~' is found to be indispensable. The assumption (¢) cannot

be replaced by weak convergence, that is lim 7'(¢) T(p)~x = a whenever
4>p
x is a vector in the range of 7'(p). It will also be shown that the Banach

space cannot be replaced by a general topological vector space. The assump-
tion (b) is contained in the assumption (c), but it has been separately
written for the sake of clarity.

1.5. An auxiliary theorem will first be proved. To avoid recurrent
repetition of the same assumptions, the following notations shall be agreed:

B and B, are Banach spaces;

T(p) is a mapping family with the property E;

Z is the regularity region of the mapping family 7'(p);
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D is a linear manifold in B,, and D = {0};

when p € Z, then 7'(p):D -+ B is a linear mapping;

R, ={T(p)x | « € D} is the range of T(p).

Theorem 1. When p € Z, there are positive numbers d and m such
that the mappings T(q) T(p)™ and T(p) T(q) do exist,

(2) T Tp) =2, TOHTQOY =2
and
(3) Ty = my|,

whenever q €C, |p—q|l <d and y€D.

Proof. Since the mapping family 7'(p) has the property E and since
p € Z, such positive number d; exists that ¢ € Z and T'(q) T'(p)~* exists
and is continuous whenever ¢ € C and |p—q| < d;. According to the
assumption (c) of the property E there exists a positive number d, such
that ||T(q) T(p)™ — I,]] < % whenever ¢ €C and [p—¢q| < d,.

We denote d = min (d;, d,). In the following ¢ is an element in Z
with [p—q| < d.

Now [T(@q)T(p)y I =T T(p)™* — Ll + LI <+ +1,
and for every vector x € R, ,

T(q) T(p) o] = [(T(q) T(p)™ — L) @ + 2|
= o] — IT(q) T(p)™* — L]l la] = &) .
It follows from the above inequalities that
IT() T(p) =2,

the mapping (T(q) T(p))* = T(p) T(q)* exists, and |T(p) T(q)7] = 2.
(See Taylor 3.1.—B.)
Let y be an arbitrary element in D. We denote

v=Tp)y or y=Tp .
By using the inequalities
lyl = T(p)* T(p)y = . T(@) T(plyl
and
T(q) T(p)™t ! = ],
we obtain
T(q)yl = |T(q) T(p) " | = o] = 3T (p)yl
= 3T @)™yl

We denote m = 3T (p)~ Y=
Now |7(Q)y] = m |y| whenever y € D and |p—q| <d. The theorem
is proved.
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2. Auxiliary theorems

2.1. Linear manifolds and their complements will be discussed in the
following. The theorems presented are primarily auxiliary theorems re-
quired for later proofs. Theorem 4 is the same as Exercise VI.9.16. in the
textbook of Dunford —Schwartz [2].

Two closed linear manifolds M and N in the Banach space B are
said to be complements if M N N = {0} and M + N = B. Now every
vector z in B can be uniquely presented in the form z = x + y with
x €M and y € N (Taylor: p. 240). We define the operator P by writing
Pz = x. The domain of P is B and the range is M. We call the mapping
P a projection of B onto M, and we denote P = proj (M, N).

The following theorem deals with some important properties of a pro-
jection (Taylor: pp. 241—242):

Theorem 2. If the closed linear manifolds M and N in the Banach
space B are complements and if P = proj (M, N), then P is a continuous
linear mapping, P? = P,

M = PB) = {Pz|z €B}
and
N=PY0}={y€B|Py=0}.
In a Hilbert space every closed linear manifold has a complement
(Taylor 4.82.—A). This does not hold for a general Banach space. Murray
[10] has constructed a closed linear manifold which has no complements.

Since a complement does not always exist for a closed linear manifold, we
cannot define the deficiency index of a linear mapping 7' with the domain

D as the dimension of a complement of T'(D).

2.2. When M and N are closed linear manifolds, M + N is not
necessarily closed, not even in a Hilbert space. (See Halmos [4]: pp. 28 —29.)
In the following theorem we present a condition under which M -+ N
is closed.

Theorem 8. If M and N are closed linear manifolds in the Banach
space B, then the following two conditions are equivalent:

(a) MNN ={0} and M 4 N 1is closed,
(b) there exists a constant k > 0 such that |x 4 y| = k whenever x € M,
yEN and |yl = 1.

Proof. We suppose, first, that |v 4+ y| =%k > 0 whenever x € M,
y €N and |y = 1. We proceed to show that M NN = {0} and that
M - N is closed.
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_ z
If there exists a vector z€ M NN and z %0, then — o €M,

Lz

z 2 2
) €N and = 1. Now according to the assumption, —— 4 — =k.
<l LR | 1% 2l
. . . . 2 Z - . . . >
This is impossible for — TZ_ - o= 0. Since there is in M NN no
| i

vector differing from zero, M N N = {0}.

