$S_{eries} \ A$

I. MATHEMATICA

417

PICARD SETS FOR MEROMORPHIC FUNCTIONS

 $\mathbf{B}\mathbf{Y}$

SAKARI TOPPILA

HELSINKI 1967 SUOMALAINEN TIEDEAKATEMIA

doi:10.5186/aasfm.1968.417

Communicated 10 October 1967 by K. I. VIRTANEN and LAURI MYRBERG
KESKUSKIRJAPAINO HELSINKI 1967

Preface

I am deeply indebted to Professor Olli Lehto and Professor K. I. Virtanen for suggesting this subject and for their kind interest and valuable advice.

I also wish to thank the E. J. Sariolan Säätiö for financial support.

Alavus, September 1967.

SAKARI TOPPILA

Contents

	Page
1. Introduction	7
2. Picard sets in Lehto's sense	8
3. Picard sets in Matsumoto's sense	14
4. A new definition for Picard sets	16
References	24

1. Introduction

1.1. Let us consider functions f meromorphic in the complement of a compact and totally disconnected set E in the extended complex plane. We call E an n-Picard set in the sense of Lehto if every f with at least one essential singularity in E omits at most n values in the intersection of E and an arbitrary neighbourhood of any singularity.

E is called an n-Pichard set in the sense of Matsumoto if every f with a singularity at all points of E omits at most n values in the intersection of E and an arbitrary neighbourhood of any point of E.

In both cases, a 2-Picard set is called briefly a Picard set.

An n-Picard set in Lehto's sense is of course one in Matsumoto's sense. The converse is not true: The set

$$E = \{\infty\} \cup \{2n\pi i\}_{n=0,\pm 1,\pm 2,\dots}$$

is not a Picard set in Lehto's sense, for $e^* \neq 0, 1, \infty$ in -E, but it is a Picard set in Matsumoto's sense because E has isolated points in every neighbourhood of any of its points.

1.2. The term Picard set was first used by Lehto. In [2] he proved that there exist sets with an infinite number of points which are Picard sets in his sense. Carleson [1] proved that there exist 3-Picard sets in Lehto's sense which are of positive capacity. Matsumoto [4—6] extended these results and proved that there exist perfect Picard sets in his and in Lehto's sense.

In this paper we give in Section 2 a sufficient condition for a countable set with one limit point to be a Picard set in Lehto's sense. An example shows that the condition cannot be improved. In Section 3 we show that by adding points we can make any totally disconnected compact set into a perfect Picard set in the Matsumoto sense. In order to achieve monotonicity, i.e. that A a Picard set implies $B \subset A$ a Picard set, we modify Matsumoto's definition in Section 4 and study the relationship of these new Picard sets with those of Matsumoto and Lehto.

2. Picard sets in Lehto's sense

2.1. Let $\{a_n\}_{n=1,2,...}$ be a point set whose points converge to infinity, and let E denote the union of $\{a_n\}_{n=1,2,...}$ and the point at infinity. Lehto [2] proved that E is a Picard set in his sense if the points a_n satisfy the condition

$$(\log |a_n|)^{2+\alpha} = O(\log |a_{n+1}|) \quad (\alpha > 0).$$

Matsumoto [6] established the same result under the condition

$$(1) |a_n|^3 = O(|a_{n+1}|).$$

We first show by an example that the exponent in condition (1) cannot be made smaller than 2, and we then prove that it really can be replaced by 2.

- 2.2. We begin by presenting three lemmas which are essentially due to Carleson [1]. Let Σ be the Riemann sphere with radius 1/2 touching the w-plane at the origin. The chordal distance of the images on Σ of two points w and w' in the plane is denoted by [w, w'], and $C(w, \delta)$ is the spherical open disc with centre at the image of w and with chordal radius δ .
- **Lemma 1.** Let f be analytic in an annulus $1 < |z| < e^{\mu}$ and omit the values 0 and 1. There exists a positive constant A such that the spherical diameter of the image curve of $|z| = e^{\mu/2}$ by f is not greater than $Ae^{-\mu/2}$ for all $\mu > 0$.

Proof. The lemma is proved by Matsumoto [6]. (See also Carleson [1], Matsumoto [5] and Sario-Noshiro [9].)

Lemma 2. Let f be analytic in a closed annulus $r \le |z| \le R$. If $|f(z)| \le m$ on |z| = r and $|f(z)| \le M$ on |z| = R then the euclidian diameter of the image curve of $|z| = \varrho$, $r < \varrho < R$, by f is dominated by

$$rac{\pi m r}{arrho (1-r/arrho)^2} + rac{\pi M arrho}{R (1-arrho/R)^2} \, .$$

Proof. By Cauchy's integral theorem we have

$$f'(z) = \frac{1}{2\pi i} \left\{ \int_{|t|=R} f(t)(t-z)^{-2} dt - \int_{|t|=r} f(t) (t-z)^{-2} dt \right\}$$

for every z on $|z| = \varrho$, so that

$$|f'(z)| \le mr(\varrho - r)^{-2} + MR(R - \varrho)^{-2}$$
 .

For any z and z_0 on $|z| = \varrho$ this implies

$$|f(z) - f(z_0)| \le \pi m \varrho r(\varrho - r)^{-2} + \pi M \varrho R(R - \varrho)^{-2}$$
,

and the lemma is proved.

Let Δ be a triply connected domain with boundary components Γ_1 , Γ_2 and Γ_3 , and let f be analytic and omit the values 0 and 1 in $\bar{\Delta}$. We assume that the images of Γ_1 , Γ_2 and Γ_3 by f are contained in the spherical discs C_1 , C_2 and C_3 , respectively, and give the following lemma of Matsumoto [6].

Lemma 3. Let $\delta > 0$ be so small that the spherical discs $C(0, 2\delta)$, $C(1, 2\delta)$ and $C(\infty, 2\delta)$ are mutually disjoint. If the radii of C_1 , C_2 and C_3 are less than $\delta/2$, only two possibilities can occur:

- (1) C_1 , C_2 and C_3 contain the origin, the point w=1, and the point at infinity, one by one, so that C_1 , C_2 and C_3 are contained in $C(0, \delta)$, $C(1, \delta)$ and $C(\infty, \delta)$, respectively, and f takes each value outside the union of $C(0, \delta)$, $C(1, \delta)$ and $C(\infty, \delta)$ once and only once in Δ .
- (2) Of C_1 , C_2 and C_3 none can be disjoint from the union of the other two, so that there is a disc with radius less than $3\delta/2$ which contains the image of Δ .
 - 2.3. We can now construct the desired counter example:

Theorem 1. For each $\varepsilon > 0$ there exists a point set

$$E = \{a_n : n = 1, 2, \ldots\} \cup \{\infty\}$$

for which

$$|a_n|^{2-\varepsilon} = O(|a_{n+1}|)$$

but which is not a Picard set in the sense of Lehto.

