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ON BOUNDARY DERIVATIVE§ IN CONFORUIAL MAPPING*

Introiluetion

In the following we present an elementary and simplified approach to
the study of the differentiability of a conformal map at a boundary point,

which at the same time permits us to improve upoll existing results. LeI Q

d.enote a simply connected domain, z0 an accessible boundary point of O
and. f a function which maps the uppel' half plane conformally onto 0
such that zo correspond to the origin ( : 0' Since the papers by J' Wolff

[20] in 1926 and particularly by C. Carath6odory [2] in f929 appeared, a

great deal of interest has centered on obtaining criteria for the existence of
the (finite and non-vanishing) »»angulo,r d,er'i,aate»» of / at 6 : 0. Such

criteria were given by Ahlfors l1l, the writer [17], Van der Corput [13],
Visser [16] and more recently, [4], [5], by J. Ferrand and J. Dufresnoy, and

others. A survey of the earlier criteria (until 1948) is presented in l9l,
Chapter III, and of later ones (until 1955) in [6], Chapter VI.

The derivations of most of these criteria are based on extensions of the

wolff-carathdodory theorem in conjunction with one or both of Ahlfors'
principal inequalities in [] or ou extensions arr.d refinements of these

inequalities (cf. [6], Chapter VI). The present writer has also been interested

in [7], p8], and [19] in criteria for the existence of the »»unrestr,i,cteil,»>

d.erivative of f at C : 0, assuming that the boundary of O in a neigh-

borhood of zo is a (free) Jordan arc. Another proof of the author's result
on the unrestricted derivative was given bf' M. Tsuji [12] pp. 366-377.
A further method for providing the transition from the angular derivative
to the unrestricted derivative is Ostrowski's »Baltensatz» [I1]; see also the
writer's recent, new proof of this theorem [19]; cf. also Wolff's earlier result
in [21].

In the present paper we consider the iuverse function E of f and shov'

that under proper conditions (which in general eannot be improved) q

has a finite d.erivative N at) z : zo for approach in the Ostrowski »»kernel»»

of Q at zo (forthe definition ofthekernel see section 1). Thisis the content

of Theorem I (and it, of course, al§o implies the existenee of the angrrla,r

+) Sponsorod (in par.i,) by the Offioe of Nav:r,l .tl,esearch under oontrac:t, Nonr
22L6(281 with tho University of Califor:nia'
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derivative at, zo), However, here z may be 0 and we give a rather general
criterion (in section 5) which insures that x * 0.

X'rom Theorem 1 we obtain in a very shori manner a criterion for the
existence of the unrestricted derivative (Tlreorem 2).

The rnethotl applied here to prove Theorern I is cliff'erent from thosc
previously emploved irr establishing criteria lbr the existerrce of the
derivative, and the author believes it of interest even beyond the immediate
purpose it serves in this paper.

1. Preliminaries

Let Q be a simply connected domain in the z-plane. z : ;L f iy, and
zo a boundary point at z : 0 which is accessible along the segment,

{r:0,0 <y <:- ro}c Q. }'or 01r < rn let k, denote the subarc of
lzi : r which contains z :'i,t' and forms a (circular) cross cut of A.
X'ollowing A. Ostrowski [1]l we denote the subdomain K:{zze k,.
0 < r < ro) as the kernel of Q at ?.n. (K depends on ?1yr liut, t,his is not
essential for our purpose).

O will he, at, times, subjected to the following additiorral conditions
at, ?0, although not necessarily simultaneously to all three.

(A) The boundary point zo is accessible in anv »Stolz angle», svmrnetrical

to the imaginary axis of opening less than t, i.e.for ever.\. r. 0 ( r a ; .

there exists at)- rd> 0 such that the sector A* : {zr ( arg z ! t - r,
0 < irl {ro}c A.

If thelengthof k" is r@(r), and ne(r): Max [@(r) - 2,0.], then the
two other conditions are:

and

(c) lim e(r) -_- 0
r->{}

Let C: q(z), C: € * iq, map (2 conformally onto the half-plane
q ) 0 such that zo corresponds to 4 - 0. We may &ssurne that the
endpoints of the image E(lt,r) of lc,n are finite and on opposite sides of
r:0.

