Series A

I. MATHEMATICA

413

DISTORTION THEOREMS FOR QUASICONFORMAL MAPPINGS

BY

STEPHEN AGARD

HELSINKI 1968
SUOMALAINEN TIEDEAKATEMIA

Communicated 10 March 1967 by Olli Lehto and K. I. Virtanen

DISTORTION THEOREMS FOR QUASICONFORMAL MAPPINGS*

The idea that quasiconformal mappings transform infinitesimal circles into infinitesimal ellipses with bounded eccentricity is quite familiar. It is certainly a consequence of Mori's estimate, [7], for a K-quasiconformal mapping $w=f(z)$ of a plane domain D onto a plane domain D^{\prime} : if $|\xi-\zeta|=|\eta-\zeta|$, if the disk $\{z:|z-\zeta| \leqq|\xi-\zeta|\}$ lies in D, and if the disk $\{w:|w-f(\zeta)| \leqq|f(\xi)-f(\zeta)|\}$ lies in D^{\prime}, then

$$
\left|\frac{f(\xi)-f(\zeta)}{f(\eta)-f(\zeta)}\right| \leqq e^{\tau K}
$$

Gehring, [4], has shown that a definition of quasiconformality can be based on these notions. An orientation preserving homeomorphism f of a plane domain D is K-quasiconformal, $1 \leqq K$, if and only if

$$
H_{f}(\zeta)=\lim _{\substack{\xi-\xi=r \\ \vdots=r \\ r \rightarrow 0}}\left|\frac{f(\xi)-f(\zeta)}{f(\eta)-f(\zeta)}\right|
$$

is bounded in D, and a.e. $\leqq K$.
A substantially different approach to quasiconformal mappings is through the Beltrami equation

$$
\begin{equation*}
f_{\bar{z}}=\not f_{z} \tag{1.1}
\end{equation*}
$$

satisfied weakly by each K-quasiconformal mapping f, with χ measurable, $|\chi(z)| \leq k<1$ a.e. in $D, \frac{1+k}{1-k}=K$. Conversely, [2], [5], given such χ, there exists a weak solution f of (1.1), which is K-quasiconformal and unique in the sense that if g is another solution, $f \circ g^{-1}$ is conformal in $g(D)$. If we assume that D is the finite plane, then the image $f(D)$ will also be the finite plane, and the allowable normalization $f(0)=0, f(1)=1$, assures that f is unique. We will denote this unique, normalized solution of (1.1) by f^{χ}.

[^0]Various investigations have centered on determining the maximum for the critical ratio

$$
\begin{equation*}
R=\left|\frac{f(\xi)-f(\zeta)}{f(\eta)-f(\zeta)}\right| \tag{1.2}
\end{equation*}
$$

although it is clear that without some normalization the ratios will be unbounded even in the class of conformal (1-quasiconformal) mappings. For example, we may denote by N_{1} the following problem: For $a \geq 1$, $K \geq 1$, in the class Q_{1} of K-quasiconformal mappings φ of the unit disk onto itself, with $\varphi(0)=0$, find

$$
P_{1}=P_{1}(a, K)=\sup \left\{\left|\frac{\varphi(\xi)}{\varphi(\eta)}\right|:\left|\frac{\xi}{\eta}\right|=a\right\} .
$$

Shah and Fan, [10], solved problem N_{1} by the method of parametric representation, [9], in the following implicit form: If η is defined by

$$
\begin{equation*}
\eta(x)=\frac{(1+x)}{2 \pi} \int_{\xi-\text { plane }} \int_{|\xi||1-\xi||\xi+x|} \frac{d \sigma(\xi)}{|\xi|} \tag{1.3}
\end{equation*}
$$

then $y=P_{1}(a, K)$ is the solution to the equation

$$
\begin{equation*}
\int_{a}^{y} \frac{d x}{x \eta(x)}=\log K \tag{1.4}
\end{equation*}
$$