Proof. We construct the desired set E with the aid of the function

$$f(z) = z \prod_{n=1}^{\infty} \left(\frac{1 - ze^{-M^{2n}}}{1 - ze^{-M^{2n-1}}} \right)^2 ,$$

where we first take $M \geq 5$.

Let $z, |z| > e^{M}$, be an 1-point of f. We choose n such that $z \in \overline{S}_{n}$, where

$$S_n = \{z : \exp[(M^n + M^{n-1})/2] < |z| < \exp[(M^n + M^{n+1})/2]\}.$$

If n=2p, we note

$$\log \left| z \prod_{s=1}^{p-1} \left(\frac{1 - z e^{-M^{2s}}}{1 - z e^{-M^{2s-1}}} \right)^{2} \right| = \log |z| - \frac{2M^{2p-1}}{M+1} + O(1)$$

where O(1) is bounded when $n \to \infty$, and

$$\log \left| \prod_{s=p+1}^{\infty} \left| \frac{1 - ze^{-M^{2s}}}{1 - ze^{-M^{2s-1}}} \right|^2 = O(1).$$

Further, we have

$$\log \left| \frac{1 - z e^{-M^2 p}}{1 - z e^{-M^2 p - 1}} \right|^2 = -2 \log|z| + 2M^{2p - 1} + 2 \log|1 - z e^{-M^2 p}| + O(1).$$

Combining these results we get

$$-\log|z| + \frac{2M^{2p}}{M+1} + 2\log|1 - ze^{-M^{2p}}| + O(1) = 0$$
.

This is possible only for $\log |z| > M^{2p} + O(1)$ and we get the estimate

$$|z| = \exp \left\{ 2M^{2p} - rac{2M^{2p}}{M+1} + O(1)
ight\}.$$

In the same manner we get for n = 2p + 1 a similar estimate, so that an arbitrary 1-point of $f, z \in \overline{S}_n$, satisfies the condition

(i)
$$|z| = \exp \left\{ 2M^n - \frac{2M^n}{M+1} + O(1) \right\}.$$

On the other hand, since $f(z) \ge 0$ on the positive real axis, $f(e^{M^{2n}}) = 0$ and $f(e^{M^{2n-1}}) = \infty$, $n = 1, 2, \ldots$, we see that f has at least one 1-point in each annulus $e^{M^n} < |z| < e^{M^{n+1}}$.

We take a $\mu > 0$, such that $\delta = Ae^{-\mu/2}$, where A is the constant of Lemma 1, is so small that the spherical discs $C(0, 8\delta)$, $C(1, 8\delta)$ and $C(\infty, 8\delta)$ are mutually disjoint. From condition (i) it then follows that the annulus $\exp(-\mu + M^n) < |z| < \exp(\mu + M^n)$ contains no 1-point of f for sufficiently large values of n, say $n \ge n_1$.

Let

$$t_n = \{z : |z| = \exp(-\mu/2 + M^n)\},$$

 $T_n = \{z : |z| = \exp(\mu/2 + M^n)\},$

and denote by R_n be the triply connected domain buonded by t_n , $\{e^{M^n}\}$, and T_n . We conclude from Lemma 1 that for $n \geq n_1$, the curves $f(t_n)$ and $f(T_n)$ are contained in some spherical discs c_n and C_n with radius δ .

- 2.4. Let us suppose that the boundary components of some R_{2n+1} , $2n \geq n_1$, are mapped by f into $C(0, 2\delta)$, $C(1, 2\delta)$ and $C(\infty, 2\delta)$, respectively. By Lemma 3 we see that f takes each value outside the union of $C(0, 2\delta)$, $C(1, 2\delta)$ and $C(\infty, 2\delta)$ exactly once in R_{2n+1} . Since $e^{M^{2n+1}}$ is a pole of order two, f takes a value w outside the union of $\{\infty\}$, $C(0, 2\delta)$ and $C(1, 2\delta)$ at two points z' and z'' of R_{2n+1} . We join w to $C(0, 2\delta)$ with a curve A which lies outside this union and does not pass through any point which is the projection of a branch point of the Riemann surface $f(R_{2n+1})$. The elements of the inverse function f^{-1} corresponding to z' and z'' can be continued analytically along A to its end point and, since $f(\bar{R}_{2n+1} R_{2n+1})$ is contained in the union of $\{\infty\}$, $C(0, 2\delta)$, and $C(1, 2\delta)$, we see that every value on A is taken at two points of R_{2n+1} . This is not possible for $w \in A$, $[w, \infty] > 2\delta$. By means of the linear transformation 1/f we get the same contradiction if R_{2n+1} , $2n \geq n_1$, is replaced by R_{2n} , $2n \geq n_1$.
- 2.5. In view of Lemma 3, it follows from the considerations in 2.4 that the discs c_{2n} and C_{2n} , $2n \geq n_1$, are contained in $C(0, 4\delta)$. We see now in the same manner as in 2.4, since $e^{M^{2n+1}}$ is a pole of order two that f takes each value outside $C(0, 4\delta)$ exactly twice in the annulus bounded by T_{2n} and t_{2n+2} , and we note that f has exactly one 1-point in the closed region $e^{M^n} \leq |z| \leq e^{M^{n+1}}$ for $n \geq n_1$.

Let now $\{a_n\}_{n=1,2,...}$, $|a_1| \leq |a_2| \leq ...$, be the set of the zeros, 1-points, and poles of f. It follows from the above and (i) that for any $\varepsilon < 0$, we can take M so large that the numbers a_n satisfy the condition

$$|a_n|^{2-\varepsilon} = O(|a_{n+1}|).$$

The set $E = \{\infty\} \cup \{a_n\}_{n=1,2...}$ thus provides the desired example, and Theorem 1 is proved.

- 2.6. In view of Theorem 1 it is of interest to show that Matsumoto's condition (1), quarantering E to be a Picard set, can be improved to $|a_n|^2 = O(|a_{n+1}|)$. In order to prove this result we need an estimate for the modulus of a ring domain.
- **Lemma 4.** Let a and b be two points such that |a| < |b|, and A a ring domain such that one component of its complement contains the point 0 and a and the other the points b and ∞ . Then

$$\mod A < \log (32|b/a|)$$
.