If O satisfies the hypotheses (A) and (C), then E@) is »semi-confbrmal»
in. the kernel K, i.e. as z '->zrr.z e K

ro

f eU\

Jr
0

Y (; )
[t tir itr'.g ^., : ( ]

z-> lo 1r

(t.r)
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This is a direct consequence of a lemma of J. Wolff 122), as stated (with
proof) in [f 9], pp. 84-86.1) In [19] it is proved as a »Remark» to Theorem
I a, p. 89; a direct proof is given in the Appendix of this paper.

2. Auxiliary results

\Ye prove first the following lemmas.
Lemma l. Suppose the ilomai,n A sailsfies cond,it'i,on (B). Then there

r

Proof. Let, la denote the lengt'h of the image yo: g(kn)
mappirlg z --> V@). Then we have

v@) l.
ryl(Jl

tZ:( l,v'(Qe")Iadl) = l,e'(Qn")t'sda'o(e) e

kn kn

lyl .r)

under t'he

(2. 1)

Hence,for 0<-r3rs, since @(q) <n(L+t(q)),

(2.2)

Here -4(r) denotes the area ofimage /, of D, artd D, isthatof thetwo
subdomains of J2 formed by k, which contains the segment 0 < y < r
of the imaginary axis. X'or almost all r,0<-r (rs,l, 1q and 7. is

therefore a rectifiable Jordan arc; A, is bounded by y, and. a segment,

of the real axis (containing ( : 0). We reflect y, and. /, intte real axis,
arrd y, and its reflection f, form a closed Jordan curve of length 27,.

fhe area of its interior is 2A(r). Ifence, we have by the isoperimetric
inequalit;r

121,\2 t?
zA(r) < n;' or nA(r) 

= ,.

Thus we have for all r, 0 I r I rr, (1, rnay be * oo on a set of measure 0)

t; If O satisfies (A) and (B), then it is shown in [9], p. 96 that (1.1) holds as

z --> zo in any angle Ao. A nocossary and sufficient condition that the map z --> V@)
be »semi-conformal» in any Stolz angle .4* is due to Ostrowski [I]; several proofs of
this result were subsequontly given by C. Gattegno [7], based on'W'olff's lemma, in
1221, J. Lelong Ferrand [6], pp. Il3-122, by use of Carathdodory's »kernel» thoorom,
and by the writor [19], pp. 87-89.

,) The proof of this lemma may be obtained by use of Ahlfors' First fnequality
(Distortion Theorem) [], Ilowever, we present an independent proof since some of
the inequalities rvo obtain are used later on in this paper.
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(2.3)

Since for almost all

"ll
0 ler

r,0{r

A'(,

20

{ro
r

)- lig'(rei'1',zrdo
J

lcr

we have from (2.1)

l,l l nr(t I e(r))A'(r) ,

and by use of (2.3)

A(,) <| I + e(r))A'(r), *+* =ffi,
or, finally, noting that I - e(r) < (t + ,(r))-t,

? _n <!'@)r r : A(r)'
Integration between the limits r and rL, r < r, ! rs, yields

(24) +:i+" =*"'i,r"
Because of condition (B) and the monotone character of the function above,

(2.5) tirr+: ,,, (> 0)
r{o r

exists.
Now by (2.2), since clearly 0 {e(r) { t, 0 qr {ro,

t f t f tat(2.6) , J ;ot. J ,(rfu {nA(r){Morz
lto

A(r^ 
ro

where Mo: n+ "*nL, l+ "1. Hence there exists an r, ''ith
L {r, 1r such that
2I

= 
2Mrrz (; S rt= ')
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Consid"er a cross cut

apply (2.7), where no\ ,.

of D,, it follows that,
Hence

v@)
ry

Lemma 2.') If the

i,n a?Ly Stolz angle Ao
then

{2.8)

-\ 
2

z € ko, V@) E A", and therefore ,f,(r) i 51,, .

z/ffi-M @ekn)

i,n Sect'ion I 'is »»sewtic,srtform,al»>

ry
b-bO

k
o

for

q

mapp'ing function V

lz\

Iurthermore if Q satisfi,es cond,itions (A) and (B), then for z € Å,

(2.e)

