Series A

I. MATHEMATICA

417

PICARD SETS FOR MEROMORPHIC FUNCTIONS

BY

SAKARI TOPPILA

HELSINKI 1967
SUOMALAINEN TIEDEAKATEMIA

Communicated 10 October 1967 by K. I. Virtanen and Lauri Myrberg

Preface

I am deeply indebted to Professor Olli Lehto and Professor K. I. Virtanen for suggesting this subject and for their kind interest and valuable advice.

I also wish to thank the E. J. Sariolan Säätiö for financial support.
Alavus, September 1967.

Contents

Page

1. Introduction 7
2. Picard sets in Lehto's sense 8
3. Picard sets in Matsumoto's sense 14
4. A new definition for Picard sets 16
References 24

1. Introduction

1.1. Let us consider functions f meromorphic in the complement of a compact and totally disconnected set E in the extended complex plane. We call E an n-Picard set in the sense of Lehto if every f with at least one essential singularity in E omits at most n values in the intersection of $-E$ and an arbitrary neighbourhood of any singularity.
E is called an n-Pichard set in the sense of Matsumoto if every f with a singularity at all points of E omits at most n values in the intersection of $-E$ and an arbitrary neighbourhood of any point of E.

In both cases, a 2 -Picard set is called briefly a Picard set.
An n-Picard set in Lehto's sense is of course one in Matsumoto's sense. The converse is not true: The set

$$
E=\{\infty\} \cup\{2 n \pi i\}_{n=0, \pm 1, \pm 2, \ldots}
$$

is not a Picard set in Lehto's sense, for $e^{z} \neq 0,1, \infty$ in $-E$, but it is a Picard set in Matsumoto's sense because E has isolated points in every neighbourhood of any of its points.
1.2. The term Picard set was first used by Lehto. In [2] he proved that there exist sets with an infinite number of points which are Picard sets in his sense. Carleson [1] proved that there exist 3-Picard sets in Lehto's sense which are of positive capacity. Matsumoto [4-6] extended these results and proved that there exist perfect Picard sets in his and in Lehto's sense.

In this paper we give in Section 2 a sufficient condition for a countable set with one limit point to be a Picard set in Lehto's sense. An example shows that the condition cannot be improved. In Section 3 we show that by adding points we can make any totally disconnected compact set into a perfect Picard set in the Matsumoto sense. In order to achieve monotonicity, i.e. that A a Picard set implies $B \subset A$ a Picard set, we modify Matsumoto's definition in Section 4 and study the relationship of these new Picard sets with those of Matsumoto and Lehto.

2. Picard sets in Lehto's sense

2.1. Let $\left\{a_{n}\right\}_{n=1,2}, \ldots$ be a point set whose points converge to infinity, and let E denote the union of $\left\{a_{n}\right\}_{n=1,2}, \ldots$ and the point at infinity. Lehto [2] proved that E is a Picard set in his sense if the points a_{n} satisfy the condition

$$
\left(\log \left|a_{n}\right|\right)^{2+\alpha}=O\left(\log \left|a_{n+1}\right|\right) \quad(\alpha>0)
$$

Matsumoto [6] established the same result under the condition

$$
\begin{equation*}
\left|a_{n}\right|^{3}=O\left(\left|a_{n+1}\right|\right) \tag{1}
\end{equation*}
$$

We first show by an example that the exponent in condition (1) cannot be made smaller than 2 , and we then prove that it really can be replaced by 2 .
2.2. We begin by presenting three lemmas which are essentially due to Carleson [1]. Let Σ be the Riemann sphere with radius $1 / 2$ touching the w-plane at the origin. The chordal distance of the images on Σ of two points w and w^{\prime} in the plane is denoted by $\left[w, w^{\prime}\right]$, and $C(w, \delta)$ is the spherical open disc with centre at the image of w and with chordal radius δ.

Lemma 1. Let f be analytic in an annulus $1<\mid z<e^{\mu}$ and omit the values 0 and 1. There exists a positive constant A such that the spherical diameter of the image curve of $|z|=e^{\prime \prime / 2}$ by f is not greater than $A e^{-\mu / 2}$ for all $\mu>0$.

Proof. The lemma is proved by Matsumoto [6]. (See also Carleson [1], Matsumoto [5] and Sario-Noshiro [9].)

Lemma 2. Let f be analytic in a closed annulus $r \leq \mid z \leq R$. If $|f(z)| \leq m$ on $|z|=r$ and $|f(z)| \leq M$ on $|z|=R$ then the euclidian diameter of the image curve of $|z|=\varrho, r<\varrho<R$, by f is dominated by

$$
\frac{\pi m r}{\varrho(1-r / \varrho)^{2}}+\frac{\pi M \varrho}{R(1-\varrho / R)^{2}} .
$$

Proof. By Cauchy's integral theorem we have

$$
f^{\prime}(z)=\frac{1}{2 \pi i}\left\{\int_{|i|=R} f(t)(t-z)^{-2} d t-\int_{|t|=r} f(t)(t-z)^{-2} d t\right\}
$$

for every z on $|z|=\varrho$, so that

$$
\left|f^{\prime}(z)\right| \leq m r(\varrho-r)^{-2}+M R(R-\varrho)^{-2}
$$

For any z and z_{0} on $|z|=\varrho$ this implies

$$
\left|f(z)-f\left(z_{0}\right)\right| \leq \pi m \varrho r(\varrho-r)^{-2}+\pi M \varrho R(R-\varrho)^{-2}
$$

and the lemma is proved.
Let Δ be a triply connected domain with boundary components Γ_{1}, Γ_{2} and Γ_{3}, and let f be analytic and omit the values 0 and 1 in $\bar{\Delta}$. We assume that the images of Γ_{1}, Γ_{2} and Γ_{3} by f are contained in the spherical discs C_{1}, C_{2} and C_{3}, respectively, and give the following lemma of Matsumoto [6].

Lemma 3. Let $\delta>0$ be so small that the spherical discs $C(0,2 \delta)$, $C(1,2 \delta)$ and $C(\infty, 2 \delta)$ are mutually disjoint. If the radii of C_{1}, C_{2} and C_{3} are less than $\delta / 2$, only two possibilities can occur:
(1) C_{1}, C_{2} and C_{3} contain the origin, the point $w=1$, and the point at infinity, one by one, so that C_{1}, C_{2} and C_{3} are contained in $C(0, \delta)$, $C(1, \delta)$ and $C(\infty, \delta)$, respectively, and f takes each value outside the union of $C(0, \delta), C(1, \delta)$ and $C(\infty, \delta)$ once and only once in Δ.
(2) Of C_{1}, C_{2} and C_{3} none can be disjoint from the union of the other two, so that there is a disc with radius less than $3 \delta / 2$ which contains the image of Δ.
2.3. We can now construct the desired counter example:

Theorem 1. For each $\varepsilon>0$ there exists a point set

$$
E=\left\{a_{n}: n=1,2, \ldots\right\} \cup\{\infty\}
$$

for which

$$
\left|a_{n}\right|^{2-\varepsilon}=O\left(a_{n+1}\right)
$$

but which is not a Picard set in the sense of Lehto.
Proof. We construct the desired set E with the aid of the function

$$
f(z)=z \prod_{n=1}^{\infty}\left(\frac{1-z e^{-M^{2 n}}}{1-z e^{-M^{2 n}-1}}\right)^{2}
$$

where we first take $M \geq 5$.
Let $z,|z|>e^{M}$, be an 1-point of f. We choose n such that $z \in \bar{S}_{n}$, where

$$
S_{n}=\left\{z: \exp \left[\left(M^{n}+M^{n-1}\right) / 2\right]<|z|<\exp \left[\left(M^{n}+M^{n+1}\right) / 2\right]\right\}
$$

If $n=2 p$, we note

$$
\log \left|z \prod_{s=1}^{p-1}\left(\frac{1-z e^{-M^{2 s}}}{1-z e^{-M^{2 s-1}}}\right)^{2}\right|=\log |z|-\frac{2 M^{2 p-1}}{M+1}+O(1)
$$

where $O(1)$ is bounded when $n \rightarrow \infty$, and

$$
\log \prod_{s=p+1}^{\infty}\left|\frac{1-z e^{-M^{2 s}}}{1-z e^{-M^{2 s-1}}}\right|^{2}=O(1)
$$

Further, we have

$$
\log \left|\frac{1-z e^{-M^{2} p}}{1-z e^{-M^{2} p-1}}\right|^{2}=-2 \log |z|+2 M^{2 p-1}+2 \log \left|1-z e^{-M^{2 p}}\right|+O(1)
$$

Combining these results we get

$$
-\log |z|+\frac{2 M^{2 p}}{M+1}+2 \log \left|1-z e^{-M^{2} p}\right|+O(1)=0
$$

This is possible only for $\log |z|>M^{2 p}+O(1)$ and we get the estimate

$$
|z|=\exp \left\{2 M^{2 p}-\frac{2 M^{2 p}}{M+1}+O(1)\right\} .
$$

In the same manner we get for $n=2 p+1$ a similar estimate, so that an arbitrary l-point of $f, z \in \bar{S}_{n}$, satisfies the condition

$$
\begin{equation*}
|z|=\exp \left\{2 M^{n}-\frac{2 M^{n}}{M+1}+O(1)\right\} \tag{i}
\end{equation*}
$$

On the other hand, since $f(z) \geq 0$ on the positive real axis, $f\left(e^{M^{2 n}}\right)=0$ and $f\left(e^{M^{2 n-1}}\right)=\infty, n=1,2, \ldots$, we see that f has at least one 1-point in each annulus $e^{M^{n}}<|z|<e^{M^{n+1}}$.

We take a $\mu>0$, such that $\delta=A e^{-\mu / 2}$, where A is the constant of Lemma 1 , is so small that the spherical discs $C(0,8 \delta), C(1,8 \delta)$ and $C(\infty, 8 \delta)$ are mutually disjoint. From condition (i) it then follows that the annulus $\exp \left(-\mu+M^{n}\right)<|z|<\exp \left(\mu+M^{n}\right)$ contains no l-point of f for sufficiently large values of n, say $n \geq n_{1}$.

Let

$$
\begin{aligned}
t_{n} & =\left\{z:|z|=\exp \left(-\mu / 2+M^{n}\right)\right\} \\
T_{n} & =\left\{z:|z|=\exp \left(\mu / 2+M^{n}\right)\right\}
\end{aligned}
$$

and denote by R_{n} be the triply connected domain buonded by $t_{n},\left\{e^{M^{n}}\right\}$, and T_{n}. We conclude from Lemma 1 that for $n \geq n_{1}$, the curves $f\left(t_{n}\right)$ and $f\left(T_{n}\right)$ are contained in some spherical discs c_{n} and C_{n} with radius δ.
2.4. Let us suppose that the boundary components of some $R_{2 n+1}$, $2 n \geq n_{1}$, are mapped by f into $C(0,2 \delta), C(1,2 \delta)$ and $C(\infty, 2 \delta)$, respectively. By Lemma 3 we see that f takes each value outside the union of $C(0,2 \delta), C(1,2 \delta)$ and $C(\infty, 2 \delta)$ exactly once in $R_{2 n+1}$. Since $e^{M^{2 n+1}}$ is a pole of order two, f takes a value w outside the union of $\{\infty\}, C(0,2 \delta)$ and $C(1,2 \delta)$ at two points z^{\prime} and $z^{\prime \prime}$ of $R_{2 n+1}$. We join w to $C(0,2 \delta)$ with a curve Λ which lies outside this union and does not pass through any point which is the projection of a branch point of the Riemann surface $f\left(R_{2 n+1}\right)$. The elements of the inverse function f^{-1} corresponding to z^{\prime} and $z^{\prime \prime}$ can be continued analytically along Λ to its end point and, since $f\left(\bar{R}_{2_{n+1}}\right.$ $\left.R_{2 n+1}\right)$ is contained in the union of $\{\infty\}, C(0,2 \delta)$, and $C(1,2 \delta)$, we see that every value on Λ is taken at two points of $R_{2 n+1}$. This is not possible for $w \in \Lambda,[w, \infty]>2 \delta$. By means of the linear transformation $1 / f$ we get the same contradiction if $R_{2 n+1}, 2 n \geq n_{1}$, is replaced by $R_{2 n}, 2 n \geq n_{1}$.
2.5. In view of Lemma 3, it follows from the considerations in 2.4 that the discs $c_{2 n}$ and $C_{2 n}, 2 n \geq n_{1}$, are contained in $C(0,4 \delta)$. We see now in the same manner as in 2.4 , since $e^{M^{2 n+1}}$ is a pole of order two that f takes each value outside $C(0,4 \delta)$ exactly twice in the annulus bounded by $T_{2 n}$ and $t_{2 n+2}$, and we note that f has exactly one 1-point in the closed region $e^{M^{n}} \leq|z| \leq e^{M^{n+1}}$ for $n \geq n_{1}$.

Let now $\left\{a_{n}\right\}_{n=1,2}, \ldots,\left|a_{1}\right| \leq \mid a_{2} \leq \ldots$, be the set of the zeros, 1 -points, and poles of f. It follows from the above and (i) that for any $\varepsilon<0$, we can take M so large that the numbers a_{n} satisfy the condition

$$
\mid a_{n}^{12-\varepsilon}=O\left(a_{n+1}^{\prime}\right)
$$

The set $E=\{\infty\} \cup\left\{a_{n}\right\}_{n=1,2 \ldots}$ thus provides the desired example, and Theorem 1 is proved.
2.6. In view of Theorem 1 it is of interest to show that Matsumoto's condition (1), quarantering E to be a Picard set, can be improved to $\left|a_{n}\right|^{2}=O\left(\left|a_{n+1}\right|\right)$. In order to prove this result we need an estimate for the modulus of a ring domain.

