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ON BOUNDARY DERIVATIVES IN CONFORMAL MAPPING*
Introduction

In the following we present an elementary and simplified approach to
the study of the differentiability of a conformal map at a boundary point,
which at the same time permits us to improve upon existing results. Let £
denote a simply connected domain, z, an accessible boundary point of
and f a function which maps the upper half plane conformally onto 2
such that z, correspond to the origin ¢ = 0. Since the papers by J. Wolff
[20] in 1926 and particularly by C. Carathéodory [2] in 1929 appeared, a
great deal of interest has centered on obtaining criteria for the existence of
the (finite and non-vanishing) »angular derivater of f at = 0. Such
criteria were given by Ahlfors [1], the writer [17], Van der Corput [13],
Visser [16] and more recently, [4], [5], by J. Ferrand and J. Dufresnoy, and
others. A survey of the earlier criteria (until 1948) is presented in [9],
Chapter I1I, and of later ones (until 1955) in [6], Chapter VL.

The derivations of most of these criteria are based on extensions of the
Wolff—Carathéodory theorem in conjunction with one or both of Ahlfors’
principal inequalities in [1] or on extensions and refinements of these
inequalities (cf. [6], Chapter VI). The present writer has also been interested
in [17], [18], and [19] in criteria for the existence of the »unrestricted
derivative of f at ( = 0, assuming that the boundary of 2 in a neigh-
borhood of z, is a (free) Jordan arc. Another proof of the author’s result
on the unrestricted derivative was given by M. Tsuji [12] pp. 366—377.
A further method for providing the transition from the angular derivative
to the unrestricted derivative is Ostrowski’s »Faltensatz» [11]; see also the
writer’s recent new proof of this theorem [19]; cf. also Wolff’s earlier result
in [21].

Tn the present paper we consider the inverse function ¢ of f and show
that under proper conditions (which in general cannot be improved) ¢
has a finite derivative » at z = z, for approach in the Ostrowski »kernel
of Q at 2, (for the definition of the kernel see section 1). This is the content
of Theorem 1 (and it, of course, also implies the existence of the angular

#) Sponsored (in part) by the Office of Naval Research under contract Nonr-
2216(28) with the University of California.
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derivative at z)). However, here » may be 0 and we give a rather general
criterion (in section 5) which insures that x = 0.

From Theorem 1 we obtain in a very short manner a criterion for the
existence of the unrestricted derivative (Theorem 2).

The method applied here to prove Theorem 1 is different from those
previously employed in establishing criteria for the existence of the
derivative, and the author believes it of interest even beyond the immediate
purpose it serves in this paper.

1. Preliminaries

Let £ be a simply connected domain in the z-plane, z = + + iy, and
zy a boundary point at z = 0 which is accessible along the segment
{fxr=0,0<y=ryc For 0<r=r, let k denote the subarc of
jz| = r which contains z = ¢ and forms a (circular) cross cut of Q.
Following A. Ostrowski [11] we denote the subdomain K = {zz €£,.
0 <r <7y} as the kernel of £ at z, (K depends on 7, but this is not
essential for our purpose).

2 will be, at times, subjected to the following additional conditions
at z, although not necessarily simultaneously to all three.

(A) The boundary point z, is accessible in any »Stolz angle», symmetrical

A

to the imaginary axis of opening less than =, i.e. for every .0 <

there exists an r, > 0 such that the sector A

0< 2] =r, ) Q.
If the length of %, is 7O(r), and ne(r) = Max [@(r) — 7. 0]. then the
two other conditions are:

(B) /#d?<oo

=12z = ar

and
©) lim g(r) = 0.

r—>0

Let ¢ =¢(2), =&+ in. map £ conformally onto the half-plane
1y > 0 such that z, corresponds to ( ==0. We may assume that the
endpoints of the image g¢(k,) of k, are finite and on opposite sides of
=
‘5 pum—

If © satisfies the hypotheses (A) and (C), then ¢(z) is »semi-conformaly
in the kernel K, ie. as z —z,.2€K

¢ (%)

(1.1) limarg = - = 0.

>z, ~
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This is a direct consequence of a lemma of J. Wolff [22], as stated (with
proof) in [19], pp. 84—86.1) In [19] it is proved as a »Remark» to Theorem
1 a, p. 89; a direct proof is given in the Appendix of this paper.

