ANNALES ACADEMIAE SCIENTIARUM FENNICAE

Series A

I. MATHEMATICA

427

OPERATOR/OPERAND LANGUAGES

BY

V. J. NUMMI

CORRIGEND A

At the end of page 19, the following sentence should be inserted:

»Besides, the relation ¢, |p, holds between every pair of operators

except when 1) g, is a right parenthesis, or 2) g, is either a = or a
left parenthesis.»

Page 21, line 15:

»the condition formulated at the beginning of this section is met.»
should read:

»the prime phrases of sentential forms are unambiguously determined.»

HELSINKI 1968
SUOMALAINEN TIEDEAKATEMIA

doi:10.5186/aasfm.1969.427

koskenoj
Typewritten text
doi:10.5186/aasfm.1969.427

Communicated 10 May 1968 by G. JARNEFELT and P. KUSTAAXHEIMO

KESKUSKIRJAPAINO
HELSINKI 1968

Preface

The first draft of this paper was written during the academic year 1966 —
67 while I worked as a mathematician at the Computing Centre of the
University of Helsinki. I wish to express my deepest gratitude to Professor
ILpro SiMo LoOUHIVAARA, the director of the Computing Centre at that
time, for the arrangements that gave me ample time, free from my other
duties, to pursue this study. I also thank him for his encouragement and
constant willingness to help me in all practical matters, without which the
completion of this paper would have been difficult if not impossible.

To Professor REixo Kurki-Svoxto I am indebted for his interest and
for his valuable criticism.

Thanks are also due to Mr. GLeExy Harma, B.Sc., for checking the
language of the manuscript.

VELI JAAKKO NumMmI

Contents

T. BaSIC CONMCEPTS .ttt ittt et e ettt

1.
s GTAIIINATS &\ vttt et ettt e e e e e e e e e e
. The equivalence of derivationst
L ADStract trees ... e
L Derivation trees e
. The syntactic analysis

S UL W N

Preliminary definitions il

II. Operator/operand grammarso.iitiuiniinranananan ..

S Ot WD

S Definition ...
. The operator/operand structure tree
. Postfix and prefix grammars i
. Precedence grammars i
CAn example L.
. The syntactic analysis of precedence languages
. Algol 60 as an operator/operand language

III. The translation problem

1.

The concept of translation,

2. The translation of R/D languages
3.
4. Translation from an R/D language into the associated prefix or postfix

The prefix and postfix grammars associated with an R/D grammar

language and vice VEISa ...

Summary and comments

R oremCeS . o

26

I. Basic concepts

1. Preliminary definitions

Tet X be aset and Fy the set of all finite sequences of elements of X.
If (&,,...,&) and (1, ..., %, are two elements of Fy then we define
their product as the concatenation

Groee s 8D sn) = s s &t e) -

With respect to the multiplication thus defined, Fy is a semi-group, more
precisely, the free semi-group generated by X. If we identify the element

«

& of X with the sequence (&), we have
(515527“'7511):(El)(sﬂ)"'(gn):EIS&Z"'En'

Thus we always write the elements of Fx without commas and parentheses.

We say that the length of the sequence &, ...§&, is n.

The free semi-group with identity generated by X, Wy, is formed by
adjoining to Fy the emply sequence e, the length of which is 0 and which
satisfies the condition that for any element a of Wy, @ = xe = ex.

Two sequences & ...&, and 7, ...n, are considered equal if n = m
and & =1, for all ¢ =1,...,n. The empty sequence is not equal to
any sequence of non-zero length.

An alphabet is a nonempty finite set. The elements of an alphabet are
called letters or characters. Sometimes an alphabet is also called a vocabulary.

A word over an alphabet T is an element of W,. We shall use lower
case italic letters to denote words.

The word « contains the word y if there exist two words » and w
such that o = vyw. We also say that y occurs in .

2. Grammars

A context-free grammar is a quadruple ¢ = (V ,T,P,8), where

V is an alphabet,

T is a proper subset of V; we will denote V\T by N,

P is a finite set of ordered pairs (U ,»), where U is an element of
N and v is a word over ¥V, and

S is an element of N.

6 Ann. Acad. Sci. Fennicze AT, 427

Instead of writing (U ,») € P we will write U —v». Such a pair is
called a production. We will refer to U as the left-hand side of the pro-
duction, and to v as its right-hand side. The length of » is called the
length of the production. We assume that the number of productions is
> 0 and that the productions are numbered in an arbitrary but fixed
order from 1 to 7.

When 2 and y are two words. we write

X —p Y

if there exists a pair of numbers (x,p) such that by applying the Ath
production to the «th character of the word = we obtain the word vy,
i.e. there exist words u, v, w, and a letter U such that

the length of u is ~ —1,

U—wv is the pth production of the grammar,

r=ulw; y=uwvw.

We may also write

o) Y.
If # and y are words, we write
Xy

if there exists a sequence of words

Wy, Uy .., W
such that

rT=wy, Yy=w,, W

13

=Dy (i=1.,...,n).
In other words, there exists a sequence of ordered pairs of natural numbers,

d = (A)) /3])(;V2 s ﬁ2) CEEIE (‘Xn s /3")
such that

[ETR]

(| — U (i=1,...,n).

i

w

The sequence d is called the derivation of y from . y is called an
a-derivative. The pairs (v;, 7;) are called steps of d. If z consists of a single
character U, then y is a U-phrase. S-phrases are called sentential forms.

