Series A

I. MATHEMATICA

418

ON THE USE OF STEP-FUNCTIONS IN EXTREMUM PROBLEMS OF THE CLASS WITH BOUNDED BOUNDARY ROTATION

BY

H. LONKA and O. TAMMI

Communicated 10 November 1967 by K. I. Virtanen and Lauri Myrberg

§ 1. On the use of step-functions in S_{k}

We wish to discuss in detail a method of extremalization which is based on the use of step-functions. Let us consider a subclass of univalent functions, the class S_{k}, which although rather simple, displays features typical of extremum problems. This class consists of the normalized functions

$$
\begin{equation*}
f(z)=z+a_{2} z^{2}+\ldots, \tag{1}
\end{equation*}
$$

regular in the open disc $|z|<1$, and of which the boundary rotation is bounded by the number $k \pi$, where $2 \leq k \leq 4$. According to Pattero, the functions of S_{k} are univalent [3].

The functions of the class S_{k} can be generated by means of functions ψ of bounded variation in the following sense:

The class S_{k} consists of those functions f which satisfy the PoissonStieltjes equation

$$
\begin{equation*}
1+z \frac{f^{\prime \prime}(z)}{f^{\prime}(z)}=\frac{1}{2} \int_{0}^{2 \pi} \frac{e^{i q}+z}{e^{i_{\tau}}-z} d \psi(\varphi), \quad|z|<1 \tag{2}
\end{equation*}
$$

where

$$
\begin{equation*}
\int_{0}^{2 \pi} d \psi(\varphi)=2, \int_{0}^{2 \pi} d \psi(\varphi) \leq k, \quad 2 \leq k \leq 4 \tag{3}
\end{equation*}
$$

In what follows, Φ_{k} denotes the space of all functions ψ of bounded variation, defined on the interval $I=[0,2 \pi]$ and satisfying the conditions (3).

By using the relation (2), the coefficients a_{p} in series (1) of $f(z)$ can be expressed as functionals $a_{p}(\psi)$ of the generating function ψ. Thus, for example

$$
\left\{\begin{array}{l}
2 a_{2}(\psi)=\int_{0}^{2 \pi} e^{-i \varphi_{\varphi}} d \psi(\varphi) \tag{4}\\
6 a_{3}(\psi)=\left(\int_{0}^{2 \cdot x} e^{-i \varphi} d \psi(\varphi)\right)^{2}+\int_{0}^{2 \cdot \pi} e^{-i \tau_{\psi}} d \psi(\varphi)
\end{array}\right.
$$

For every $\psi \in \Phi_{k}$, there is accordingly a unique $f \in S_{k}$, and this mapping $\Phi_{k} \rightarrow S_{k}$ is surjective. The maximum of the absolute value of coefficient a_{p} in S_{k} (p fixed) can thus be determined by maximizing the functional $A(\psi)=\left|a_{F}(\psi)\right|$ in Φ_{k}.

From now on, Φ_{k} is regarded as a metric space, with the metric o defined by

$$
\varrho\left(\psi_{1}, \psi_{2}\right)=\sup _{\varphi \in I}\left|\psi_{1}(\varphi)-\psi_{2}(\varphi)\right|
$$

The functional $A(\psi)$ is then continuous. This is easily seen for instance by using a connection which expresses the a-coefficients by means of certain c-coefficients (cf. Tammi [6]):

$$
\left\{\begin{array}{l}
p(p+1) a_{p+1}=\sum_{v=1}^{p} c_{v}(p-v+1) a_{p-v+1} \tag{6}\\
c_{p}=\int_{0}^{2 \cdot} e^{-i p \varphi} d \psi(\varphi) \quad\left(a_{1}=1 ; p=1,2, \ldots\right)
\end{array}\right.
$$

By partial integration, we get the formula

$$
\begin{equation*}
c_{p}\left(\psi_{1}\right)-c_{p}\left(\psi_{2}\right)=-i p \int_{i}^{2 \pi} e^{-i p q_{q}}\left[\psi_{1}(\varphi)-\psi_{2}(\varphi)\right] d \psi . \tag{7}
\end{equation*}
$$

from which, together with the fact that the a-coefficients are polynomials of the c-coefficients, there follows the continuity of the functional A.

Let now Σ_{k} denote the subspace of Φ_{k}, which consists of step-functions. Since Σ_{k} is dense in Φ_{k}, it is tempting to see whether the functional A can be maximized in Σ_{k}. In fact, if there exists

$$
\max _{\sigma \in \Sigma_{l_{k}}} A(\sigma)=A(\hat{\sigma})
$$

we have

$$
\max _{\psi \in \Phi} A(\psi)=A(\hat{\sigma})
$$

as a consequence of the continuity of A, and the fact that Σ_{k} is dense in Φ_{k}. In cases $p=3$ and $p=4$ we show in fact, by applying the methods of calculus, that the maximum of $A(\psi)$ in Σ_{k} really exists, and its value can also be found. This will be done in $\$ \$ 2$ and 3 . It should be noted that this also leads to a differential equation of Schiffer-type for the extremal function.

Naturally, there can be extremal generating functions also in the complement $\Phi_{k}-\Sigma_{k}$, although our method does not give them. In the deter-
mination of extremal $\hat{\sigma} \in \Sigma_{k}$, we use a special variation, applicable only to step-functions (cf. $2 \S, \mathrm{n}: \mathrm{o} 1$). Consequently our elementary necessary condition for the extremum is not applicable for characterization of possible extremal generating functions which are not step-functions.

§ 2. A necessary condition for the step-function maximizing $\left|a_{3}\right|$

1. Variation of the points of discontinuity

Let $\psi_{N} \in \Sigma_{k}$ be the step-function which has non-zero jumps $\Lambda_{1}, \Lambda_{2}, \ldots$, Λ_{N} at points $\varphi_{1}, \varphi_{2}, \ldots, \varphi_{N}$. By (3),

$$
\begin{equation*}
\sum_{v=1}^{N} A_{v}=2, \quad \sum_{v=1}^{N}\left|A_{v}\right| \leq k \tag{8}
\end{equation*}
$$

where $2 \leq k \leq 4$. The variation used in the following is effected by shifting the points φ_{v} and keeping jumps A_{v} fixed.