Proof . Although (2.8) is well known3) we present a very sholt proof here

for the sake of completeness. Let, 
^f 4* r'epresent the detelnrination of
.ir, v\z)

the logarithm for which ,,rå "r*; 
:0 (a € A*). Let ze A, audlet g

denote the radius of the largest circle about z contained in J,,,. Then
(see e.g. [3] p. 88)

.lv'@) Il r i q(å) I

; Ie 
iocl? (e :z; Qr-")

If z is sufficiently close

I1;'P' (') 
r:--- I

', v@)

for §€Aolz, and
The second part

Lemma 1, since

ox
to 0, ; = 

sin i ancl hence

fr

iri + q. As z --> 0 in A", h --> ().

e lemma, (2.9), follorvs from the first, lt.r' use

A. Ostrowski [10], theorern 4.

I C-! /
il l --
i\ Ilr't

of th

') C. Visser [ 14], theorem 7 ;

of
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: rr")l :1149 _ ,\ rQl 
= rly9 _ I

ic'@)-;l:i\r(,) -r):zt- tq\z) ri.
Lemma 3. Srytpose Q sati,sfdes conili,tions (A), (B) and, (C). Then there

eui,st fnr euery ,=?anil, for eaery fireil ö,0<d <l an r' wi,th

r{r' <r(1 + ö) and, qn r'with (l -d)rSr'{r suchthatfor Q:r'
and, g : 7t'

v'(z)-ryiou-+o as r-->o (z: Qe").
k*

Corollttry. For 7eka, zzekr, for A-r'ar1d. A-r't uniformlv:

v@z) v@) i _ o

o(e) : I

(2.10) Iim
r-+0 zz zL

The Corollary follou,s immediately from the Lemma, since

Proof of the Lemma. Let, rei§' arrd rei§" be the endpoints of k, and

let ,4, be a sector iutersected by k,(0.. .?) Then

ll" a t-q f,

o(r): I : I . | * |
flt fl, d a-q

Let q > 0 be given. Then by Lemma 2, for fixed a,

for all sufficiently small r, say r ! rr(rl, a). Next, by Lemma I and the
§chwarz inequality (for z: re")

rt v@)

J lv'@) - 
"

llv'@) ry do.llry\*. 1 @,@)tdo

i]' fr'

i tr/z(x 0r) I lv'@)l' d,or :

J 
lY\ul, *"1

o
l)L

Ityl

JT-A
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t,

and an analogous estimate is obtained for j v'(z) -'?\ou

Noting that

o - §r! x * ne(r), fir- (*- o) ( u { ne(r)

v'e finally obtain

(2.u) o(r) !q * 2(a t ne(r))M *, 
{O 

f ze(r)) f W'?r'")'oul'''
kf

Now we determine a bound for the last, integral. Since for r 14,

+.#"*nl, {+o,l-,,
2

A(r(r+ö))-A(r)
o

ro

lv',(tn'u)12 td1dt < 4I[L

Hence, there exists

(2.12)

or

r 8M.(2.r8) J lv'ke"l, ae = ffi 5r: -K(å) (Q: r') .

t
o

Thus, substituting p in place of r in (2.11) arrd using (2.13) §'e obtain

lim o(S) 4q * ZaM * 2 {xK(ö)\Ltz (g : r') .

r+0

Letting here first ,l -O and subsequently (for fixed ä) a -> 0 rre obtain

r(1$a) 
.iit Irkt

an r' r,r.it

iv'(Qe")l' doI
k-

(/

h r{r'
r(1 f å)1r

,, J tdt
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the conclusion for Q : r'. The derivation of a bound for the integral in
(2.f 8) for p : vt and the remainder of the proof is completely analogous.

Lemma 4. Suppose
'i,n section I. Let l, be

iv@)(2.14) r0(r') Inf l--
:€Å'r I k

the domain A and k,, @(r), V@) are defi,ned, as
the length ,f V(k,). Then fo, 0 I r I ra

Here l, anrl o(r) may be { o for some r on a set of measure 0.