Let z, be an arbitrary element in M -+ N. According to the definition
of a cluster point there exists a vector sequence {z,}C M + N such
that limz, =%, (We use the following brief notations: {z.} =
{zn=1,2,3,...}, and limz, = lim z,.) Since 2z, € M 4+ N, it can be
presented in the form =z, =2, +y, with 2, € M and y, € N. When
{Yn — Ym| > 0, then, according to the assumption

| !
| Xn — X — 1
| s yn Jm

Yo = Ym! Yn — Y,

20— Zm| = [Tn + Yn — T — Ym = Yn — Ym!

v

Yn — Ym| k.
We find that for all values of n and m,

1
(4) Yo = Ynl = 77 — 2l

Since {z.} is a convergent sequence, it is a Cauchy sequence. From the
inequality (4) it follows that {y.} also is a Cauchy sequence. Since B is
a Banach space, limy, =y, exists. On the other hand, @, =z, — ya
and hence, lim a, =z, — y,. Since M and N are closed and {x.} C M,
{yn} € N, necessarily z, —y, € M and y, € N. Now M + N contains
its arbitrary cluster point z,. Accordingly, M 4 N is closed.

We now suppose that M N N = {0} and that M + N is closed. We
prove that a positive constant k exists such that |x 4 y| =k whenever
x€M, y€N and |y =1.

Now M -+ N is a Banach space (Taylor 3.13.—B). The manifolds M
and N are complements in the Banach space M --N. We denote
P = proj (N, M). According to Theorem 2, the projection P is a con-
tinuous linear mapping.

In order to prove the claim we assume the contrary. If the claim is not
true, such vector sequences {x.,}C M and {y.}C N would exist that
lim |, +9,l =0 and |y, =1 for every value of n. Since P is con-
tinuous and P(x, + y.) = ¥., obviously limy, = P (lim(z, + 7)) = 0.
This is impossible for |y, =1 (n = 1,2,3,...). Since the contradiction
is wrong, the claim is true. This completes the proof.
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Theorem 4. Supposing M is a closed linear manifold in the Banach
space B, and N is a finite-dimensional linear manifold in B, then M + N
is closed.

Proof. Now M NN is a linear manifold in the finite-dimensional
vector space N. Hence there exists a linear manifold N, in N such that
NN (MNN)={0} and N,+ (M NN)=N. Furthermore N 4+ M =
Ny+ M and N,NM ={0}. If Ny={0} or M+ N = M, there is
nothing to prove.

According to the above we can assume that M N N = {0} and
dim N > 0. The claim is proved by using Theorem 3. Because N is
finite-dimensional, N is closed (Taylor 3.12.—C). The existence of a
positive constant % meeting the following condition must be shown:
w4+ y| =k whenever x € M,y €N and |y = 1.

To prove this, we denote by € the set @ = {y € Nlly| = 1}. The
function A is defined by the formula \

h(y) = inf {|ly + xH x € M} for every vector y € Q .

Now /& is continuous at every point of ¢ (Taylor: p. 72). Moreover, @
is a closed and bounded subset in the finite-dimensionaln ormed vector
space N. Consequently there exists a vector y, € Q with which 5A(y,)
is the smallest value of A, thatis, h(y) = h(y,) whenever y € @ (Taylor:
p. 100).

If R(y,) = 0, it would follow that y, is a cluster point of M (Taylor:
p. 73). According to the assumption M is closed, and y, would conse-
quently be an element of M. This is impossible for y, €.V, y,, = 1 and
M NN ={0}. Hence necessarily h(y,) > 0. We denote k = h(y,).
According to the definition of 7,

Yo = hy) = hy) = k>0

whenever x € M,y € N and 'y, = 1. This completes the proof.

2.3. Theorem 5. If M is a closed linear manifold in the Banach
space B and the quotient space B/M of M is finite-dimensional, then the
manifold M has a complement N, and dim N = dim B/M.

Proof. Since B/M is finite-dimensional, it has a finite basis. Conse-
quently there exist in B/M linearly independent elements x; + M,
X+ M,..., 2, + M and every element of B/M can be presented as
their linear combination. The integer n equals the dimension of B/M.

First, the vectors a, @,, ..., x, are proved to be linearly independent.
If py, ps, ..., pn are complex numbers and

Py + Pty + 0+ Pt =0,
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then
po(ey + M) + pylay + M) + -+ + pa(ea + M) =0+ M.

Since a, + M, x, + M, ...,2, + M are linearly independent in B/M,
the numbers p,, p,, . . ., p. equal zero.

The linear manifold generated by the vectors ay, @, ..., x, is denoted
by N, that is,

N = {pyy + Poty + * ** + patu | P P, - - - Pa €CF

The vectors ay, @, ..., 2, form a basis of N and hence the dimension
of N is n. Being finite-dimensional, N is closed. We show now that
N is a complement of M, thatis, M N N = {0} and M + N = B.

Let 2 be an arbitrary vector in M N N. Since z €N, x can be
presented in the form x = p; + pots + * -+ -+ pax,, where py, ps. ...,
p. € C. On the other hand, x € M, and therefore

po(y 4= M)+ pylwy 4 M) + -+ + pa(en + M) =+ M =0+ M.

Since a; + M, 2y +M,..., 2, + M are linearly independent, p, =
Py ="+++=p,=0. Hence M NN = {0}.

Finally an arbitrary vector z in B is chosen. Since z -~ M € B/,
it follows from the properties of the basis that there exist complex numbers
P1s Pos + - - » Pu such that

z2 4 M = py(x; + M) + pylwy + M) + -+~ palen + ).
We denote
X = Py o Py A Paia

Now €N and z —ax € M. Hence z is an element in 3/ -~ N. This
completes the proof.