We turn to the case of a_{3}. It is well known that no restriction is involved in assuming a_{3} to be real and positive. We introduce the notations

$$
\begin{equation*}
t_{v}=e^{i \varphi_{v}} \quad(v=1,2, \ldots, N) \tag{9}
\end{equation*}
$$

Then, by applying the formulae (4) to step-function ψ_{N}, we get

$$
\left\{\begin{array}{l}
2 a_{2}\left(\psi_{N}\right)=\sum_{v=1}^{N} \frac{\Lambda_{v}}{t_{v}} \tag{10}\\
0<6 a_{3}\left(\psi_{N}\right)=\left(\sum_{v=1}^{N} \frac{\Delta_{v}}{t_{v}}\right)^{2}+\sum_{v=1}^{N} \frac{A_{v}}{t_{v}^{2}}
\end{array}\right.
$$

By use of the abbreviation

$$
\begin{equation*}
H\left(t_{1}, t_{2}, \ldots, t_{N}\right)=\left(\sum_{v=1}^{N} A_{v} t_{v}\right)^{2}+\sum_{v=i}^{N} \mathrm{I}_{v} t_{v}{ }^{2} \tag{11}
\end{equation*}
$$

the function to be maximized is

$$
\begin{align*}
& A_{3}\left(t_{1}, t_{2}, \ldots, t_{N}\right)=12 a_{3}\left(\psi_{N}\right) \tag{12}\\
& =H\left(t_{1}, t_{2}, \ldots, t_{N}\right)+H\left(t_{1}^{-1}, t_{2}^{-1} \ldots t_{N}^{-1}\right)
\end{align*}
$$

For maximal $\psi_{N} \in \Sigma_{k}$ the conditions

$$
\frac{\partial A_{3}}{\partial \varphi_{\mu}}=i t_{\mu} \frac{\partial A_{3}}{\partial t_{\mu}}=0 \quad(\mu=1,2, \ldots N)
$$

necessarily hold. In view of (11), (12) and the assumption $\Lambda_{\mu} \neq 0$, these conditions are easily reduced to the form

$$
2 \bar{a}_{2} t_{\mu}+t_{\mu}^{2}-\frac{2 a_{2}}{t_{\mu}}-\frac{1}{t_{\mu}^{2}}=0 \quad(\mu=1, \ldots, N) .
$$

These equations are of the fourth degree with respect to t_{μ}. The extremal step-function has thus at most four points of discontinuity φ_{μ}, i.e.

$$
N \leq 4 .
$$

On the other hand

$$
2 \leq N \quad \text { for } \quad k>2 .
$$

This is seen as follows. Let Λ_{v}^{+}denote the positive jumps and Δ_{v}^{-}the absolute values of the negative jumps of ψ_{N}. By (8) we have

$$
\sum A_{v}^{+}-\sum A_{v}^{-}=2, \quad \sum A_{v}^{+}+\sum A_{v}^{-} \leq k .
$$

from which

$$
\begin{equation*}
\sum \Delta_{v}^{+} \leq \frac{k}{2}+1, \quad \sum A_{v}^{-} \leq \frac{k}{2}-1 . \tag{13}
\end{equation*}
$$

If $k=2, \Sigma \Delta_{v}^{-} \leq 0$. Then every $\Delta_{v}^{-}=0$, and we are dealing with the convex case, which has been completely studied by Löwner [2]. We are here interested solely in the non-convex case, where at least one $\Delta_{v}^{-}>0$ and thus $k>2$. Both of the sets $\left\{\Lambda_{v}^{+}\right\}$and $\left\{\Lambda_{v}^{-}\right\}$are then non-empty, and hence $N \geq 2$.

It should finally be noted, that a function $f \in S_{k}$ generated by a stepfunction $\psi_{N} \in \Sigma_{k}$ has a polygonal image domain. The term nextremal polygon» is employed for the image-polygon of function $f \in S_{k}$, generated by an extremal step-function.

The results are collected below.
Theorem. The pre-images $t_{\mu}(\mu=1,2, \ldots, \gamma)$ of corner points $f\left(t_{\mu}\right)$ of an extremal polygon satisfy the equation

$$
\begin{equation*}
g_{3}(z)=\frac{1}{z^{2}}+\frac{2 a_{2}}{z}-2 \bar{a}_{2} z-z^{2}=0 \tag{14}
\end{equation*}
$$

or

$$
\begin{equation*}
-z^{2} g_{3}(z)=z^{4}+2 \bar{a}_{2} z^{3}-2 a_{2} z-1=0 . \tag{15}
\end{equation*}
$$

In the non-convex cases, $2<k \leq 4$ number N of the corners of the extremal polygon satisfies the inequalities

$$
\begin{equation*}
2 \leq N \leq 4 \tag{16}
\end{equation*}
$$

2. Determination of the extremal step-function

The necessary condition $g_{3}(z)=0$ considerably reduces the number of alternatives for the extremum case. Let us examine the different possibilities $N=4,3$ or 2 . The last case of these is the easiest, and will be treated later on. If $N=4$, all the pre-images t_{μ} are roots of the equation $g_{3}(z)=0$. If $N=3$, this equation has also a root which does not belong to the system of pre-images. Such a root of $g_{3}(z)=0$ is termed a free root of this equation. It should be noted, that the symmetric structure of (14) implies, that with z, also $\frac{1}{\bar{z}}$ is a root. This means that if the absolute value of the free root differs from one, then two free roots necessarily exist. Thus in the case $N=3$, all the roots of $g_{3}(z)=0$ necessarily have the absolute value one. - Apart from case $N=2$, accordingly, we have only the case in which all the roots of $g_{3}(z)=0$ have the absolute value one.