- 
"(-,' iv@,*r)

/lL)l .t

v@,1 d i

ry "rtuyl

l* 4 I

t,*a*l 
- 

d, 
''

I{ence

Since also

n-lL*.2
l,:0

we find easih-. by
inequalit,.r-"

t, { ro(,) :ål :*

v'(re") - w9
reiu

L)l .,y:0 i 'y+L
n-L

l; i-t-!l"r'-Ll, I / ,

p:a

u i'l

v@,)
zv

0v -rl
n_L f

,E,J
ott

d0

{ ro(r)

v@)l
;l lr,*t - z,i - ro(r)

letting the norm of the partition tend to 0, the left hand

3. The ilerivative for approach in the kernel

\4re prove no\t' our first principal theorem.
Theorem 7. If the d,otnain I sati,sfi,es hypotheses (A), (B), and, (C) and.

df ,p(z) i,s tlte mapgti,ng functi,on d,efined, in sect,ion l, then for z e K,

,.^rp(z) : ?!:llrl;; z I w'
A(r\

Here p: lim - ": defi,ned in (2.5).
r +n

10
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Proof . For any r) 0

or g ':- rr' (Lemma 3).

(3.I) srplry
,eko I k

Ilence, b). (2.L4)

(2.10)

q-?l(Q,ö) +0 as q-+0

Then by

vOs)
t-

xQ

'\ v('idl \(82) (iäi-,,) @k) - o(q)

As r -> 0 we have, therefore, for

I
xr{limj

r-+o q

r lro

-Yw o :

ltL'

* r) @k)
I

-./ g:
q

v(ie)
7

?,Q
+ o(q)

r'and A-rt'i

(3.3) li*

l{o,r', b3, (r.;l '

v(iq)
i,g

I
lrllimj

- .--o A
, lim

t-*0

v(is)
.

1,Q

t:
;
'l"u

and, therefore, by (2.5)

t?
2nu<lim+.

r+o i-

Thus, bv the second. inequality in (3.3)

(3.4) 1lr! < tim "r(ia)) I ,,-+o ' 
LQ

To estimate the li* 
l= 

we note that for 0
e*o q

I A(r(I -l- å)) A(r)
* lA(,.(t + ö)) - A(r)l : ;;d +# (t -- ä)2 - ; --> p(2ö { ö2)

as r --> 0. Hence, given any e ) 0, there exists &r1 r, - rr(e, ö), such that
for r'{ r,

lV'(tet')iz d0 dt I pr,(zö + ö2) + t

ro

'(L+ä) ,a

l lrlr,J'J
,kt

determin edLTsing g-r'as in (2.L2), we obtain by the same calculation
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(3.5)

(3.6)

(3.7)

(3.8)

l? 2en

A completely analogous argument shows that for Q : r" (Lemma 3)

- 
l7 2en

igä =2nPt+ 2ö_ ö..'

Thus we obtain for q : r' and. p : y", using the inequality o1 the left
in (3.3),

I ^(in\l t 2F , 2t l1/2

:'1 lät = i; + 
"eö - ö\i

Since this holds for every s > 0 we have for Q : r' and p : /'

I{ow, by (2.L) and (3.5)

kn 
r\ lt r--- \</ ' 2ö + ö2

and, therefore, for A - r'

f2e
J lv'(Qe")iz d,t < 21t -L
kn 

\Å'/u -l* t 2ö + ö2 '

ryl .lryl .lryl ,'+ö)
Hll(Jl 

I

Combining (3.4), (3.7), and (3.1) w" find for z e kn

lim
z->0

Finally, to show that (3.8) holds when z --> zo in the kernel ff, rre keep
d, 0 < d q t, fixed and determine for a given r the radii r, ail.d r,,.
For any z e k. there exist points z' e lc,, and zn e lc,, such that

v@)

lJ

(To find z' and zo we merely determine proper points in u,'hich arg i :
ary g@) intersects the arcs E(4c,,) and q(k,,), respectively. The inr-erse
images of these points ate z' arrd zo). Now, as r--->0, ze k,

(se) (,-ä) /4=*lryl =Blryl=/*-+ö)
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since d may be chosen arbitrarily small, (3.8) is valid as z ---> zo in .I(.

To complete the proof of our theorem we note that, because of h1'pothesis

(C), for z e K, lim arg ry : ,*0
Remark. Lrnder the hypotheses of Theorem l, for z e Ao for any ){,

n
0 <a { ;, limq'(z) : tt. (see (2.9)).