Lemma 4. Let a and b be two points such that $|a|<\mid b$, and A a ring domain such that one component of its complement contains the point 0 and a and the other the points b and ∞. Then

$$
\bmod A \leq \log (32 b / a)
$$

Proof. The modulus of A is majorized by the modulus of the Teichmüller ring T with the boundary components $\{x:-|a| \leq x \leq 0\}$ and $\{x: x \geq|b|\}$. Since

$$
\bmod T \leq \log (16(|b / a|+1))
$$

the lemma follows. (For the details we refer to Lehto-Virtanen [3] pp. 58 and 64.)
2.7. We can now give the above mentioned complement for Theorem 1:

Theorem 2. If the points a_{n} satisfy the condition

$$
\begin{equation*}
\left|a_{n}\right|^{2}=O\left(\left|a_{n+1}\right|\right), \tag{2}
\end{equation*}
$$

then $E=\left\{a_{n}: n=1,2, \ldots\right\} \cup\{\infty\}$ is a Picard set in Lehto's sense.
2.8. Proof. It is obviously sufficient to prove that the assumption of the existence of a function f, meromorphic and non-rational for $z \neq \infty$, and different from 0,1 and ∞ outside of E, leads to a contradiction. There is no loss of generality to assume that the set $\left\{a_{n}\right\}$ consists only of the zeros, l-points and poles of f, for we can delete from $\left\{a_{n}\right\}$ all other points and the remaining points also satisfy the condition (2).

Applying Lemma 1 to the annulus $\left|a_{n}\right| \leq|z| \leq\left|a_{n+1}\right|$, we conclude that the diameter of the image of $\Gamma_{n}=\left\{z:|z|=\left|a_{n} a_{n+1}\right|^{1 / 2}\right\}$ by f is dominated by $\delta_{n}=\left.A\left|a_{n}\right| a_{n+1}\right|^{1 / 2}$ for all n. Hence there exists a spherical disc C_{n} with radius less than δ_{n} which contains this image.

We take $\delta>0$ so small that the discs $C(0,2 \delta), C(1,2 \delta)$ and $C(\infty, 2 \delta)$ are mutually disjoint. By the condition (2) there exists an $M>0$ such that $\left|a_{n+2}\right|^{2}<M\left|a_{n+3}\right|$ for any n. Therefore

$$
\frac{\left|a_{n+2}\right|}{\left|a_{n+3}\right|}<\frac{\left|a_{n+1}\right|}{\left|a_{n+2}\right|} \frac{M}{\left|a_{n+1}\right|} .
$$

We choose an n_{0} so large that

$$
\begin{equation*}
\left.12 \cdot 2400 \pi A\left|a_{n+2}\right| a_{n+3}\right|^{1 / 4}<\left.\left|a_{n+1}\right| a_{n+2}\right|^{\mid / 4} \tag{a}
\end{equation*}
$$

and $\delta_{n}<\delta / 8$ for any $n \geq n_{0}$.
2.9. Let Δ_{n} be the domain with boundary components Γ_{n}, Γ_{n+1} and $\left\{a_{n+1}\right\}$. Suppose that there exists no $\Delta_{n}, n \geq n_{0}$, whose boundary components are mapped into $C(0, \delta), C(1, \delta)$ and $C(\infty, \delta)$, respectively. It follows from Lemma 3 that $f\left(\Gamma_{n_{0}} \cup \Gamma_{n_{0}+1}\right)$ is contained in one of the spherical discs $C(0, \delta), C(1, \delta)$ and $C(\infty, \delta)$, say in $C(0, \delta)$. Lemma 3 applied to the region $\Delta_{n_{0}+1}$ gives $f\left(a_{n_{0}+1}\right)=f\left(a_{n_{0}+2}\right)=0$, and we conclude by induction that $f\left(a_{n_{0}+p}\right)=0$ for every $p \geq 1$. Then f is bounded in
$|z| \geq\left|a_{n_{0}+1}\right|, \quad$ and the point at infinity is no essential singularity of f. This is a contradiction, and so there is a $A_{n}, n \geq n_{0}$, whose boundary components $\Gamma_{n},\left\{a_{n+1}\right\}$ and Γ_{n+1} are mapped into $C(0, \delta), C(1, \delta)$ and $C(\infty, \delta)$, respectively. We may assume that $C_{n} \subset C(0, \delta), f\left(a_{n+1}\right)=1$ and $C_{n+1} \subset C(\infty, \delta)$.

Let $\Delta=\Delta_{n} \cup \Delta_{n+1} \cup T_{n+1}$. Since the image of the boundary component Γ_{n+2} of Δ is contained in the spherical disc C_{n+2} with radius less than $\delta_{n+2}<\delta / 8$ we see, by applying Lemma 3 to f in Δ_{n+1} and the maximum principle to f in Δ, that f has a pole at a_{n+2} and $C_{n+1} \cup C_{n+2}$ is contained in $C\left(\infty, 4 \delta_{n+1}\right)$.
2.10. We now modify the proof given by Matsumoto in [6] by considering the circles $\gamma_{n}=\left\{z:|z|=\varrho_{n}\right\}$, where $\varrho_{n}=\left|a_{n} a_{n+1}^{2} a_{n+2}\right|^{1 / 4}$. By virtue of the condition (a) we obtain $\gamma_{n+1} \subset S_{n+2} \cap \Delta_{n+1}$, where $S_{n}=$ $\left\{z:\left|a_{n}\right|<|z|<\left|a_{n+1}\right|\right\}$. Since $C_{n+1} \cup C_{n+2} \subset C(\infty, 2 \delta)$, it follows from the maximum principle that $f\left(\gamma_{n+1}\right)$ is contained in a $C(\infty, d)$ with radius $d=\sup _{z \in \gamma_{n}+1}[f(z), \infty]<2 \delta$.

Next we shall prove that f takes each value outside the union of the three discs $C(0, \delta), C(1, \delta)$ and $C(\infty, d)$ exactly once in the region G bounded by Γ_{n} and γ_{n+1}. By Lemma 3, f takes each value outside the union of $C(0, \delta), C(1, \delta)$ and $C(\infty, \delta)$ once and only once in Δ_{n}. Now suppose that f takes a value w_{0} outside the union of $C(0, \delta), C(1, \delta)$ and $C(\infty, d)$ at two points z^{\prime} and $z^{\prime \prime}$ in G. We join w_{0} to $C(0, \delta)$ with a curve Λ which lies outside this union and does not pass through any projection of the branch points of the Riemann surface $f(G)$. The elements of the inverse function f^{-1} corresponding to z^{\prime} and $z^{\prime \prime}$ can be continued analytically along Λ to its end point, and since $C_{n} \subset C(0, \delta), f\left(a_{n+1}\right) \in$ $C(1, \delta)$ and $f\left(\gamma_{n+1}\right) \subset C(\infty, d)$ we see that every value on Λ is taken by f at least twice in G. Therefore we can assume that w_{0} lies outside $C(\infty, 2 \delta)$. Then one of the points z^{\prime} and $z^{\prime \prime}$, say z^{\prime}, must lie in the domain G_{0} bounded by Γ_{n+1} and γ_{n+1}. When we apply the maximum principle to the region G_{0} we are led to a contradiction with the fact that w_{0} lies outside $C(\infty, 2 \delta)$.
2.11. Now we estimate d from below. For this purpose we consider the annulus $R=\left\{w: 2<|w|<\sqrt{1-d^{2}} / d\right\}$ corresponding to the annulus $1 / \sqrt{5}>[w, \infty]>d$ on the Riemann sphere, which separates $C(0, \delta)$ and $C(1, \delta)$ from $C(\infty, d)$. Since $f(G)$ is a schlicht covering of R, the ring domain $f^{-1}(R) \cap G$ has the same modulus as R and separates 0 and a_{n+1} from a_{n+2} and ∞. By Lemma 4 we have

$$
\log \left(\sqrt{1-d^{2}} / 2 d\right) \leq \log \left(32\left|a_{n+2} / a_{n+1}\right|\right)
$$