For study of the last mentioned case, the numbers $1+\Delta_{v}$ are estimated. For $k \leq 4$ there holds $\frac{k}{2}-1 \leq 1$, and thus, from (13)

$$
\begin{gathered}
A_{v}^{-} \leq \frac{k}{2}-1 \leq 1 \\
1-\Delta_{v}^{-} \geq 0
\end{gathered}
$$

Since obviously $1+\Delta_{\nu}^{+}>0$ we have generally

$$
\begin{equation*}
\delta_{v}=1+\Delta_{v} \geq 0 \quad(v=1,2, \ldots, N) \tag{17}
\end{equation*}
$$

Expression (10) for the coefficient a_{3} can now simply be rewritten in the quantities (17).

Denote the roots of $g_{3}(z)=0$ by $z_{1}, z_{2}, z_{3}, z_{4}$. As was stated above, in cases $N=3$ and $N=4$, all these numbers have the absolute value one: $\left|z_{\nu}\right|=1 \quad(v=1, \ldots, N)$. The pre-images t_{μ} are among these numbers z_{v}. If the coefficients of (15) are written as symmetric polynomials of the roots z_{v}, we have

$$
\left\{\begin{array}{l}
2 \bar{a}_{2}=-\left(z_{1}+z_{2}+z_{3}+z_{4}\right) \tag{18}\\
0=z_{1} z_{2}+z_{2} z_{3}+z_{3} z_{4}+z_{4} z_{1}+z_{2} z_{4}+z_{3} z_{1} \\
2 a_{2}=z_{1} z_{2} z_{3}+z_{2} z_{3} z_{4}+z_{3} z_{4} z_{1}-z_{4} z_{1} z_{2} \\
-1=z_{1} z_{2} z_{3} z_{4}
\end{array}\right.
$$

On the other hand, for real a_{3} and for a_{2}. we get from (10)

$$
\left\{\begin{array}{l}
6 a_{3}=\left(\sum_{1}^{N} \Delta_{\nu} t_{v}\right)^{2}+\sum_{1}^{N} \Delta_{v} t_{v}^{2} \\
2 \bar{a}_{2}=\sum_{1}^{N} \Delta_{v} t_{v}
\end{array}\right.
$$

If $N=3$, the sum \sum_{1}^{N} does not include the free root of equation $g_{3}(z)=0$. It is of use to complete this sum, making the following agreement:

$$
\begin{equation*}
\text { In } \sum_{1}^{N} \text { take } A_{v}=0 \text { if } z_{v} \text { is a free root. } \tag{19}
\end{equation*}
$$

For a_{3} and a_{2}, this allows of the following presentation, which is valid in both cases $N=3$ and $N=4$

$$
\left\{\begin{array}{l}
6 a_{3}=\left(\sum_{1}^{4} A_{v} z_{v}\right)^{2}+\sum_{1}^{4} J_{v} z_{v}^{2} \tag{20}\\
2 \bar{a}_{2}=\sum_{1}^{4} \Delta_{v} z_{v} .
\end{array}\right.
$$

Expression (20) of a_{3} is now simplified by applying (18):

$$
\begin{align*}
6 a_{3} & =\left(2 \bar{a}_{2}\right)^{2}+\sum_{1}^{4} J_{v} z_{v}^{2} \\
& =\left(\sum_{1}^{4} z_{v}\right)^{2}+\sum_{1}^{4} J_{v} z_{v}^{2} \\
& =\sum_{1}^{4}\left(1+\Lambda_{v}\right) z_{v}^{2} \\
6 a_{3} & =\sum_{1}^{4} \delta_{v} z_{v}^{2} . \tag{21}
\end{align*}
$$

In view of agreement (19), condition (17) is clearly true also if z_{v} is a free root; in this case $\delta_{v}=1$. Therefore, it can be deduced from (21) that

$$
\begin{aligned}
0<6 a_{3} & \leq \sum_{1}^{4} \delta_{\nu}\left|z_{\nu}\right|^{2} \\
& =\sum_{1}^{4} \delta_{v}=\sum_{1}^{4}\left(1+A_{\nu}\right) \\
& =4+\sum_{1}^{4} \Delta_{v}=6 ; \\
a_{3} & \leq 1 .
\end{aligned}
$$

From this we conclude, in view of (22), that values $N=3$ and $N=4$ do not give maximum for a_{3}.

In the remaining case $N=2$ we have by virtue of (13)

$$
\Delta_{1}=\Lambda_{1}^{+} \leq \frac{k}{2}+1, \Lambda_{2}=-J_{1}^{-} \geq 1-\frac{k}{2} .
$$

We omit the easy calculations needed to give

$$
\begin{equation*}
\max a_{3}=\frac{1}{6}\left(k^{2}+2\right) . \tag{22}
\end{equation*}
$$

The extremal step-function, for which $a_{3}>0$, has the jumps at the points $\varphi_{1}=0, \quad \varphi_{2}=\pi$.

3. Differential equation for an extremal $f(z)$

The above procedure, starting from the inequalities (17), was first applied by Schiffer and Tammi [4] for maximizing a_{3}. It has been repeated here as a preparation for the following considerations, in which a differential equation for the extremal $f(z)$ will be derived. As stated above, the stepfunction generating $f(z)$ has $N=2, I_{1}+I_{2}=2, t_{1}=1, t_{2}=-1$.

We start from the Poisson-Stieltjes presentation (2). In the step-function case this assumes the form

$$
\begin{equation*}
1+z \frac{f^{\prime \prime}(z)}{f^{\prime}(z)}=\frac{1}{2} \sum_{v=1}^{N} \frac{t_{v}+z}{t_{v}+z} \Delta_{v} . \tag{23}
\end{equation*}
$$

We desire to rewrite the right side of (23) by applying the roots z_{v} of the equation $g_{3}(z)=0$. It should be noted that although we are aware that the maximum case for a_{3} is $N=2$, simultaneous consideration is given below to all the cases $N=2,3,4$. as an exercise for the study of a_{4} in §3. By application of the same technique to the case of a_{4} there is obtained the result (50), from which the value of N. which belongs to the extremal polygon, can be deduced.