Proof. The modulus of A is majorized by the modulus of the Teichmüller ring T with the boundary components $\{x:-|a|\leq x\leq 0\}$ and $\{x:x\geq |b|\}$. Since

$$\mod T \leq \log \left(16(|b/a|+1)\right),$$

the lemma follows. (For the details we refer to Lehto-Virtanen [3] pp. 58 and 64.)

2.7. We can now give the above mentioned complement for Theorem 1:

Theorem 2. If the points a_n satisfy the condition

$$|a_n|^2 = O(|a_{n+1}|),$$

then $E = \{a_n : n = 1, 2, ...\} \cup \{\infty\}$ is a Picard set in Lehto's sense.

2.8. Proof. It is obviously sufficient to prove that the assumption of the existence of a function f, meromorphic and non-rational for $z \neq \infty$, and different from 0, 1 and ∞ outside of E, leads to a contradiction. There is no loss of generality to assume that the set $\{a_n\}$ consists only of the zeros, 1-points and poles of f, for we can delete from $\{a_n\}$ all other points and the remaining points also satisfy the condition (2).

Applying Lemma 1 to the annulus $|a_n| \leq |z| \leq |a_{n+1}|$, we conclude that the diameter of the image of $\Gamma_n = \{z : |z| = |a_n a_{n+1}|^{1/2}\}$ by f is dominated by $\delta_n = A |a_n/a_{n+1}|^{1/2}$ for all n. Hence there exists a spherical disc C_n with radius less than δ_n which contains this image.

We take $\delta > 0$ so small that the discs $C(0, 2\delta)$, $C(1, 2\delta)$ and $C(\infty, 2\delta)$ are mutually disjoint. By the condition (2) there exists an M > 0 such that $|a_{n+2}|^2 < M|a_{n+3}|$ for any n. Therefore

$$\frac{|a_{n+2}|}{|a_{n+3}|} < \frac{|a_{n+1}|}{|a_{n+2}|} \frac{M}{|a_{n+1}|}$$
.

We choose an n_0 so large that

(a)
$$12 \cdot 2400 \pi A |a_{n+2}/a_{n+3}|^{1/4} < |a_{n+1}/a_{n+2}|^{1/4}$$

and $\delta_n < \delta/8$ for any $n \ge n_0$.

2.9. Let Δ_n be the domain with boundary components Γ_n , Γ_{n+1} and $\{a_{n+1}\}$. Suppose that there exists no Δ_n , $n \geq n_0$, whose boundary components are mapped into $C(0,\delta)$, $C(1,\delta)$ and $C(\infty,\delta)$, respectively. It follows from Lemma 3 that $f(\Gamma_{n_0} \cup \Gamma_{n_0+1})$ is contained in one of the spherical discs $C(0,\delta)$, $C(1,\delta)$ and $C(\infty,\delta)$, say in $C(0,\delta)$. Lemma 3 applied to the region Δ_{n_0+1} gives $f(a_{n_0+1}) = f(a_{n_0+2}) = 0$, and we conclude by induction that $f(a_{n_0+p}) = 0$ for every $p \geq 1$. Then f is bounded in

 $|z| \geq |a_{n_0+1}|$, and the point at infinity is no essential singularity of f. This is a contradiction, and so there is a $\Delta_n, n \geq n_0$, whose boundary components $\Gamma_n, \{a_{n+1}\}$ and Γ_{n+1} are mapped into $C(0, \delta), C(1, \delta)$ and $C(\infty, \delta)$, respectively. We may assume that $C_n \subset C(0, \delta), f(a_{n+1}) = 1$ and $C_{n+1} \subset C(\infty, \delta)$.

Let $\Delta = \Delta_n \cup \Delta_{n+1} \cup \Gamma_{n+1}$. Since the image of the boundary component Γ_{n+2} of Δ is contained in the spherical disc C_{n+2} with radius less than $\delta_{n+2} < \delta/8$ we see, by applying Lemma 3 to f in Δ_{n+1} and the maximum principle to f in Δ , that f has a pole at a_{n+2} and $C_{n+1} \cup C_{n+2}$ is contained in $C(\infty, 4\delta_{n+1})$.

2.10. We now modify the proof given by Matsumoto in [6] by considering the circles $\gamma_n = \{z : |z| = \varrho_n\}$, where $\varrho_n = |a_n a_{n+1}^2 a_{n+2}|^{1/4}$. By virtue of the condition (a) we obtain $\gamma_{n+1} \subset S_{n+2} \cap \Delta_{n+1}$, where $S_n = \{z : |a_n| < |z| < |a_{n+1}|\}$. Since $C_{n+1} \cup C_{n+2} \subset C(\infty, 2\delta)$, it follows from the maximum principle that $f(\gamma_{n+1})$ is contained in a $C(\infty, d)$ with radius $d = \sup_{z \in \gamma_{n+1}} [f(z), \infty] < 2\delta$.

Next we shall prove that f takes each value outside the union of the three discs $C(0, \delta), C(1, \delta)$ and $C(\infty, d)$ exactly once in the region G bounded by Γ_n and γ_{n+1} . By Lemma 3, f takes each value outside the union of $C(0, \delta), C(1, \delta)$ and $C(\infty, \delta)$ once and only once in Δ_n . Now suppose that f takes a value w_0 outside the union of $C(0, \delta)$, $C(1, \delta)$ and $C(\infty, d)$ at two points z' and z'' in G. We join w_0 to $C(0, \delta)$ with a curve Λ which lies outside this union and does not pass through any projection of the branch points of the Riemann surface f(G). The elements of the inverse function f^{-1} corresponding to z' and z'' can be continued analytically along Λ to its end point, and since $C_n \subset C(0, \delta)$, $f(a_{n+1}) \in$ $C(1, \delta)$ and $f(\gamma_{n+1}) \subset C(\infty, d)$ we see that every value on Λ is taken by f at least twice in G. Therefore we can assume that w_0 lies outside $C(\infty, 2\delta)$. Then one of the points z' and z'', say z', must lie in the domain G_0 bounded by Γ_{n+1} and γ_{n+1} . When we apply the maximum principle to the region G_0 we are led to a contradiction with the fact that w_0 lies outside $C(\infty, 2\delta)$.