We call the elements of the alphabet T terminal lelters or terminal
characters. The elements of N will be referred to as nonterminal letters or
nonterminal characters. A terminal U-phrase is a U-phrase which belongs
to Wy A terminal S-phrase is a senfence. The nonterminal letters can be
thought of as syntactical variables; if U is a nonterminal letter, we could
call the set of all U-phrases the syntactical category defined by U.

V. J. Numwmi, Operator/operand languages 7

The set L; of all sentences defined by the grammar ¢ is called a
context-free language.

We make the following assumptions about all grammars which we are
going to discuss:

S is the only element of ¥ which does not occur in the right-hand side
of any of the productions.

If U is a nonterminal character different from &, then there exists a
sentential form containing U’: i.e. there exist words « and w
such that S = wUw.

If U is a nonterminal character then there exists a terminal U-phrase.

The empty word is not a phrase, i.e. every production has a non-zero
length.

(If @ is a grammar defining a non-empty language L. then a grammar
(' can be formed by making trivial changes to ¢, such that ¢’ has the
above properties and defines the same language, excluding only the empty
word which may belong to Lg.)

3. The equivalence of derivations
We define for ¢ =0,1,2,... an operator @®; whose domain is the
set of those derivations which contain at least ¢ -+ 1 steps.
For ¢ =0 we put
Dd =d .

When i > 0 the derivations belonging to the domain of @; have the
form

d=(x,p1) - (, B Xiq s Picn) oo (n)

We denote the length of the production j; by 7; (j = 1.....n). Now we
have

Dd = (xy, 1) - (A P31 - /;)'i-;l) co P

n

where we distinguish between the fellowing cases:
1) a) If ~;; <«; then

@

i = X X =y — 1
b) If & >o; 41— 1 then
&i = ixi—rl — li =1 ;‘/i—rl = \;.

In both a) and b) we have

/;;1 = /3i<-1 . /§im1 - /:}i .

8 Ann. Acad. Sci. Fennice AT 427

2) If &, =x;,; =a;+1;,— 1 then

= &;; K1 = &pa s

%l

i

1§

i =B Bisr = Pis1-
The operations @; are called transpositions.
We use the notation

=
Il

d~d
if there exists a sequence of transpositions ¥ (j = 1,...,m) such that
d — 1,&(1)1/)(2) - w(m)d .

The relation ~ is an equivalence relation; we call the derivations d and d
equivalent. If d is the derivation of the word y from the word x then d
is also a derivation of y from a and consists of the same productions as d.

Each equivalence class can be represented by its leftimost derivation: a
derivation

(Q‘l ’ /31) AR (“u s ﬁn)

is called leftmost if ~,_ ; =«; for ¢ =2,..., a.
If for every sentence x of the language L; there is only one leftmost
derivation of 2 from § the grammar G is unambiguous. Otherwise the

grammar is ambiguous.

4. Abstract trees

Suppose E is a given finite nonempty set on which a relation R is
defined with the following properties:

If @Ry and yRz then xRz

If 2Ry is true then yRx is not true.

There exists an element ¢ of E such that for any element = of E
different from e the relation eRx is true.

If we use d?y to denote that either x =y or xRy or yRxr then
xRz and yRz together imply xl?y

The couple (£, R) is called an abstract tree. The elements of E are
called the nodes of the tree and e is called the root. If xRy we call y a
descendant of x, and x an ancestor of y. Those nodes which have no
descendants are called leaves.

A nonempty subset K, of E is a cut set if for each element 2 of E:

x € B, if and only if there does not exist any element z of E, such
that aRz or zRw.

V. J. Numwmi, Operator/operand languages 9

So for example the singleton {e} and the set of the leaves of the tree
are cut sets.

The relation R gives rise to another relation R’ defined as follows:

xRy means that zRy if and only if either z =a or zRwx.

If R’y we call y a successor of @, and =z, the predecessor of y.

Two abstract trees (£, R,) and (£, , R,) are tsomorphic if there exists
a one-to-one mapping f of E; onto K, such that for any two elements
x and y of K,

xRy if and only if fr R, fy .

If V is an alphabet and (£, R) is an abstract tree, and F is a given
mapping of E into V, then we call the triple (£, R, F) a labeled tree.
If » is a node, then Fux is the label of «.

Two labeled trees (X, R;,1F;) and (E,,R,,F,) are isomorphic if
there exists a one-to-one mapping f of E; onto E, such that for any
two elements o and y of E,

xRy if and only if fx R, fy.
Fo=Fy if and only if F,fr=F,fy.

If we have a tree (£, R) we can (usually in several different ways)
define on K a relation ¢ subject to the following conditions:

If 2Qy and yQz then zQ:z.

If 2Qy 1is true then yQx is not true.

:dgy is true if and only if neither xQy nor yQw.

If 2Qy and xRz and yfit then either zQ¢ or zRI.

If xQy we say that x is to the left of y, or, equivalently, that y is
to the right of .

The relation ¢ defines a unique left-to-right ordering on every cut set:
if x % y then either 2Qy or yQz. A cut set whose elements are ordered
from left to right is an ordered cut set.

The triple (E,R,Q) is an ordered tree.

Two ordered trees (H;,R;,Q,) and (&,,R,,Q,) are isomorphic if
there exists a one-to-one mapping f of E; onto E, such that for any two
elements « and y of K,

xRy if and only if faR,fy,
xQuy if and only if fr @, fy.

The property of being isomorphic defines an equivalence relation on the
set of all ordered trees. The equivalence classes may be represented by so-

10 Ann. Acad. Sci. Fennicea A T, 427

called sequence trees. The sequence tree N = (‘& , R, Q) isomorphic to
a given tree M = (K, R,) can be constructed as follows.