According to agreement (19). formula (23) can be written in all the cases $N=2,3,4$ in the form

$$
\begin{equation*}
1+z \frac{f^{\prime \prime}(z)}{f^{\prime}(z)}=\frac{1}{2} \sum_{r=1}^{4} \frac{z_{r}-z}{z_{r}-z} 1_{r} . \tag{24}
\end{equation*}
$$

We write the sum on the right of (24) as follows

$$
\begin{gather*}
\sum_{v=1}^{4} \frac{z_{v}-z}{z_{v}-z} \Lambda_{v} \tag{25}\\
=\frac{-1}{-z^{2} g_{3}(z)}\left[\left(z+z_{1}\right)\left(z-z_{2}\right)\left(z-z_{3}\right)\left(z-z_{4}\right) \Lambda_{1}+\ldots+\right. \\
\left.\left(z-z_{1}\right)\left(z-z_{2}\right)\left(z-z_{3}\right)\left(z+z_{4}\right) \Lambda_{4}\right] .
\end{gather*}
$$

Develop the first term in the brackets by using the relations (18):

$$
\begin{aligned}
(z & \left.+z_{1}\right)\left(z-z_{2}\right)\left(z-z_{3}\right)\left(z-z_{4}\right)=z^{4}-\left(-z_{1}+z_{2}+z_{3}+z_{4}\right) z^{3} \\
& +\left(-z_{1} z_{2}+z_{2} z_{3}+z_{3} z_{4}-z_{4} z_{1}+z_{2} z_{4}-z_{3} z_{1}\right) z^{2} \\
& -\left(-z_{1} z_{2} z_{3}+z_{2} z_{3} z_{4}-z_{3} z_{4} z_{1}-z_{4} z_{1} z_{2}\right) z-z_{1} z_{2} z_{3} z_{4} \\
& =z^{4}-\left(-2 z_{1}+z_{1}+z_{2}+z_{3}+z_{4}\right) z^{3}-2 z_{1}\left(-z_{1}+z_{1}+z_{2}+z_{3}+z_{4}\right) z^{2} \\
& -z_{1} z_{2} z_{3} z_{4}\left(\frac{2}{z_{1}}-\frac{1}{z_{4}}-\frac{1}{z_{1}}-\frac{1}{z_{2}}-\frac{1}{z_{3}}\right) z-z_{1} z_{2} z_{3} z_{4} \\
& =z^{4}-\left(-2 z_{1}-2 \bar{a}_{2}\right) z^{3}-2 z_{1}\left(-z_{1}-2 \bar{a}_{2}\right) z^{2}+\left(\frac{2}{z_{1}}+2 a_{2}\right) z+1 .
\end{aligned}
$$

The other three terms within brackets in (25) are treated in a similar fashion, multiplied by corresponding Δ_{v} and added. The []-expression in (25) then assumes a form which can be further simplified, in view of (20), as follows:

$$
\begin{aligned}
{[]=} & \sum_{1}^{4} \Delta_{v} \cdot z^{4}+2\left(\bar{a}_{2} \sum_{1}^{4} \Delta_{v}+\sum_{1}^{4} \Delta_{\nu} z_{v}\right) z^{3} \\
& +2\left(2 \bar{a}_{2} \sum_{1}^{4} \Delta_{\nu} z_{v}+\sum_{1}^{4} \Delta_{v} z_{v}^{2}\right) z^{2}+2\left(a_{2} \sum_{1}^{4} \Delta_{v}+\sum_{1}^{4} \frac{\Lambda_{v}}{z_{v}}\right) z+\sum_{1}^{4} J_{\nu} \\
= & 2 z^{4}+2\left(2 \bar{a}_{2}+2 \bar{a}_{2}\right) z^{3} \\
& +2\left(4 \bar{a}_{2}^{2}+6 a_{3}-4 \bar{a}_{2}^{2}\right) z^{2}+2\left(2 a_{2}+2 a_{2}\right) z+2 \\
= & 2\left(z^{4}+4 \bar{a}_{2} z^{3}+6 a_{3} z^{2}+4 a_{2} z+1\right)
\end{aligned}
$$

The final form of equation (23) is thus

$$
1+z \frac{f^{\prime \prime}(z)}{f^{\prime}(z)}=\frac{z^{2}\left(\frac{1}{z^{2}}+\frac{4 a_{2}}{z}+6 a_{3}+4 \bar{a}_{2} z+z^{2}\right)}{z^{2} g_{3}(z)}
$$

Summary. Let $f(z) \in S_{k}$ be the function generated by a the step-function $\psi_{N}(\varphi)$, which is extremal with respect to the coefficient $a_{3}>0$. Let the points of discontinuity of $\psi_{N}(\varphi)$ be $\varphi_{\mu}(\mu=1, \ldots, N \leq 4)$. The pre-images

$$
z=t_{\mu}=e^{i \varphi_{\mu}}
$$

of corner points $f\left(t_{\mu}\right)$ of the extremal polygon satisfy the necessary condition

$$
\begin{equation*}
g_{3}(z)=\frac{1}{z^{2}}+\frac{2 a_{2}}{z}-2 \bar{a}_{2} z-z^{2}=0 \tag{26}
\end{equation*}
$$

The Poisson-Stieltjes presentation for $f(z)$, generated by $\psi_{N}(\varphi)$, reads

$$
\begin{equation*}
1+z \frac{f^{\prime \prime}(z)}{f^{\prime}(z)}=\frac{1}{2} \sum_{v=1}^{4} \frac{z_{v}+z}{z_{v}-z} A_{v} . \tag{27}
\end{equation*}
$$

Here the numbers z_{v} are the roots of equation (26). If $N<4$ some of the numbers z_{v} are free roots of equation $g_{3}(z)=0$. This means that they are not among the pre-images $t_{\mu}(\mu=1, \ldots, N)$ mentioned above. The numbers Δ_{v} belonging to the free roots z_{v}, are taken to be $=0$.

