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1. Introduetion

1.1. Let us consider functions f meromorphic in the complement
of a compact and totally disconnected set E in the extended complex
plane. We call E an n-Picard set in the sense of Lehto if every f with at
least one essential singularity in E omits at most n values in the inter-
section of — E and an arbitrary neighbourhood of any singularity.

E is called an n-Pichard set in the sense of Matsumoto if every f with
a singularity at all points of E omits at most » values in the intersection
of — E and an arbitrary neighbourhood of any point of .

In both cases, a 2-Picard set is called briefly a Picard set.

An n-Picard set in Lehto’s sense is of course one in Matsumoto’s sense.
The converse is not true: The set

E ={oo}U{2nai},_o,:1,19,...

is not a Picard set in Lehto’s sense, for ¢ £ 0,1, oo in — E, but it is
a Picard set in Matsumoto’s sense because E has isolated points in every
neighbourhood of any of its points.

1.2. The term Picard set was first used by Lehto. In [2] he proved that
there exist sets with an infinite number of points which are Picard sets in
his sense. Carleson [1] proved that there exist 3-Picard sets in Lehto’s sense
which are of positive capacity. Matsumoto [4—6] extended these results
and proved that there exist perfect Picard sets in his and in Lehto’s sense.

In this paper we give in Section 2 a sufficient condition for a countable
set with one limit point to be a Picard set in Lehto’s sense. An example
shows that the condition cannot be improved. In Section 3 we show that
by adding points we can make any totally disconnected compact set into
a perfect Picard set in the Matsumoto sense. In order to achieve monoto-
nicity, i.e. that 4 a Picard set implies Bc A4 a Picard set, we modify
Matsumoto’s definition in Section 4 and study the relationship of these
new Picard sets with those of Matsumoto and Lehto.
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2. Picard sets in Lehto’s sense

2.1. Let {an},_;,,... be a point set whose points converge to infinity,
and let E denote the union of {a,},_,, ... and the point at infinity. Lehto
[2] proved that K is a Picard set in his sense if the points «, satisfy the
condition

(log lan|)*** = O(log |ty ,,]) (x> 0).
Matsumoto [6] established the same result under the condition

(1) [CL,,P = ([an-[—h) .

We first show by an example that the exponent in condition (1) cannot be
made smaller than 2, and we then prove that it really can be replaced by 2

2.2. We begin by presenting three lemmas which are essentially due
to Carleson [1]. Let X be the Riemann sphere with radius 1/2 touching
the w-plane at the origin. The chordal distance of the images on X of two
points w and w’ in the plane is denoted by [w, w'], and C(w, 6) is the
spherical open disc with centre at the image of w and with chordal radius .

Lemma 1. Let f be analytic in an annulus 1 < |z < ¢ and omit
the values 0 and 1. There exists a positive constant A4 such that the
spherical diameter of the image curve of |z] = ¢ by f is not greater
than Ae=*? for all u > 0.

Proof. The lemma is proved by Matsumoto [6]. (See also Carleson [1],
Matsumoto [5] and Sario-Noshiro [9].)

Lemma 2. Let f be analytic in a closed annulus » < 2 < R. If
fe) <m on |z|=1r and |[f(z)] <M on |z] =R then the euclidian
diameter of the image curve of |z| =90 ,7 <p <R, by f is dominated
by

amr aMo
T—rjof T R(I— ofRF

Proof. By Cauchy’s integral theorem we have
flz) = = I/ fO) —2)2dt — /f(t) (t — z)—2dt‘l'
271 | I
=R [f=r
for every z on |z| = p, so that

If'(z)] <mr(o — )2+ MR(R — o)2.
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For any z and z, on |z| = ¢ this implies
) — )| < mmor(o — )% + aMoR(R — 0)2,

and the lemma is proved.

Let A be a triply connected domain with boundary components I7,
I, and [, and let f Dbe analytic and omit the values 0 and 1 in A. We
assume that the images of I}, I, and Iy by f are contained in the
spherical dises €, C, and C;, respectively, and give the following lemma
of Matsumoto [6].

Lemma 3. Let 6> 0 be so small that the spherical discs (0, 29),
C(1, 26) and C(c0, 26) are mutually disjoint. If the radii of C;,C, and
Cy are less than 6/2, only two possibilities can occur:

(1) C,, Cy and C; contain the origin, the point w = 1, and the point
at infinity, one by one, so that C;, C, and C; are contained in C(0, 9),
C(1,6) and C(oo,d), respectively, and f takes each value outside the
union of C(0, ), C(1,6) and C(oo, 0) once and only once in 4.