A related problem was to determine the supremum of the numbers $H_{f}(\zeta)$, among all K-quasiconformal mappings f. For this purpose, Lehto, Virtanen, and Väisälä, [6], solved (for $a=1$) the following normalized problem, which we denote by N_{2} : For $a \geq 1, K \geq 1$, in the class Q_{2} of K-quasiconformal mappings φ of the finite plane onto itself, with $\varphi(0)=0$, $\varphi(1)=1$, find

$$
P_{2}=P_{2}(a, K)=\sup \{|\varphi(\xi)|:|\xi|=a\}
$$

This problem is of course equivalent to the problem of maximizing the ratios R in (1.2), for $f K$-quasiconformal in the finite plane, with

$$
\left|\frac{\xi-\zeta}{\eta-\zeta}\right|=a
$$

It comes as only a mild surprise that the solutions to problems N_{1} and N_{2} are the same. In this note, we calculate $P_{2}(a, K)$ in a reasonably explicit form. We then establish the equivalence of the problems from an abstract viewpoint, and finally show that $y=P_{2}(a, K)$ also solves (1.4).

Our first task, however, will be to derive an integral representation for the hyperbolic density, which will be needed in the computations.
2.1. Hyperbolic densities and distances: For a domain E consisting of the extended z-plane minus n points $\left\{z_{1}, z_{2}, \ldots, z_{n}\right\}$, $n \geq 3$, we represent the universal covering surface by the upper half plane $\{\operatorname{Im}(w)>0\}$, and let $z=J(w)$ be an analytic covering. We define the hyperbolic density ϱ_{E} in E by

$$
\begin{equation*}
\varrho_{E}(z)=\left|\frac{d f(z)}{d z}\right| / \operatorname{Im}(f(z)) \tag{2.1}
\end{equation*}
$$

where f is a local inverse for J. The right side of (2.1) is independent of both J and the branch f. The hyperbolic distance σ_{E}, is then defined for points $Z^{\prime}, Z^{\prime \prime}$ in E, by

$$
\sigma_{E}\left(Z^{\prime}, Z^{\prime \prime}\right)=\inf \int_{\gamma} \varrho_{E}(z)|d z|
$$

where the infimum is taken over the class of arcs γ joining Z^{\prime} and $Z^{\prime \prime}$ in E, for which the integral has meaning.

In the special case $E_{0}:\left\{z_{1}, z_{2}, z_{3}\right\}=\{0,1, \infty\}, n=3, \quad$ a suitable covering J is the familiar elliptic modular function, [8]. We calculate the hyperbolic density $\varrho_{E_{0}}$, hereafter referred to simply as ϱ, and the corresponding hyperbolic distance σ, for certain pairs of points.
2.2. The Integral Representation: Let D be the domain obtained by deleting from the z-plane the real slits $\{z \leq 0\}$ and $\{z \geq 1\}$. For $z=r e^{i \theta}$ $\in D,-\pi<\Theta<\pi$, set $\sqrt{z}=\sqrt{r} e^{i \Theta)_{2}}$. We consider the Jacobian elliptic function $\zeta=\operatorname{sn}(u, \sqrt{z})$, doubly periodic in u. In D, we may regard its primitive periods $4 K(z), 2 i K^{*}(z)$ as single valued analytic continuations of

$$
\begin{gather*}
K(z)=\int_{0}^{1} \frac{d t}{\left\{\left(1-t^{2}\right)\left(1-z t^{2}\right)\right\}^{1 / 2}}, 0<z<1 \tag{2.2}\\
K^{*}(z)=K(1-z)
\end{gather*}
$$

In this section, we use the symbol $*$ to denote replacement of the argument z by the argument $1-z$, and ' to denote differentiation with respect to z, hence $\left(K^{*}\right)^{\prime}=-\left(K^{\prime}\right)^{*}$.

It is well known that $\zeta=\operatorname{sn}(u, \sqrt{z})$ maps the interior of the parallelogram P, whose vertices are $\pm K \pm i K^{*}$, conformally onto the ζ-plane minus four analytic arcs, with

$$
\left(\frac{d \zeta}{d u}\right)^{2}=\left(1-\zeta^{2}\right)\left(1-z \zeta^{2}\right)
$$