Theorem 6. Let M be a closed linear manifold in the Banach space B
and let the quotient space B|M be infinite-dimensional. For every positive
integer mn there exvists a linear manifold N such that M N N = {0},
dim N =n, and M - N 1is closed.

Proof. Since dim B/M = oo, B/M has linearly independent elements
xy+ M, xy +M,..., 2.+ M for every positive integer n. We denote
by N the manifold generated by ay, 25 ...,2,. Now M NN = {0}
and dim N = n. This can be proved as for Theorem 5 above. According
to Theorem 4, M -+ N is closed. This completes the proof.

Theorem 7. Let M be a closed linear manifold and N a finite-dimen-
sional linear manifold in the Banach space B.

(@) If NN M ={0}, then dim N = dim B/M.
(b) If N s a complement of M, then dim N = dim B/M.
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Proof. Since N is finite-dimensional, N has a basis ay, @, ..., %
If MNN={0}, the elements a; -+ M, a,+ M,...,z,. -+ M are
obviously linearly independent in B/M, and dim B/M =n = dim N.
If MNN = {6} and M -+ N = B, the elements x, + M, x, + M, ...,
#n -~ M form a basis of B/M, and dim N = dim B/M. This completes
the proof.

3. Proof of the main theorem

3.1. In this section we use the same notations as in Section 1. First, we
prove two auxiliary theorems. Then we shall present the main theorem.

Theorem 8. It is supposed that N is a closed linear manifold in the
Banach space B, p € Z, R,N N = {0} and R, + N s closed. There is
now a number d > 0 such that q €Z, R,NN = {0} and Ry + N is
closed whenever q € C and |p—q| <d.

Proof. If N = {0}, there is nothing to prove. It is now supposed that
N contains non-zero vectors.

According to Theorem 1 there is a number d; > 0 such that ¢ € Z,
IT(q) T(p) | <2 and [T(p)T(9)7 =2 whenever 'p—¢ <di.

Since B,N N = {0} and R, 4 N is closed, there is according to
Theorem 3 a number %> 0 such that if x € R,, ¢« € N and |a| =1,
then |z + al =k Now k =1, because for every a € N with la| =
necessarily £ = |0 4 a| = 1.

Wl =

In the following it will be shown that |@ -+ y| = - whenever y € R,

a €N, lal =1 and |p—q' is sufficiently small.
It is agreed that ¢ € ¢ and p—q < d,.
If yeR, |y =2, a€N and la =1, then

(5) aty,

Y

Yy — la

1%
o
I
1\%
=~
\%
1o | o

We now suppose that y € R, and ly| = 2. We set
x="T(p) Ty
or
y="T@Tp .
Now z € R, and

o] = [T() Ty =4
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Furthermore, y = T(q) T(p)a = x + (T(q) T(p)? — 1) x
lzta + (T(q) T(p)™ — 1) 2|

x+al — [T(q) T(p)™ — I,|| x|
lv+al — 4T (q) T(p) — I, .

and y+al

Il

v v

If a€N and ja| =1, then lx+a =% and

(6) ytal =k —4T(q) T(p)™ — I,

Since the mapping family 7'(p) has the property E,
lim ||T(q) T(p)™ — Ll = 0.

->p

k
Hence there is a number d, > 0 such that IT(q) T(p)™* — 1) < 5o
(7) k—4|T(q) T(p)™ — L] > ik

whenever ¢ € Z and |p—q| < d,. We denote d = min (d,, d ). From the
inequalities (5), (6) and (7) it follows that |y-4-a| = 1k whenever y € R,
a€N, laj =1 and |p—q| < d.

Now we must prove that B, N N = {0} and that R, - N is closed
whenever |p—q| < d. We choose a fixed element ¢ € ¢ with |p—gq| < d.
Let y, be an arbitrary element of R,. Now there is a vector sequence
{y»} in R, such that limy, =y, Since y, € R, for every integer m,
Yo+ al =3k whenever « €N and ja = 1. Hence Yot+al =
lim |y,+a| = 3k. As y, € R, is arbitrary, it follows from the above that

k ~
y+al = Y whenever y € R), ¢ € N and |a| = 1. According to Theorem
3, B,N N = {0}, and B, + N is closed. The theorem is proved.

3.2. Theorem 9. If p € Z and the manifold R, has a complement XN,
there exists @ number d > 0 such that N is a complement of R, whenever
q€C and p—q| < d.

Proof. Since R, N N = {0} and R, +- N = B is closed, there exists,
according to the preceding theorem, a number d, > 0 such that q € Z,
B,N N = {0} and R, + N is closed whenever q€C and |[p—q| < d,.

We choose a fixed element ¢ € Z with |g—p| < d;. We now suppose
that R, + N is different from B, in other words, R, + N is a proper
subset of B. This is proved to be impossible if |p—gq| is sufficiently small.

The following Riesz’s lemma is first used (Taylor 3.12.—E): If M is
a closed linear manifold of the Banach space B and M + B, then for every
real number t with 0 <t <1 there exists y € B such that 'y| = 1 and
'y+a| =t whenever x € M.
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According to this lemma there exists y, € B such that |y, =1 and
Yo -yl =34 whenever y € R, + N. Let P be the projection with
range E, and null space N, in other words,

P = proj (R, , N).