(2) Of C,,C, and C; none can be disjoint from the union of the other
two, so that there is a disc with radius less than 36/2 which contains the
image of 4.

2.3. We can now construct the desired counter example:

Theorem 1. For each &> 0 there exists a point set

E={a.,:n=1,2,..1U{x}
for which

.2 = O a,.,)

but which is not a Picard set in the sense of Lehto.

Proof. We construct the desired set £ with the aid of the function

) = 1—. ( R,

n 1 — ze

where we first take M > 5.
Let 2, z] > €™, be an 1-point of f. We choose n such that z €S,
where

S, = {z:exp [(M" + M"")[2] < |z| < exp[(M" + M"+1)/2]} .
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If n = 2p, we note

log | zTT( l—z_Ms)

2s—1
1 —ze ™

21"

1o

= logz| —

where O(1) is bounded when n-»> oo, and

log-[_I

_ o m2s—1
s=p+1{ 1 — ze M

B

|

Further, we have
1 — —_M2p ]}2

ze ‘_ B a2,
_ ze—sz—li = —2loglz| + 2M*~! 4 2log|l — ze=™7| 4 O(1).

lo
gl

Combining these results we get
Yk
— loglz] +M L+ 2log |1 —ze” ML O(1) =
This is possible only for log |z| > M 4 O(1) and we get the estimate

M |

U1 —I—O(l)[.

Izl = exp {2]![21’ —_—

In the same manner we get for n = 2p -+ 1 a similar estimate, so that an
arbitrary 1-point of f,z €S,, satisfies the condition
2M" |

3 ] l. n !
(i) (z| = exp IZM — w1t O(I)l .

On the other hand, since f(z) > 0 on the positive real axis, f(¢*™") = 0

and f(eMzn_l) = o, n=12,..., we see that f has at least one 1-point
in each annulus eM" < |z2| < eV'HLl

We take a x> 0, such that 6 = Ae ", where A is the constant of
Lemma 1, is so small that the spherical dises C(0, 86), C(1, 85) and
C( 0, 80) are mutually disjoint. From condition (i) it then follows that the
annulus  exp(— u + M") < |2| < exp(u + M") contains no 1l-point of
[ for sufficiently large values of =, say n > n,.

Let

!l

II
~~
N

—ul2 + M)},
exp(u/2 + M")}

N
KX :N:
Il

tn
T,
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and denote by R, be the triply connected domain buonded by ¢, {eM"},
and 7,. We conclude from Lemma 1 that for n > n,, the curves f(t.)
and f(T,) are contained in some spherical discs ¢, and C, with radius d.

2.4. Let us suppose that the boundary components of some R,,,,
2n > n,, are mapped by f into C(0,26), C(1,26) and C(o0,20), re-
spectively. By Lemma 3 we see that f takes each value outside the union
of C(0,26), C(1,28) and C(oo,20) exactly oncein R,, ;. Since Mt
is a pole of order two, f takes a value w outside the union of { oo}, C(0, 29)
and C(1, 26) at two points 2z’ and 2" of R,,. ;. We join w to C(0, 29)
with a curve .1 which lies outside this union and does not pass through
any point which is the projection of a branch point of the Riemann surface
f(Ryn11). The elements of the inverse function f=* corresponding to z" and 2"
can be continued analytically along / to itsend point and, since f(R,,,; —
R,,,,) is contained in the union of { oo}, C(0,24), and C(1, 29), we see that
every value on .l is taken at two points of R,,,;. This is not possible
for w € A, [w, «©] > 25. By means of the linear transformation 1/f we get
the same contradiction if R,,,,, 2n >n,, is replaced by R,,, 2n =>n,.

2.5. In view of Lemma 3, it follows from the considerations in 2.4
that the discs ¢,, and C,,, 2n > n,, are contained in C(0, 46). We see
now in the same manner as in 2.4, since ™% is a pole of order two that
f takes each value outside C(0, 40) exactly twice in the annulus bounded
by T, and t,,.,, and we note that f has exactly one 1-point in the closed
region " < 2. <M for n >,

Let now {a.)},_ys...., la; < 'ay < ..., be the set of the zeros,
1-points, and poles of f. It follows from the above and (i) that for any
£ < 0, we can take M so large that the numbers a, satisfy the condition

a7 = 0, py)

The set E = {} U {t},—y,.... thus provides the desired example, and
Theorem 1 is proved.