The elements of the set ‘¢ are finite sequences of positive integers.
The root of) is the sequence »(1)», the only sequence having only one
component. The mapping f maps the element e of K to this sequence:

Je=(1)
Then we proceed inductively: If we already have defined a node & of I/,
Sz(le,...,ak)

such that &= fr for some a in K, then

if x is a leaf of M, then & will be a leaf of I,

if the successors of x are ¥;,...,y, when listed from left to right
then we define
M= (X1, .-.,0,1)
and let
EX, fyi=n, 7 @Quy; if and only if ¢ <j

where i,j=1,...,h

Thus, if & and 5 are two nodes of the sequence tree then
1) &Ny if and only if there exist two integers & and A (h> k) such that

E=(og,...,0), o= (X s oo s O s K15 e e 5)5

2) &M@y if and only if there exist three integers k,h,j (h,j > k) such
that

E = (31 > X s //))k+1 """ ﬁh) ’
==X e N VRt s e i) s
Bror < Vii1-

If M = (E,R,Q) is an ordered tree (where E contains at least two
elements) then (K, ,R;, Q) is a subtree of M if

FE, is a proper subset of K,

R, is the restriction of R to K,
@, is the restriction of @ to K,
(K, Ry, @) has a root.

We also say that (B, Ry, Q;) is the result of pruning off those nodes which

are elements of E\ K.
Let M be a tree,and FE,, acutsetof M. Thestumpof M defined by

V. J. Numwur, Operator/operand languages 11

K, is the subtree of M obtained by pruning off the descendants of all
elements of K.

The triple M = (£, R, Q) is called an ordered forest if E is a finite
non-empty set and R and @ are two relations on £ such that all axioms
of an ordered tree are fulfilled except the existence of a root.

A branch M, = (E,, R,, ;) of an ordered tree M = (£, R,Q) is a
subtree of M such that E; consists of a node x of M and all its
descendants. M, is defined by x=. If A is a cut set then each member of
A defines a branch such that the set of branches is an ordered forest.

A labeled ordered tree is a quadruple (£, R,Q,F) such that

(E,R,F) is a labeled tree,
(£ ,R,Q) is an ordered tree.

If we have a totally ordered set of nodes of such a tree, then the label of
this set is defined to be the word formed by juxtaposing the labels of the
elements of the set in question from left to right in the sense of Q.

5. Derivation trees

Let a U-phrase v have a derivation from U,

((leﬁl)" '(“n?ﬁn)'
Then we have a sequence of words over V,

Wy, Wy 5. e o s W,

such that

- (xgs 37 .
u,'o == IJ : ZL‘n =0, LL‘._II_/I) w. (l = 1. e, n)

1 i

We construct a sequence of labeled sequence trees

where

in the following way.
First we form M:

E, = (1)},
Ry and @, are empty.
Fol) = U .
For ¢ =1,...,n we proceed as follows. The tree

M =E_ . R .Q_.F)

12 Ann. Acad. Sci. Fennicae AT 427

is a labeled sequence tree which has the word w,_; as the label of the
ordered set of its leaves. The production p; applies to the label of the «:th
leaf of M;_,. Let that leaf be the sequence (&, ...,¢&,)) and its label, 4.
Let the production f; be A— B,...DB,. Then

E,=E,_ U{x,,..., 2}
where for j=1,...,k,

'Tj:(gl:"'a‘fpzj)y
_F,';l‘j:Bj.

The relations R; and @; are determined by the requirement that M
be a sequence tree. To have F; completely defined we require that if
y€E, |, then Fy=1F, y.

One immediately sees that if we made valid assumptions about M,_;
then the corresponding also hold conditions for M;.

The end result is the tree M,. which has as the label of the ordered set
of leaves the word ». M, is the derivation tree corresponding to the given
derivation. _

We observe that if d and d are two derivations of v from U such that
d is obtained as the result of applying a transposition to d then d and d
have the same derivation tree. Thus, equivalent derivations have the same
derivation tree. On the other hand, if we are given a derivation tree we can
in a unique way construct the leftmost derivation corresponding to it. As a
conse quence we have the thecrem:

Two derivations of a U-phrase v from U are equivalent if and only if
they have the same dervvation tree.

So if a grammar is unambiguous, there exists only one derivation tree
for the derivation of an arbitrary sentential form a from S.

6. The syntactic analysis

In syntactic analysis we are concerned with the problem of recognizing
the sentential forms of a given grammar and assigning structure to them.
That is, we are given a word @ and we must find a derivation of « from &S,
if there is any.

If we have a sentential form

s = auy
such that
S=aly, U =u

then u is called a phrase of s. If « contains at least two characters but

V. J. Nunn, Operator/operand languages 13

no phrase of s (other than itself) of length > 1, then w is a prime phrase.
The »bottom-up» method of syntactic analysis works in the following way:
The sentential form is inspected in order to recognize its prime phrases,
and each prime phrase is replaced by the nonterminal character from which
it was derived. Then we have a new word which is treated in the same way
as the given word. Finally we arrive at a one-letter word.

The problem arising here is that the word to be analyzed may contain a
sequence of characters that could have been derived from a nonterminal
character but which is not a phrase of the sentential form. That is, we have
a partitioning of s into three sub-words

s = abc
such that there is a nonterminal character B so that

B=5
but

S - aBe .

Thus we may have to try a great number of partitionings in order to find
a derivation of s from S. In any case, the number is finite for any fixed s.