- 
"'n

t[. Existence of the ilerivative tor unrestricteil approach

Suppose C is a closed Jordan curve which passes through z:0'
Let, z(t), - f <t <T be a paramet'rization of C such that z(0): tl'
For O < r < lz(T)l drav' the circle izi : r; let

,,:maxlf] , rvhere t',<f ,

l,(01 : "

and

/(,) :;1ax iz(r) .

Thus the arc z : z(t) for ltt, < t, is entirely contained iu z { J(r).
We shall say that C satisfies cond,'ition (U) at z : 0 ,f

/(r\1rt:"
This condition is independent of the parametrization of C.

Remark. Lef ff: min lll and ä(r) : min lz(r)l .

lnOl:r rf<1r1gr,

Then it is easily seen from the definition of .4 (r) that

/(ö(r)) > r .

Theorem 2. su,pltose that c is a closerJ Jord&n curue passing throu,glt

z : 0 which has the following properties:

(a) Tke r-aris 'i,s a tangent to C at z : 0 and the positiue y-uti's ltoi,nts
i,n the d,irecti,on of the interi'or normal.

(b) C sati'sfies cond,i,tion (U) at z : 0.

(c) The i'nterior d,oma'in Q bound,ed, by C su,ti,sfies condition (B) af
sect'i,on 1.5)

4) In tITl this condition is called »reguläre Iinbewalltheit».
5) Conditions (A) and (C) are fulfilled sinee C has a tangent at t == 0'
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If C : V@) is the mapgti,ng function defi,neil in sect,ion t, then

,'^q(z):xe{x.-o
z+o Z

erists for unrestricted, approach in OUC.
Proof. Let e be given, 0 ( e ( t. Because of hypothesis (b) there

exists an .B(e) I 0 such that for 0 < r 
-< 

ä(e)

A(r) < (l f e)r .

Let ö(r) be defined as above (see Remark). Then A(ö(r)) < (I + e)ö(r),
and since ,l(d(r)) ) r we have

r < (l f e)ö(r) .

Thus 'w'e have the inequalities

(4.1) r(1 -e).#<ä(r) {r!Å(r)<(rf e)r.

From the definitions o'tf /(r) and d(r) we note: if z : rei" e C, then
for any other point z' e C witln lz'l > A(r) on the »same side» of z : 0
asz

lq(z')l > lq@)i

andforany z' €C with \r"l<d(r) onthe»sameside»of z:O as z

lq@)l > lv@')l .

Consider t'w'o circular cross cuts /r", and lc,, with (1 - e)ä(r) 3r" < ö(r)
and A(r) < r' ! (l I e)/(r). Let, z" be an endpoint of k", and z, and
endpoint of k,, (z' and. z" are points of C). Then for z, z', z' on the
»same side» of z : 0

lt
?"

;
v@") t , iv@)
-- 

i -> I-
v@')tt r'

*"llZIIZ z'ir '

\\-e let now r' -> 0 and obtain from Theorem 1 and (4.1)

I cn(z\lx(r €)z 
=ltT \;i =lyr->0 |

v@)
ry

Since e is arbitrary, we have for approach along C from either side of
7: Q,

.. lv@l'#t;i:'"
Br- a well known theorem of Lindelöf
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lS 
ars (v@)lr) - 0, @ e a u C)

so that \r:e have as z --> 0 along C

(1.2)

is sufficient' to show that'

v@)lim'\'-x(20) .

z->o Z

To prove that (a.\ holds also for unrestricted approach in O U C it
v@)

ry
is bounded in Q. Let {kn*} be a sequence

of circular cross cuts with ]im 8, : 0' Then J2 may be exhausted by a

sequence of Jord.an domains {f),} bounded by kn. arrd &n &rc y* of C

rritlr does not contain z : 0. By Lemma ,,1ry1= , on all frn, and b5'

n'rå * ol. si,,"" l9 | 
,, **' "1. -

tinuous in the closure of each O, it follows that it is uniformly bounded

in all fr,, and hence in Q. This completes the proof.