Since $d \leq 2 \delta \leq \pi / 6$, we have the estimate

$$
d \geq\left(\sqrt{1-(\pi / 6)^{2}} / 64\right)\left|a_{n+1}\right| a_{n+2} \mid=m
$$

2.12. When we apply Lemma 2 to the region $\Delta_{n+1} \cup\left\{a_{n+2}\right\}$ and to the function $1 / f$ we see that $f\left(\gamma_{n+1}\right)$ is contained in a spherical disc C_{n+1}^{\prime} with radius δ_{n+1}^{\prime} satisfying the condition

$$
\delta_{n+1}^{\prime} \leq 24 \pi A\left|a_{n+1} / a_{n+2}\right|^{3 / 4}\left|a_{n+2} / a_{n+3}\right|^{1 / 4}=r
$$

Since $12 r<m$ by the condition (a), C_{n+1}^{\prime} cannot contain the point at infinity. Therefore applying Lemma 3 to the region with $\gamma_{n+1} \cup\left\{a_{n+3}\right\} \cup \Gamma_{n+3}$ as boundary we see that C_{n+3} is contained in $C\left(\infty, 6 \delta_{n+1}\right)$. By the same argument as above we conclude that $\delta_{n+2}^{\prime} \leq 2 r$. Since $12 r \leq m$, it results from Lemma 3, applied to the triply connected region bounded by γ_{n+1}, $\left\{a_{n+3}\right\}$ and γ_{n+2}, that a_{n+3} cannot be a zero, a 1-point or a pole of f. This is a contradiction and the theorem is proved.

3. Picard sets in Matsumoto's sense

3.1. The following lemma results from the proof of the theorem given by Matsumoto in [5] (For the notations see 4.2).

Lemma 5. If the successive ratios ξ_{n} of a Cantor set K satisfy the condition

$$
\begin{equation*}
\xi_{n+1}=o\left(\xi_{n}^{2}\right) \tag{5}
\end{equation*}
$$

then there exist no open set V and no function f such that $K \cap V \neq \Phi$, f is meromorphic in $V-K, f$ has an essential singularity at every point of $K \cap V$ and f omits three values in $V-K$.

Remark. It follows from the proofs of our theorems 4 and 5 in Section 4 that Lemma 5 remains true under the weaker condition

$$
\xi_{n+1}=o\left(\xi_{n}\right)
$$

3.2. Using Lemma 5 we can enlarge an arbitrary totally disconnected compact set A so as to make it into a Picard set in Matsumoto's sense. In fact, we take Cantor sets satisfying condition (5) and let them accumulate towards all points of A. A rigorous proof for this will now be given.

Theorem 3. Let A be a totally disconnected compact set. Then there exists a perfect totally disconnected compact set B כ A which is a Picard set in Matsumoto's sense.

Proof. It does not imply any essential restriction to assume that $\infty \notin A$. Since A is compact, it is covered by a finite number $N(n)$, $n=1,2, \ldots$, of discs $C_{n, k}, k=1,2, \ldots, N(n)$, with centre $b_{n_{n}^{\prime}, k} \in A$ and with radius $1 / n$.

We define $N(0)=1, K_{0,1}=\Phi$ and $K_{n, 0}=\Phi$ for each n. After we have determined the sets $K_{p, s}, p=1,2, \ldots, n-1, s=1,2, \ldots$, $N(p)$, and the sets $K_{n, s}, s=1,2, \ldots, k-1$, we define $K_{n, k}$ inductively in the following manner. Let

$$
B_{n, k}=A \cup\left(\bigcup_{p=0}^{n-1} \bigcup_{s=1}^{N(p)} K_{p, s}\right) \cup\left(\bigcup_{s=0}^{k-1} K_{n, s}\right)
$$

and take a point $z_{n, k} \in C_{n, k}-B_{n, k}$. Since $C_{n, k}-B_{n, k}$ is open and nonvoid, there exists an $r_{n, k}>0$ such that $\left\{z:\left|z-z_{n, k}\right|<2 r_{n, k}\right\}$ is contained in $C_{n, k}-B_{n, k}$. We contruct the set $K_{n, k}$ as a Cantor set on the closed interval

$$
I_{n, k}=\left\{z:\left|\operatorname{Re}\left(z-z_{n, k}\right)\right| \leq r_{n, k}, \operatorname{Im} z=\operatorname{Im} z_{n, k}\right\}
$$

with the successive ratios ξ_{n} satifying the condition (5). Since A and the Cantor sets are totally disconnected and compact, we see that $B_{n, k+1}$ (the set $B_{n+1,1}$ if $k=N(n)$) has the same properties, and the process can be continued.

We get the desired set by defining

$$
B=\bigcup_{n=1}^{\infty} B_{n, 1}
$$

B is trivially totally disconnected. Every point of B is an accumulation point of B, for the points of the Cantor sets are such since each Cantor set is perfect, and if we take a point $z_{0} \in A$ and a neighbourhood $\left\{z:\left|z-z_{0}\right|<r\right\}=U$, then some $C_{n, k}, 2 / r \leq n<2 / r+1,1 \leq k \leq N(n)$, contains z_{0}, and $K_{n, k} \subset U$.

In order to prove that B is closed, and hence compact, let us suppose that there exists a point $\zeta \in \bar{B}-B$. Then there is a sequence $\left\{z_{n}\right\}_{n=1,2, \ldots}, z_{n} \in B, n=1,2, \ldots$, whose points converge to ζ. There is only a finite number of points of the sequence such that

$$
z_{n} \in \bigcup_{p=1}^{n_{0}} \bigcup_{s=1}^{N(p)} K_{p, s}
$$

for any fixed n_{0}, for otherwise we have a subsequence $\left\{z_{n}^{\prime}\right\}_{n=1,2}, \ldots$ whose points converge to ζ and belong to some $K_{p, s}, p \leq n_{0}$. Then ζ must belong to $K_{p, s}$ and we are led to a contradiction. We may assume that the points of $\left\{z_{n}\right\}_{n=1,2}, \ldots$ satisfy the condition

$$
z_{n} \notin \bigcup_{p=1}^{n} \bigcup_{s=1}^{N(p)} K_{p, s} .
$$

We define a sequence $\left\{a_{n}\right\}_{n=1,2, \ldots}$ in the following manner: For $z_{n} \in A$, we set $a_{n}=z_{n}$, and for $z_{n} \notin A, z_{n}$ belonging to some $C_{p, s}, p>n$, we set $a_{n}=b_{p, s}$. The points of $\left\{a_{n}\right\}_{n=1,2}, \ldots$ belong to A and they converge to ζ since $\left|a_{n}-z_{n}\right|<1 / n, n=1,2, \ldots$. Hence ζ belongs to $A \subset B$, and we have proved thet B is compact.