2.6. In view of Theorem 1 it is of interest to show that Matsumoto’s
condition (1), quarantering E to be a Picard set, can be improved to
|an2 = O(|@,,1!). In order to prove this result we need an estimate for the
modulus of a ring domain.

Lemma 4. Let a and b be two points such that |a; < |b, and 4
a ring domain such that one component of its complement contains the
point 0 and « and the other the points 6 and co. Then

mod 4 <log (32b/a’) .
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Proof. The modulus of 4 is majorized by the modulus of the Teich-
miiller ring 7' with the boundary components {z: — |a| <o <0} and
{x:2 > |b|}. Since

mod I" <log (16(}b/a| + 1)),

the lemma follows. (For the details we refer to Lehto— Virtanen [3] pp.
58 and 64.)

2.7.  We can now give the above mentioned complement for Theorem 1:

Theorem 2. If the points «, satisfv the condition
(2) ;aﬂiz = O(?an-f-lé) )

then B = {a,:n =1,2,...} U{} is a Picard set in Lehto’s sense.

2.8. Proof. It is obviously sufficient to prove that the assumption
of the existence of a function f, meromorphic and non-rational for z # oo,
and different from 0, 1 and oo outside of E, leads to a contradiction.
There is no loss of generality to assume that the set {a,} consists only of
the zeros, 1-points and poles of f, for we can delete from {«,} all other
points and the remaining points also satisfy the condition (2).

Applying Lemma 1 to the annulus |a,| < 2| < |a,,,/, we conclude that
the diameter of the image of I, ={z: 2| = la,a,,,?} by f is dominated
by 6, = Ala,la, ,* for all n. Hence there exists a spherical disc C,
with radius less than 4, which contains this image.

We take ¢ > 0 so small that the discs C(0, 26), C(1, 29) and C(zc, 29)
are mutually disjoint. By the condition (2) there exists an J/ > 0 such
that a,,,? < M|a,, ;| for any n. Therefore

Cngal | M

! | ; i .
lan+3[ ‘an+2' .‘an-}—li

We choose an 7, so large that

11/4
n4+2i

(a’) 12 * 2400 T A }an-}—i’/a'n—‘;—Sllu < Ean—l»l/a

and 0, << ¢/8 for any n > n,.

2.9. Let A, be the domain with boundary components I, I',.; and
{a,.1}. Suppose that there exists no 4, n > n, whose boundary com-
ponents are mapped into C(0,0), C(1,9) and C(oc,d), respectively.
It follows from Lemma 3 that f(]“"0 U F"o +1) 1s contained in one of the
spherical discs C(0, 6), C(1,0) and C(co, ), say in C(0, ). Lemma 3
applied to the region A"o 41 gives f(a,,oTl) = f(a,,o +2) = 0, and we conclude

by induction that f(a,,,0 +p) =0 for every p >1. Then f is bounded in
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lz| > |a, +1|, and the point at infinity is no essential singularity of f.

This is a contradiction, and so there is a .1,, n > ny, whose boundary
components I, {a,,,} and I, are mapped into C(0, ), C(1, ) and
C(o0, d), respectively. We may assume that C,c 0(0,9), f(a,.1) =1
and C,,, C C(o0,9).

Let 4 =4,U1, ,UTI,. ;. Since the image of the boundary compo-
nent I,,, of A is contalned in the spherical disc C,,, with radius less
than 0,,, < 6/8 we see, by applying Lemma 3 to f in 4, ., and the maxi-
mum principle to f in .1, that f has apoleat a, , and C,,;UC, .,
is contained in C( o0, 46, ).

2.10. We now modify the proof given by Matsumoto in [6] by con-
sidering the circles 7, = {z: 2| = 0.}, where .= la,a; ,a,,,"*. By
virtue of the condition (a) we obtain y,.,C S,;,N4,.,, where S, =
{z:a.] < 2| < |@.1]}. Since €, ,UC,,, cC(wx,20), it follows from
the maximum principle that f(y,,,) is contained ina C(oo,d) with radius
d = sup [f(z), o] < 26.

2€yn 41

Next we shall prove that f takes each value outside the union of the
three dises C(0, 8), C(1,0) and C(oo,d) exactly once in the region G
bounded by I, and y,.;. By Lemma 3, f takes each value outside the
union of (0, 8), C(1, ) and C(o0,d) once and only once in 4, . Now
suppose that f takes a value w, outside the union of C(0,4), C(1,6)
and C(co,d) at two points 2z’ and 2z’ in G. We join w, to C(0,9) with
a curve /A which lies outside this union and does not pass through any
projection of the branch points of the Riemann surface f(&). The elements
of the inverse function f~! corresponding to z’ and 2" can be continued
analytically along . to its end point, and since C, c C(0,9), f(a,,1) €
C(1,9) and f(y,.1) C C(w,d) we see that every value on / is taken by
f at least twice in (. Therefore we can assume that w, lies outside
C(o0, 28). Then one of the points z’ and 2", say z’, must lie in the domain
G, bounded by I, and y,.,. When we apply the maximum principle
to the region G, we are led to a contradiction with the fact that w, lies
outside (o0, 29).