5. Conditions for z to be Positive

To show lhat n > 0 it is sufficient to find a domain Qrc Q which

has zo : 0 as an accessible boundary point along the y-axis, such that for
its mapping function Vr@) onto Im (() > 0, with 9r(zo) : 0,

,rm it!41 = o. rn particular, arry' Lrc Q for which vt has a non-
_1 uvio '

vaDishing angular d,erivative may be used. we give the following simple

and. quite general criterion. Q, q are defined in § I, x:limry
Theorem 3. Suppose that, for all real r, h(r) i,s o noi-'r]rgoti'f;',, 

"on-
tinu,aus, eaen funct'i,on, such that

a *+l{"1

(a) ! ry d,r I a(ö > 0) ,"u ,0,,1, h(t)dt 2 chz(r)

fr, sonte constant c ) 0. If for sonle a) 0, Uo) 0 the d,oma'i,n
'{z : r + iy i - a 1r <a, h(") <y .--Yr\C O, then x} 0'o)

6 ) Ogr Theorem 3 combined with Theorem I is sharper than the earlier criteria
for existence of the nonvanishing angular derivat'ive cited in [9] pp. 22-28 and some

of the more recent ones in [6], Chapter Yf. Ilowever it is restricted by the fact that
the curve a : h(*) and hence the domain p, which we construct are contained in
y > 0. For the caso that ,p is an infinite domain with zo at oo and is mapped

onto a parallol strip we proved a similar result in [I9], Theorem 6; cf. also the Re-

rnark in ll9] p. I00 whero comparisons with earlier criteria are given.
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Remarks 1. The continuity of å combined with (a)implies å1Cry : g,

and (b) combined with (a) imply h(r) : o(r) as r --> 0.
2. Condition (b) is clearly satisfied if h(r) is monotonically increasing

for r 2 0; in that case the theorem yields a well known result. Other
sufficient conditions that (b) hold are that, for some constant k > r,). either

These inequalities facilitate the application of our theorem in many cases.
Proof.z) We may assume 2a 1Ao. Traverse the circle lz - ia, : a

from the point z : 2ai in both directions to the first points of intersection,
+ b + ih(b), wit'hthe curve y : h(n) and denote the (circular) arc so de-
scribed by f. Clearly f c Q. Then f and the arc y:{,',t: !b,
y : h(")\ form a closed" Jordan curve contained in D. Denote its interior
by 9r; QrcQ. W'e may assume å> 0, for b:0 implies that QL
is the disk lz - ial : q,, artd in this case the conclusion of our theorem
is well known.We mayalsosuppose h(r)S*l"l{!a for lr !.b (bi.
taking o sufficiently small).

Leb Gr(z,ia):1s*7 -rO, denote the Green's function of f/, with

the pole at z : ict, where y : lz - i,al and u(z) is harmonic in gL.

X'or z € -f U y we have u(z) : bS\ .

Nowfor z:n*iyey we have,if r{a,

and the inequality

since then log Y
r

(5. 1)

Let

h(*) (z-n+ih(r))

bet,ween the first' and last' terrn still holds if r ) n,.

SO. Thus for ze y

u(z)
2

-a,

I i"-., vd,tu(z)-;l,tl(t)ffi

?) The proof genoralizes a method of M. Tsuji [12] p. 868. To make this paper
self-contained we include the proof, although it is similar to that of our Theorem 6 of
[1e].
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rvhich is

since t

(5.2)

Sirrce oI1 f, a@)

ydtffi=
by property (b).

x*l
1 f , ch(r)

2ny J \/ 2:

,*-.-, O, (5.1) for z eY

harmonic in y

x*t1r
tc(z) >: I h(t)

?T 
"_,

- nl {y and

4n
ak\= .u(z).\/ au

Y I t1,,

I V ud,t
u(iv) -, J,,h(t) iT* -

1u
u(iv) 

=;

iI ryitt

A,-f

- a(iv)
a,

ancl thus

(5.3)

(a-r-y), by (5.3),

fryd,

I a - r\
Gr(iy,in)-loglt+ , ) a(iY).

';t, ;J t?

v
2a

I
, a(iy)

\[.e can choose a priori a so small that ,4 > 0. If G(2, da) denotes the

Green's function of - Q with pole at z : &i', u'e have for z e Q1,

G(2, ia) )- G{2, ia) and. consequently

,.^G(iy,i,a) 2 Hm 
Gr(i,Y,i,a) > A > o .