2.11. Now we estimate d from below. For this purpose we consider the annulus $R = \{w: 2 < |w| < \sqrt{1-d^2}/d\}$ corresponding to the annulus $1/\sqrt{5} > [w, \infty] > d$ on the Riemann sphere, which separates $C(0, \delta)$ and $C(1, \delta)$ from $C(\infty, d)$. Since f(G) is a schlicht covering of R, the ring domain $f^{-1}(R) \cap G$ has the same modulus as R and separates 0 and a_{n+1} from a_{n+2} and ∞ . By Lemma 4 we have

$$\log (\sqrt{1-d^2}/2d) \le \log (32|a_{n+2}/a_{n+1}|)$$
.

14

Since $d \leq 2\delta \leq \pi/6$, we have the estimate

$$d \geq (\sqrt{1-(\pi/6)^2}/64) \; |a_{n+1}/a_{n+2}| = m \; .$$

2.12. When we apply Lemma 2 to the region $\Delta_{n+1} \cup \{a_{n+2}\}$ and to the function 1/f we see that $f(\gamma_{n+1})$ is contained in a spherical disc C'_{n+1} with radius δ'_{n+1} satisfying the condition

$$\delta'_{n+1} \le 24 \ \pi A |a_{n+1}/a_{n+2}|^{3/4} |a_{n+2}/a_{n+3}|^{1/4} = r.$$

Since 12r < m by the condition (a), C'_{n+1} cannot contain the point at infinity. Therefore applying Lemma 3 to the region with $\gamma_{n+1} \cup \{a_{n+3}\} \cup \Gamma_{n+3}$ as boundary we see that C_{n+3} is contained in $C(\infty, 6\delta_{n+1})$. By the same argument as above we conclude that $\delta'_{n+2} \leq 2r$. Since $12r \leq m$, it results from Lemma 3, applied to the triply connected region bounded by γ_{n+1} , $\{a_{n+3}\}$ and γ_{n+2} , that a_{n+3} cannot be a zero, a 1-point or a pole of f. This is a contradiction and the theorem is proved.

3. Picard sets in Matsumoto's sense

3.1. The following lemma results from the proof of the theorem given by Matsumoto in [5] (For the notations see 4.2).

Lemma 5. If the successive ratios ξ_n of a Cantor set K satisfy the condition

$$\xi_{n+1} = o(\xi_n^2) ,$$

then there exist no open set V and no function f such that $K \cap V \neq \Phi$, f is meromorphic in V-K, f has an essential singularity at every point of $K \cap V$ and f omits three values in V-K.

Remark. It follows from the proofs of our theorems 4 and 5 in Section 4 that Lemma 5 remains true under the weaker condition

$$\xi_{n+1} = o(\xi_n)$$
.

3.2. Using Lemma 5 we can enlarge an arbitrary totally disconnected compact set A so as to make it into a Picard set in Matsumoto's sense. In fact, we take Cantor sets satisfying condition (5) and let them accumulate towards all points of A. A rigorous proof for this will now be given.

Theorem 3. Let A be a totally disconnected compact set. Then there exists a perfect totally disconnected compact set $B \supset A$ which is a Picard set in Matsumoto's sense.

Proof. It does not imply any essential restriction to assume that $\infty \notin A$. Since A is compact, it is covered by a finite number N(n), $n=1,2,\ldots$, of discs $C_{n,k}$, $k=1,2,\ldots$, N(n), with centre $b_{n,k} \in A$ and with radius 1/n.

We define N(0)=1, $K_{0,1}=\Phi$ and $K_{n,0}=\Phi$ for each n. After we have determined the sets $K_{p,s}$, $p=1,2,\ldots,n-1$, $s=1,2,\ldots,N(p)$, and the sets $K_{n,s}$, $s=1,2,\ldots,k-1$, we define $K_{n,k}$ inductively in the following manner. Let

$$B_{n,k} = A \ \mathsf{U} \ (\bigcup_{p=0}^{n-1} \bigcup_{s=1}^{N(p)} K_{p,s}) \ \mathsf{U} \ (\bigcup_{s=0}^{k-1} K_{n,s}) \ ,$$

and take a point $z_{n,k} \in C_{n,k} - B_{n,k}$. Since $C_{n,k} - B_{n,k}$ is open and nonvoid, there exists an $r_{n,k} > 0$ such that $\{z : |z - z_{n,k}| < 2r_{n,k}\}$ is contained in $C_{n,k} - B_{n,k}$. We contruct the set $K_{n,k}$ as a Cantor set on the closed interval

$$I_{n,k} = \{z: |\text{Re}(z - z_{n,k})| \le r_{n,k}, \text{Im}z = \text{Im}z_{n,k}\}$$

with the successive ratios ξ_n satisfying the condition (5). Since A and the Cantor sets are totally disconnected and compact, we see that $B_{n,k+1}$ (the set $B_{n+1,1}$ if k = N(n)) has the same properties, and the process can be continued.

We get the desired set by defining

$$B = \bigcup_{n=1}^{\infty} B_{n,1} .$$

B is trivially totally disconnected. Every point of B is an accumulation point of B, for the points of the Cantor sets are such since each Cantor set is perfect, and if we take a point $z_0 \in A$ and a neighbourhood $\{z: |z-z_0| < r\} = U$, then some $C_{n,k}$, $2/r \le n < 2/r+1$, $1 \le k \le N(n)$, contains z_0 , and $K_{n,k} \subset U$.

In order to prove that B is closed, and hence compact, let us suppose that there exists a point $\zeta \in \overline{B} - B$. Then there is a sequence $\{z_n\}_{n=1,2,\ldots}$, $z_n \in B$, $n=1,2,\ldots$, whose points converge to ζ . There is only a finite number of points of the sequence such that

$$z_n \in \bigcup_{p=1}^{n_0} \bigcup_{s=1}^{N(p)} K_{p,s}$$

for any fixed n_0 , for otherwise we have a subsequence $\{z_n'\}_{n=1,2,...}$ whose points converge to ζ and belong to some $K_{p,s}$, $p \leq n_0$. Then ζ must belong to $K_{p,s}$ and we are led to a contradiction. We may assume that the points of $\{z_n\}_{n=1,2,...}$ satisfy the condition

$$z_n \notin \bigcup_{p=1}^n \bigcup_{s=1}^{N(p)} K_{p,s}.$$

We define a sequence $\{a_n\}_{n=1,2,\ldots}$ in the following manner: For $z_n \in A$, we set $a_n = z_n$, and for $z_n \notin A$, z_n belonging to some $C_{p,s}$, p > n, we set $a_n = b_{p,s}$. The points of $\{a_n\}_{n=1,2,\ldots}$ belong to A and they converge to ζ since $|a_n - z_n| < 1/n$, $n = 1, 2, \ldots$. Hence ζ belongs to $A \subset B$, and we have proved that B is compact.