2.11. Now we estimate d from below. For this purpose we consider
the annulus B ={w:2 < jw| < V1— d?/d} corresponding to the annulus
1/\/ 5> [w, ©] >d on the Riemann sphere, which separates C(0, d)
and C(1,9) from C(co,d). Since f(¢) isaschlicht covering of R, thering
domain f1(R)N G has the same modulus as R and separates 0 and
@,,, from a, , and co. By Lemma 4 we have

log (V1 — d2/2d) < log (32a,,,/a,.,) -
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Since d < 20 < 7/6, we have the estimate

d= (V1 — (2)6)2/64) |a,, 1/a,, .| = m .

2.12. When we apply Lemma 2 to the region 4, aU{a, .} andto
the function 1/f we see that f(y,,,) is contained in a spherical disc Chin
with radius o, 41 satisfying the condition

! I 34 | 14
én-yi-l _<_ 24 nAlan-I-l/a’nﬂ—?l ! ian+2/an+3| =7r.

Since 12r < m by the condition (a), C. +1 cannot contain the point at
infinity. Therefore applying Lemma 3 to the region with 7, aU{e, 53U,
as boundary we see that C,,; is contained in C(oo, 66, +1)- By the same
argument as above we conclude that é,’, +2 < 2r. Since 12r < m, it results
from Lemma 3, applied to the triply connected region bounded by Va1
{@.43} and y,.,, that a,, ; cannot be a zero, a 1-point or a pole of f. This
is a contradiction and the theorem is proved.

3. Picard sets in Matsumoto’s sense

3.1. The following lemma results from the proof of the theorem given
by Matsumoto in [5] (For the notations see 4.2).

Lemma 5. If the successive ratios &, of a Cantor set K satisfy the
condition

(4) fnpr = 0(&)) .

then there exist no open set 7 and no function f suchthat KNV = @,
[ is meromorphic in ¥ — K, f has an essential singularity at every point
of KNV and f omits three values in 7" — K .

Remark. Tt follows from the proofs of our theorems 4 and 5 in Section
4 that Lemma 5 remains true under the weaker condition

a1 = 0(&n) .

3.2. Using Lemma 5 we can enlarge an arbitrary totally disconnected
compact set A so as to make it into a Picard set in Matsumoto’s sense.
In fact, we take Cantor sets satisfying condition (5) and let them accumulate
towards all points of 4. A rigorous proof for this will now be given.

Theorem 3. Let A be a totally disconnected corapact set. Then there
exists a perfect totally disconnected compact set B> 4 which is a Picard
set in Matsumoto’s sense.
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Proof. Tt does not imply any essential restriction to assume that
wgA. Since A is compact, it is covered by a finite number N(n),
n=12, ..., of dises C,,,k=1,2,...,N(n), with centre by €4
and with radius 1/n . '

We define N(0)=1,K,,=@ and K, ,= @ for each n. After

we have determined the sets K, ,,p=1,2,...,n — 1, s=1,2,...,
N(p), and the sets K, ,,s=1,2,...,k—1, we define K, , induc-
tively in the following manner. Let
n—1 N(p) k—1
B,,=4U (U0 UIKP,S) U (UOK,.,S),
p=0 s= =

and take a point 2, , €C, , — B, ;. Since C, , — B, ; is open and nonvoid,
there exists an 7, , > 0 such that {z: ]z — 2, < 2r,,} is contained in
C, , — B,... We contruct the set K, , asa Cantor set on the closed interval

In,k = {Z : 1Re(2 - zn,k){ S 7”n,k ’ ImZ == Imzn,k}

with the successive ratios &, satifying the condition (5). Since 4 and the
Cantor sets are totally disconnected and compact, we see that B, ;. ;
(the set B,,,,; if k= N(n)) has the same properties, and the process can
be continued.

We get the desired set by defining

B=UB,,.
n=1
B is trivially totally disconnected. Every point of B is an accumulation
point of B, for the points of the Cantor sets are such since each Cantor
set is perfect, and if we take a point z, € A4 and a neighbourhood
{2:]z2 — 2| <r}= U, thensome C,, .2/r <n<2/r+1,1<k=<DN(n),
contains z, and K, ,c U.