A question of major importance in connection with languages and
grammars is how to exploit the particular properties of a given grammar or
a given class of grammars to cut down the number of steps needed in the
syntactic analysis of the sentential forms of the grammar. If the bottom-up
method of analysis is used, the approach is to find some easily-checked
properties of the sub-words « and ¢ which can be used as criteria by means
of which we can tell whether the sub-word & of the word abc is a prime
phrase of a sentential form or not, when there is a derivation B = b.

II. Operator/operand grammars

1. Definition

A grammar G = (V,T,P,S) is an operatorjoperand grammar if the
alphabet V can be partitioned into two classes R and D such that

1) RND=@GY, RUD=YV
2) all productions take either the form
a) A—B

where 4 and B are two characters belonging to the same class,
or the form

14 Ann. Acad. Sci. Fennicae AT, 427

b) A—a

where « is a word which contains at least one character from each
class.

Until now the classes are interchangeable. We break the symmetry by
fixing the classes so that S is a member of D. We call the elements of R
operators, and the members of D, operands.

We also call an operator/operand grammar an R/D grammar.

Later we will make use of a further restriction:

If o is a nonterminal operator such that

o—a, Uy,
Uy = w0y Usys
Us_1 — 2.0y,

where for each 7, a; and y; are words in W, and each [; € N, then at
least one of the U-characters is an operand.

This is a restriction on the kind of recursiveness that is allowed for the
operators. As an example, the grammar

S —E h — ht-

E—t

E— ht R ={+,h}

h —t+ D={S,E. t}
does not fulfil this requirement whereas the grammar

S—E R = {4+ .k}

E—t D={S,E,t}

E— ht

h — E--

does. (It is obvious that both grammars are unambiguous and generate the
same language.)

2. The operator/operand structure tree

In what follows we shall make use of the concept of a compound operator.
So we give here the definition:

Let there be given an R/D grammar . We consider the set of all
derivations of the form

A—2 e=p .. =z

n

(n =1)

V. J. Nummi, Operator/operand languages 15

where A is an operand and (in case 7 > 1) for i=2,...,n,

X 1 —) L ;

with the left hand side of p; an operator; , contains only operands and
terminal operators. In the grammar there are only a finite number of
derivations of this kind because of our restriction on the recursiveness of
operators. Thus we may introduce an auxiliary alphabet V.. disjoint from
V, such that the characters of ¥V, are in one-to-one correspondence with
these derivations. These characters are called compound operators.

Now we are able to discuss the particular kind of structure of the
sentences of an R/D language: all phrases of length > 1 are operator/
operand combinations. This structure can be represented by means of a
labeled tree which can be constructed, given the derivation tree of the
sentence.

Let s be a sentence of a language generated by an operator/operand
grammar G. Let M be the derivation tree of s.

If 2 is a node labeled by an operand we proceed as follows:

If 2z has only a single successor we delete .

If 2 has several successors we consider the branch M, defined by .
There exists at least one cut set of this branch such that the labels of the
elements of the cut set are either operands or terminal operators. We select
the minimal stump of M. defined by such a cut set. A compound operator
is associated with this stump. We prune off from this stump all nodes
labeled by operators. Then we use the compound operator in question as
the label of the node .

We apply this procedure repetitively, starting with the root of M and
working towards the leaves. The end result is a tree having terminal operands
as the labels of the leaves and compound operators as the labels of the other
nodes.

The sequence tree isomorphic to this tree, with the same labelling of the
corresponding nodes, is the R/D structure tree of the sentence s.

The R/D structure tree is uniquely determined by the derivation tree of
the sentence. The derivation tree in turn can be uniquely constructed from
the R/D structure tree if the grammar does not contain such obvious

ambiguities as
A—-B —...—C
(4,B,.B,.C€V)
A—-By—...—~C

or

A—s...—=A (Ad€V)

which are impossible to reconstruct once the above procedure is applied.

16 Ann. Acad. Sci. Fennicse A I 427

3. Postfix and prefix grammars

An R/D grammar is a posifiz grammar if all productions of length > 1
take the form

A—0,...00 k=1

where the 0's are operands and p is an operator.

The sentences of a postfix language are formed by listing the labels of
the nodes of the R/D structure tree in the following order:

We start with the leftmost leaf. As soon as the label of a node has been
listed, we prune off the node. If the resulting tree is not empty we apply
the same procedure to it.

An R/D grammar is a prefie grammar if all productions of length > 1
take the form

A—06;...6, (k=1)

where the 0’s are operands and o is an operator.

The sentences of a prefix language are formed by listing the labels of
the nodes of the R/D structure tree in the following order:

We start with the root. As soon as the label of a node has been listed,
we prune off the node. If the resulting ordered forest is not empty we apply
the same procedure to its leftmost tree.

To be accurate we should have distinguished between compound
operators, which are labels of the nodes of the R/D structure tree, and the
operators of the prefix or postfix language itself. In this case, however, there
is no danger of confusion, because the set of compound operators is in a
natural correspondence (possibly many-to-one) with the set of the terminal
operators of the grammar.

If a postfix or prefix grammar is unambiguous we can construct an
unambiguous grammar of the same type, generating the same language,
such that

all operators are terminal characters, and

all operands in productions of length > 1 are nonterminal characters.
Moreover, the R/D structure tree of each sentence remains the same in this
modified grammar as in the original one.

Thus we are allowed to assume that a postfix or prefix grammar always
meets these two conditions.

4, Precedence grammars

Let ¢ = (V,T,P,8) bean R/D grammar. We define on the operator
alphabet R the following four relations.
1) If there exist a production

V. J. Numwmr, Operator/operand languages 17

and a derivation

such that

U:yEI[’D?

then

A — aByoyz

B = wow

0,,0,€R, x,u,z€W,

01> 0g-

If o, € N and there exists and operator g, such that o, = g; then the
definition is extended so that also

01+ > 03 -

2) If there exist a production

and a derivation

such that
w.y €Wp.
then

A — xoyBz

B = up,w

0,,0,€ER, x,v,z€W,

01 <-0s.