2. Auxiliary results

We prove first the following lemmas.
Lemma 1. Suppose the domain Q2 satisfies condition (B). Then there

?(2)

= 5
2 2
Proof. Let I, denote the length of the image y, = ¢(k,) under the
mapping 4—-><p( . Then we have

< M2

exists a constant M such that for z € K,

(2.1 (/W ee'e)led0> /qu(eei")t2 0db - O(¢) o

k

0

Hence, for 0 <r <7, since O(p) = n(l 4 £(p)),

; l2 d
(2.2) / ol Q /do/ "(0€°) |2 odf = mA(r) .

Here A(r) denotes the area of image A, of D, and D, is that of the two
subdomains of 2 formed by k&, which contains the segment 0 <y <<r
of the imaginary axis. For almost all »,0 <r <7, < oo and 7y, is
therefore a rectifiable Jordan arc; A4, is bounded by y. and a segment
of the real axis (containing { = 0). We reflect y, and 4, in the real axis,
and y, and its reflection 7, form a closed Jordan curve of length 2.
The area of its interior is 2A4(r). Hence, we have by the isoperimetric
inequality

o

or wd(r) <

Thus we have for all », 0 < r < r,, (,, may be 4+ co on a set of measure 0)

1) If Q satisfies (A) and (B), then it is shown in [19], p. 96 that (1.1) holds as
z—>2, in any angle A,. A necessary and sufficient condition that the map z — ¢(z)
be »semi-conformal» in any Stolz angle A4, is due to Ostrowski [11]; several proofs of
this result were subsequently given by C. Gattegno [7], based on Wolff’s lemma, in
[22], J. Lelong Ferrand [6], pp. 113—122, by use of Carathéodory’s »kernel» theorem,
and by the writer [19], pp. 87—89.

2) The proof of this lemma may be obtained by use of Ahlfors’ First Inequality
(Distortion Theorem) [1]. However, we present an independent proof since some of
the inequalities we obtain are used later on in this paper.
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r

(2.3) n / / |9 (0€”) | edfdo = 5
ok

Since for almost all »,0 <r <,

A'(r) = / @' (re®) 2 rdf

k

o~

T

we have from (2.1)
F=ar(l 4 e(r)A'(r) ,
and by use of (2.3)

, 2 A'(r)

A(r) = 5 (1 + &(r)A4’(r) = ;

N <

or, finally, noting that 1 — ¢(r) < (1 + &(r))™1,

r T A®r)

2 2¢(r) _ A'(r)
r

Integration between the limits » and r,r <1y <1, yields

r

F ) e
2 2 de 2 —dt
o 5 aw

(2.4)

2 2
r Ty

Because of condition (B) and the monotone character of the function above,

. A(r)

(2.5) lim—— =u (=0)
r}0 r

exists.

Now by (2.2), since clearly 0 Z¢(r) =1, 0 <r = 7,
iy 1/lfd / I dt A = 3
(2.6) > ; It < ) 1+ () =ad(r) = My

r 0
A(ry) w0
where M, == 2 exp 2 e dt J . Hence there exists an 1, with
0
’
5 =7 =r such that

r
2.7) 2 log 2 < 2My? (-2— <= 7') .
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<

T,
Consider a cross cut k, with 0 <o = 2 We take i = 2p and

apply (2.7), where now ¢ =, = 2¢. Since k, is contained in the closure
of D, it follows that, for z €k, ¢(z) €4, and therefore '¢(z) =1, .
Hence

IA

I, »
i §2]/2M" =M (z€L).
2 log 2 ;

Lemma 2.3) If the mapping function ¢ in Section 1 is ysemiconformaly

7 z
i any Stolz angle A, (0 <x < 5), v.e. if lim arg@ =0 inany 4,,
then ‘ ’ TR N

20 (2
(2.8) lim 2 &
i P2)

Furthermore if Q satisfies conditions (A) and (B), then for =z € A,

=1, 2z€4,.

¥(2)

2

<

(2.9) lim { — gp'(z)J =0 (z€4)).