Contrary to ous assertion that B is a Picard set in Matsumoto's sense, let us suppose that there exist a function f, meromorphic in $-B$ with an essential singularity at every point of B, and a point $\zeta \in B$ with a neighbourhood U such that f omits three values in $U-B$. According to Lemma 5ζ cannot belong to any $K_{n, k}$. But it follows from the construction of B that there exists a $K_{n, k} \subset U . V=U-\left(B-K_{n, k}\right)$ is open and f omits three values in $V-K_{n, k}$. This is a contradiction to Lemma 5 and the theorem is proved.

It follows from Theorem 3 that there exist Picard sets in Matsumoto's sense which are of positive two dimensional Lebesque measure.

4. A new definition for Picard sets

4.1. If A is an n-Picard set in Lehto's sense then so is every compact subset of A. Theorem 3 shows that n-Picard sets in Matsumoto's sense have no property like this. That is why we give the following new definition.

Definition 1. A totally disconnected compact set E is an n-Picard set, (a Picard set for $n=2$), if each compact $B \subset E$ is an n-Picard set in Matsumoto's sense.

Let f be meromorphic in the complement of a totally disconnected compact set E, and let $E_{f} \subset E$ denote the set of the essential singularities of f. Definition 1 can also be expressed as follows: A totally disconnected compact set E is an n-Picard set, if the meromorphic continuation of any function f meromorphic in $-E$ omits at most n values in the intersection of $-E_{f}$ and an arbitrary neighbourhood of any $\xi \in E_{f}$.

We see immediately from Definition 1 that if A is a Picard set then so is each closed subset $B \subset A$. Of course totally disconnected n-Picard sets in Lehto's sense are n-Picard sets in the sense of our definition, and these are n-Picard sets in Matsumoto's sense.
4.2. We shall give a sufficient condition for a Cantor set to be a Picard set according to Definition 1. First we introduce some notations. Let $\left\{\xi_{n}\right\}_{n=1,2, \ldots}$ be a sequence of positive numbers satisfying the condition $0<\xi_{n}<1 / 3, n=1,2, \ldots$, and $I_{0,1}=\{z=x+i y: 0 \leq x \leq 1, y=0\}$.

In the $n^{\text {th }}$ subdivision we exlude an open segment of length $\left(1-2 \xi_{n}\right) \prod_{p=1}^{n-1} \xi_{p}$ from the middle of each segment $I_{n-1, k}, k=1,2, \ldots, 2^{n-1}$. The remaining 2^{n} segments, which are of equal length $l_{n}=\prod_{p=1}^{n} \xi_{p}$, are denoted by $I_{n, k}$, $k=1,2, \ldots, 2^{n}$. The set

$$
E=\bigcap_{n=1}^{\infty} \bigcup_{k=1}^{2^{n}} I_{n, k}
$$

is a Cantor set on the interval $I_{0,1}$ with the successive ratios ξ_{n}.
We denote by $S_{n, k}, n=1,2, \ldots, k=1,2, \ldots, 2^{n}$, the following annuli on the complementary domain $-E$ of E :

$$
S_{n, k}=\left\{z: l_{n}<\left|z-z_{n, k}\right|<l_{n-1} / 3\right\}
$$

where $z_{n, k}$ is the middle point of $I_{n, k}$. The transformation $\eta=\left(z-z_{n, k}\right) / l_{n}$ maps $S_{n, k}$ conformally on the annulus $1<|\eta|<e^{\mu_{n}}$, where $\mu_{n}=-\log \left(3 \xi_{n}\right)$ is the modulus of $S_{n, k}$. Let $\Gamma_{n, k}$ denote the preimage of the circle $|\eta|=e^{\mu_{n} / 2}$ on $S_{n, k}, \Delta_{n, k}$ the triply connected domain bounded by the three circles $\Gamma_{n, k}, \Gamma_{n+1,2 k-1}$ and $\Gamma_{n+1,2 k}$, and ($\Gamma_{n, k}$) the bounded domain with boundary $\Gamma_{n, k}$.

We now estimate the modulus of an arbitrary ring domain $A \subset\left(\Gamma_{n, k}\right)$ such that one component of its complement contains the circles $\Gamma_{n, k}$ and $\Gamma_{n+1,2 k-1}$, the other the circles $\Gamma_{p+1,2 s-1}$ and $\Gamma_{p+1,2 s}$, and $\Delta_{p, s} \subset\left(\Gamma_{n+1,2 k}\right)$. In the same manner as in 2.6 we get the following estimate.

Lemma 6. $\bmod A \leq \log \left(32 l_{n} / l_{p}\right)$.
4.3. The following theorem shows that there exists perfect Picard sets.

Theorem 4. If the successive ratios $\xi_{n}=l_{n} / l_{n-1}$ of a Cantor set E satisfy the condition

$$
\begin{equation*}
\xi_{n+1}=O\left(\prod_{p=1}^{n} \xi_{p}\right) \tag{3}
\end{equation*}
$$

then E is a Picard set.
4.4. Proof. Contrary to our assertion, let us suppose that there exist a closed set $B \subset E$ and a function f, meromorphic in $-B$ with B as the set of essential singularities, such that f omits three values in a neighbourhood of a singularity $\zeta \in B$. Actually there is no loss of generality to improve the stronger antithesis that f omits the three values 0,1 and ∞ in $-B$, since the argument below can be applied locally.

Let $\delta>0$ be so small that the discs $C(0,2 \delta), C(1,2 \delta)$ and $C(\infty, 2 \delta)$ are mutually disjoint. By the condition (3) we can take n_{0} so large that $\delta_{n}=A\left(3 \xi_{n}\right)^{1 / 2}<\delta / 16$, where A is the constant of Lemma 1 , and

$$
\begin{equation*}
\xi_{n+1}<\xi_{n} / 4, \text { i.e. } \quad \delta_{n+1}<\delta_{n} / 2 \tag{b}
\end{equation*}
$$

for any $n>n_{0}$. Since $\mu_{n}=-\log \left(3 \xi_{n}\right)$, it follows from Lemma 1 that the image of a circle $\Gamma_{n, k}, n>n_{0}$, is contained in a spherical disc $C_{n, k}$ with radius less than $\delta_{n}<\delta / 16$.
4.5. Let us suppose that there exists only a finite number of $\Delta_{n, k}$'s where three boundary components are mapped into $C(0, \delta), C(1, \delta)$ and $C(\infty, \delta)$, respectively. By Lemma 3, for any sufficiently large n the image of $\Delta_{n, k}$ is contained in a spherical disc $D_{n, k}$ with radius less than $3 \delta_{n}$. The union of all $D_{n, k}$, for which $\Delta_{n, k}$ is contained in a given $\left(\Gamma_{p, s}\right)$, is a connected set. Thus its diameter with respect to the chordal distance is dominated by

$$
6 \sum_{n=p}^{\infty} \delta_{n}<1 / 2
$$

for p large enough in view of the condition (b) and the triangle inequality. We may assume that f is bounded in $\left(\Gamma_{p, s}\right)-E$, since this can be achieved by means of a linear transformation. Hence $E \cap\left(\Gamma_{p, s}\right)$ contains no essential singularity of f. Since we get the same result for each $s, s=1,2, \ldots, 2^{p}$, for sufficiently large p, we are led to a contradiction.
4.6. We may therefore assume that for any $n_{1}>n_{0}$, there exists a $\Delta_{n, k}, n>n_{1}$, such that its three boundary components are mapped into $C(0, \delta), C(1, \delta)$ and $C(\infty, \delta)$, respectively, and

$$
\begin{equation*}
C_{n+1,2 k} \subset C(\infty, \delta) \tag{c}
\end{equation*}
$$