It follows from Theorem 2 that P is a continuous linear mapping. Since
yo€B=R,+ N,

Yo =1+ a

with 2, = Py, € R, and « € N. Now there exists a vector sequence
{x.} C R, such that limx, = x,. Being an element of E,, x, can be
represented in the form

xn=T(p)z, with z,€D.
Since 7T'(q)z. € R, and 7T(q)z, +a € R, + N,
=Y —T(@ 2z —al =Yy — 0 — a] + |2 — T(q) 2] .

Now lim {y,—x,—a| = |yy—x,—a] = 0 and hence |y,—x.—a| <<} when
n = n,.

Hence

(8) 1T(q) 2n — xa) =3 when n =n,.

On the other hand, z, = T(p)'a, and
T(q) zn — a0 = T(q) T(p) 2n — L,
= (T(Q) T(p)™ — Ip) @ .
The projection P is continuous and x, = Py, Hence,
ol = I[Pl Yol = 1P| -
Since lim x, = x,, there exists an integer n, such that
(9) @l <l + 1 =P 41

whenever n = n, .
Since the mapping family 7'(p) has the property E, it follows that

lim [[T(q) T(p)™ — I} = 0.

—pr

Hence there exists a number d, > 0 such that

1
(10) 1@ TP = Ll < g

whenever ¢ €C and |p—q| < d,.
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If now [p—q < d,, it follows from the inequalities (8), (9) and (10) that
|T(q) 2. — an] =% whenever n =n,
and
T(q) 2 — @ = |T(q) T(p)™ — L, [

—
fa—

B
whenever n = n,.

Since this is impossible, R, -~ N cannot be a proper subset of B when
p—q¢ < d = min (dy, dy) .

Hence it follows from the assumptions ¢ €C and [p—q < d that

E,NN={0} and R, + N=8,

that is, N is a complement of R,. The theorem is proved.

3.3. Theorem 10. If G is an open connected subset of the reqularity
region of the mapping family T(p), then def T(p) is the same for every
p €CG.

3.4. Proof. As a connected set, G is nonvacuous. We examine the
deficiency index of the mapping 7'(p) with p € ¢. There are two possi-
bilities:

1. def T(p) = dim B/R, = o for every element p € G,
2. there exists p € ¢ such that dim B/R, = m < o .
In the former case there is nothing to prove.

It is now supposed that there exists an element p in ¢ with dim B/R,=
m < oo. In the following the element p and the integer m are kept fixed.
We will prove that, for every element ¢ € ¢, dim B/R, = m, that is,
def T'(q) = def T'(p).

Let F ={q €@ |dim B/R, = m}. We show that G = F. Since ¢
is open and connected, then G = F if the following conditions are true:
1. F is nonvacuous and open,

2. it always follows from the assumptions {¢.} Cc F and limg¢, =q € G
that g € F.

3.5. Firstly, F +# @ because p € F. In order to prove that F is open,
we choose an arbitrary element ¢ in F. Now ¢ € ¢ and dim B/R, = m.
Since the quotient space of R, is finite-dimensional then, according to
Theorem 5, B, has a complement N, and dim N = m. Now, according
to Theorem 9, there exists a number d, > 0 such that N is a complement
of R, whenever s €C and |g—s| < d;,. Since G is open and q € G,
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there exists a number d, > 0 such that {s€ C[ lg—s| < d,}c G. We
denote

d = dim (d; , dy) -

When s €C and |g—s| < d, it follows from the above that s €&, N
is a complement of R,, and dim B/R, = dim N = m. Hence {s€C |
iq—s| < dc F. Since ¢ is an arbitrary element of ¥, F is open.

3.6. It is secondly supposed that {¢.}c F and limg, =q €G. We
have now to show that ¢ € F. At first, we prove that the quotient space
B/R, is finite-dimensional.

We make contrahypothesis: dim B/R, = oo.

According to Theorem 6 there exists a linear manifold N so that
R,NN ={0}, B, N is closed and dim N =m+1. According to
Theorem 8 there exists a number d > 0 such that B, NN = {0} and
B, - N is closed whenever |g—s| < d. On the basis of Theorem 7 it is
seen that dim B/R, = m-+1 when lg—s| <d. Since lim |g.—¢ =0,
necessarily |¢,—¢q| <d and dim B/l?qn = m-1 for a sufficiently large
value of the integer n. This is impossible since ¢, € F and dim B/R =m
(n=1,2,3,...). Since B/R, cannot be infinite-dimensional, it must
be finite-dimensional.

We denote k = dim B/R, and prove that m = k. According to Theo-
rem 5, B, has a complement N and dim N = dim B/R, = k. Now,
according to Theorem 9, there exists a number d > 0 such that N is
a complement of R, whenever s € C' and |g—s| < d. Hence dim BJR, =
dim N = ¥ for every element s € C with '¢—s/ <<d. Since lim |¢,—q| =0
there is, for a sufficiently large value of n, ¢.—¢q < d and dim B/Rq" = k.
On the other hand, dim B/}'?qn =m for every value of the integer =

because ¢, € F. From the above it follows that m = k. Now ¢ € ¢ and
dim B/R, = m. Hence ¢ € F.