Equation (27) can also be written in the form

$$
\begin{equation*}
1+z \frac{f^{\prime \prime}(z)}{f^{\prime}(z)}=\frac{G_{3}(z)}{g_{3}(z)} \tag{28}
\end{equation*}
$$

where

$$
\begin{equation*}
G_{3}(z)=\frac{1}{z^{2}}+\frac{4 a_{2}}{z}+6 a_{3}+4 \bar{a}_{2} z+z^{2} \tag{29}
\end{equation*}
$$

It is emphasized that we are here led to differential equation (28), which also results from application of the method of interior variation (SchifferTammi [4]) in class S_{k}. The fact that the step-function-generated extremal $f \in S_{k}$ satisfies the differential equation (28) is thus already implied by the most trivial necessary extremum conditions of calculus.

§ 3. The coefficient a_{4}

1. Differential equation for an extremal $f(z)$

It will now be shown that the above procedure is also applicable to the next coefficient, a_{4}.

From (6) it is first deduced that

$$
\left\{\begin{array}{l}
24 a_{4}=c_{1}-3 c_{1} c_{2}+2 c_{3} . \tag{30}\\
c_{n}=\int_{0}^{2 \cdot} e^{-i n_{v}} d \psi(\psi)=\sum_{v=1}^{v} \frac{1_{v}}{t_{v}^{n}} .
\end{array}\right.
$$

We will also need the expressions of coefficients a_{2} and a_{3}, and have

$$
\left\{\begin{align*}
0<24 a_{4} & =\left(\sum_{1}^{N} \frac{I_{v}}{t_{v}}\right)^{3}+3 \sum_{1}^{N} \frac{I_{v}}{t_{v}} \cdot \sum_{1}^{N} \frac{I_{v}}{t_{v}^{2}}+2 \sum_{1}^{N} \frac{I_{v}}{t_{v}^{3}} \tag{31}\\
6 a_{3} & =\left(\sum_{1}^{N} \frac{\Lambda_{v}}{t_{v}}\right)^{2}+\sum_{1}^{N} \frac{J_{v}}{t_{v}^{2}} \\
2 a_{2} & =\sum_{1}^{N} \frac{\Lambda_{v}}{t_{v}} .
\end{align*}\right.
$$

For further treatment, it is of value to express the different sum-expressions in terms of the coefficients. By virtue of (31),

$$
\left\{\begin{array}{l}
\sum_{1}^{N} \frac{\Delta_{v}}{t_{v}}=2 a_{2} \tag{32}\\
\sum_{1}^{N} \frac{\Delta_{v}}{t_{v}^{2}}=6 a_{3}-4 a_{2}^{2} \\
\sum_{1}^{N} \frac{A_{v}}{t_{v}^{3}}=12 a_{4}-18 a_{2} a_{3}+8 a_{2}^{3}
\end{array}\right.
$$

The following notations similar to the former ones will be used:

$$
\left\{\begin{array}{l}
H\left(t_{1}, t_{2}, \ldots, t_{N}\right)=\left(\sum_{1}^{N} \Lambda_{v} t_{v}\right)^{3}+3 \sum_{1}^{N} A_{v} t_{v} \cdot \sum_{1}^{N} \Lambda_{v} t_{v}^{2}+2 \sum_{1}^{N} \Lambda_{v} t_{v}^{2} \tag{33}\\
A_{4}=2 \operatorname{Re}\left\{24 a_{4}\right\}=H\left(t_{1}, t_{2}, \ldots, t_{N}\right)+H\left(1_{1}^{-1}, t_{2}^{-1}, \ldots, t_{N}^{-1}\right)
\end{array}\right.
$$

A necessary condition for an extremal step-function can again be derived by use of the necessary extremal conditions of calculus. Hence. we necessarily have

$$
\frac{\partial A_{4}}{\partial t_{\mu}}=\frac{6 \Lambda_{\mu}}{t_{\mu}}\left(3 \bar{a}_{3} t_{\mu}+2 \bar{a}_{2} t_{\mu}^{2}+t_{\mu}^{3}-\frac{3 a_{3}}{t_{\mu}}-\frac{2 a_{2}}{t_{\mu}^{2}} \ldots \frac{1}{t_{\mu \prime}^{3}}\right)=0 .
$$

It has accordingly been found that pre-images t_{μ} of corner points $f\left(t_{\mu}\right)$ of the extremal polygon are among the roots $z_{v}(v=1, \ldots, 6)$ of the equation

$$
\begin{equation*}
g_{4}(z)=\frac{1}{z^{3}}+\frac{2 a_{2}}{z^{2}}+\frac{3 a_{3}}{z}-3 \bar{a}_{3} z-2 \bar{a}_{2} z^{2}-z^{3}=0 \tag{34}
\end{equation*}
$$

or

$$
\begin{equation*}
-z^{3} g_{4}(z)=z^{6}+2 \bar{a}_{2} z^{5}+3 \bar{a}_{3} z^{4}-3 a_{3} z^{2}-2 a_{2} z-1=0 . \tag{35}
\end{equation*}
$$

Consequently

$$
\begin{equation*}
2 \leq N \leq 6 \quad(2<k \leq 4) \tag{36}
\end{equation*}
$$

If $N<6$, then (34) has also free roots z_{v} which do not belong to the preimages, denoted by t_{μ}. If for a free root z_{v} there holds $z_{v}=1$, then the symmetric structure of (34) indicates that together with z_{v} the number 1 $\frac{1}{\bar{z}_{v}}$ is also a free root.