In order to prove that B is closed, and hence compact, let us suppose
that there exists a point (€B — B. Then there is a sequence
{2atne1,2...» a€B,n=1,2,..., whose points converge to (. There
is only a finite number of points of the sequence such that

ny N(p)
o elg1 sL=J1KP's
for any fixed n,, for otherwise we have a subsequence {22}a_1.2,... whose
points converge to ¢ and belong to some K, ,,p <n,. Then { must
belong to K, , and we are led to a contradiction. We may assume that the
points of {z.},—; ., .. satisfy the condition

n N(p)

weU UK, ..

p=1s=1
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______ in the following manner: For z, € 4,
we set @, =2z,, and for z,€ 4, 2z, belonging to some Cossp>mn,
we set @, = b, ,. The points of {a.},_,, . belong to 4 and they con-
verge to ( since |a, — =z <1l/n, n=1,2,.... Hence { belongs to
A c B, and we have proved thet B is compact.

Contrary to ous assertion that B is a Picard set in Matsumoto’s sense,
let us suppose that there exist a function f, meromorphic in — B with
an essential singularity at every point of B, and a point (€ B with a
neighbourhood U such that f omits three values in U — B. According
to Lemma 5  cannot belong to any K, ,. But it follows from the con-
struction of B that there exists a K, ,cU. V=U — (B — K, ,) is
open and f omits three values in ¥V — K, ,. This is a contradiction to
Lemma 5 and the theorem is proved.

It follows from Theorem 3 that there exist Picard sets in Matsumoto’s

sense which are of positive two dimensional Lebesque measure.

4. A new definition for Picard sets

4.1. If 4 isan n-Picard set in Lehto’s sense then so is every compact
subset of A. Theorem 3 shows that n-Picard sets in Matsumoto's sense
have no property like this. That is why we give the following new definition.

Definition 1. A totally disconnected compact set E is an n-Picard
set, (a Picard set for n = 2), if each compact Bc E is an n-Picard
set in Matsumoto’s sense.

Let f be meromorphic in the complement of a totally disconnected
compact set B, and let E;C E denote the set of the essential singularities
of f. Definition 1 can also be expressed as follows: A totally disconnected
compact set £ is an n-Picard set, if the meromorphic continuation of any
function f meromorphic in — E omits at most n values in the inter-
section of — K and an arbitrary neighbourhood of any & € E,.

We see immediately from Definition 1 that if 4 is a Picard set then
so is each closed subset B c 4. Of course totally disconnected n-Picard
sets in Lehto’s sense are n-Picard sets in the sense of our definition, and
these are n-Picard sets in Matsumoto’s sense.

4.2. We shall give a sufficient condition for a Cantor set to be a Picard
set according to Definition 1. First we introduce some notations. Let
{€n}az1,2,... be a sequence of positive numbers satisfying the condition
0<&E <13, n=1,2,..., and Iy, ={z=a41dy:0<2<1,y=0.
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n—1

In the n™ subdivision we exlude an open segment of length (1 — 2£,) T [ &,
p=1

from the middle of each segment I, ,,,k=1,2,..., 2"=1, The remaining

2" segments, which are of equal length [, = &, are denoted by I, ,,
p=1
k=1,2,...,2" The set

w 2"
E = n U In,k
n=1 k=1
is a Cantor set on the interval I,; with the successive ratios &,.
We denote by S,,,n=12,...,k=1,2,...,2", the following
annuli on the complementary domain — E of K:

Sn,k = {2 : ln < 12 - zn,kl < l -—1/3}’

where z, , is the middle point of I, ,. The transformation 1 = (z — 2, ;)/lx
maps 8, ; conformally on the annulus 1 < [n| < e“n, where u, = — log (3&.)
is the modulus of S, , Let I, denote the preimage of the circle
In| = e« on 8, ,,4,, the triply connected domain bounded by the
three circles I, , I 1,06y and I, ., o, and (I, ;) the bounded domain
with boundary [7, ;.

We now estimate the modulus of an arbitrary ring domain 4 c (I, )
such that one component of its complement contains the circles I, , and
I, 1,01, theotherthecircles I,y 5y and I}, s, and 4, ,C (I} 1,%)
In the same manner as in 2.6 we get the following estimate.

Lemma 6. mod A <log (321,/l,).
4.3. The following theorem shows that there exists perfect Picard sets.