Contrary to our assertion that B is a Picard set in Matsumoto's sense, let us suppose that there exist a function f, meromorphic in -B with an essential singularity at every point of B, and a point $\zeta \in B$ with a neighbourhood U such that f omits three values in U-B. According to Lemma 5 ζ cannot belong to any $K_{n,k}$. But it follows from the construction of B that there exists a $K_{n,k} \subset U$. $V = U - (B - K_{n,k})$ is open and f omits three values in $V - K_{n,k}$. This is a contradiction to Lemma 5 and the theorem is proved.

It follows from Theorem 3 that there exist Picard sets in Matsumoto's sense which are of positive two dimensional Lebesque measure.

4. A new definition for Picard sets

4.1. If A is an n-Picard set in Lehto's sense then so is every compact subset of A. Theorem 3 shows that n-Picard sets in Matsumoto's sense have no property like this. That is why we give the following new definition.

Definition 1. A totally disconnected compact set E is an n-Picard set, (a Picard set for n=2), if each compact $B \subset E$ is an n-Picard set in Matsumoto's sense.

Let f be meromorphic in the complement of a totally disconnected compact set E, and let $E_f \subset E$ denote the set of the essential singularities of f. Definition 1 can also be expressed as follows: A totally disconnected compact set E is an n-Picard set, if the meromorphic continuation of any function f meromorphic in -E omits at most n values in the intersection of $-E_f$ and an arbitrary neighbourhood of any $\xi \in E_f$.

We see immediately from Definition 1 that if A is a Picard set then so is each closed subset $B \subset A$. Of course totally disconnected n-Picard sets in Lehto's sense are n-Picard sets in the sense of our definition, and these are n-Picard sets in Matsumoto's sense.

4.2. We shall give a sufficient condition for a Cantor set to be a Picard set according to Definition 1. First we introduce some notations. Let $\{\xi_n\}_{n=1,2,\ldots}$ be a sequence of positive numbers satisfying the condition $0<\xi_n<1/3$, $n=1,2,\ldots$, and $I_{0,1}=\{z=x+iy:0\le x\le 1,y=0\}$.

In the n^{th} subdivision we exclude an open segment of length $(1-2\xi_n)\prod_{p=1}^{n-1}\xi_p$ from the middle of each segment $I_{n-1,k}$, $k=1,2,\ldots,2^{n-1}$. The remaining 2^n segments, which are of equal length $l_n=\prod_{p=1}^n\xi_p$, are denoted by $I_{n,k}$, $k=1,2,\ldots,2^n$. The set

$$E = \bigcap_{n=1}^{\infty} \bigcup_{k=1}^{2^n} I_{n,k}$$

is a Cantor set on the interval $I_{0,1}$ with the successive ratios ξ_n .

We denote by $S_{n,k}$, $n=1,2,\ldots,k=1,2,\ldots,2^n$, the following annuli on the complementary domain -E of E:

$$S_{n,k} = \{z : l_n < |z - z_{n,k}| < l_{n-1}/3\},$$

where $z_{n,k}$ is the middle point of $I_{n,k}$. The transformation $\eta = (z - z_{n,k})/l_n$ maps $S_{n,k}$ conformally on the annulus $1 < |\eta| < e^{\mu_n}$, where $\mu_n = -\log(3\xi_n)$ is the modulus of $S_{n,k}$. Let $\Gamma_{n,k}$ denote the preimage of the circle $|\eta| = e^{\mu_n/2}$ on $S_{n,k}$, $\Delta_{n,k}$ the triply connected domain bounded by the three circles $\Gamma_{n,k}$, $\Gamma_{n+1,2k-1}$ and $\Gamma_{n+1,2k}$, and $\Gamma_{n,k}$ the bounded domain with boundary $\Gamma_{n,k}$.

We now estimate the modulus of an arbitrary ring domain $A \subset (\Gamma_{n,k})$ such that one component of its complement contains the circles $\Gamma_{n,k}$ and $\Gamma_{n+1,2k-1}$, the other the circles $\Gamma_{p+1,2s-1}$ and $\Gamma_{p+1,2s}$, and $\Delta_{p,s} \subset (\Gamma_{n+1,2k})$. In the same manner as in 2.6 we get the following estimate.

Lemma 6. mod $A \leq \log (32 l_n/l_p)$.

4.3. The following theorem shows that there exists perfect Picard sets.

Theorem 4. If the successive ratios $\xi_n = l_n/l_{n-1}$ of a Cantor set E satisfy the condition

(3)
$$\xi_{n+1} = O(\prod_{p=1}^{n} \xi_p),$$

then E is a Picard set.

4.4. Proof. Contrary to our assertion, let us suppose that there exist a closed set $B \subset E$ and a function f, meromorphic in -B with B as the set of essential singularities, such that f omits three values in a neighbourhood of a singularity $\zeta \in B$. Actually there is no loss of generality to improve the stronger antithesis that f omits the three values 0, 1 and ∞ in -B, since the argument below can be applied locally.

Let $\delta > 0$ be so small that the discs $C(0, 2\delta)$, $C(1, 2\delta)$ and $C(\infty, 2\delta)$ are mutually disjoint. By the condition (3) we can take n_0 so large that $\delta_n = A(3 \, \xi_n)^{1/2} < \delta/16$, where A is the constant of Lemma 1, and

(b)
$$\xi_{n+1} < \xi_n/4$$
, i.e. $\delta_{n+1} < \delta_n/2$,

for any $n > n_0$. Since $\mu_n = -\log(3 \, \xi_n)$, it follows from Lemma 1 that the image of a circle $\Gamma_{n,k}$, $n > n_0$, is contained in a spherical disc $C_{n,k}$ with radius less than $\delta_n < \delta/16$.