Proof. Although (2.8) is well known3) we present a very short proof here

’

for the sake of completeness. Let log represent the determination of

¢
¢(2)
the logarithm for which lim arg = 0 (2€A4,). Let z€ 4, andlet o

>3,

denote the radius of the largest circle about z contained in 4 ,. Then
(see e.g. [3] p. 88)

0
If z is sufficiently close to 0, — = sin 5 and hence

I [Z!
—13§2}—1-h£2k csc
| 0!

~
—

2p'(2)
¢(2)
for [€A,,, and [{| =z +0. As z2—0 in 4, h—0.

The second part of the lemma, (2.9), follows from the first by use of
Lemma 1, since

NSRS

1 i
§ , h = Max arg



8 Ann. Acad. Sci. Fennicae A. 1. 420

~

L 29z z
§¢’(z)—¢(~2)£ B f( ¢()_1) ¢(2)

¥(z) z

!
— 1.
|

|
Lemma 3. Suppose Q satisfies conditions (A), (B) and (C). Then there

r
exist for every r = ;0 and for every fized 6, 0 <O <1 an 7' with
r <1 Zr(l +06) and an »" with (1 — O)r <" =< r such that for o =1’

and ¢ =1"

I
a(g):/t¢’(z)—£?’d0—>0 as r—0 (z = pe®).

Corollary. For z, €k, z, €k, for o=1" and ¢ =1" uniformly:

2

(2.10) lim ®(29) - ‘P(z])I —0
' >0 | %2 % }_

The Corollary follows immediately from the Lemma, since

)wz N / 2 [wee"'*)] l /' e
S w el s e

Proof of the Lemma. Let r¢/* and re? be the endpoints of k, and

7
let A, be a sector intersected by k. (0 << 2—) Then

Pa a - 2
J-J Tk
B P 23 a—a

Let 7 > 0 be given. Then by Lemma 2, for fixed «,

/ I . do <n (z = re)

for all sufficiently small », say » < (,«). Next, by Lemma 1 and the
Schwarz inequality (for z = re®)

/lfp'(z)—@[de gf[%z)ldwrf ¥'(2)1d0
f I A

3 /
< (x — BOM + { (x— Bu) / @) de}” :
I
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Pe
e — ?@‘de :

and an analogous estimate is obtained for /

T—x

Noting that
&= =+ as(r), fp— (@ — ) =+ )
we finally obtain
(2.11)  o(r) =5 + 2(x + we(r))M + 2 {(cc + :ze(r))/ @ (rei®) 2 df }1.2 .
>

r

Now we determine a bound for the last integral. Since for r = 1y,

To

A(r A t
) < (?0) exp [2 / f(tﬁ) clt] =M,

9
72 75

"o
we have for r < 3

AL+ 0) — 40 ACOE ) A(r)

72 - 72(1 + 0)? o -
or
x(149)
;12_ / / ' (te™®) 2 tdfdt < 4 M, .
vk

Hence, there exists an 7’ with » <» = »(1 4 ¢) such that

r(1+9)

1
(2.12) / I’ (0e®)|> db 2 .// tdt <4M, (o =1")
ko r
or
2.1 / 2 dp < sy K (6 /
(‘3) : [(erl :25+62: ()(9_7)‘

Thus, substituting ¢ in place of r in (2.11) and using (2.13) we obtain

4

Iim o(p) <7 + 2xM + 2 {(xK(8)2 (o =1").

r—>0

Letting here first 7 — 0 and subsequently (for fixed 6) « — 0 we obtain
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the conclusion for ¢ = #’. The derivation of a bound for the integral in
(2.13) for 0 = ¢" and the remainder of the proof is completely analogous.

Lemma 4. Suppose the domain 2 and k,, O), ¢(z) are defined as
in section 1. Let I, be the length of ¢(k.). Then for 0 <r <r,

|
(2.14) rO( ro(r) = I = rO(r) Sup | ! + ro(r)

9(2) ‘ Lp(2)
| - ~

.eh z€k, |

Here I, and o(r) may be + oo for some r on a set of measure 0.
Proof. Consider a partition 0, < 0, < ... <0, of k., z, = re®® . Then

n—1 n—1]| I
| 1 p(z,41) @(z,)
‘Ln - Z E¢(za +l) (’-(z,)‘ - { * Zv_'l — Zv-
= =01 211+1 z,
n—1]| ! n_1! |
(2, 41) ?(z,) , L@(z,) .
= - | Zpi1! | [z —
= = ! z”+1 2,, i I y+1. + = 9 zv IBERES Zv
Hence
Op+1
z n—1 | (7616 ’
L, = Sup L; rO(r) +r Y / e — 7 ,.9) do
e 2 | e |
or
)|
I, = 7O(r) Sup | 7 4)] -+ ra(r)
26’\, l z |
Since also
n—1 z
Lz 2, ﬂz 2 s — 2] = v
r=0 v

we find easily, by letting the norm of the partition tend to 0, the left hand
inequality.