Theorem 4. If the successive ratios &, =1,/l,_, of a Cantor set K
satisfy the condition

n

(3) L =0(TT &),

p=1
then £ 1is a Picard set.

4.4, Proof. Contrary to our assertion, let us suppose that there exist
a closed set Bc E and a function f, meromorphicin — B with B as
the set of essential singularities, such that f omits three values in a neigh-
bourhood of a singularity ¢ € B. Actually there is no loss of generality
to improve the stronger antithesis that f omits the three values 0, 1 and
o in — B, since the argument below can be applied locally.
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Let 6 > 0 be so small that the disecs C(0, 26), C(1, 26) and C(c0, 26)
are mutually disjoint. By the condition (3) we can take =, so large that
0, = A(3 &)V2 < §/16, where A is the constant of Lemma 1, and

(b) Eror < Eafd, Pe. 8., < 0.2,

for any n > n, Since u, = — log(3&,), it follows from Lemma 1 that
the image of a circle I', ,,n > n,, is contained in a spherical disc C, ,
with radius less than J, < 0/16.

4.5. Let us suppose that there exists only a finite number of 4, ,’s
where three boundary components are mapped into C(0, 4), C(1,d) and
C(o0, 0), respectively. By Lemma 3, for any sufficiently large = the
image of A, , is contained in a spherical disc D, , with radius less than
30,. The union of all D, ,, for which 4, , is contained in a given (I3, ,),
is a connected set. Thus its diameter with respect to the chordal distance

is dominated by

Gié,,< 1/2

n=p

for p large enough in view of the condition (b) and the triangle inequality-.
We may assume that f is boundedin (I, ;) — E, since this can be achieved

Pss
by means of a linear transformation. Hence E N ([, ,) containsno essential
singularity of f. Since we get the same result for each s,s=1,2,..., 2P,

for sufficiently large p, we are led to a contradiction.

4.6. We may therefore assume that for any =, > n,, there exists a
4, m > ny, such that its three boundary components are mapped into
C(0, 6), C(1,6) and C(w0, d), respectively, and

(c) 0n+1,2k c (e, 9).
If (I

wit,2r) N B = @, the maximum principle yields the estimate
f@l <2 in 4,, U7l 34U, %), which contradicts (c). Because
of Picard’s theorem no point of B is isolated. Thus we see that there exists

ad, C(L,1,%)p>n, suchthat (I, ., ,, )N B #* @D, (1,00 NB # @

pss n P

a’nd (Fp,s)D (Fn+1,2h)nB‘

4.7. Lemma 3 says that any one of the discs C,,; 5, C, 1,55 and

C) 41,2, meets the union of the other two. For if we suppose that {0, 1}
C Cpir,2-1 U Cyyq 5 and apply the maximum principle to the region /
bounded by the circles I3, i, I 1,015 L pi1,2-1, and I, ., , Wearrive

at a contradiction with (c).
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Since d,,; < 6,/2 for ¢> n,, we have

2126, <26,

9=p+2

Let us suppose that one of the discs C,,;,,,_; and Cpi1,20 83y Cpiq s,
has a common point with the disc [w, o] > 86,,,. Since

1+4Z§ <691,

9=p+2

we see by Lemma 3 that no one of the discs C, ,, 4,, C (I,,1,5,), can have
a common point with C(0, d,,,). Then (I,,1,s,) cannot contain any point

) P+1
of B. This is a contradiction, and it follows that
(d) Cpi1,26-1 U Cpyy,5,€ O 0, 89,,1) -

4.8. We denote

Vuk =121 12 — 2, = el 4},
where 1/e = 322:96774, and ¢ = 1/f. By the condition (3) we have
el,_1>8 vV l::l—, for sufficiently large n. Let n; in 4.6 be chosen such
that this is valid for n > n;. We estimate |9'(z)|, 2 €y,,1,5,_1, by means
of Cauchy’s integral. By (c) and (d), integration along the circles I, ; o,
Iyivype1, and T, yields

P
9'()] < 24 Al + 32 AL, /202 .