The area of the parallelogram P is easily seen to be $4 \operatorname{Im}\left(i K^{*} \bar{K}\right)=$ $4 \operatorname{Re}\left(K^{*} \bar{K}\right)$. We therefore find

$$
\begin{align*}
4 \operatorname{Re}\left(K^{*} \bar{K}\right) & =\int_{P} \int_{\zeta} d \sigma(u)=\int_{\zeta-\mathrm{plane}} \int_{\langle- \text {plane }}\left|\frac{d u}{d \zeta}\right|^{2} d \sigma(\zeta) \tag{2.3}\\
& =\iint_{\xi} \frac{d \sigma(\zeta)}{\left|1-\zeta^{2}\right|\left|1-z \zeta^{2}\right|} \\
& =\frac{1}{2} \int_{\xi-\text { plane }} \int \frac{d \sigma(\xi)}{|1-\xi||\xi||\xi-z|}
\end{align*}
$$

For the last step it must be remembered that in the transformation $\xi=1 / \zeta^{2}$, each point in the ξ-plane is covered twice.

If $z=J(w)$ is the elliptic modular function, then a local inverse in $\{\operatorname{Im}(z)>0\}$ is given by

$$
f(z)=i K^{*}(z) / K(z)
$$

[8], and hence in $\{\operatorname{Im}(z)>0\}$, we have

$$
\begin{align*}
\varrho(z) & =\left|\frac{d}{d z}\left(\frac{i K^{*}}{K}\right)\right| / \operatorname{Im}\left(\frac{i K^{*}}{K}\right) \tag{2.4}\\
& =\frac{\left|K\left(K^{*}\right)^{\prime}-K^{*} K^{\prime}\right| /|K|^{2}}{\operatorname{Re}\left(K^{*} \bar{K}\right) /|K|^{2}} \\
& =\left|K\left(K^{\prime}\right)^{*}+K^{*} K^{\prime}\right| / \operatorname{Re}\left(K^{*} \bar{K}\right) .
\end{align*}
$$

We contend that

$$
\begin{equation*}
K\left(K^{\prime}\right)^{*}+K^{*} K^{\prime}=\pi / 4 z(1-z) \tag{2.5}
\end{equation*}
$$

and since both sides are analytic in D, it is sufficient to check for $0<z<1$, where we have the explicit representation (2.2). We use the classical formula [3] for $0<r<1$,

$$
\frac{d K\left(r^{2}\right)}{d r}=\frac{E\left(r^{2}\right)-\left(1-r^{2}\right) K\left(r^{2}\right)}{r\left(1-r^{2}\right)}
$$

where

$$
E(z)=\int_{0}^{1} \frac{\left(1-z t^{2}\right)^{1 / 2} d t}{\left(1-t^{2}\right)^{1 / 2}}
$$

Setting $z=r^{2}$, we find

$$
K^{\prime}=\frac{d K\left(r^{2}\right)}{d r} \frac{d r}{d z}=\frac{E(z)-(1-z) K(z)}{2 z(1-z)}
$$

hence

$$
\begin{aligned}
K\left(K^{\prime}\right)^{*}+K^{\prime} K^{*} & =\frac{K\left(E^{*}-z K^{*}\right)+K^{*}(E-(1-z) K)}{2 z(1-z)} \\
& =\frac{K E^{*}+K^{*} E-K K^{*}}{2 z(1-z)}
\end{aligned}
$$

Applying Legendre's formula, $K E^{*}+K^{*} E-K K^{*}=\pi / 2$, (2.5) follows at once.

We thus obtain, from (2.3), (2.4), and (2.5), for $\operatorname{Im}(z)>0$

$$
\begin{equation*}
\varrho(z)=\left\{\frac{|z||1-z|}{2 \pi} \int_{\xi-\text { plane }} \int \frac{d \sigma(\xi)}{|\xi||1-\xi||\xi-z|}\right\}^{-1} . \tag{2.6}
\end{equation*}
$$

Since both sides of (2.6) are unchanged if z is replaced by $1-z$, the formula holds for $\operatorname{Im}(z) \neq 0$, and by continuity for $z \neq 0,1, \infty$.
2.3. An inequality: For $0<r<1$, the real ratio μ, defined by

$$
\mu(r)=\frac{-i \pi f\left(r^{2}\right)}{2}=\frac{\pi K^{*}\left(r^{2}\right)}{2 K\left(r^{2}\right)},
$$

is equal to the modulus of the ring domain obtained by deleting from the unit disk the real interval $[0, r] . \mu$ is strictly decreasing, with limits $\infty, 0$ at 0,1 respectively, and its inverse will be denoted by μ^{-1}.