If $\left(\Gamma_{n+1,2 k}\right) \cap B=\Phi$, the maximum principle yields the estimate $|f(z)|<2$ in $\Delta_{n, k} \cup \Gamma_{n+1,2 k} \cup\left(\Gamma_{n+1,2 k}\right)$, which contradicts (c). Because of Picard's theorem no point of B is isolated. Thus we see that there exists a $\Delta_{p, s} \subset\left(\Gamma_{n+1,2 k}\right), p>n$, such that $\left(\Gamma_{p+1,2 s-1}\right) \cap B \neq \Phi,\left(\Gamma_{p+1,2 s}\right) \cap B \neq \Phi$ and $\left(\Gamma_{p, s}\right) \supset\left(\Gamma_{n+1,2 k}\right) \cap B$.
4.7. Lemma 3 says that any one of the discs $C_{n+1,2 k}, C_{p+1,2 s-1}$ and $C_{p+1,2 s}$ meets the union of the other two. For if we suppose that $\{0,1\}$ $\subset C_{p+1,2 s-1} \cup C_{p+1,2 s}$ and apply the maximum principle to the region Δ bounded by the circles $\Gamma_{n, k}, \Gamma_{n+1,2 k-1}, \Gamma_{p+1,2 s-1}$, and $\Gamma_{p+1,2_{s}}$, we arrive at a contradiction with (c).

Since $\delta_{q+1}<\delta_{q} / 2$ for $q>n_{0}$, we have

$$
\sum_{q=p+2}^{\infty} 2 \delta_{q}<2 \delta_{p+1}
$$

Let us suppose that one of the discs $C_{p+1,2 s-1}$ and $C_{p+1,2 s}$, say $C_{p+1,2_{s}}$, has a common point with the dise $[w, \infty] \geq 8 \delta_{p+1}$. Since

$$
2 \delta_{p+1}+4 \sum_{q=p+2}^{\infty} \delta_{q}<6 \delta_{p+1}
$$

we see by Lemma 3 that no one of the discs $C_{q, r}, \Delta_{q, r} \subset\left(\Gamma_{p+1,2 s}\right)$, can have a common point with $C\left(\infty, \delta_{p+1}\right)$. Then ($\Gamma_{p+1,2_{s}}$) cannot contain any point of B. This is a contradiction, and it follows that
(d)

$$
C_{p+1,2 s-1} \cup C_{p+1,2 s} \subset C\left(\infty, 8 \delta_{p+1}\right)
$$

4.8. We denote

$$
\gamma_{n, k}=\left\{z:\left|z-z_{n, k}\right|=\varepsilon l_{n-1}\right\},
$$

where $1 / \varepsilon=32^{2} .96 \pi A$, and $g=1 / f$. By the condition (3) we have $\varepsilon l_{n-1}>8 \sqrt{l_{n-1} l_{n}}$ for sufficiently large n. Let n_{1} in 4.6 be chosen such that this is valid for $n>n_{1}$. We estimate $\left|g^{\prime}(z)\right|, z \in \gamma_{p+1,2 s-1}$, by means of Cauchy's integral. By (c) and (d), integration along the circles $\Gamma_{n+1,2 k}$, $\Gamma_{p+1,2 s-1}$, and $\Gamma_{p+1,2 s}$ yields

$$
\left|g^{\prime}(z)\right| \leq 24 A / l_{n}+32 A l_{p+1} / \varepsilon^{2} l_{p}^{2}
$$

Thus we get for every z and z_{0} on the circle $\gamma_{p+1,2 s-1}$

$$
\begin{aligned}
& \left|g(z)-g\left(z_{0}\right)\right|=\left|\int_{z_{0}}^{z} g^{\prime}(t) d t\right| \\
& \leq 24 \pi A \varepsilon l_{p} / l_{n}+32 \pi A l_{p+1} / \varepsilon l_{p} \\
& =64^{-2} l_{p} / l_{n}+N l_{p+1} / l_{p}=\delta_{p+1}^{\prime}
\end{aligned}
$$

where N is a constant, $N=32 \pi A \varepsilon^{-1}$. Since the chordal distance remains invariant under the transformarion $1 / f$, we note that $f\left(\gamma_{p+1,2 s-1}\right)$ is contained in a spherical dise $C_{p+1,2 s-1}^{\prime}$ with radius less than δ_{p+1}^{\prime}. Similarly, $f\left(\gamma_{p+1,2 s}\right)$ is contained in as pherical disc $C_{p+1,2 s}^{\prime}$ with radius less than δ_{p+1}^{\prime}.
4.9. Let us denote $\Lambda_{1}=\left(\Gamma_{n+1,2 k}\right)-\left(\left(\Gamma_{p+1,2_{s-1}}\right) \cup\left(\Gamma_{p+1,2 s}\right)\right)$. By (c) and (d), we obtain with the help of the maximum principle $f\left(\Delta_{1}\right) \subset C(\infty, \delta)$. Since $\gamma_{p+1,2 s-1} \cup \gamma_{p+1,2 s} \subset \Delta_{1}$, it follows that $f\left(\gamma_{p+1,2_{s-1}} \cup \gamma_{p+1,2_{s}}\right) \subset C(\infty, d)$ with radius $d=\sup \left\{[f(z), \infty]: z \in \gamma_{p+1,2 s-1} \cup \gamma_{p+1,2 s}\right\}<\delta$.

We prove now that f takes each value outside the union of the three discs $C(0, \delta), C(1, \delta)$ and $C(\infty, d)$ once and only once in the region Δ^{\prime} bounded by the circles $\Gamma_{n, k}, \Gamma_{n+1,2 k-1}, \gamma_{p+1,2 s-1}$ and $\gamma_{p+1,2 s}$. Let us suppose that f takes a value w_{0} outside the union of $C(0, \delta), C(1, \delta)$ and $C(\infty, d)$ at two points z^{\prime} and $z^{\prime \prime}$ in Δ^{\prime}. We join w_{0} to $C(0, \delta)$ with a curve Λ which lies outside this union and does not pass through any projection of the branch points of the Riemann surface $f\left(\Delta^{\prime}\right)$. The elements of the inverse function f^{-1} corresponding to z^{\prime} and $z^{\prime \prime}$ can be continued analytically along Λ to its end point, and since $f\left(\Gamma_{n, k}\right) \subset C(0, \delta), f\left(\Gamma_{n+1,2 k}\right) \subset$ $C(1, \delta)$ and $f\left(\gamma_{p+1,2 s-1} \cup \gamma_{p+1,2 s}\right) \subset C(\infty, d)$, we see that every value on Λ is taken by f at least twice in Δ^{\prime}. Therefore we may assume that w_{0} lies outside $C(\infty, 2 \delta)$. By Lemma 3, f takes each value outside the union of $C(0, \delta), C(1, \delta)$ and $C(\infty, \delta)$ exactly once in $A_{n, k}$. Then one of the points z^{\prime} and $z^{\prime \prime}$, say z^{\prime}, must lie in the domain $厶^{\prime \prime}$ bounded by $\Gamma_{n+1,2 k}$, $\gamma_{p+1,2 s-1}$ and $\gamma_{p+1,2 s}$. When we apply the maximum principle to the function l / f, we get by (c) and (d)