We have proved that F = G and hence, for every element ¢ €G,
Aef T(q) = def T'(p) = m, and the theorem is thus proved.

4. Comments

4.1. We firstly define the concept of topological isomorphism, and then
we present two theorems which deal with R, and B/R,. We use here
same notations as in Section 1.

Two normed vector spaces V; and V, are said to be fopologically
isomorphic if there is a continuous linear mapping 7': V; — V, such that
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T(V,) = V,, if the inverse mapping 7-1:V,— V, exists and if T is
continuous and linear. (Taylor: p. 85).

Topological isomorphism is denoted by V, ~ V,. It follows from the
properties of continuous mappings that topological isomorphism is an
equivalence relation, whereby is understood that

V =~V whenever V is a normed vector space;
whenever V; ~ V, holds, so does V, ~ V,;
whenever V, ~ V, and V, ~ V; holds, so does V, ~ V,.

4.2. Theorem 11. Let G be an open connected subset of the regularity
region of the mapping family T(p). If the manifold R, has the complement
N, for every p € G then N, ~ N, and B|R, ~ B|R, whenever p,q € G .

Proof. The proof is similar to that of Theorem 10. We choose a fixed
element r € ¢ and denote F = {p €GN, ~N,}.

Since r € F, F # 0. Let p be an arbitrary element of F. According
to Theorem 9 there is a number d, > 0 such that N, is a complement
of R, whenever ¢ € ¢ and !p—q < d,. We use the following theorem:
If the closed linear manifolds M and N are complements in the Banach
space B, then N and B|M are topologically isomorphic. (See: Liusternik —
Sobolev [9]: p. 58).

Hence N, ~ B/R, and N, ~ B/R,. Since topological isomorphism
is an equivalence relation and N, ~,, it follows that N, ~ N, for
every q € G with |p—gq| < d;. Since ¢ is open and p € @, there exists
a number d, > 0 such that ¢ € ¢ whenever |p—q' < d,, When ¢q€C
and |p—gq| < min (d, d,), then ¢ € F, and hence F is open.

It is now supposed that {p,} € F and lim p, = q € G. It will be shown
that ¢ € F. Since ¢ € ¢ c Z there exists, according to Theorem 9, a
number d > 0 such that .V, is a complement of R, whenever p € C
and |¢q—p| < d. Since lim p, = ¢, there is |p,—q| < d, provided that
the values of n are sufficiently large. Hence,

AY NB/PPH and Nq:'B/an

“Vp, =

for sufficiently large values of n. Since p, € F and N, =~ N,, there is
N, =~ N, and g € F. Since G is open and connected, it follows from the
above that F = (. Hence N, ~ XN, N,~XN, and N,~ N, when-
ever p,q€G. Since N, ~ B/R, and N, ~ B/R,, also B/R, ~ BJR,.
This completes the proof.

4.3. Theorem 12. If G is an open connected subset of the regularity
region Z, the manifolds R, and R, are topologically isomorphic whenever
»,q€QG.



JurA TIENARI, Deficiency indices of linear mapping 21

Proof. When p € Z, the domain of T'(p)! is R, and the range of
T(p)™ is D. Hence the domain of 7'(¢q)7(p)™* is R, and the range of
T(@)T(p)* is R, Furthermore, the inverse mapping of 7T'(q)T(p)* is
T(p)T(¢)~t. If we succeed in proving that 7'(¢)7T(p)~* is continuous when-
ever p,q €@, it follows that R, and R, are topologically isomorphic,
according to the definition of topological isomorphism.

We choose a fixed element » € G and denote F = {p € G | T(r)T(p)*
and T'(p)T'(r)™* are continuous}.

The set F' is nonvacuous because » € I'.

In order to prove that the set F is open, we examine an arbitrary
element p in F. According to Theorem 1 there is a positive number
d; > 0 such that 7(¢)T(p)* and T(p)T(q)~' are continuous whenever
g€C and |p—q| < d,. Since G is open, there is a positive number
dy, > 0 such that ¢ € ¢ whenever [p—q| <d,. We denote

dy = min (d; , dy) .
When |[p—q| < d;, the mappings
TTr)* =TT T Tor)™

and
Tr)T(q)™ =T T(p)tT(p) T(g)™

are continuous because they are composite mappings of continuous mappings.
Since p isan arbitrary element of F' andsince ¢ € F whenever |p—q|<<d;,
F is open.

It is finally assumed that {p.}cC F and lim p, = ¢ € ¢. We prove
that ¢ € F. Since ¢ € (4, there is, according to Theorem 1, a positive
number d with which 7'(p)T(¢)™* and T(q)T'(p)™* are continuous when-
ever p € Z and |¢—p| < d. Consequently, T(p.)T(q)™* and T'(q)T(p.)™*
are continuous for sufficiently large values of n. Now p, € F for every
integer 7, and hence T(p.,)T(r)™* and T(r)T(p,)* are continuous. By
forming composite mappings, we find that T'(¢)T(r)* and T(r)T(q9)™"
are continuous, and hence ¢ € F.