3. The derivative for approach in the kernel

We prove now our first principal theorem.
Theorem 1. If the domain Q satisfies hypotheses (A), (B), and (C) and
if @(2) is the mapping function defined in section 1, then for z € K,

ole _
lim ~—(—) =x = 2_,u .
>z, ? 7T
Here p =1 (2.5).

r>0
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7,
Proof. For any r, 0 <r = EO , and fixed §, 0 <6 <1, let o =1

or p=71" (Lemma 3). Then by (2.10)

(3.1) Sup AL - ‘=77:77(Q,6)——>0 as o—0.

zekg

Hence, by (2.14)

A . .
lio) | ) l, ( w(w)l )
3.2 (i - — 1] O(p) — o) = — < - 0] a(p) .
(3.2) T | T 1) 0@ — el = 0 | 710+l
As r—0 we have, therefore, for o =7" and ¢ ="
— | p(io) | — 1, v l
(3.3) limilp(.e)‘nglimi, lim tp(.Q) 7= lim = .
r—>0 E 10 } r>0 @ 0 Lo =0 4
Now, by (2.3), for 0 <7 <1
A(r l;
27 # <
r 7
and, therefore, by (2.5)
l2
27 u = lim 2
r—>0
Thus, by the second inequality in (3.3)
/o | Z !
(3.4) Vz_/“‘ <1im P02
14 vo |

o—0 !

— 1, 7,
To estimate the lim — we note that for 0 <r < 50

00

i Ar(l b) Alr ___A_(r(_l—;——é)) 1_1_62 A(T) 20 62
1,2 [ ('( + ))_ (7)]_ ,',.2(1_;__6)2 ( ! )— 72 ——>-/,L( + )

as r— 0. Hence, given any & > 0, there exists an r, = (e, 0), such that
for » <
r(l+¢3)
1
2 /t g/ ()2 dO dt < u(20 + ) + ¢ .

72
r ky

Using o = r’ as determined in (2.12), we obtain by the same calculation
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2¢
i6) ]2

(3.5) /lqﬂ(ee [dt<2/t+26+62.
Now, by (2.1) and (3.5)

2 e@(g)

EQZ- = / |9’ (0€®) 2 dO < 2uBO(p) + 35 = & T
and, therefore, for o = ¢’

— 12 2em

(3.6) ,,T;Q _271,u—i—26+62.

A completely analogous argument shows that for o = " (Lemma 3)

o l2 : 2em
Thus we obtain for ¢ =+ and o =", using the inequality on the left
n (3.3),
— |plio)! _ [ 2 2 |
< 1= -
vl 7R Il I ey g |

7"

Since this holds for every ¢ > 0 we have for o =+ and o = r

(3.7) i |29 9/
o0 | 20 7

Combining (3.4), (3.7), and (3.1) we find for 2 €k,

l
(3.8) lim ‘P(Z)! _ 2,u

z—>0
Finally, to show that (3.8) holds when z —z, in the kernel K, we keep
9, 0 <d <1, fixed and determine for a given r the radii »* and /.
For any 2z €k there exist points 2’ €k, and 2" € k. such that

v f?f(lw)

2

#(z")

(I —9)

(To find 2’ and 2" we merely determine proper points in which ar ol
arg g(z) intersects the arcs (k) and g¢(k,.), respectively. The inverse

images of these points are 2z’ and z”). Now, as »—0, z €L,

(3.9) (1—9) ]/zi‘ < Jim | 2

44

?(2)

ZM
" (1 +9).