If o, € N and there exists an operator p; such that p, = g, then the
definition is extended so that also

03 <<+:02.

3) If there exists a production

such that
yEW,.
then

If o == 0, and o, and o,

either

either

01 =

22

A — 20,y0y2

91:Q2€R: ‘T:ZGIIYV

are two operators such that the conditions

03 Or o7 = gy, and

= 04 O 09 = 04

18 Ann. Acad. Sci. Fennicee A 1. 427

hold, then the definition is extended so that

03 = 04
4) If there exist a production
A — aByCz
and two derivations
B = tou, C = vow
such that
x,t,w,z€W,, wu,y.ve€W,,

and both to,u and wvo,w are of length = 2. then

o0

These four relations are called precedence relations. If for any ordered
pair of operators o, , 0, at most one of the relations 1) — 3) holds and if in
addition the relations 3) and 4) are mutually exclusive, then the grammar
G is called a precedence grammar.

If in any sentential form of a precedence grammar ' an operator o,
can occur as the nearest operator to the right of another operator o; then
at least one of the precedence relations must hold between the ordered pair
of operators p; , 0,. If, in particular, p, == 0, then in all sentential forms of
the type

ag;bayc
where
a 3 C e .”'?V 3 b e -”/‘D ’
o, belongs to a phrase p of length > 1 if and only if ¢, belongs to p.

In the syntactic analysis, it is favourable to have »end-markers» on the

word to be analyzed. So, if we have a grammar

G=V,T,P,N) (N = V\T)
we introduce a new grammar
G =V, P.T1T.8 (N = V\T")

such that

N = NU{S8" s el

T'=TU{~, =} (F.—=¢V)

Pr=PU{S —+ S}
The two new terminal characters — and — are called end-markers: they
are used only to enclose each sentential form of @'.

V. J. Numwmi, Operator/operand languages 19

If @ is an R/D grammar, sois G’. It is convenient to regard the end-
markers as operators. If ¢ is a precedence grammar then so is G”: the
relation

o
holds between the end-markers; if an operator p; can occur as the leftmost
operator in a sentential form of ' then

= <- 01

if an operator o, can occur as the rightmost operator in a sentential form
of G then

Qg>"'

These are the only possible precedence relations between the end-markers
and other operators.

The grammar G is a precedence grammar with end-markers. Every
sentential form of ¢’ contains at least three characters.

5. An example

As an example of a precedence grammar we present the following
distorted way of writing Boolean expressions (without negation) in a single
variable 4:

§ I —~>ID (' 1 CP

BT D P2

B IE = D—~CD . P

I —-D C—P
R={=.D,v. .(.)

J'.
D={S.E.I,D.C. P.2z

By testing all possibilities we obtain the following table of precedence
relations, where the left-hand operator determines the row and the right-
hand operator the column.

== D 7 ()
> > < << S >
\/ .> > >
N> > < < =
(< < < o< o< o
) > > >

20 Ann. Acad. Sci. Fennica AT, 427

As an example of a sentence in this grammar we give the word

DDDAAAV ALV Ah=

6. The syntactic analysis of precedence languages

In this section we discuss special classes of precedence grammars ful-
filling additional conditions under which the syntactic analysis can be
performed by taking advantage of the precedence relations.

The syntactic analysis of precedence languages can be based on the
following fact:

If s is a sentential form of length > 3, then s can be represented in
the form

§ = Ly0¢%101%2 « « « Bp_10k 1010k %p 1 (k= 2)
where
fl'o;kaET/va, Qo,...,QkER,
x,...,x, €EWp
so that
01 == 0 = -+« = Ok

(this sequence of relations is empty if £ = 2) and
%9 F 01 % '>}> 01
Ok_1 7 O Ok_1 <li' O -
Thus s can also be represented in the form

§ = X0oY1UZp 01y 11
by putting
L1 = Y7 T = Yrk
U ==201%3 . .« Xp_10k—1Ys

in such a way that » is a prime phrase.

When we make use of this fact in the syntactic analysis we scan through
the word to be analyzed and fix our primary attention to the pairs of
consecutive operators. In this way we can find at least one prime phrase in
each scan. The resulting algorithm may imply several scans through the
sentential form before the analysis is completed. Also, we are not always
able to replace a prime phrase by the nonterminal character in question as
soon as we encounter it when scanning through the word from left to right,
say. The main cause for this phenomenon is that a reducible phrase may
occur in a context where the next operator to the right of it has »higher»

V. J. Nummi, Operator/operand languages 21

precedence than the rightmost operator in the phrase. Secondly, there
may exist several different productions with identical patterns of operators
(but possibly differing patterns of operands) in the right-hand sides. Even
in the case of exactly identical right-hand sides we may still have the minor
difficulty of deciding to which nonterminal character the phrase should be
reduced.

Here we have a not entirely uninteresting class of languages which are
not necessarily analyzable by means of a left-to-right or right-to-left
algorithm or an algorithm working from both ends toward the middle. Yet
it is not difficult to formulate conditions which are sufficient to ensure the
unambiguousness of the language. (Cf. Knuth [6], p. 611.) The grammar
of the preceding section may serve as a simple example.

A couple of special cases deserve mentioning. First, if each operator of
a precedence grammar occurs in the right-hand side of only one production,
the condition formulated at the beginning of this section is met. Secondly,
prefix and postfix grammars also belong to this category; here the syntactic
analysis is trivial, because the sentence can be regarded as its own structural
description.