$$
f\left(\Delta^{\prime \prime} \cup \Delta_{p, s}\right) \subset C(\infty, \delta)
$$

since $8 \delta_{p+1}<\delta$. Then $f\left(z^{\prime}\right)=w_{0} \in C(\infty, \delta)$, since $z^{\prime} \in \Delta^{\prime \prime}$, and we are led to a contradiction with the assumption that w_{0} lies outside $C(\infty, 2 \delta)$.
4.10. We estimate d from below. To this purpose we consider the annulus $R=\left\{w: 2<|w|<\sqrt{1-d^{2}} / d\right\}$, which separates $C(0, \delta)$ and $C(1, \delta)$ from $C(\infty, d)$. Since $f\left(\Delta^{\prime}\right)$ is a schlicht covering of R, the ring domain $f^{-1}(R) \cap \Delta^{\prime}$ has the same modulus as R and separates the boundary components $\gamma_{p+1,2 s-1}$ and $\gamma_{p+1,2 s}$ from the boundary components $\Gamma_{n, k}$ and $\Gamma_{n+1,2 k-1}$. By Lemma 6 we have

$$
\log \left(\sqrt{1-d^{2}} / 2 d\right) \leq \log \left(32 l_{n} / l_{p}\right)
$$

Since $d \leq \delta \leq \pi / 6$, we obtain the estimate

$$
d \geq\left(l_{p} / 64 l_{n}\right) \sqrt{1-(\pi / 6)^{2}}>l_{p} / 128 l_{n}=m
$$

4.11. This implies that at least one of the discs $C_{p,+1,2_{s-1}}^{\prime}$ and $C_{p+1,2_{s}}^{\prime}$, say $C_{p+1,2_{s}}^{\prime}$, must intersect the disc $[w, \infty] \geq m . C_{p+1,2_{s}}^{\prime}$ cannot contain the point at infinity for sufficiently large n since

$$
\begin{align*}
\delta_{p+1}^{\prime} & =64^{-2} l_{p} / l_{n}+N l_{p+1} / l_{p} \tag{e}\\
& =m / 32+128 m N l_{n} l_{p+1} / l_{p}^{2} \\
& =m\left(\frac{1}{32}+\frac{O\left(\prod_{r=1}^{p} \xi_{r}\right)}{\prod_{r=n+1}^{p} \xi_{r}}\right)<m / 16
\end{align*}
$$

for n large enough by the condition (3). Let n_{1} in 4.6 be chosen such that this is valid for $n>n_{1}$.

We have by (b) the estimate

$$
\sum_{q=p+2}^{\infty} \delta_{q} \leq 2 \delta_{p+2}
$$

We get by (3)

$$
\begin{aligned}
\delta_{p+2} & =A\left(3 \xi_{p+2}\right)^{1 / 2} \\
& =O\left(\xi_{p+1}^{1 / 2}\left(\prod_{q=1}^{p} \xi_{q}\right)^{1 / 2}\right) \\
& =o\left(\prod_{q=n+1}^{p} \xi_{q}\right)<m / 32
\end{aligned}
$$

for sufficiently large n. We assume that n_{1} in 4.6 is sufficiently large in this sense. Then we have

$$
2 \partial_{p+1}^{\prime}+4 \sum_{q=p-2}^{\infty} \partial_{q}<m / 2,
$$

and see by Lemma 3 and the triangle inequality that there exists no $\Delta_{q, r} \subset\left(\Gamma_{p+1,2 s}\right)$ whose three boundary components are mapped into $C(0, \delta), \stackrel{P}{C}(1, \delta)$ and $C(\infty, \delta)$, respectively. Then f is bounded in $\left(\Gamma_{p+1,2 s}\right)$ and cannot contain any point of B. This is a contradiction, and the theorem is proved.
4.12. By the same argument we prove the following theorem.

Theorem 5. If the successive ratios ξ_{n} of a Cantor set E satisfy the condition

$$
\begin{equation*}
\xi_{n+1}=o\left(\xi_{n}\right) . \tag{4}
\end{equation*}
$$

then E is a Picard set in Matsumoto's sense.
As we remarked in the begimning of Section 3, Matsumoto has established the same result under the condition

$$
\xi_{n+1}=o\left(\xi_{n}^{2}\right)
$$

Our improvement is of interest for the following reason. A Cantor set is of positive capasity if and only if

$$
\sum_{n=1}^{\infty} \frac{-\log \xi_{n}}{\underline{2}^{n}}<\infty
$$

(Nevanlinna [8]). Under the condition (4) it is therefore possible to choose the ratios ξ_{n} such that the capasity of E is positive. There are thus Picard sets in Matsumoto's sense with positive capasity. Matsumoto [7] has proved the same result but his method is different.

Proof of Theorem 5. We modify the proof of Theorem 4. Taking $B=E$ in 4.5, we get $p=n+1$. By (e) and (4) we get

$$
\begin{align*}
\partial_{n+2}^{\prime} & =64^{-2} l_{n+1} / l_{n}+N l_{n+2} / l_{n+1} \tag{g}\\
& =m / 32+128 m N l_{n} l_{n+2} / l_{n+1}^{2} \\
& =m / 32+m \xi_{n+1}^{-1} o\left(\xi_{n+1}\right)<m / 16
\end{align*}
$$

for sufficiently large $n\left(m=l_{n+1} / 128 l_{n}\right)$. Let n_{1} in 4.6 be chosen such that this is valid for all $n>n_{1}$.

At least one of the discs $C_{n+2,4 k-1}^{\prime}$ and $C_{n+2,4 k}^{\prime}$, say $C_{n+2,4 k}^{\prime}$, has a common point with $[w, \infty] \geq m$. Since $\delta_{n+2}^{\prime}<m / 16, \infty \notin C_{n+2,4 k}^{\prime}$, and we see by Lemma 3 that no one of the discs $C_{n+2,4 k}^{\prime}, C_{n+3,8 k-1}$ and $C_{n+3,8 k}$ can be disjoint from the union of the other two. Then we see in the same manner as in $4.7-4.8$ that $f\left(\gamma_{n+3,8 k-1}\right)$ and $f\left(\gamma_{n+3,8 k}\right)$ are contained in spherical dises $C_{n+3,8 k-1}^{\prime}$ and $C_{n+3,8 k}^{\prime}$, respectively, with radius less than

$$
\delta_{n+3}^{\prime}=64^{-2} l_{n+2} / l_{n+1}+N l_{n+3} / l_{n+2}
$$

We get by (g)

$$
\delta_{n+3}^{\prime} \leq 16^{-1} \cdot 128^{-1} l_{n+2} / l_{n+1}<m / 32
$$

and inductively $\delta_{n+2+r}^{\prime}<m / 2^{r} \cdot 16$ for any $r=1,2, \ldots$
Since now

$$
2 \delta_{n+2}^{\prime}+4 \sum_{s=n+3}^{\infty} \delta_{s}^{\prime}<m / 2<d / 2
$$