Again, it is desired to make use of the symmetric expressions of all the
roots $z_{\nu}(v=1, \ldots, 6)$. Thus, an agreement is made which allows of replacing \sum_{1}^{N} in (44) by \sum_{1}^{6} :

$$
\begin{equation*}
\text { In } \sum_{1}^{6} \text { take } A_{v}=0 \text { if } z_{v} \text { is a free root. } \tag{37}
\end{equation*}
$$

To arrive at the connections between the coefficients (31) and the symmetric expressions of z_{v} mentioned, compare the left and right sides of the identity

$$
\begin{align*}
-z^{3} g_{4}(z) & =z^{6}+2 \bar{a}_{2} z^{5}+3 \bar{a}_{3} z^{4}-3 a_{3} z^{2}-2 a_{2} z-1 \tag{38}\\
& =\left(z-z_{1}\right)\left(z-z_{2}\right)\left(z-z_{3}\right)\left(z-z_{4}\right)\left(z-z_{5}\right)\left(z-z_{6}\right) \\
& =z^{6}-C_{5} z^{5}+C_{4} z^{4}-C_{3} z^{3}+C_{2} z^{2}-C_{1} z+C_{0} \\
& =h_{6}(z) .
\end{align*}
$$

Here, coefficients C_{v} have the following symmetric expressions:
(39)

Comparison of the coefficients in (38) now indicates the connections, which can be regarded as necessary extremum conditions
(40)

$$
\left\{\begin{aligned}
2 \bar{a}_{2} & =-C_{5} \\
3 \bar{a}_{3} & =C_{4}^{\prime} \\
0 & =C_{3}, \\
-3 a_{3} & =C_{2}, \\
-2 a_{2} & =-C_{1}, \\
-1 & =C_{0} .
\end{aligned}\right.
$$

It is readily found, that the first and fifth condition (40) are equivalent, and similarly that the second and fourth condition (40) are equivalent to each other. - The first equation (40) gives

$$
\begin{equation*}
2 a_{2}=-\bar{C}_{5}=-\sum_{\nu=1}^{6} \bar{z}_{v} . \tag{41}
\end{equation*}
$$

Now, if $\left|z_{\nu}\right|=1$, then $\bar{z}_{v}=\frac{1}{z_{v}}$. If $\left|z_{\nu}\right| \neq 1$ there also exists a free root $z_{\mu}=\frac{1}{\bar{z}_{\nu}} ; \bar{z}_{\nu}=\frac{1}{z_{\mu}}$. Thus we can write (41) in the form

$$
2 a_{2}=-\sum_{v=1}^{6} \frac{1}{z_{v}} .
$$

According to the last equation (40) this is the same as

$$
2 a_{2}=z_{1} z_{2} z_{3} z_{4} z_{5} z_{6} \sum_{\nu=1}^{6} \frac{1}{z_{v}}=C_{1},
$$

and we have arrived at the fifth condition (40). - The equivalence of the second and fourth condition (40) is proved similarly. Hence, four independent necessary conditions are left:

$$
\left\{\begin{align*}
2 \bar{a}_{2} & =-C_{5} \tag{42}\\
3 \bar{a}_{3} & =C_{4} \\
0 & =C_{3} \\
-1 & =C_{0}
\end{align*}\right.
$$

Our final aim is that of utilizing (40) in rewriting the Poisson-Stieltjes presentation for the extremal $f(z)$ given by the extremal $\psi_{N}(\varphi)$. In the case of a_{4}, the general form (23) of the presentation concerned, can be written

$$
\begin{equation*}
1+z \frac{f^{\prime \prime}(z)}{f^{\prime}(z)}=\frac{1}{2} \sum_{v=1}^{6} \frac{z_{v}+z}{z_{v}-z} \Delta_{v} . \tag{43}
\end{equation*}
$$

Here again, use is made of agreement (37). - Initially, it should be noted that

$$
\begin{gather*}
\sum_{v=1}^{6} \frac{z_{v}+z}{z_{v}-z} \Delta_{v}=\frac{-1}{-z^{3} g_{4}(z)}\left[\left(z+z_{1}\right)\left(z-z_{2}\right)\left(z-z_{3}\right)\left(z-z_{4}\right)\left(z-z_{5}\right)\left(z-z_{6}\right) \Lambda_{1}\right. \tag{44}\\
\left.+\ldots+\left(z-z_{1}\right)\left(z-z_{2}\right)\left(z-z_{3}\right)\left(z-z_{4}\right)\left(z-z_{5}\right)\left(z+z_{6}\right) J_{6}\right] .
\end{gather*}
$$

For evaluation of the []-expression, we will first rewrite its first term. Let us denote

$$
\begin{equation*}
\tilde{h}_{6}(z)=\left(z+z_{1}\right)\left(z-z_{2}\right)\left(z-z_{3}\right)\left(z-z_{4}\right)\left(z-z_{5}\right)\left(z-z_{6}\right) \tag{45}
\end{equation*}
$$

This polynomial is closely connected to the polynomial $h_{6}(z)$ defined by (12). We write

$$
\begin{cases}h_{6}(z)=\sum_{\nu=6}^{0}(-1)^{\nu} C_{\nu} z^{\nu} & \left(C_{6}=1\right) \tag{46}\\ \tilde{h}_{6}(z)=\sum_{\nu=6}^{0}(-1)^{\nu} \tilde{C}_{\nu} z^{\nu} & \left(\tilde{C}_{6}=1\right)\end{cases}
$$

and will express coefficients \tilde{C}_{v} by the aid of coefficients C_{v}. The only alteration needed to get \tilde{C}_{v} from C_{v} is to change the sign of z_{1} in C_{v}. In simplification of the expression of C_{2} we need the connection

$$
\begin{equation*}
\bar{C}_{5}=\sum_{p=1}^{6} \frac{1}{z_{v}}, \tag{47}
\end{equation*}
$$

which follows from the considerations connected with (41). Consequently:

$$
\begin{aligned}
\tilde{C}_{5} & =-2 z_{1}+C_{5}, \\
\tilde{C}_{4} & =-2 z_{1} \sum_{\nu=2}^{6} z_{v}+C_{4}=-2 z_{1}\left(-z_{1}+C_{5}\right)+C_{4}, \\
\tilde{C}_{3} & =-2 z_{1} \sum_{\mu=2}^{5} z_{\mu} \sum_{\nu=\mu+1}^{6} z_{v}+C_{3} \\
& =-2 z_{1}\left[-z_{1} \sum_{v=2}^{6} z_{v}+\sum_{\mu=1}^{5} z_{\mu} \sum_{\nu=\mu+1}^{6} z_{v}\right]+C_{3} \\
& =-2 z_{1}\left[-z_{1}\left(-z_{1}+C_{5}\right)+C_{4}\right]+C_{3}, \\
\tilde{C}_{2} & =-z_{1} z_{2} z_{3} z_{4} z_{5} z_{6}\left(-2 z_{1}^{-1} \sum_{v=2}^{6} z_{v}^{-1}+\sum_{\mu=1}^{5} z_{\mu}^{-1} \sum_{v=\mu+1}^{6} z_{v}^{-1}\right) \\
& =-z_{1} z_{2} z_{3} z_{4} z_{5} z_{6}\left[-2 z_{1}^{-1}\left(-z_{1}^{-1}+\sum_{v=1}^{6} z_{v}^{-1}\right)+\sum_{\mu=1}^{5} z_{\mu}^{-1} \sum_{v=\mu+1}^{6} z_{v}^{-1}\right] \\
& =-C_{0}\left[-2 z_{1}^{-1}\left(-z_{1}^{-1}+\bar{C}_{5}\right)\right]-C_{2}, \\
\tilde{C}_{1} & =-z_{1} z_{2} z_{3} z_{4} z_{5} z_{6}\left(-2 z_{1}^{-1}+\sum_{v=1}^{6} z_{v}^{-1}\right) \\
& =C_{0} \cdot 2 z_{1}^{-1}-C_{1}, \\
\tilde{C}_{0} & =-C_{0} .
\end{aligned}
$$

Hence quite a simple expression for $\tilde{h}_{6}(z)$ results, when still applying the necessary conditions (40):

$$
\begin{aligned}
\tilde{h}_{6}(z)= & z^{6}-\left(-2 z_{1}+C_{5}\right) z^{5}+\left[-2 z_{1}\left(-z_{1}+C_{5}\right)+C_{4}\right] z^{4} \\
& +\left\{2 z_{1}\left[-z_{1}\left(-z_{1}+C_{5}\right)+C_{4}\right]+C_{3}\right\} z^{3} \\
& +\left\{-C_{0}\left[-2 z_{1}^{-1}\left(-z_{1}^{-1}+\bar{C}_{5}\right)\right]-C_{2}\right\} z^{2} \\
& -\left(C_{0} \cdot 2 z_{1}^{-1}-C_{1}\right) z-C_{0} \\
= & z^{6}+\left(2 z_{1}+2 \bar{a}_{2}\right) z^{5} \\
& +\left(2 z_{1}^{2}+4 \bar{a}_{2} z_{1}+3 \bar{a}_{3}\right) z^{4}+\left(2 z_{1}^{3}+4 \bar{a}_{2} z_{1}^{2}+6 \bar{a}_{3} z_{1}\right) z^{3} \\
& +\left(2 z_{1}^{-2}+4 a_{2} z_{1}^{-1}+3 a_{3}\right) z^{2}+\left(2 z_{1}^{-1}+2 a_{2}\right) z+1 .
\end{aligned}
$$

The first term in the []-expression of (44) is thus

$$
\begin{aligned}
& h_{6}(z) \Lambda_{1}=\Lambda_{1} z^{6}+2\left(z_{1} \Lambda_{1}+\bar{a}_{2} \Lambda_{1}\right) z_{5} \\
& +\left(2 z_{1}^{2} \Lambda_{1}+4 \bar{a}_{2} z_{1} \Lambda_{1}+3 \bar{a}_{3} \Lambda_{1}\right) z^{4}+2\left(z_{1}^{3} \Lambda_{1}+2 \bar{a}_{2} z_{1}^{2} \Lambda_{1}+3 \bar{a}_{3} z_{1} \Lambda_{1}\right) z^{3} \\
& +\left(2 \frac{\Delta_{1}}{z_{1}^{2}}+4 a_{2} \frac{\Delta_{1}}{z_{1}}+3 a_{3} \Lambda_{1}\right) z^{2}+2\left(\frac{\Lambda_{1}}{z_{1}}+a_{2} \Lambda_{1}\right) z+\Lambda_{1} .
\end{aligned}
$$

By cyclic permutation, and addition the []-expression of (44) assumes the form

$$
\begin{aligned}
{[] } & =\sum_{1}^{6} A_{v} \cdot z^{6}+2\left(\sum_{1}^{6} z_{v} A_{v}+\bar{a}_{2} \sum_{1}^{6} A_{v}\right) z^{5} \\
& +\left(2 \sum_{1}^{6} z_{v}^{2} A_{v}+4 \bar{a}_{2} \sum_{1}^{6} z_{v} A_{v}+3 \bar{a}_{3} \sum_{1}^{6} A_{v}\right) z^{4} \\
& +2\left(\sum_{1}^{6} z_{v}^{3} A_{v}+2 \bar{a}_{2} \sum_{1}^{6} z_{v}^{2} A_{v}+3 \bar{a}_{3} \sum_{1}^{6} z_{v} A_{v}\right) z^{3} \\
& +\left(2 \sum_{1}^{6} \frac{A_{v}}{z_{v}^{2}}+4 a_{2} \sum_{1}^{6} \frac{A_{v}}{z_{v}}+3 a_{3} \sum_{1}^{6} A_{v}\right) z^{2} \\
& +2\left(\sum_{1}^{6} \frac{A_{v}}{z_{v}}+a_{2} \sum_{1}^{6} A_{v}\right) z+\sum_{1}^{6} A_{v} .
\end{aligned}
$$