From the above it follows that F = G. Consequently, whenever
P, q € ¢, the mappings

T@QTp)t =TT Tr) T(p)™
and

Tp) T~ = TE)T)*T(r) T(9)™

are continuous. Hence the manifolds R, and R, are topologically iso-
morphic. The theorem is proved.
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4.4. Before proceeding to counter-examples, we shall examine some
formal generalizations.

So far we have dealt with Banach spaces. On the other hand, every
normed vector space V can be completed to a Banach space B, so that
V c B, and that the closure of V in B, is B;. (Taylor: pp. 98—99.)

When D and ¥V are normed vector spaces and 7' : D — V is a linear
mapping, we define

def T = dim T'(D)° = dim {f € V' | f(y) = 0 whenever y € T(D)},

where V' is the dual space of V.
Let B, be the Banach space obtained by completing V. Since the
dual spaces of V and B, can be identified (Taylor 3.13.—A), since

T(D)° = T(D)° (Taylor: p. 225) and since dim (7'(D)°) = dim (B, /T(D))
(Taylor: p. 227),

def T = dim T(D)° = dim T(D)° = dim B,/T(D) ,

where 7'(D) is the closure of 7'(D) in the Banach space Bj.

In other words, when we change the value space of the mapping T
to the Banach space B, , the deficiency index of 7' remains unchanged.
Hence Theorem 10 is still true if the value space of the mapping family
T(p) with the property E is a normed linear space and not a Banach space.

4.5. A second generalization can be made in respect of the parameter p.
We have assumed that p is an element of an open set in the complex plane.
This can be replaced by the assumption: p is an element in a metric space.

If we allow the parameter p to be an element of an open set Z in the
metric space H, then the theorems presented and their proofs are true,
if we change some of the notations as follows: The set Z is an open subset
in the metric space H. The letters p, ¢,r and s with or without sub-
indexes are symbols of elements of the metric space H. Furthermore, we
write instead of the absolute value |p—¢q| the distance d(p,q) of the
elements p and gq.

5. Counter-examples

5.1. Example 1. In the first example it will be shown that in the pro-
perty E all continuity assumptions cannot be omitted if we want Theorem
10 to be true, not even in the case that 7'(p) = T'—pl.

We examine the Banach space

I* = {(s) | (%) is a sequence of complex numbers, and Z |sk] < 0} .
k=1
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It is well-known that ' is a Banach space when
p(s) + qt) = (pse + gh) and [(si)] = 3 Isil ,
k=1

where p,q€C and (si), (i) €I* (cf. Taylor: pp. 88—89).
We denote by e, the sequence in which the k:th term is unity and
the others are zero. Now e, €01, |ex] = 1, and when x = (s;) €I,

0 n
v = > s = lim > se.
k=1

n—>ow k=1

We define a mapping L: I =1 by the formula

(11) L(Y sier) = D 80, with () €11,
k=1 k=1

Now
el fos} €0
L( E Sker)| = 'z S8, = Z Sk| .

k=1 k=1 k=1

Hence, Lx €' and [La| = || whenever a €. The mapping L is
obviously linear and, since it is bounded, it is continuous.
We set
T(p) = L—pI
and

Z ={p €C ' T(p)™? exists and is continuous} .

When z = (sx) €11, then T(p)a =

INs

(Ss_1 — ps) ¢, with s, = 0.
k=1
Now T(p)x =0 ifand only if s,_; — psy, = 0 forall k=1,2,3,....
Since s, = 0, we obtain s; =0, s, =10,..., and hence it follows from
the assumption T'(p)r =0 that x = 0. Consequently 7'(p)! exists
whenever p € C.
Secondly, we prove that

Z={pel|p|<1}U{pel|ip >1}.

When p€C and [p| <1, then |T(p)a| = |Lx — pz| = |Lz| — px|
= (1 — |p|) |2|] whenever x€I'. Hence 7T(p) is continuous and)
T(p)Y =< (1 — p))X. According to Theorem 10, defT(p) = def 7(0
when [p| << 1. On the other hand,

Ry = T(0)((}) ={La |2z €1}
= {kzlskek+1 | (s,) €11}

— { (W) E€EN|t; = 0}.
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The manifold N, = {ae, | a € C} is obviously a complement of R,, and
hence

def [ = dim Ny = 1.

When p €C and |p| > 1, then (L—pl)?! = —% p~"L", (L—pI)1
n=0

is continuous, and the range of L — pI is the whole Banach space [t
(cf. Taylor 5.2.—C). Hence p € Z and defT(p) =0.

Now {pGCHp: <lor [pj>1}cZ If {p€Clip =1}NZ # 0,
Z would be a connected subset of ¢ and hence, according to Theorem 10,
def T'(p) would be constant when p € Z. Since this is not true, p & Z
if p€C and [p| =1

Now {p €C |T(p)texists} = C. If all continuity conditions are
omitted then we can study the mapping family 7(p) = L — pI with
p €C. But def T'(p) is not constant in the complex plane C since

[0 when [p/>1,

def T'(p) = |1 when [p/ <1.