The important inequality ([6], page 6),

$$
\varrho(z) \geq \varrho(-|z|)
$$

may be derived from (2.6) as follows: we first observe that for any circle C, and any complex number w, the integral

$$
\int_{c} \frac{|d \zeta|}{|\zeta-w|}
$$

depends only on the distance from w to C, increasing as $w \rightarrow C$ from inside, and increasing as $w \rightarrow C$ from outside. If we denote by C_{R} the circle

$$
\zeta=\frac{1}{1-R e^{i \theta}} ; 0 \leq \Theta \leq 2 \pi
$$

and if w is on C_{r}, it then follows that

$$
\int_{c_{R}} \frac{|d \zeta|}{|\zeta-w|} \leq \int_{c_{R}} \frac{|d \zeta|}{\left|\zeta-\frac{1}{1+r}\right|}
$$

But introducing polar coordinates $\xi=R e^{i \Theta}$ in (2.6), and setting $z=r e^{i p}$, we find

$$
\begin{aligned}
\frac{1}{\varrho(z)} & =\frac{|z|}{2 \pi} \int_{0}^{\infty} \frac{d R}{R} \int_{0}^{2 \pi}\left|\frac{(1-\xi)(1-z)}{(\xi-z)}\right| \frac{R d \Theta}{|1-\xi|^{2}} \\
& =\frac{|z|}{2 \pi} \int_{0}^{\infty} \frac{d R}{R} \int_{0}^{2 \pi} \frac{1}{\left\lvert\, \frac{1}{1-R e^{i \theta}}-\frac{1}{1-z}\right.} \frac{R d \Theta}{\left|1-R e^{i \theta}\right|^{2}} \\
& =\frac{r}{2 \pi} \int_{0}^{\infty} \frac{d R}{R} \int_{C_{R}} \frac{|d \zeta|}{\left.\zeta-\frac{1}{1-r e^{i \varphi}} \right\rvert\,} \\
& \leq \frac{|-r|}{2} \int_{0}^{\infty} \frac{d R}{R} \int_{C_{R}} \frac{|d \zeta|}{\zeta-\frac{1}{1+r}}=\frac{1}{\varrho(-r)} .
\end{aligned}
$$

We draw two conclusions: first, that the negative real axis is a geodesic for σ, and second that if $a_{i}=\left|z_{i}\right|$,

$$
\begin{equation*}
\sigma\left(z_{1}, z_{2}\right) \geq \sigma\left(-a_{1},-a_{2}\right) \tag{2.7}
\end{equation*}
$$

Hence to obtain a formula for the right hand side of (2.7), we may integrate ϱ along α, the negative real axis between $-a_{1}$ and $-a_{2}$. On $\alpha,-i f^{\prime}(z)>0$ and $\operatorname{Re}(f(z))=1$, hence $\left|f^{\prime}(z)\right|=-i f^{\prime}(z)$, and $\operatorname{Im}(f(z))=-i(f(z)-1)$. We find

$$
\begin{aligned}
& \int_{\alpha} \varrho(z)|d z|=\int_{\alpha} \frac{\left|f^{\prime}(z)\right||d z|}{\operatorname{Im}(f(z))} \\
= & \left\lvert\, \int_{a_{1}}^{a_{2}} \frac{f^{\prime}(-t) d t}{1-f(-t)}\right. \\
= & \mid \log (1-f(-t))]_{a_{1}}^{a_{2}} \mid \\
= & \left|\log \frac{1-f\left(-a_{2}\right)}{1-f\left(-a_{1}\right)}\right|
\end{aligned}
$$

Since the mapping f satisfies the identity

$$
\frac{1}{1-f(z)}=f\left(\frac{1}{1-z}\right)
$$

we conclude

$$
\begin{equation*}
\sigma\left(-a_{1},-a_{2}\right)=\left|\log \frac{\mu\left(\left\{1+a_{2}\right\}^{-1 / 2}\right)}{\mu\left(\left\{1+a_{1}\right\}^{-1 / 2}\right)}\right| \tag{2.8}
\end{equation*}
$$