Thus we get for every z and z, on the circle y,.; 5, ,

z

9(2) — 9(zo)] = I/g'(t)dtf

K}

< 24 el I, + 32 Al /el
= 6421/l + N, /l,=0" .,

where N is a constant, N = 32 zAe~1. Since the chordal distance remains
invariant under the transformarion 1/f, we note that f(y, +1, 9s_1) 1S con-
tained in a spherical disc CP 41,21 With radius less than 0. b1 Similarly,
JS(Vpi1,25) 1s contained in as pherical disc CP +1,2, With radius less than 6

4.9. Let usdenote 4, = (I, 1 2) — ((Fp_H 25-1) U (L41,2))- By (¢)
and (d), we obtain with the help of the maximum principle f(4,) € C(o0, 9).
Since y,,1,9-1 U ¥p11,2,C 4y, it follows that f(y, 1,5, U Vp+1,2s) c C(0,d)
with radius d = sup {[f(z), ©]:2 €y, U Vprl,2sr < 0.
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We prove now that f takes each value outside the union of the three
dises C(0, 0), C(1,6) and C(oco,d) once and only once in the region A’
bounded by the circles I, i, I5 1,915 Vpi1,2,—1 a0nd 7,1 5, . Let ussuppose
that f takes a value w, outside the union of C(0, 9), C(1, ¢) and C(o0,d)
at two points 2z’ and 2" in A’. We join w, to C(0,d) with a curve A
which lies outside this union and does not pass through any projection of
the branch points of the Riemann surface f(A4’). The elements of the in-
verse function f~! corresponding to z’ and 2" can be continued analy-
tically along 4 to its end point, and since f(I, ) € C(0,9), f(I,. 1,%) C
C(1,0) and f(y,,1,2-1 U ¥pi1,2) © C(00,d), we see that every value on
A is taken by f at least twice in A’. Therefore we may assume that w,
lies outside C(o0, 26). By Lemma 3, f takes each value outside the union
of C(0,0), C(1,0) and C(o0, ) exactly once in 4, ,. Then one of the
points 2z’ and 2", say z’, must lie in the domain A" bounded by I, ., a,
Vpi1,25-1a0d ¥, 1 5. When we apply the maximum principle to the function
1/f, we get by (c) and (d)

faru4a,,)c C(w,9),

since 89,,; < 0. Then f(z') = w, € (0, ), since =z’ €.1", and we are
led to a contradiction with the assumption that w, lies outside C(o0, 20).

4.10. We estimate d from below. To this purpose we consider the
annulus B ={w:2 < |w| < \/l——_cﬁ/d}, which separates C(0,¢) and
C(1,98) from C(oo,d). Since f(4') is a schlicht covering of R, the ring
domain f~(R) N A’ has the same modulus as R and separates the bound-
ary components y,.; -1 and y,.; ., from the boundary components
I, and I, 5 ;. By Lemma 6 we have

log (V' 1 — d2/2d) < log(32 L./1,).
Since d < 6 < x/6, we obtain the estimate
d > (1,/641)V 1 — (]6) > 1,/128], = m .

4.11. This implies that at least one of the discs Ozl» +1,2,1 and ;, 1,2 5
say O}', +1,25» must intersect the disc [w, 0] = m. 0}',“,25 cannot contain
the point at infinity for sufficiently large n since

’

(e) Opp1 = 64720, [l + N1, 1[Iy
= m/[32 + 128mNLl, ., /I}
P
) oT&)
—m - -—l— r=1

32 2
-I_I- Er

r=n+1

< m/16
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for n large enough by the condition (3). Let n; in 4.6 be chosen such
that this is valid for » > n,.
We have by (b) the estimate

s

Z Oy <2 ()p»;‘l .

)

¢g=p+2
We get by (3)

O, = ABE,

cp-2

p+2

=o( | &) < m[32

for sufficiently large n. We assume that n, in 4.6 is sufficiently large in
this sense. Then we have

e

245 ! D)
200 -4 D0 < mf2.
o

q=p-—=

and see by Lemma 3 and the triangle inequality that there exists no
Ao, @ (Lyi1,5) whose three boundary components are mapped into

C(0, 8), C(1, 0) and C(x. ). respectively. Then f is boundedin (/7 ., 2)

I 4
and cannot contain any point of B. This is a contradiction, and the theorem

is proved.
4.12. By the same argument we prove the following theorem.

Theorem 5. If the successive ratios &, of a Cantor set E satisty the
condition
(4)

then E is a Picard set in Matsumoto's sense.

frp

nel — O(S") N

As we remarked in the beginning of Section 3, Matsumoto has established
the same result under the condition

(4

Ve
Srp

2
n) :

:0(

n41

Our improvement is of interest for the following reason. A Cantor set is
of positive capasity if and only if
— log &,

— <~

on =~

AR

i
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(Nevanlinna [8]). Under the condition (4) it is therefore possible to choose
the ratios &, such that the capasity of E is positive. There are thus Picard
setsin Matsumoto’s sense with positive capasity. Matsumoto [7] has proved
the same result but his method is different.