4.5. Let us suppose that there exists only a finite number of $\Delta_{n,k}$'s where three boundary components are mapped into $C(0, \delta)$, $C(1, \delta)$ and $C(\infty, \delta)$, respectively. By Lemma 3, for any sufficiently large n the image of $\Delta_{n,k}$ is contained in a spherical disc $D_{n,k}$ with radius less than $3\delta_n$. The union of all $D_{n,k}$, for which $\Delta_{n,k}$ is contained in a given $(\Gamma_{p,s})$, is a connected set. Thus its diameter with respect to the chordal distance is dominated by

$$6\sum_{n=p}^{\infty}\delta_n<1/2$$

for p large enough in view of the condition (b) and the triangle inequality. We may assume that f is bounded in $(\Gamma_{p,s}) - E$, since this can be achieved by means of a linear transformation. Hence $E \cap (\Gamma_{p,s})$ contains no essential singularity of f. Since we get the same result for each $s, s = 1, 2, \ldots, 2^p$, for sufficiently large p, we are led to a contradiction.

4.6. We may therefore assume that for any $n_1 > n_0$, there exists a $\Delta_{n,k}$, $n > n_1$, such that its three boundary components are mapped into $C(0, \delta)$, $C(1, \delta)$ and $C(\infty, \delta)$, respectively, and

(e)
$$C_{n+1,2k} \subset C(\infty, \delta)$$
.

If $(\Gamma_{n+1,2k}) \cap B = \Phi$, the maximum principle yields the estimate |f(z)| < 2 in $\Delta_{n,k} \cup \Gamma_{n+1,2k} \cup (\Gamma_{n+1,2k})$, which contradicts (c). Because of Picard's theorem no point of B is isolated. Thus we see that there exists a $\Delta_{p,s} \subset (\Gamma_{n+1,2k}), \ p > n$, such that $(\Gamma_{p+1,2s-1}) \cap B \neq \Phi$, $(\Gamma_{p+1,2s}) \cap B \neq \Phi$ and $(\Gamma_{p,s}) \supset (\Gamma_{n+1,2k}) \cap B$.

4.7. Lemma 3 says that any one of the discs $C_{n+1,2k}$, $C_{p+1,2s-1}$ and $C_{p+1,2s}$ meets the union of the other two. For if we suppose that $\{0,1\}$ $\subset C_{p+1,2s-1} \cup C_{p+1,2s}$ and apply the maximum principle to the region Δ bounded by the circles $\Gamma_{n,k}$, $\Gamma_{n+1,2k-1}$, $\Gamma_{p+1,2s-1}$, and $\Gamma_{p+1,2s}$, we arrive at a contradiction with (c).

Since $\delta_{q+1} < \delta_q/2$ for $q > n_0$, we have

$$\sum_{q=p+2}^{\infty} 2 \ \delta_q < 2 \ \delta_{p+1}$$
 .

Let us suppose that one of the discs $C_{p+1,2s-1}$ and $C_{p+1,2s}$, say $C_{p+1,2s}$, has a common point with the disc $[w,\infty] \geq 8\delta_{p+1}$. Since

$$2\delta_{p+1} + 4\sum\limits_{q=p+2}^{\infty}\delta_{q} < 6\;\delta_{p+1}$$
 ,

we see by Lemma 3 that no one of the discs $C_{q,r}$, $A_{q,r} \subset (\Gamma_{p+1,2s})$, can have a common point with $C(\infty, \delta_{p+1})$. Then $(\Gamma_{p+1,2s})$ cannot contain any point of B. This is a contradiction, and it follows that

(d)
$$C_{p+1,2s-1} \cup C_{p+1,2s} \subset C(\infty, 8\delta_{p+1}).$$

4.8. We denote

$$\gamma_{n,k} = \{z : |z - z_{n,k}| = \varepsilon \ l_{n-1} \}$$
,

where $1/\varepsilon=32^2\cdot 96~\pi A$, and g=1/f. By the condition (3) we have $\varepsilon l_{n-1}>8~\sqrt{l_{n-1}~l_n}$ for sufficiently large n. Let n_1 in 4.6 be chosen such that this is valid for $n>n_1$. We estimate $|g'(z)|,~z\in\gamma_{p+1,2s-1}$, by means of Cauchy's integral. By (c) and (d), integration along the circles $\Gamma_{n+1,2k}$, $\Gamma_{p+1,2s-1}$, and $\Gamma_{p+1,2s}$ yields

$$|g'(z)| \le 24 A/l_n + 32 A l_{p+1}/\varepsilon^2 l_p^2$$
.

Thus we get for every z and z_0 on the circle $\gamma_{p+1,2s-1}$

$$\begin{split} |g(z) \ - \ g(z_0)| &= |\int\limits_{z_0}^z g'(t) dt| \\ &\leq 24 \ \pi A \varepsilon l_p |l_n + \ 32 \ \pi A l_{p+1} / \varepsilon l_p \\ &= 64^{-2} \ l_p |l_n + \ N l_{p+1} / l_p = \delta'_{p+1} \ , \end{split}$$

where N is a constant, $N=32 \pi A \varepsilon^{-1}$. Since the chordal distance remains invariant under the transformation 1/f, we note that $f(\gamma_{p+1,2s-1})$ is contained in a spherical disc $C'_{p+1,2s-1}$ with radius less than δ'_{p+1} . Similarly, $f(\gamma_{p+1,2s})$ is contained in as pherical disc $C'_{p+1,2s}$ with radius less than δ'_{p+1} .

4.9. Let us denote $\Delta_1 = (\Gamma_{n+1,2k}) - ((\Gamma_{p+1,2s-1}) \cup (\Gamma_{p+1,2s}))$. By (c) and (d), we obtain with the help of the maximum principle $f(\Delta_1) \subset C(\infty, \delta)$. Since $\gamma_{p+1,2s-1} \cup \gamma_{p+1,2s} \subset \Delta_1$, it follows that $f(\gamma_{p+1,2s-1} \cup \gamma_{p+1,2s}) \subset C(\infty, d)$ with radius $d = \sup \{ [f(z), \infty] : z \in \gamma_{p+1,2s-1} \cup \gamma_{p+1,2s} \} < \delta$.