An interesting class of grammars results from the further requirement
that no production contain two adjacent operands in its right-hand side.
Because of the restriction on the recursiveness of nonterminal operators,
there is a limit to the number of adjacent operands in the sentential forms.
Thus, if, during a scan through the sentential form, we encounter a sequence
of characters that might be a prime phrase, we can test this possibility by
inspecting a fixed number of characters to the left and to the right of the
sequence, The grammar is thus a bounded-context grammar. (Cf. Floyd
[51)

Finally, we add the following requirement to the previous ones:

If the left-hand side of a production is an operator, then the right-hand
side may neither begin nor end with an operand.

In this special case no sentential form can contain two adjacent operands.
The grammar can be transformed by straightforward expansion so that the
resulting grammar does not contain any nonterminal operators and fulfils
the above condition. For the transformed grammar we have a theory
virtually identical to that of R. W. Flovd [4].

The question of whether a given R/D grammar is a precedence grammar
or not can be answered by means of a mechanical procedure that determines
all ordered pairs of operators which can occur in phrases of the grammar,
separated only by a (possibly empty) string of operands. The special
properties of precedence grammars discussed in this section can also be
mechanically tested.

22 Ann. Acad. Sci. Fennicae AT, 427

7. Algol 60 as an operator/operand language

In the Algol 60 syntax [8] there are a few productions which do not fit
into the framework of R/D grammars. If we want to treat this language
as an operator/operand language we must

1) leave some of the productions out of consideration; in the syntactic

analysis we correspondingly need some preliminary processing before
the analysis proper,

2) make some minor revisions to the grammar which do not have any

effect on the language itself.

To the first category belong the productions defining

(identifier)
{unsigned number)
{open string)
(letter string)

and the nonterminals needed in introducing them. So we regard all
identifiers, unsigned numbers, and strings as terminal characters and let
the preliminary processing take care of their actual representations. Thus
we also do not have any use for (letter)s, (digit)s, decimal point, or the
character ;,. The space character can also be discarded because it can only
have significance in strings. The comments can also be eliminated in the
preliminary processing.

As for the second category, we take first the syntax for assignment
statements. The productions defining (left part), {left part list), and
(assignment statement) are replaced by the following three productions

“destination) ::= {variable) | {procedure identifier)

{eft hand side) ::= {(destination) | (left hand side) := {destination)

“assignment statement) 1= (left hand side) := (arithmetic expression) |
(left hand side) := (Boolean expression)

Our specifications do not allow the nonterminal character {empty).
Thus we must, at the cost of compactness, rewrite the productions for
function designator), (procedure statement)y, and {procedure heading).

function designator) ::= {procedure identifier) |

{procedure identifier) ((actual parameter list))
‘procedure statement) ::= {(procedure identifier) |

{procedure identifier) ({actual parameter list))
(heading 1) ::= {procedure identifier)
(heading 2) ::= {procedure identifier) ({formal parameter list))
“heading 3) ::= (heading 2) ! ¢heading 2) ; {value part)
‘heading 4) ::= <heading 3) | ¢heading 3) ; {specification part)

‘procedure heading) ::= ¢heading 1) | ‘heading 4)

V. J. Nummi, Operator/operand languages 23

In the syntax for procedure declarations we make the following further
modifications:

{value part) ::= value {identifier list)
{specifier) ::= string | {type) | array | label | switch | procedure
{specification) ::= {specifier) (identifier list) |

{type) array <identifier list) |
{type) procedure {identifier list)
{specification part) ::= (specification) |
{specification part) ; (specification)
{procedure declaration) ::=
procedure {procedure heading) ; {(procedure body) |
{type)> procedure {procedure heading) ; (procedure body)

If we regard the character own as an operand, we need not change the
syntax for (type declaration) or <{array declaration). If own is regarded
as an operator, we will have the following productions

(type declaration) ::= {type) (identifier list} |
own (type> (identifier list)
(array declaration) ::= array {array list) | (type) array {array list) |
own array <{array list) | own {type) array <{array list)

By these changes we have merely converted the Algol 60 grammar into
an R/D grammar. The resulting grammar, however, is not a precedence
grammar. The main source of conflicting precedence relations is careless use
of the semicolon, both in the above changes and in the productions which
we have left untouched. In [4], R. W. Floyd avoids this difficulty by
relaxing the requirement that there should be only a finite number of
productions in the grammar. His approach also gives more meaningful
parsings of the phrases, from the semantic point of view, than the original
Algol 60 syntax.

The grammars for several languages in use can be fitted to the model
of operator/operand grammars by using methods similar to those indicated
above. There may, however, be instances where this is not possible. But
one can incorporate into the algorithm for syntactic analysis, a special
device for the exceptional cases. For example, we could modify the grammar
to include some »null operatorsy or »null operands» which do not occur in
the sentences but can be added in the course of a preliminary processing.

24 Ann. Acad. Sci. Fennica A I, 427

III. The translation problem

1. The concept of translation

Let there be given two languages L; and L, both containing infinitely
many sentences. Then there exist infinitely many one-to-one mappings from
L, onto L,. Under what conditions is it adequate to call such a mapping a
translation?

The basic requirement is, of course, that the meaning of the translated
sentence be the same as the meaning of the original sentence. So we have
the problem of defining the meanings of sentences. This is a very profound
question, even in the case of computer programming languages, and it is
not our purpose to discuss it here to a great extent. Basically any attempt
to give a formal definition of the meaning of the sentences of a language
is an only attempt to push the problem to some other branch of knowledge
where the semantics is assumed to be better understood (though not
necessarily formally defined).