5.2. Example 2. We now show by means of an example:
If in the property E of the mapping family 7'(p) the assumption

lim [T(q) T(p)™ — Ll = 0
9P
is replaced by the weaker assumption lim 7'(q) T'(p)~x = = whenever
9>p
« € R,, the deficiency index will not always be constant in a connected

subset of the regularity region.
Let B =1[*. We define the mapping 7'(p): 1! —1I' as follows:

(12) Tp)e =3 @V s —s1) &

k=1

where p €C, Ipl <1, = ()= sex €' and s, = 0. Direct cal-
culation yields k=t

o
12V p| 8 — 84

N

S

2
I

218 + Iseal) = 3 Ja) .

-~

Invs Tvs

I\

Hence, T(p)r€l* and |T(p)x! <3z whenever 2 €[, p€C and
p, < 1. Since 7T'(p) is obviously linear, 7'(p) is a continuous linear
mapping and its domain is the whole Banach space ['. In particular,

T(p)er = 2 \k/@ e — e, and T(0)e = — €y -



o
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We first notice that 7'(0) = — L, where L is the same operator as
in Example 1. (See the equations (11) and (12).) Hence, 7'(0)! exists and
is continuous, and def 7'(0) = def L = 1. '

Secondly, the mapping 7'(p) is examined with 0 < |p| < 1. When
x = (s;) €I and T(p)x =0,

Ky —
(2 \/‘PE S — S_1) & = 0.

1

s

Now Z\k/% S, = 8, . Since s,=0, s =0 for every value of k. It
follows from the assumption 7'(p)x = 0 that 2 = 0, and hence 7(p)~*
exists whenever p €C and 0 < |p| < 1.

The range of 7'(p) and the continuity of the inverse mapping must also
be examined.

Let y = > fier be an arbitrary element of ['. We shall show the
k=1

existence of such a vector x = (s;) in I' that 7'(p)xr =y. Here p is a
fixed complex number with 0 < !p| < 1. The equation 7'(p)xr = y means
the same as

(13) 2 \k/? 8, — 81 = &, for every value of k.

2 e+ S_
Now s, =0, s = 7—1 and s = _k‘:l

2p 24/ |p|
cursion formula defines the numbers s, by means of the numbers #.
It remains to be shown that (s;) €' whenever (&) €.

(k> 1). The above re-

Since lim \k/?‘ = 1, there exists an integer k, such that

k—>x

1 —— < 2 whenever k =k,.
i< 2 \,/! ! i = o
Therefore,

Us)) < 21t + 800 = 2(t] + Isi1)) whenever k=k,.

Y —

n n
Z st = #( z te] + z Isk 1)
k=Fk, k=k, k=k,
n n
=32 I+ 22 lnl 4 sl — sl
k=k, k=k,

Hence,
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and

(14) >l = 3> ] + 3ls,, 1] whenever n = k.
K=, k=1

o

It follows from the inequality (14) that z lsk] converges and (s;) €.
k=1

Now the range of T'(p) is the whole Banach space !, T(p)x = 0 only
if =0, and T(p) is continuous and linear. Hence, 7'(p)~' exists and
is continuous (Taylor 4.2.—H).

The above proof also contains the result:

[0 when 0<|[p <1,
def T'(p) = {1 when p=0.
In the following it will be proved that lim 7'(¢)T(p)~'y = y whenever

9=>p
[p <1 and y is a vector in the range of T(p). When y € R,, there
exists x €1 such that 7T(p)x =y. Obviously lim T(¢)T(p)y =y if
and only if lim 7'(g)x = T (p)r. When P

9P

ce}
v =>se €M, [p <1 and g/ <1, then
k=1

2(V/Ipl — Vig)) siei]

M

T(p)x —T(q) 2| =

k

[
—

M

= 2

=23 Wip — Vg | sl

k=1

I

Let ¢> 0 be given. Since > [si| < oo, there exists an integer k, with
k=1

which > |si] <e. On the other hand, according to operations with limits,
K=k,

and there exists 6 > 0 such that
k—1 | -
2 Vip — Vgl | Iss] <& whenever ¢ €C and [p—gq| <9.
k=1

ko—1 . o o0
Now [T(p)x—T(g)a] =25 Wipl — Vgl | sl + 23 (14 1) sl
k=1

K=k,

< 2¢ 4 4¢ = 6e,

whenever g €C,|q] <1 and |[p—q| < 6. It follows that lim 7T'(q) x =
T(p) « whenever x €' and |p| < 1. r
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We summarize the properties of our mapping family found in the fore-
going:

1° 7T(p) is a continuous linear mapping from Banach space /' to Banach
space [' whenever p €' and [p| <1,

2° T(p) exists and is continuous whenever [p/ <1,

3° T(¢q)T(p)™" is a continuous linear mapping whenever [p| <1 and

lgl <1,

4° lim T(q) T(p)" 2« = = whenever p €C, |p| <1 and z €R,,
9P

5 defT(p) — b T P =0

~ 10 when 0 < p|<1.

We show, finally, that this mapping family 7'(p) has the property E
when we restrict the values of the parameter p to the set Z = {p € (|
0 < |p| < 1}. We choose an arbitrary complex number p € Z. It follows
from the above that T(p) and 7T(p)~! are continuous linear mappings
with domains ['. Hence the assumptions (a) and (b) of the property £
are obviously true. -

We must prove that lim |T(¢)T(p)™ — I|| = 0. When o = s, €11

— k=1
and ¢ €Z, "
k/

T(q) e — T(p) e = 2> Vg — Vipl | lsil -
k=1

-

By using the mean value theorem of differential calculus, we obtain

a—>b

k— ke
0<Va—Vb< m

when 0 <b<a<1l and k=1.