We prove now that f takes each value outside the union of the three discs $C(0, \delta)$, $C(1, \delta)$ and $C(\infty, d)$ once and only once in the region Δ' bounded by the circles $\Gamma_{n,k}$, $\Gamma_{n+1,2k-1}$, $\gamma_{p+1,2s-1}$ and $\gamma_{p+1,2s}$. Let us suppose that f takes a value w_0 outside the union of $C(0, \delta)$, $C(1, \delta)$ and $C(\infty, d)$ at two points z' and z'' in Δ' . We join w_0 to $C(0, \delta)$ with a curve Δ which lies outside this union and does not pass through any projection of the branch points of the Riemann surface $f(\Delta')$. The elements of the inverse function f^{-1} corresponding to z' and z'' can be continued analytically along Λ to its end point, and since $f(\Gamma_{n,k}) \subset C(0,\delta)$, $f(\Gamma_{n+1,2k}) \subset$ $C(1,\delta)$ and $f(\gamma_{p+1,2s-1} \cup \gamma_{p+1,2s}) \subset C(\infty,d)$, we see that every value on Λ is taken by f at least twice in Δ' . Therefore we may assume that w_0 lies outside $C(\infty, 2\delta)$. By Lemma 3, f takes each value outside the union of $C(0, \delta)$, $C(1, \delta)$ and $C(\infty, \delta)$ exactly once in $\Delta_{n,k}$. Then one of the points z' and z'', say z', must lie in the domain Δ'' bounded by $\Gamma_{n+1,2k}$, $\gamma_{p+1,2s-1}$ and $\gamma_{p+1,2s}$. When we apply the maximum principle to the function 1/f, we get by (c) and (d)

$$f(\Delta'' \cup \Delta_{p,s}) \subset C(\infty, \delta)$$
,

since $8\delta_{p+1} < \delta$. Then $f(z') = w_0 \in C(\infty, \delta)$, since $z' \in \Delta''$, and we are led to a contradiction with the assumption that w_0 lies outside $C(\infty, 2\delta)$.

4.10. We estimate d from below. To this purpose we consider the annulus $R = \{w: 2 < |w| < \sqrt{1-d^2}/d\}$, which separates $C(0, \delta)$ and $C(1, \delta)$ from $C(\infty, d)$. Since $f(\Delta')$ is a schlicht covering of R, the ring domain $f^{-1}(R) \cap \Delta'$ has the same modulus as R and separates the boundary components $\gamma_{p+1,2s-1}$ and $\gamma_{p+1,2s}$ from the boundary components $\Gamma_{n,k}$ and $\Gamma_{n+1,2k-1}$. By Lemma 6 we have

$$\log (\sqrt{1-d^2}/2d) \le \log(32 l_n/l_p).$$

Since $d \leq \delta \leq \pi/6$, we obtain the estimate

$$d \ge (l_p/64l_n)\sqrt{1-(\pi/6)^2} > l_p/128l_n = m$$
.

4.11. This implies that at least one of the discs $C'_{p+1,2s-1}$ and $C'_{p+1,2s}$, say $C'_{p+1,2s}$, must intersect the disc $[w,\infty] \geq m$. $C'_{p+1,2s}$ cannot contain the point at infinity for sufficiently large n since

(e)
$$\delta'_{p+1} = 64^{-2}l_p/l_n + Nl_{p+1}/l_p$$
$$= m/32 + 128mNl_nl_{p+1}/l_p^2$$
$$= m\left(\frac{1}{32} + \frac{O(\prod_{r=1}^p \xi_r)}{\prod_{r=n+1}^p \xi_r}\right) < m/16$$

for n large enough by the condition (3). Let n_1 in 4.6 be chosen such that this is valid for $n > n_1$.

We have by (b) the estimate

$$\sum_{q=p+2}^{\infty} \delta_q \leq 2 \,\, \delta_{p+2} \,.$$

We get by (3)

$$\begin{split} \delta_{p+2} &= A (3 \; \xi_{p+2})^{1/2} \\ &= O(\xi_{p+1}^{1/2} \; (\prod_{q=1}^p \; \xi_q)^{1/2}) \\ &= o(\prod_{q=n+1}^p \xi_q) < m/32 \end{split}$$

for sufficiently large n. We assume that n_1 in 4.6 is sufficiently large in this sense. Then we have

$$2\delta_{p+1}^{'} + 4\sum_{q=p+2}^{\infty} \delta_{q} < m/2$$
 ,

and see by Lemma 3 and the triangle inequality that there exists no $A_{q,r} \subset (\Gamma_{p+1,2s})$ whose three boundary components are mapped into $C(0, \delta)$, $C(1, \delta)$ and $C(\infty, \delta)$, respectively. Then f is bounded in $(\Gamma_{p+1,2s})$ and cannot contain any point of B. This is a contradiction, and the theorem is proved.

4.12. By the same argument we prove the following theorem.

Theorem 5. If the successive ratios ξ_n of a Cantor set E satisfy the condition

$$\xi_{n+1} = o(\xi_n) .$$

then E is a Picard set in Matsumoto's sense.

As we remarked in the beginning of Section 3, Matsumoto has established the same result under the condition

$$\xi_{n+1} = o(\xi_n^2) \; . \label{eq:xi_n}$$

Our improvement is of interest for the following reason. A Cantor set is of positive capasity if and only if

$$\sum_{n=1}^{\infty} \frac{-\log \xi_n}{2^n} < \infty$$

(Nevanlinna [8]). Under the condition (4) it is therefore possible to choose the ratios ξ_n such that the capasity of E is positive. There are thus Picard sets in Matsumoto's sense with positive capasity. Matsumoto [7] has proved the same result but his method is different.

Proof of Theorem 5. We modify the proof of Theorem 4. Taking B = E in 4.5, we get p = n + 1. By (e) and (4) we get

(g)
$$\begin{aligned} \delta'_{n+2} &= 64^{-2} \, l_{n+1} / l_n + N l_{n+2} / l_{n+1} \\ &= m/32 \, + \, 128 \, m N l_n l_{n+2} / l_{n+1}^2 \\ &= m/32 \, + \, m \, \, \xi_{n+1}^{-1} \, o(\xi_{n+1}) < m/16 \end{aligned}$$

for sufficiently large n ($m = l_{n+1}/128l_n$). Let n_1 in 4.6 be chosen such that this is valid for all $n > n_1$.