In order to be able to treat this question by the methods of the formal
theory of languages, we must assume that the grammar of a given language
has been constructed with primary emphasis on the semantics. This assump-
tion is a nontrivial one, because a language, if regarded as a mere set of
sequences of characters, can be generated by infinitely many grammars. In
fact, the only virtue of a grammar from a practical point of view is that
being able to perform the syntactic analysis of a given sentence helps us
understand the meaning of the sentence and, conversely, given the meaning,
the grammar tells us how to express it. Thus every grammatical category
must have a semantic function.

So our approach to the problem is that in addition to the languages L,
and L, having the same wuniverse of discourse we introduce a third formal
system H by means of which we can express exactly the same things as by
means of the languages L, and L, The system H need not be a language
in the same sense as L; and L, (e.g. a context-free language). Instead we
assume that H in some sense more directly represents the meaning of the
sentences than L; and L,.

Now, if the grammatical categories of L;, as well as those of L,, have
their counterparts in H the order of magnitude of the problem is reduced
$0 as to give us some hope of success in the attempt to handle it by formal
methods.

In the foregoing we have discussed the translation from the whole
language L, onto the whole language L,. It would be more general to
consider a mapping from a subset of L, onto some subset of L,. We must,
however, in some way restrict the choice of these subsets from the non-

V. J. Nummi, Operator/operand languages 25

denumerable collection of all subsets of the languages L, and L,. It is
intuitively clear that the subsets should be context-free languages. Then
we may restrict our discussion to those sub-languages and disregard the
original languages.

2. The translation of R/D languages

In the case of R/D grammars we formalize the »meaning» of the language
by means of the R/D structure tree. Thus we regard the meaning of the
compound operators and the terminal operands as something which requires
no further explanation.

Let ¢; and 5 be two R/D grammars. In both grammars every sentence
has its own R/D structure tree. We assume that the grammars are un-
ambiguous so that the tree is uniquely determined by the sentence. We
denote the set of the structure trees of all phrases of the grammar ¢, by
M(G,) and that of the grammar G, by M(G,).

The mapping

fo MGy — M(G)

is a translation if

1) f is bijective,

2) the (unordered) labeled tree fX is isomorphic to the labeled tree X
whenever X € M(G).

These two conditions imply that f maps the labels of the nodes of the
trees belonging to M () onto the labels of the nodes of the trees belonging
to M(G,) in such a way that

1) the mapping from the set of terminal operands of &, onto the set of
terminal operands of @, is bijective,

2) the mapping from the set of compound operators of &, onto the set
of compound operators of (@, is bijective,

3) to each compound operator there corresponds a unique permutation
which determines how the mapping f changes the order of the branches
defined by the successors of a node labeled by the compound operator in
question.

Now if f is a translation from M(G;) onto M(G,), it induces a mapping
from the language IL(G)) generated by G; onto the language L(G,)
generated by G,. We call this mapping a translation from L(G,) onto
L(G,). We may denote this translation by the same letter f because there
is no danger of confusion.

26 Ann. Acad. Sci. Fennicae AT 427

3. The prefix and postfix grammars associated with an R/D grammar

Earlier (Ch. II. Sect. 3) we mentioned the method of forming a
sentence in a prefix or postfix language by starting from the R/D structure
tree of the sentence. Thus we can construct for any unambiguous R/D
grammar, a postfix and a prefix grammar in such a way that the R/D
structure trees of corresponding sentences in the three grammars are iso-
morphic as ordered labeled trees. We have here complete freedom in choosing
the characters forming the terminal and nonterminal alphabets of the
prefix and postfix grammars. Apart from this fact, the prefix and postfix
grammars are uniquely determined by the original R/D grammar and the
partitioning of its alphabet into operators and operands. (There may Le
some degree of freedom in this partitioning and the decisions are best done
on semantic grounds. If the semantics do not favor either class, it may be
better from the point of view of translatability to classify a neutral character
as an operator.)

The process of constructing the prefix and postfix grammars associated
with a given R/D grammar can be mechanized. To find out whether or not
a given grammar is an R/D grammar we can examine all partitionings of the
total alphabet into two disjoint classes: the procedure can easily be refined
to exclude most of the impossible partitionings so that it becomes feasible
in practice. By inspecting first all productions of length 1 and 2, we can form
selustersy of characters A4,, ..., 4;, By B; such that all A-characters
belong to one class and all B-characters belong to its complement. After
that we can iteratively scan the longer productions and possibly combine
some of the clusters into bigger ones. If the partitioning is not uniquely
determined by this process we can include additional constraints based on
semantic grounds, and then reiterate the process. The next step is to take
an inventory of the compound operators. After that the productions are
transformed one by one to prefix or postfix form. Derivations having a
nonterminal operator as the left-hand side are ignored in this last phase.
because they have been accounted for by the compound operators.

4. Translation from an R/D language inte the associated prefix or postfix
language and vice versa

The prefix or postfix language associated with a given R/D language can
be regarded as a convenient way of representing the R/D structure trees of
the sentences of the given language. Thus it is relatively easy to modify
an algorithm for syntactic analysis of an R/D language to turn it into an
algorithm for translation from the given language into the associated prefix
or postfix language. It is somewhat simpler to generate the prefix repre-
sentation of the R/D structure tree from right to left, and the postfix

V. J. NumMmi, Operatorjoperand languages 27

representation from left to right, because the tree will otherwise split into
a forest in the course of the generation process (Cf. Section II.3).