Proof of Theorem 6. We modify the proof of Theorem 4. Taking B = E
in 4.5, we get p =n + 1. By (e) and (4) we get
(€)

’

On—}-2 = 6472 ln-}—l/l'l + “N’ln+:!/ln+l

2

= m[32 + 128 mNLI, /%, ,

£—1

=m[32 + m & 08, ) < m[l6

for sufficiently large n (m =1,,,/128l,). Let n; in 4.6 be chosen such that
this is valid for all » > n,.

At least one of the discs O,/;+2,4k_1 and C,,, ., . say C’,’L+2,4k, has a
common point with [w, o] > m. Since 6,',+2 <m/16. 0 €C, 4.
and we see by Lemma 3 that no one of the discs C,_, 4. Cois 61 and
C,13,8: can be disjoint from the union of the other two. Then we see in the
same manner as in 4.7—4.8 that f(y, 5 g_;) and f(y,., ) are contained
in spherical discs O, ts,s_1 and O, 43, 86> Tespectively, with radius less than

br’l+3 = 6472 ln+2/ln+l + Z\/erl~§-3/ln<}—'l .
We get by (g)

Onys < 1671- 12810 o/l .\ < m/32,
and inductively é,’,+2+, <m(27-16 forany r=1,2,...

Since now

»
26;+2 + 4 Z o, < mj2 < d|2
s=n+43
(see 4.10) we see by repeating the conclusion above that no one of the discs
C’}',,s Ay € (L, 5,4), can have a common point with [w. x] < d/2.
Then f is bounded in (/7,5 4), and (I},,, 4) cannot contain any essential

singularity of f. This is a contradiction and the theorem is proved.

4.13. Matsumoto [6] has proved that a Cantor set E is a Picard set
in Lehto’s sense if its successive ratios &, satisfy the condition

£1o1 = Ofexp(— 1/ TT &) -
p=1

Considering the product
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we get a result in the opposite direction if the points of {r.},—;, ., .. .
0 << r, < 1/2, tend to zero with sufficient rapidity.

Theorem 6. There exists a Cantor set K whose successive ratios &,
satisfy the condition

(6) £ = O((TT &)=27)
p=1

and which is no Picard set in Lehto’s sense.

Proof. Let

STTA =" (1 =2)).

n=1

We denote ¢~ =7, and s, = r,/(1 +7,). We see immediately that
the zeros of f are s, n=1,2,.... Let {,=8,+1t,n>2 Dbe a
1-point of f on the positive real axis satisfying z € R, with

Rn == {Z : (Snsn—ll)ll.2 < /“‘ < ( n* nfl)llz} .

We get immediately for z € R,

n—1

n—1
log [ TT (1 — rp(L — 2)/2)| = log | TT rp/2l + O(1)
p=1 p=1

and
log | TT (1 — (1 —2)fz)| = 0(1)
p=n+1
Setting
n—1 0
Cn == { -l_r 1 _'7'p ]- - Cn /Cn }(1 '—/"n(l - Cn)/é'n) T-l- (1 _"rp(l - Zn)/cn): 1
p=1 p=n+1
we get |t./s.] = o(1) and hence

log 11 — r(1 — &)/l = log ta] — log r, ++ O(1) .

Combining these results we get

n—1
(h) ) = (TT alrp)rae®®
p=1
n—1 S, = n—1
- (8,, - 3f11 )n_-]r"( TT }.P)_] <£‘L) ('0(1)
p=1 Sn — n

= O((Sa — )"
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Since  f((Syuan_1)"?) < 0 and  f((Syu85,,1)"%) > 1 we see that [ has at
least one 1-point £, = s, -+ £, on the positive real axis in R,.

Since f(z)| > 2 for |z = (8,8,,1)" for sufficiently large n, we see
in the same manner as in 2.4 that f takes the value 1 as many times as
the value 0in |z > (s,5,,,)"2. Because f hasin [z| > (s,5,,,)"% n zeros
each of order one, the only 1-points of f in 2] > (s,8,,,)"2 are I =1
and the above mentioned ¢, € Rq, q=2,3,...,n.

We set [, =1, =s, and for n > 1 [,, =s,,, + max(0,4,,,) and
= lt,,1. We construct a Cantor set £ on the interval {z = x + iy :
0 <x <1, y=0} with the successive ratios &, =1,/l,_,, n=1,2,....

l

2n4-1
We see by (h) that the ratios &, satisfy (6) and the calculations above show
that f 40,1 and o in — K. Then E is the desired set and Theorem
6 is proved.

University of Helsinki and
University of Jyviskyla
Finland
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