T

<h

r—0

IA

r—>0
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Since & may be chosen arbitrarily small, (3.8) is valid as z—z, in K.
To complete the proof of our theorem we note that, because of hyvpothesis

2
(C), for z€ K, lim arg ?3—(2——) = 0.
>0

Remark. Under the hypotheses of Theorem 1, for z € A, for any x,
n
0<x< 5, limg'(z) =« (see (2.9)).

353,

4. Existence of the derivative for unrestricted approach

Suppose C is a closed Jordan curve which passes through z = 0.
Let z({), — T <t =T be a parametrization of €' such that z(0) = 0.
For 0 <r < 2(T)| draw the circle z| =r; let

t, = max |t , where I <T,
=) =r

and
A(r) = max z(t)] .
<t
Thus the arc z = z(t) for |t/ <, is entirely contained in =z = .I(r).
We shall say that C satisfies condition (U) at z =0 if
A(r
im __.(_1 — 19,

7

r—>0

This condition is independent of the parametrization of C.
Remark. Let ¢* = min |t/ and 0(r) = min [2(f)]
=) =r Fsplsy
Then it is easily seen from the definition of A(r) that
A@(r) = .

Theorem 2. Suppose that C is a closed Jordan curve passing through
z = 0 which has the following properties:

(a) The x-axis is a tangent to C at z = 0 and the positive y-axis points
in the direction of the interior normal.

(b) C satisfies condition (U) at z = 0.

(¢) The interior domain 2 bounded by C satisfies condition (B) of
section 1.9

4) In [17] this condition is called »reguldre Unbewalltheit».
5) Conditions (A) and (C) are fulfilled since C has a tangent at z = 0.
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If { = g(z) is the mapping function defined in section 1, then
¢(2)

im — =% (0% < ©

exists for unrestricted approach in Q2 U C.
Proof. Let e be given, 0 <& << 1. Because of hypothesis (b) there
exists an R(¢) > 0 such that for 0 <r < R(e)

A(r) < (1 + &)r.

Let 6(r) be defined as above (see Remark). Then A(d(r)) < (1 + €)o(r),
and since 1(6(7)) = r we have

< (1 +¢)o(r).

Thus we have the inequalities

(4.1) (1—-—8)<'1‘T <Oor)y = r = A(r) < (1 + ).

From the definitions of A(r) and o(r) we note: if z = r¢® € C, then
for any other point 2z’ € C' with [z'| > A(r) on the »same side» of z = 0
as z

lp(z')] > lg(z)]

and for any 2" € C with [2”| < 6(r) on the »same side» of z = 0 as z

()] > lpz")] .

Consider two circular cross cuts k. and k, with (1 — €)d(r) =< " < 6(r)
and A(r) <r" = (1 4 &)4(r). Let 2’ be an endpoint of k.. and 2z’ and
endpoint of k, (z* and 2" are points of (). Then for z, z’, z” on the
»same side» of z =0

v

¥

< i

") ivv(z)E
I e WP

We let now »—0 and obtain from Theorem 1 and (4.1)

)|
#(1 — )2 < lim ‘(p(j |

r—>0

II/\

2) |
o =1

m [
r—>0

Since e is arbitrary, we have for approach along C' from either side of
z=0,

#(2) ’ _

A

lim f

>0 |

By a well known theorem of Lindelof
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lim arg (¢p(2)/z) =0, (z€Q2UC)

=0
so that we have as z—0 along C
2
(4.2) lim ? =x%x(=0).
z—>0

To prove that (4.2) holds also for unrestricted approach in QUC it

is sufficient to show that is bounded in Q. Let {k,} be a sequence

of circular cross cuts with lim g, = 0. Then 2 may be exhausted by a

sequence of Jordan domains {£,} bounded by %k, and an arcy, of C
|
z) |
with does not contain z = 0. By Lemma 1, ?“ = M onall k, and by
1 ] |
() z
(4.2), 1(;‘*. < M’, for a suitable M’ on C(z # 0). Since Q is con-
T

tinuous in the closure of each Q, it follows that it is uniformly bounded
in all 2, and hence in Q. This completes the proof.