At least one of the discs $C'_{n+2,4k-1}$ and $C'_{n+2,4k}$, say $C'_{n+2,4k}$, has a common point with $[w,\infty] \geq m$. Since $\delta'_{n+2} < m/16$, $\infty \notin C'_{n+2,4k}$, and we see by Lemma 3 that no one of the discs $C'_{n+2,4k}$, $C_{n+3,8k-1}$ and $C_{n+3,8k}$ can be disjoint from the union of the other two. Then we see in the same manner as in 4.7—4.8 that $f(\gamma_{n+3,8k-1})$ and $f(\gamma_{n+3,8k})$ are contained in spherical discs $C'_{n+3,8k-1}$ and $C'_{n+3,8k}$, respectively, with radius less than

$$\delta_{n+3}' = 64^{-2} \, l_{n+2}/l_{n+1} + N l_{n+3}/l_{n+2} \, .$$

We get by (g)

$$\delta_{n+3}' \leq 16^{-1} \cdot 128^{-1} \, l_{n+2} / l_{n+1} < m/32 \; ,$$

and inductively $\delta'_{n+2+r} < m/2^r \cdot 16$ for any r = 1, 2, ... Since now

$$2\delta'_{n+2} + 4\sum_{s=n+3}^{\infty} \delta'_{s} < m/2 < d/2$$

(see 4.10) we see by repeating the conclusion above that no one of the discs $C'_{p,s}$, $A_{p,s} \subset (\Gamma_{n+2,4k})$, can have a common point with $[w, \infty] \leq d/2$. Then f is bounded in $(\Gamma_{n+2,4k})$, and $(\Gamma_{n+2,4k})$ cannot contain any essential singularity of f. This is a contradiction and the theorem is proved.

4.13. Matsumoto [6] has proved that a Cantor set E is a Picard set in Lehto's sense if its successive ratios ξ_n satisfy the condition

$$\xi_{n+1} = O(\exp(-1/\prod_{p=1}^{n} \xi_p)).$$

Considering the product

$$f(z) = \prod_{n=1}^{\infty} (1 - r_n(1-z)/z)$$

we get a result in the opposite direction if the points of $\{r_n\}_{n=1,2,\ldots}$, $0 < r_n < 1/2$, tend to zero with sufficient rapidity.

Theorem 6. There exists a Cantor set E whose successive ratios ξ_n satisfy the condition

(6)
$$\xi_{n+1} = O((\prod_{p=1}^{n} \xi_p)^{(n-2)/2})$$

and which is no Picard set in Lehto's sense.

Proof. Let

$$f(z) = \prod_{n=1}^{\infty} (1 - e^{-e^{e^n}} (1 - z)/z).$$

We denote $e^{-e^{n}} = r_n$ and $s_n = r_n/(1 + r_n)$. We see immediately that the zeros of f are $s_n, n = 1, 2, \ldots$ Let $\zeta_n = s_n + t_n, n \geq 2$, be a 1-point of f on the positive real axis satisfying $z \in \overline{R}_n$ with

$$R_n = \{z : (s_n s_{n-1})^{1/2} < |z| < (s_n s_{n+1})^{1/2} \}.$$

We get immediately for $z \in \bar{R}_n$

$$\log |\prod_{p=1}^{n-1} (1 - r_p(1-z)/z)| = \log |\prod_{p=1}^{n-1} r_p/z| + O(1)$$

and

$$\log |\prod_{p=n+1}^{\infty} (1 - r_p(1-z)/z)| = O(1).$$

Setting

$$f(\zeta_n) = \{ \prod_{p=1}^{n-1} (1 - r_p(1-\zeta_n)/\zeta_n) \} (1 - r_n(1-\zeta_n)/\zeta_n) \prod_{p=n+1}^{\infty} (1 - r_p(1-\zeta_n)/\zeta_n) = 1 \}$$

we get $|t_n/s_n| = o(1)$ and hence

$$\log |1 - r_n(1 - \zeta_n)/\zeta_n| = \log |t_n| - \log r_n + O(1).$$

Combining these results we get

(h)
$$|t_n| = \left(\prod_{p=1}^{n-1} \zeta_n/r_p\right) r_n e^{O(1)}$$

$$= (s_n - |t_n|)^{n-1} r_n \left(\prod_{p=1}^{n-1} r_p\right)^{-1} \left(\frac{s_n + t_n}{s_n - t_n}\right)^{n-1} e^{O(1)}$$

$$= O((s_n - |t_n|)^{n-1})$$

Since $f((s_{2n}s_{2n-1})^{1/2}) < 0$ and $f((s_{2n}s_{2n+1})^{1/2}) > 1$ we see that f has at least one 1-point $\zeta_n = s_n + t_n$ on the positive real axis in \bar{R}_n .

Since |f(z)| > 2 for $|z| = (s_n s_{n+1})^{1/2}$ for sufficiently large n, we see in the same manner as in 2.4 that f takes the value 1 as many times as the value 0 in $|z| > (s_n s_{n+1})^{1/2}$. Because f has in $|z| > (s_n s_{n+1})^{1/2}$ n zeros each of order one, the only 1-points of f in $|z| > (s_n s_{n+1})^{1/2}$ are $\zeta_1 = 1$ and the above mentioned $\zeta_q \in \bar{R}_q$, $q = 2, 3, \ldots, n$.

We set $l_0=1, l_1=s_1$ and for $n\geq 1$ $l_{2n}=s_{n+1}+\max(0,t_{n+1})$ and $l_{2n+1}=|t_{n+1}|$. We construct a Cantor set E on the interval $\{z=x+iy:0\leq x\leq 1,\ y=0\}$ with the successive ratios $\xi_n=l_n/l_{n-1},\ n=1,2,\ldots$. We see by (h) that the ratios ξ_n satisfy (6) and the calculations above show that $f\neq 0,1$ and ∞ in -E. Then E is the desired set and Theorem 6 is proved.

University of Helsinki and University of Jyväskylä Finland

References

- [1] Carleson, L.: A remark on Picard's theorem. Bull. Amer. Math. Soc. 67 (1961), 142-144.
- [2] Lehto, O.: A generalization of Picard's theorem. Ark. Mat. 3 (1958), 495-500.
- [3] —»— and K. I. VIRTANEN: Quasikonforme Abbildungen. Springer-Verlag, Berlin-Heidelberg-New York, 1965.
- [4] Matsumoto, K.: Some notes on exeptional values of meromorphic functions. -Nagoya Math. J. 22 (1963), 189-201.
- [5] ->- Existence of perfect Picard sets. Nagoya Math. J. 27 (1966), 213-222.
- [6] --- Some remarks on Picard sets. Ann. Acad. Sci. Fenn. A. I. 403, 1967.
- [7] ->- Perfect Picard set of positive capasity. Nagoya Math. J. 29 (1967), 51-56.
- [8] NEVANLINNA, R.: Eindeutige analytische Funktionen. Springer-Verlag, Berlin-Göttingen-Heidelberg, 1953.
- [9] Sario, L. and K. Noshiro: Value distribution theory. D. van Nostrand Company, Toronto-New York-London, 1966.