,lr- a -g Y

suitable linear transformations applied to the mapping function q show

then that x) 0.

2
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APPENDIX

We indicate a direct proof of (1.1) stated in
Theorem. If the domain O satisf,ies cond,itions

then lim a v@)rg;
t-.o -- 0, uniformly as z -> zo ,in

i

section l.
(A) and (C) of sect,iln 1,

K.

The functio* u) : logi , /tD : /t, -f io, maps () onto a simply connected

domain § which contains a part L: {u Z uo, a: 0} of the real axis, for
some xe,. Let w* denote the boundary point at w : co of § accessible
along L (corresponding to zo). For u 2 uo let, 0, be the largest (open)
segment in § which intersects Z (corresponding to h) and let O(u) be
its length. The domain f : {w e 0u, u } zo} is the »kernel» of s at zu_

(depending on uo). Similarly Z:bg!, Z: X +i,y, maps the half-
q

plane Im (f) 2 0 onto the infinite parallel strip » : { ,' a} ,

- oo < X < *) and the function Zko) : Xkd -r lflzr;y-:
-logli,-1g(,e-')l maps § conformally onto J such that lim X(tt) : * q.

X'or all sufficiently large ,tL, Z(w) maps g, onto an "iilo,c J rvhich

connects a (finite) point of y:; to a (finite) point on y: -:
We assume that u, is so large that this is the case for u Z ro. Ti." "rir.cat 0,o divid.es § into two subdomains; let §o denote the one containing
the part of -L with u ) ?to.

Let a be an endpoint of a 0, for u> uo. We describe a circle (. of
radius p about a where g ( Min (u - us, loc - ul) so that C,, does not
intersect 0,u and the z-axis. Cn crosses 0u at, a point a'. Let k" denote the
largest (open) arc of Cn which contains a' and, is contained i, s; it is
also contained in §o; /co divides B, into two domains and the one cor-
taining the segment aa' of 0" will be denoted by D,,. Then rre hal,e
(Wolff L22), \Varschau'ski [19] p. 8a):

is a doma'in A o bounded by the image of ka

?T 7L

In part'icular, 'u)e haae ,fo, uL, wz e

u %0, lx ul) tlte rt e:rists
under the mapp'ing u-t -->- Z(n)

a,nd a fi,ni,te seg?tLe?tt of the line

d,oes not erceed, r, (Log l )-"'

D,,

tw(
1\-1i2

tos dJ ,



and df we let u)r-'> d" along 0u, for any w € Dn,

ln I / 1\-r/z(A.r) l; -lv(*)ll =u\tos5/
I{ow, to prove the theorem, &ssume u ) uo and choose any e } ll

such that \/; < Min (e-sz, % - %o, 1" - u1) where a (as above) is an

endpoint of 0,. Then there exists an -Eu such that (because of (A))

l.xtl(i) §._.:l*:"lialu>R,, lal 5, -eicS't-€ t

and (because of (C)) for u2Ru, w:uli'ael"

(ii) for z,> 0: o.f, +, and for a l-0: a) -: - '.

Applying (A.I) with ö2: e \ve see that for evety we 0", u') R.,

and lul>! -u"- 2
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7t

Hence, for eYerv such lt) with a 
= , 

€) by (ii)

I L\-1 2

\ " e I

I r \-t'z

u-> $ co

I 1 \-tiz

= 
2M 

[to* ;)

7t
,l)",_i_

I

7T

Y(w) ,

7[

==2r

7t ' | l\-tz
- iu 

=2)I 
tlog I -rt.

2 \ v t/

d bounded in ,S, -, a,nd (A.2) ancl
2

ndaries of this strip, it follows that

+

ica

lbo

n

u

Y(w) t

I

armon

izonba,

l,n
(A.3) lY(u) ul 

= i; +
ILJ

f inally since Y (w) - a is h

(4.3) are satisfied on the hor
for we 5,, , uniforml;r,

,-t

(4.4)
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But by (4.2) and (4.3) it is also true uniformly for w € l' outside of Uf_,

as u--> * oo. Hence lim (I(rz) - a):0, uniformly for w e f. This is

equivalent to the "on[rtår, of the theorem.

University of California, §an Diego
La Jolla, Clalifornia
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