Ly

5. Conditions for x to be positive

To show that x> 0 it is sufficient to find a domain £, € £ which
has z, = 0 as an accessible boundary point along the y-axis, such that for
its mapping function ¢,(z) onto Im ({)>0, with ¢(z) =0,

aiy) | : ,
im —— > 0. In particular, any ;@ for which ¢, has a non-
yo
vanishing angular derivative may be used. We give the following simple
. L _ le(iy)]
and quite general criterion. 2, ¢ are defined in § 1, » = lim 7y .

y—>0
Theorem 3. Suppose that, for all real x, h(x) is a non-negative, con-

tinuous, even function, such that

f h(z) /
(a) —=dx < 0 (6 >0) and (b) h(t)dt = ch*(x)

x-+h(x)

X2
0 x—h(x)

for some constant ¢ > 0. If for some a>0, y,>0 the domain
=u—iy|—a<w<a, Mz)<y<y,)C L, then x> 09

¢) Our Theorem 3 combined with Theorem 1 is sharper than the earlier criteria
for existence of the nonvanishing angular derivative cited in [9] pp. 22— 28 and some
of the more recent ones in [6], Chapter VI. However it is restricted by the fact that
the curve y = h(zx) and hence the domain £, which we construct are contained in
y = 0. For the case that Q is an infinite domain with z, at oo and is mapped
onto a parallel strip we proved a similar result in [19], Theorem 6; cf. also the Re-
mark in [19] p. 100 where comparisons with earlier criteria are given.
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Remarks 1. The continuity of % combined with (a) implies A(0) = 0,
and (b) combined with (a) imply #(x) = o(x) as x — 0.

2. Condition (b) is clearly satisfied if A(x) is monotonically increasing
for x> 0; in that case the theorem yields a well known result. Other
sufficient conditions that (b) hold are that, for some constant & > 0. either

Bt) — h) _ . h(t) — h(z)

t—ax - t —«x -

These inequalities facilitate the application of our theorem in many cases.

Proof.? We may assume 2a < 1, Traverse the circle |z — in' = a
from the point z = 2ai in both directions to the first points of intersection,
4= b + th(b), with the curve y = A(x) and denote the (circular) arc so de-
scribed by [I. Clearly I'c 2. Then I' and the arc y=1xr =0,
y = h(x)} form a closed Jordan curve contained in 2. Denote its interior
by £; £,c Q. We may assume b >0, for b =0 implies that 0,
is the disk |z — da| = @, and in this case the conclusion of our theorem
is well known. We may also suppose A(x) <1|z| <1a for @ =1 (by
taking a sufficiently small).

a
Let Gy(z, ta) = log Pl v(z) denote the Green’s function of (2, with

the pole at z =ia, where r = |z —ia| and wv(z) is harmonic in 2.

a
For z€I"'Uy we have v(z) = log pr

Now for z=a + iy €y we have, if r < a,

B

(@ =) = = hia)

a a—r a
log;:log(l—,L " >< , =

Q|

and the inequality between the first and last term still holds if r = «a,

a
since then log - = 0. Thus for z €y

(5.1) v(z) = 2 h(x) (z = + ih(z)) .

Let

2a

1 ydi
R B

—2a

") The proof generalizes a method of M. Tsuji [12] p. 368. To make this paper
self-contained we include the proof, although it is similar to that of our Theorem 6 of
[19].
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which is harmonic in y > 0. For z €y (if y =0, u(z) = h(x) = 0):

2ty -ty

- 1 f y di - 1 / - ch(z)
u(z) = - h(t) (—af ot = 2y h(t)ydt = P

x=y

since |t — | <y and by property (b). Hence, by (5.1) for z €y

- - 47

(5.2) v(z) = o u(z) .

Since on I', v(z) = 0 and u(z) > 0 for y > 0, (5.2) holds in 2,. Now,
for z =1y, 0 <y <a,

2a 2a
1 y dt Y / h(t)
) == < - -_—
u(ty) - -[ h(?) i =g 2 2 dt
and thus
2a
: 4y [ A1)
(5.3) v(iy) = P / = dt .
a

Hence we have for 0 <y < 3 (@ —r=1y), by (5.3),

o o a—r . lLa—r . y )
Gy(ty . ia) = log (1 + ) vy =3 — v(iy) = 5, — v(y)

We can choose a priori @ so small that 4 > 0. If G(z,1a) denotes the
Green’s function of £ with pole at 2z =ai, we have for z € 2,
G(z, ia) = G4(z, i) and consequently

Gy ,1a G, (2y, 1a
lim—(y—-—) g]im_ﬁl_) >A4>0.
oo Y 370 y

Suitable linear transformations applied to the mapping function ¢ show
then that » > 0.