There are no particular difficulties in the translation into a given R/D
language from the corresponding prefix or postfix language, because the
phrases are easily recognized and transformed into their target language
representations.

In the foregoing we never made mention of the use of parentheses and
punctuation marks occurring in higher level programming languages. If
their special nature is ignored, they must be treated just like the other
operators. Thus for example the expression written in the usual arithmetic
notation as

- fh. k.) —yjz
will, according to our formal theory. have the postfix representation
xfhk,l,ap +yz—

(ap is a special operator denoting functional application). The comma is
here understood to be an operator which operates on a parameter list and
a parameter to combine them into a new parameter list. — If the special
nature of parentheses and punctuation marks is taken into account, there
must be a special device for them in the translation algorithm. — Related
topics have been discussed, for example, by Landin [7] and 6ulil{ [3].

Let us finally take a quick look at the concept of translation as defined
in Section I1I.2. We can now reduce the problem of translatability between
two R/D languages to the problem of translatability between their associated
prefix (or postfix) languages. The definition of translation given in Section
III.2 allows only the permutation of operands and the transliteration of
characters as permissible translations between the prefix (or postfix)
languages.

Summary and comments

This paper is a theoretical study of a special class of context-free
grammars, characterized by the property that all phrases of length > 1
are operator/operand combinations. We call such grammars operator/
operand (or R/D) grammars. The languages generated by such grammars
are called operatorfoperand (or R/D) languages. These languages are
interesting because most programming languages currently in use are R/D
languages or nearly R/D languages, insofar as the context-free properties
are concerned.

28 Ann. Acad. Sci. Fennice A 1. 427

In Chapter I we have striven toward as accurate definitions as possible.
In the definition of a tree we have included finiteness because we have use
only for finite trees. A more general approach would be to postulate the
relation between predecessor and successor, instead of that between ancestor
and descendant. We also give a formal definition of the equivalence of two
derivations, and prove that this definition agrees with the conventional
one, which is based on derivation trees. In the last section we discuss the
bottom-up method of syntactic analysis. The reason why we restrict ourselves
to this method is that it enables us to profit most from the operator/operand
property of the grammar.

In Chapter IT we discuss the syntactic properties of operator/operand
languages. We have tried to keep as close as possible to the intuitive notion
of operators and operands. The idea of subdividing the alphabet into
operators and operands was present in many of the early papers on pro-
gramming languages and their translation; cf. for example the article of
Bauer and Samelson [1]. Colmerauer [2] explicitly uses the terms »operator»
and »operand» and applies the theory of context-free languages; however,
his definition of these terms differs from ours because of different goals.
We have put more emphasis on the semantic interpretability than on the
efficiency of syntactic analysis. Also the discussion about Algol 60 as an
R/D language is intended to be just an example — in this case our method
does not result in an algorithm for syntactic analysis essentially different
from that of Floyd [4].

In Chapter I1T we give the rules for transforming a given R/D language
into »Polish notation». The discussion about the translation from one R/D
language into another R/D language is based on the idea of R/D structure
trees, which reflect the operator/operand structure of the phrases of the
R/D grammars. We have felt that the question about translation between
two context-free languages is too general for a formal treatment, but the
R/D languages constitute an interesting subclass of languages which is more
amenable to such treatment.

Computing Centre,
University of Helsinki,
Finland

References

{1] Baver, F. L., and K. Samersox: Maschinelle Verarbeitung von Programm-
sprachen. - Digitale Informationswandler, edited by WALTER HOFFMANN,
Friedr. Vieweg & Sohn, Braunschweig, 1962, pp. 227 —268.

[2] COLMERAUER, A.: Notions d’opérateurs dans une grammaire »context-freer. -
Revue Francaise d’Informatique et de Recherche Opérationnelle 1, 1967,
pp. 55—97.

[3] CuLik, K.: Well-translatable grammars and Algol-like languages. - Formal
language description languages for computer programming, edited by
T. B. STEEL, JR., North-Holland Publishing Company, Amsterdam, 1966,
pp. 76—85.

[4] Froyp, R. W.: Syntactic analysis and operator precedence. - J. Assoc. Comput.
Mach. 10, 1963, pp. 316—333.

[5] —»— Bounded context syntactic analysis. - Comm. ACM 7, 1964, pp. 62—65.

[6] KxuTH, D. E.: On the translation of languages from left to right. - Information
and Control 8, 1965, pp. 607—639.

[7] Lanpin, P. J.: The mechanical evaluation of expressions. - Comput. J. 6, 1964,
pp. 308 —320.

[8] Revised report on the algorithmic language Algol 60, edited by P. NAUR. - Comm.
ACM 6, 1963, pp. 1—17. / Numer. Math. 4, 1963, pp. 420 —453.

Printed June 1968

	IMG_20160327_0001
	IMG_20160327_0002
	IMG_20160327_0003
	IMG_20160327_0004
	IMG_20160327_0005
	IMG_20160327_0006
	IMG_20160327_0007
	IMG_20160327_0008
	IMG_20160327_0009
	IMG_20160327_0010
	IMG_20160327_0011
	IMG_20160327_0012
	IMG_20160327_0013
	IMG_20160327_0014
	IMG_20160327_0015
	IMG_20160327_0016
	IMG_20160327_0017
	IMG_20160327_0018
	IMG_20160327_0019
	IMG_20160327_0020
	IMG_20160327_0021
	IMG_20160327_0022
	IMG_20160327_0023
	IMG_20160327_0024
	IMG_20160327_0025
	IMG_20160327_0026
	IMG_20160327_0027
	IMG_20160327_0028
	IMG_20160327_0029