(see 4.10) we see by repeating the conclusion above that no one of the discs $C_{p, s}^{\prime}, \Delta_{p, s} \subset\left(\Gamma_{n+2,4 k}\right), \quad$ can have a common point with $[u, \infty] \leq d / 2$. Then f is bounded in $\left(\Gamma_{n+2,4 k}\right)$, and $\left(\Gamma_{n+2,4 k}\right)$ cannot contain any essential singularity of f. This is a contradiction and the theorem is proved.
4.13. Matsumoto [6] has proved that a Cantor set E is a Picard set in Lehto's sense if its successive ratios ξ_{n} satisfy the condition

$$
\xi_{n+1}=O\left(\exp \left(-1 / \prod_{p=1}^{n} \xi_{p}\right)\right)
$$

Considering the product

$$
f(z)=\prod_{n=1}^{\infty}\left(1-r_{n}(1-z) / z\right)
$$

we get a result in the opposite direction if the points of $\left\{r_{n}\right\}_{n=1,2, \ldots}$, $0<r_{n}<1 / 2$, tend to zero with sufficient rapidity.

Theorem 6. There exists a Cantor set E whose successive ratios ξ_{n} satisfy the condition

$$
\begin{equation*}
\xi_{n+1}=O\left(\left(\prod_{p=1}^{n} \xi_{p}\right)^{(n-2) / 2}\right) \tag{6}
\end{equation*}
$$

and which is no Picard set in Lehto's sense.
Proof. Let

$$
f(z)=\prod_{n=1}^{\infty}\left(1-e^{-e^{e^{n}}}(1-z) / z\right)
$$

We denote $e^{-e^{e^{n}}}=r_{n}$ and $s_{n}=r_{n} /\left(1+r_{n}\right)$. We see immediately that the zeros of f are $s_{n}, n=1,2, \ldots$ Let $\zeta_{n}=s_{n}+t_{n}, n \geq 2$, be a l-point of f on the positive real axis satisfying $z \in \bar{R}_{n}$ with

$$
R_{n}=\left\{z:\left(s_{n} s_{n-1}\right)^{1 / 2}<|z|<\left(s_{n} s_{n+1}\right)^{1 / 2}\right\}
$$

We get immediately for $z \in \bar{R}_{n}$

$$
\log \left|\prod_{p=1}^{n-1}\left(1-r_{p}(1-z) \mid z\right)\right|=\log \left|\prod_{p=1}^{n-1} r_{p}\right| z \mid+O(1)
$$

and

$$
\log \left|\prod_{p=n+1}^{\infty}\left(1-r_{p}(1-z) / z\right)\right|=O(1)
$$

Setting
$f\left(\zeta_{n}\right)=\left\{\prod_{p=1}^{n-1}\left(1-r_{p}\left(1-\zeta_{n}\right) / \zeta_{n}\right)\right\}\left(1-r_{n}\left(1-\zeta_{n}\right) / \zeta_{n}\right) \prod_{p=n+1}^{\infty}\left(1-r_{p}\left(1-\zeta_{n}\right) / \zeta_{n}\right)=1$
we get $\left|t_{n} / s_{n}\right|=o(1)$ and hence

$$
\log \left|1-r_{n}\left(1-\zeta_{n}\right) / \zeta_{n}\right|=\log \left|t_{n}\right|-\log r_{n}+O(1)
$$

Combining these results we get

$$
\begin{align*}
\left|t_{n}\right| & =\left(\prod_{p=1}^{n-1} \zeta_{n} \mid r_{p}\right) r_{n} e^{O_{(1)}} \tag{h}\\
& =\left(s_{n}-t_{n} \mid\right)^{n-1} r_{n}\left(\prod_{p=1}^{n-1} r_{p}\right)^{-1}\left(\frac{s_{n}+t_{n}}{s_{n}-t_{n}}\right)^{n-1} e^{O_{(1)}} \\
& =O\left(\left(s_{n}-\left|t_{n}\right|\right)^{n-1}\right)
\end{align*}
$$

Since $f\left(\left(s_{2 n} s_{2 n-1}\right)^{1 / 2}\right)<0$ and $f\left(\left(s_{2 n} s_{2 n+1}\right)^{1 / 2}\right)>1$ we see that f has at least one 1-point $\zeta_{n}=s_{n}+t_{n}$ on the positive real axis in \bar{R}_{n}.

Since $f(z) \mid>2$ for $|z|=\left(s_{n} s_{n+1}\right)^{1 / 2}$ for sufficiently large n, we see in the same manner as in 2.4 that f takes the value 1 as many times as the value 0 in $|z|>\left(s_{n} s_{n+1}\right)^{1 / 2}$. Because f has in $|z|>\left(s_{n} s_{n+1}\right)^{1 / 2} n$ zeros each of order one, the only l-points of f in $|z|>\left(s_{n} s_{n+1}\right)^{1 / 2}$ are $\zeta_{1}=1$ and the above mentioned $\zeta_{q} \in \bar{R}_{q}, q=2,3, \ldots, n$.

We set $l_{0}=1, l_{1}=s_{1}$ and for $n \geq 1 l_{2 n}=s_{n+1}+\max \left(0, t_{n+1}\right)$ and $l_{2 n+1}=\left|t_{n+1}\right|$. We construct a Cantor set E on the interval $\{z=x+i y$: $0 \leq x \leq 1, y=0\}$ with the successive ratios $\xi_{n}=l_{n} l_{n-1}, n=1,2, \ldots$ We see by (h) that the ratios ξ_{n} satisfy (6) and the calculations above show that $f \neq 0,1$ and ∞ in $-E$. Then E is the desired set and Theorem 6 is proved.

University of Helsinki and
University of Jyväskylä
Finland

References

[1] Carleson, L.: A remark on Picard's theorem. - Bull. Amer. Math. Soc. 67 (1961), 142-144.
[2] Lehto, O.: A generalization of Picard's theorem. - Ark. Mat. 3 (1958), 495-500.
[3] -»- and K. I. Virtanen: Quasikonforme Abbildungen. - Springer-Verlag, Berlin-Heidelberg-New York, 1965.
[4] Matsumoto, K.: Some notes on exeptional values of meromorphic functions. Nagoya Math. J. 22 (1963), 189-201.
[5] -»- Existence of perfect Picard sets. - Nagoya Math. J. 27 (1966), 213-222.
[6] -»- Some remarks on Picard sets. - Ann. Acad. Sci. Fenn. A. I. 403, 1967.
[7] -»- Perfect Picard set of positive capasity. - Nagoya Math. J. 29 (1967), 51-56.
[8] Nevanlinna, R.: Eindeutige analytische Funktionen. - Springer-Verlag, Berlin-Göttingen-Heidelberg, 1953.
[9] Sario, L. and K. Noshiro: Value distribution theory. - D. van Nostrand Company, Toronto-New York-London, 1966.