All the sums \sum_{1}^{6} can now be expressed in the coefficients a_{v} by using expressions (32) and agreement (37). This finally gives

$$
\begin{aligned}
{[]=} & 2 z^{2}+2\left(2 \bar{a}_{2}+\bar{a}_{2} \cdot 2\right) z^{5} \\
& +\left[2\left(6 \bar{a}_{3}-4 \bar{a}_{2}^{2}\right)+4 \bar{a}_{2} \cdot 2 \bar{a}_{2}+3 \bar{a}_{3} \cdot 2\right] z^{4} \\
& +2\left[12 a_{4}-18 \bar{a}_{2} \bar{a}_{3}+8 \bar{a}_{2}^{3}+2 \bar{a}_{2}\left(6 \bar{a}_{3}-4 \bar{a}_{2}^{2}\right)+3 \bar{a}_{3} \cdot 2 \bar{a}_{2}\right] z^{3} \\
& +\left[2\left(6 a_{3}-4 a_{2}^{2}\right)+4 a_{2} \cdot 2 a_{2}+3 a_{3} \cdot 2\right] z^{2} \\
& +2\left(2 a_{2}+a_{2} \cdot 2\right) z+2 \\
= & 2 z^{6}+8 \bar{a}_{2} z^{5}+18 \bar{a}_{3} z^{3}+24 a_{4} z^{3}+18 a_{3} z^{2}+8 a_{2} z+2 .
\end{aligned}
$$

The right side of (43) has thus assumed the form

$$
\begin{aligned}
\frac{1}{2} \sum_{\nu=1}^{6} \frac{z_{v}+z}{z_{v}-z} A_{v} & =\frac{1}{2} \frac{-1}{-z^{3} g_{4}(z)}\lfloor] \\
& =\frac{z^{3}+4 \bar{a}_{2} z^{2}+9 \bar{a}_{3} z+12 a_{4}+\frac{9 a_{3}}{z}+\frac{4 a_{2}}{z^{2}}+\frac{1}{z^{3}}}{g_{4}(z)} .
\end{aligned}
$$

Theorem. Let $f(z) \in S_{k}$ be an extremal function for the coefficient $a_{4}>0$, which is generated by a step-function $\psi_{N}(\varphi)$ with the points of discontinuity $\varphi_{\mu}(\mu=1, \ldots, N)$. The pre-images $t_{\mu}=e^{i f^{\prime},}$ of the corner points of the extremal polygon satisfy the necessary condition

$$
\begin{equation*}
g_{4}(z)=\frac{1}{z^{3}}+\frac{2 a_{2}}{z^{2}}+\frac{3 a_{3}}{z}-3 \bar{a}_{3} z-2 \bar{a}_{2} z^{2}-z^{3}=0 . \tag{48}
\end{equation*}
$$

The Poisson-Stieltjes presentation for $f(z)$ is

$$
\begin{equation*}
1+z \frac{f^{\prime \prime}(z)}{f^{\prime}(z)}=\frac{1}{2} \sum_{v=1}^{6} \frac{z_{v}+z}{z_{v}-z} d_{v} \tag{49}
\end{equation*}
$$

Here z_{v} are the roots of equation (48) and for the corresponding \mathcal{A}_{v}, agreement (37) holds. Equation (49) can be written in the form

$$
\begin{equation*}
1+z \frac{f^{\prime \prime}(z)}{f^{\prime}(z)}=\frac{G_{4}(z)}{g_{4}(z)} \tag{50}
\end{equation*}
$$

where

$$
\begin{equation*}
G_{4}(z)=\frac{1}{z^{3}}+\frac{4 a_{2}}{z^{2}}+\frac{9 a_{3}}{z}+12 a_{4}+9 \bar{a}_{3} z+4 \bar{a}_{2} z^{2}+z^{3} \tag{51}
\end{equation*}
$$

2. On determination of max a_{4}

Result (50), which was proved to hold for every extremal function $f(z)$ generated by step-functions is the same as that obtained from formulae well known in the theory of variation of univalent functions [4]. We con-
sider it important to have arrived at the result (50) without any application of the variational theory mentioned.

In [5] Shiffer and Tammi, were able to determine a sharp upper bound for $\left|a_{4}\right|$. This was done by starting from the Poisson-Stieltjes presentation (49), and the necessary condition (50). Comparison of the right sides of these equations provides the necessary conditions (15) and (16) of [5]. From these, maximalization follows laboriously by a proper use of Schwarz's inequality. - It should be remarked, that on the ground of the present paper, the conditions (15) and (16) of [5] appear to be direct consequences of the necessary conditions (42). Thus our conclusion is:

The sharp upper bound of $\left|a_{4}\right|$ in the class S_{k} follows already from the necessary condition (48).

References

[1] Lehto, O.: On the distortion of conformal mappings with bounded boundary rotation. - Ann. Acad. Sci. Fenn. Ser. A I, n:o 124 (1952).
[2] Löwner, K.: Untersuchungen über die Verzerrung bei konformen Abbildungen des Einheitskreises $|z|<1$, die durch Funktionen mit nicht verschwindender Ableitung geliefert werden. - Ber. der Kön. Sächsischen Gesellschaft der Wiss. zu Leipzig, 26 (1917).
[3] Paatero, V.: Über die konforme Abbildung von Gebieten, deren Ränder von beschränkter Drehung sind. - Ann. Acad. Sci. Fenn. Ser. A. 33, n:o 9 (1931).
[4] Schiffer, M. - Tammi, O.: A method of variations for functions with bounded boundary rotation. - Journal d'Analyse Mathématique, vol. XVII, pp. 109-144 (1966).
[5] -»- -»- On the fourth coefficient of univalent functions with bounded boundary rotation. - Ann. Acad. Sci. Fenn. Ser. A I, n:o 396 (1967).
[6] Tammi, O.: On certain combinations of the coefficients of schlicht functions. Ibid., n:o 140 (1952).