2.4. Teichmüller's Theorem: A fundamental theorem of Teichmüller, [11], [1], asserts: Given $z_{0}, w_{0} \in E_{0}, K \geq 1$, there exists $\varphi \in Q_{2}$ with $\varphi\left(z_{0}\right)=w_{0}$ if and only if $\sigma\left(z_{0}, w_{0}\right) \leq \log K$. As a second application of (2.6), we use the results of Ahlfors and Bers [2] to prove the »only if» part of this theorem. We suppose that $\varphi=f^{\lambda}$, and there is no loss in generality in assuming that χ is continuous with compact support. For $0 \leq t \leq 1$ let $f(z, t)=f^{t x}(z)$. Then lemmas 19 and 21 of [2] apply, and we may assert that $f(z, t)$ is differentiable in t, and

$$
\begin{equation*}
\frac{\partial f(z, t)}{\partial t}=\left(P b_{t}\right)(w)-w\left(P b_{t}\right)(1) ; w=f(z, t) \tag{2.9}
\end{equation*}
$$

where

$$
\begin{equation*}
b_{t}(w)=\frac{\chi(z)}{1-t^{2}|\chi(z)|^{2}} \frac{f_{z}(z, t)}{\overline{f_{\bar{z}}}(z, t)} ; w=f(z, t) \tag{2.10}
\end{equation*}
$$

and P is the Hilbert transform,

$$
\begin{equation*}
(P g)(w)=\frac{1}{\pi} \int_{\xi=\text { plane }} \int_{\xi} g(\xi)\left(\frac{1}{\xi}-\frac{1}{\xi-w}\right) d \sigma(\xi) \tag{2.11}
\end{equation*}
$$

Since $\bar{f}_{\bar{z}}=\bar{f}_{z}$, we obtain from (2.10) the simple inequality

$$
\begin{equation*}
\sup _{w}\left|b_{t}(w)\right| \leq \frac{k}{1-t^{2} k^{2}} \tag{2.12}
\end{equation*}
$$

while (2.11) yields easily, with (2.6), the inequality
(2.13) $|(P g)(w)-w(P g)(1)|=\left|\frac{w(w-1)}{\pi} \int_{\xi-\text { plane }} \int \frac{g(\xi) d \sigma(\xi)}{\xi(\xi-w)(\xi-1)}\right|$

$$
\leq \frac{2 \sup |g|}{\varrho(w)}
$$

As a competing path from $z=f(z, 0)$ to $\varphi(z)=f(z, 1)$, we take the trace of $f(z, t): 0 \leq t \leq 1$. Evidently, using (2.9), (2.13), and (2.12),

$$
\begin{aligned}
\sigma(z, \varphi(z)) & \leq \int_{0}^{1} \varrho(f(z, t))\left|\frac{\partial f(z, t)}{\partial t}\right| d t \\
& \left.\leq \int_{0}^{1} \frac{2 k d t}{1-t^{2} k^{2}}=\log \frac{1+t k}{1-t k}\right]_{0}^{1}=\log \frac{1+k}{1-k}=\log K
\end{aligned}
$$

3.1. Problem N_{2} : We now can assert that

$$
\begin{equation*}
P_{2}(a, K)=\left[\mu^{-1}\left(K \mu\left(\{1+a\}^{-1 / 2}\right)\right)\right]^{-2}-1 \tag{3.1}
\end{equation*}
$$

or equivalently, in view of (2.8),

$$
\sigma\left(-a,-P_{2}\right)=\log K
$$

For let P_{2}^{*} be defined by the right hand side of (3.1), which is to say

$$
\sigma\left(-a,-P_{2}^{*}\right)=\log K, P_{2}^{*} \geq a
$$

By the »if» part of Teichmüller's theorem, there exists $\varphi^{*} \in Q_{2}$, with

$$
\varphi^{*}(-a)=-P_{2}^{*}
$$

Consequently,

$$
\begin{equation*}
P_{2} \geq\left|\varphi^{*}(-a)\right|=\left|-P_{2}^{*}\right|=P_{2}^{*} \tag{3.2}
\end{equation*}
$$