If ¢g€Z and [p—q <i[p,

[

b e la—pl o _la—pl
Vi =Vl = i (g o) = 1
o) 2 _ 4 - _ |
T(@)x—T(p)al =23 —’?J sk = if@ || .
=1 | P [p|

Hence,

IT(q) T(p)™ — Il = [(T(q) — T(®)) T(»)™ = [T(q) — TP T (®)7

(15) 4 ‘
= il T(p) Y lg —»!,

whenever ¢ € Z and ¢ — p| < 1 |p!.
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It follows from the inequality (15) that lim ||7(q) T'(p)—t — I|| = 0.

—p
This is an example of a mapping family 7(p) with the property E and
which cannot be written in the form 7 — pL with 7' and L denoting
linear mappings.

5.3. Example 3. A counter-example shall be constructed to show that
Theorem 10 is not true in a general topological vector space.
When D is a linear manifold in a topological complex vector space V
and T': D —V is a linear mapping, the regularity region of 7' is defined
to be the set of the complex numbers p with which (T — pI)~! exists
and is continuous. Here I stands for the identical mapping of the space V.

We denote T(p) =T—pl and R, = {T(p)xz|x € D} where p €C.
Since V' is a topological vector space, the closure R, of R, is defined.
It follows from the continuity of addition and multiplication that R,

is a closed linear manifold of V. We set
def T(p) = dim V/R, ,

where V/R, is the algebraic quotient space of the linear manifold R,
(Liusternik—Sobolev [9]: pp. 57—58).

We examine the so-called Montel space M. It is the set of all analytical
complex-valued functions with the set @ ={s € ||s| < 1} for domain.
The metrics for the space M are defined by the formula

Ni(x — y)
cy) = > 27k 2T
d(x,y) kZI 1+ Nyx — )’

o0

where x,y € M and
1
Ni(x — y) = sup {'x(s) — y(s)] : s€C and s/ <1 — I} .

Now M is a complete metric vector space, convergence of a function
sequence in it meaning that the function sequence converges uniformly
in every compact subset of @ (Taylor: p. 150). The space M is also sep-
arable and locally convex, but these properties are not required here.

We examine a linear mapping 7': M — M defined by the formula

(16) (Tx) (s) = s (s)

whenever x € M and s € Q. It follows from the basic properties of uni-
form convergence that 7T is continuous.

It will be shown, first, that 7'(p)! exists whenever p € C. When
x € M, then T(p)x =0 means the same as (s—p) x(s) = 0 for every
s € Q. Since the analytical function x is continuous in the set @, it follows
from the assumption T'(p) x =0 that z(s) = 0 for every number s € Q.
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When p € and y € R,, there exists o € M such that

y(s) = (s — p) x(s)
for every s€Q.

(s) . : .
If |p| = 1, then SZI_ is an analytical function of s with s € ¢ for

every y € M. Hence R, =M when p €C and [p| = 1.

The case |[p] <1 will be examined next. If x € M and y(s) =
(s—p) x(s) with s €@, then y(p) =0. On the other hand, if y € M
and y(p) = 0, the function 2 defined by the formula

Lyﬁg) when s €@ and s #p,
x(s) = P
|y'(p) i TV e s,

s>p §—Dp

is analytical in @ (cf. Ahlfors [1]: p. 100) and, moreover,

y(s) = (s —p)a(s) or y = T(p)x.

Hence R, ={y €M |y(p) =0} when [p|<1.

We show next that R, is closed and dim M/R, =1, where p €C
and |p| <1l. If {y.jc R, and limy.(s) = y(s) uniformly in every
compact subset of @, then y,(p) = 0 for every value of » and y € M.
Hence, y(p) =0 and y € R,. Since y is the arbitrary cluster point of
R,, R, is closed.

In order to show that dim M/R, =1, we denote by A an analytical
function the value of which always equals 1, that is, A(s) = 1 whenever
s€Q. When y € M,

y=(U—yph +yph

and the value of the function y—y(p)k at a point p is y(p)—y(p)k(p) = 0.
Hence every vector y € M can be represented in the form

Yy =+ Y,
where v =y—yp he€R,
and Y2 = y(p) h €{gh | g €C}.

Moreover, {qh|q€C}N R, ={0}. Consequently {gh|q€C} is an
algebraic complement of R, and dim B/RE, =dim{gh|q€C(} =1
(cf. Liusternik—Sobolev [9]: p. 58).

It has been proved above that 7'(p) is continuous, 7'(p)~! exists, and
the range of T'(p) is a closed linear manifold of the complete metric vector
space. Hence T'(p)~' is continuous (Taylor 4.2.—H).
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The regularity region of 7' is € and

. ]dim M|/M = 0 when |p| =1,

def T'(p) = |dim M/R, = 1 when |p| < 1.

The deficiency index, therefore, is not constant in the whole regularity
region, which is an open connected set.

University of Oulu
Oulu, Finland
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