[N
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APPENDIX

We indicate a direct proof of (1.1) stated in section 1.
Theorem. If the domain Q satisfies conditions (A) and (C) of section 1,

z
then lim arg ? =0, wuniformly as z—z, in K.

z—12,

)
The function w = log S w=u -+ iv, maps £ onto a simply connected

domain S which contains a part L: {u = u, v = 0} of the real axis, for
some u, Let w, denote the boundary point at w = oo of S accessible
along L (corresponding to z,). For u = wu, let 0, be the largest (open)
segment in S which intersects L (corresponding to k,) and let @(u) be
its length. The domain I'= {w € 0., u = u,} is the »kernel» of S at

i
(depending on wu,). Similarly Z = logE, Z =X +14Y, maps the half-

—

plane Im ({) > 0 onto the infinite parallel strip 2 ={1 <

1]

— o <X < oo} and the function Zw) = X(w) — iY(w) =

—log[ig(ie™)] maps S conformally onto X' such that lim X(u) = — =.
u—>+4 0
For all sufficiently large », Z(w) mapsf, onto an arco,C X which
7 4
connects a (finite) point of Y = 5 to a (finite) point on ¥ = — = .

We assume that w, is so large that this is the case for u = u,. The cross
cut 0, divides S into two subdomains; let S, denote the one containing
the part of L with u > w,.

Let « be an endpoint of a 0, for u > w,. We describe a circle (' of
radius ¢ about x where o << Min (u — u,, |x — u]) so that €, does not
intersect 6, and the u-axis. O, crosses 0, at a point x". Let k, denote the
largest (open) arc of €, which contains «’ and is contained in S: it is
also contained in Sy k, divides S, into two domains and the one con-
taining the segment an’ of 6, will be denoted by D,. Then we have
(Wolff [22], Warschawski [19] p. 84): )

Lemma. For every ¢, 0 <6 << Min(e™32, u — w,, |x — u|) there exists
a o, 0® << <0, suchthattheimage of D, wunder the mapping w — Z(w)
is a domain A, bounded by the image of ké; and a finite segment of the line

T T -1/2
Y=go ¥Y=— 5 - The diameter of A, does not exceed M <1og 3)

where M = 674/ 2,
In particular, we have for wy;, w,€D,,

1\-12
Y(wy) — Y(wy)| = M <log 5) :



S. E. WarscHAWSKI, On boundary derivatives in conformal mapping 19

and if we let w, —« along 0., for any w€D,

ln | 1\-1/2
(A.1) 5 ]Y(w);l =M <1og 5) .

Now, to prove the theorem, assume u > %, and choose any &> 0
such that V/ e < Min (¢3, u — u,, |x — u|) where x (as above) is an
endpoint of 6,. Then there exists an R, such that (because of (A))

;—8}CS,

(i) S =’{w=u—!—iv{ugR£, | < -
E —&
and (because of (C)) for u> R,, w=u+ w €0,

— &

| Q
1w Q

(ii) for v>0. v< 7 +¢ and for v <0: v> —

Applying (A.1) with 6* = ¢ we see that for every w €0., u > R,

T
and 10125—8

<

!
i
|

. i T | "E / 1\-12
(A.2) 1Y(w)—vi§‘il(w)—§:—¢— v——zlglﬂf(log—) + €
T
and for w with v < — 3 iy
"t | 7 ‘ 1\-12
(A3)  [Y(w) —v| = ‘15 + Yw) + 5 +v = 2M \log . + e.

Finally since Y(w) — v is harmonic and bounded in Sx and (A.2) and

(A.3) are satisfied on the horizontal boundaries of this strip, it follows that
for w€ 8., uniformly,
27¢

e 1\-12
(A.4) lim |Y(w) —v) = 2M <log ;) Te.

u—> 40
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But by (A.2) and (A.3) it is also true uniformly for w € I' outside of Sx_,
2

as u-—> -~ oc. Hence lim (Y (w) — v) = 0, uniformly for w € I". This is
u—> 40

equivalent to the conclusion of the theorem.

University of California, San Diego
La Jolla, California
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