On the other hand, given $\varphi \in Q_{2},|\xi|=a$, we find from (2.7) and Teichmüller's theorem, $\sigma(-|\varphi(\xi)|,-a) \leq \sigma(\varphi(\xi), \xi) \leq \log K=\sigma\left(-P_{2}^{*},-a\right)$. It follows that $|\varphi(\xi)| \leq P_{2}^{*}$, hence $P_{2} \leq P_{2}^{*}$, and with (3.2), the formula is verified.
3.2. Problem N_{1} : For the mapping φ^{*} of Section 3.1, and large integers n, let φ_{n} be defined for $|z| \leq 1$ by

$$
\varphi_{n}(z)=f_{n}\left(\varphi^{*}(n z)\right) / a_{n}
$$

where f_{n} is a conformal mapping of $\left\{\varphi^{*}(\zeta):|\zeta| \leq n\right\}$ onto $\left\{f_{n} \mid \leq a_{n}\right\}$, normalized by $f_{n}(0)=0, f_{n}(1)=1$. By virtue of this normalization, the $\left\{f_{n}\right\}$ are a normal family in E_{0}, and any limit function is necessarily the identity. By construction, $\varphi_{n} \in Q_{1}$, and therefore

$$
P_{1} \geq\left|\frac{\varphi_{n}(-a / n)}{\varphi_{n}(1 / n)}\right|=\left|\frac{f_{n}\left(\varphi^{*}(-a)\right)}{f_{n}\left(\varphi^{*}(1)\right)}\right|=\left|f_{n}\left(-P_{2}\right)\right| .
$$

Letting $n \rightarrow \infty$, we conclude

$$
\begin{equation*}
P_{1} \geq \lim \left|f_{n}\left(-P_{2}\right)\right|=\left|-P_{2}\right|=P_{2} \tag{3.3}
\end{equation*}
$$

On the other hand, any $\varphi \in Q_{1}$ can be extended by reflection and rotation to a mapping $\varphi_{0} \in Q_{2}$, and with corresponding ratios equal. It follows that $P_{1} \leq P_{2}$, and with (3.3), the equivalence of problems N_{1} and N_{2} is established.
3.3. Remark:Returning to (1.4), we see from (2.6) and (1.3) that

$$
1 / x \eta(x)=\varrho(-x)
$$

and hence, as expected,

$$
\begin{aligned}
\int_{a}^{P_{2}} \frac{d x}{x \eta(x)} & =\int_{a}^{P_{2}} \varrho(-x) d x=\int_{-P_{2}}^{-a} \varrho(t) d t \\
& =\sigma\left(-a,-P_{2}\right)=\log K
\end{aligned}
$$

Stanford University
California, USA

Bibliography

[1] Ahlfors, L. V., The modular function and geometric properties of quasiconformal mappings, Proceedings of Minnesota Conference on Complex Analysis, Springer, (1965).
[2] -»- and Bers, L., Riemann's Mapping Theorem for variable metrics, Ann. Math. Vol. 72, No. 2, (1960) 385-404.
[3] Byrd, P. F. and Friedman, M. D., Handbook of Elliptic Integrals for Engineers and Physicists, Springer, Berlin, 1954.
[4] Gehring, F. W., The definitions and exceptional sets for quasiconformal mappings, Ann. Acad. Sci. Fenn. A. I. 281, (1960), 1-28.
[5] Lehto, O. and Virtanen, K. I., On the existence of quasiconformal mappings with prescribed complex dilatation, Ann. Acad. Sci. Fenn. A. I., 274 (1960), 1-24.
[6] —»一 —»- and Väisälä, J., Contributions to the distortion theory of quasiconformal mappings, Ann. Acad. Sci. Fenn. A. I. 273, (1959), 1-14.
[7] Mori, A., On quasi-conformality and pseudo-analyticity, Trans. Amer. Math. Soc. 84, (1957), 56-77.
[8] Nehari, Z., Conformal Mapping, McGraw-Hill, New York, 1952.
[9] Shaf Dao-Shing, Parametric representation of quasiconformal mappings (Russian), Science Record, New Ser. III, (9), (1959), 400-407.
[10] -» - and FAN Le-le, On the modulus of quasiconformal mappings, Science Record, New Ser. 4, (5), (1960), 323-328.
[11] Teichmüller, O., Extremale quasikonforme Abbildungen und quadratische Differentiale, Abh. Preuss. Akad. Wiss. 22, (1940), 1-197.

[^0]: * Research sponsored by National Science Foundation Grant NSF 5990 Stanford University.

