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THE COEFFICIENTS OF QUASICONFORMALITY OF ELLIPSOIDS!)

1. Introduction

The problem of extremal plane quasiconformal mappings was first
treated by H. Grétzsch [12], who proved that the extremal quasiconformal
mapping of one rectangle onto another with vertices corresponding in the
same order is the affine mapping. As observed by Ahlfors [1], this actually
shows that the extremal quasiconformal mapping of one quadrilateral
onto another is the composition of a conformal mapping, an affine mapping,
and a second conformal mapping. Moreover, the work of Teichmiiller [17]
shows that there is a large class of extremal quasiconformal mappings that
are given locally by such a sequence of mappings.

Next, suppose that Z and Z’ are finite right circular cylinders in R3
with bases of equal area and with lengths L and L', respectively. It is
easy to show by means of an extremal lengths argument that the natural
affine mapping of Z onto Z’ is extremal among all quasiconformal maps
of Z onto Z’ that preserve the bases. Moreover, from this and Theorem
11.2 of [10] it follows that the affine map is extremal among all quasi-

conformal mappings of Z onto Z' when 27* < L'|/L < 9%

For such reasons it is then natural to ask if in 3-space the affine mapping
is extremal in the class of all quasiconformal homeomorphisms of an ellipsoid
onto the unit ball. In the present paper we disprove this conjecture in several
cases by constructing mappings with lower dilatations than those of the
affine mapping. In several instances our work also gives the correct order
for the coefficients of quasiconformality. For the prolate ellipsoid these
coefficients are bounded, while in another case the dilatation of the affine
map has the same order as that of an extremal mapping.

Before attacking these problems, we introduce in the next section some
basic terminology and results, most of which are contained in [10].

1) This research was supported in part by the National Science Foundation, Grant
18913, and by a Fellowship from the Institute of Science and Technology in 1965.
The work is part of a Ph.D. thesis written under the direction of Professor F. W.
Gehring at the University of Michigan.
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2. Quasiconformal mappings

Suppose that f is a diffeomorphism of a 3-space domain £ onto Q.
Then f is locally affine — if P € 2 the differential mapping df(P) takes
the unit ball onto an ellipsoid with semiaxes of lengths, say, a > b>c.
Then each of the dilatation functions

1 H,(P “ Hy(P «

() I( ’f): 62, 0( ’f):bc

is greater than or equal to unity, with equality at a point P if and only
if f is conformal there. Moreover,

(2) H(P,f) < Ho(P [}, Ho(P ,f) < H(P, [}

for each P € Q.
Next, the functionals
(3) KI(f) = sup Hy(P :f) s ‘KO(f) = sup HyP ’f)
Pea PeQ
are called the inner and outer dilatations?) of f, respectively; each is a
natural measure of how far f is from being a Mobius transformation of £.

Then

(4) Ki(f) < Ko(f)?, Kolf) < Ki{f)?,

so that these dilatations are both infinite or finite. If both are bounded by
K, 1 <K < o, then f is called a K-quasiconformal mapping. A quasi-
conformal mapping is one which is K-quasiconformal for some K.

The above definitions may be generalized, by means of extremal lengths,
to include an arbitrary homeomorphism f of Q onto 2. If I' is a
family of arcs in R3, we let F(I') denote the family of density functions
o that are nonnegative and Borel-measurable in R? and for which

/Qd&Zl

Y
for each y € I If y is not locally rectifiable, the integral is taken with
respect to linear measure [16]. Then following Viisdld [18] we define the
modulus M(I') of the arc family I' as

(5) M(F)zinf/ o®dw,
e g,
2) Sometimes the inner and outer dilatations are defined as the square root of
these expressions.
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where the infimum is taken over all o € F(I') (See also [6] and [10]).
Given an arbitrary homeomorphism f of 2 onto (', the inner and outer
dilatations of f are defined by

. M(f(I) M(I)
(6) K(f) = sup M) Ky(f) = sup M)’

I r

~

where the suprema are taken over all families I" in 2 for which M(I')
and M(f(I')) are not both 0 or o 2).

It is easily verified that these definitions agree with (3) when f is a
diffeomorphism. Moreover, it follows from Lemma 1.2 of [10] and Theorem
5 of [9] that inequalities (4) hold also for definitions (6), hence that K(f)
and Ky(f) are both infinite or finite. In the latter case, f is said to be
quasiconformal; f is K-quasiconformal if

K(f) = max(K(f) , Ko(f)) < K .
Finally, given a domain £ homeomorphic to the unit ball B3, let

(7) K(Q) = hflfKI(f) , Ko(2) = irflf Ko(f)

where the infima are taken over all homeomorphisms f of £ onto B3
If ©Q is not homeomorphic to B3, set K (2) = Ky(2) = oo. The numbers
K(Q) and K,(Q) are called the inner and outer coefficients of quasicon-
formality of Q, respectively. From (4) we have

(8) K (Q) < Ko(Q), Ko(Q) < K(2)?,

so that these coefficients are both infinite or finite. In the latter case, 2
is called a quasiconformal ball. By (8) clearly K (2) > 1 and KyQ) > 1;
by Liouville’s Theorem (Theorem 15 of [9]) one, and hence both, of these
coefficients is 1 if and only if £ is a ball or half space.

3. The prolate ellipsoid

We consider first the prolate ellipsoid. We prove

Theorem 1. Let E, be any prolate ellipsoid. Then the affine mapping
of E, onto the unit ball is not extremal for either the inner or the outer coef-
ficient. Both coefficients of a prolate ellipsoid are bounded.

Proof. According to [13, p. 177] or [14, pp. 295, 296], the plane mapping

1 2K
Yy + 1y, = fla; + dxy) = k% sn (: CJC)
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maps the ellipse x}/a? -+ a3/b? < 1 conformally onto the unit disk, where
x4 txy=sinl and (=« +if. Here K and K’ are the elliptic
integrals defined by

(9) K = K(k) = / [(1 — a?) (1 — k%)% de,

K' = K@),k = (-,
sn denotes the Jacobian elliptic sine function, and

aK'
(10) a=cosht,b=sinht,t =—-.

4K
If the «, + iz, and y; + iy, planes are rotated about the real axes,

there results a diffeomorphism y = f,(x) of the prolate ellipsoid E,:
x}ja? - a3/b® - 23/b* < 1 onto the unit ball. That is, we let

Yo+ is =flag+ir), ¢ =0,

where (r,0) and (s,¢) are polar coordinates in the ayx; and 7,y
planes, respectively.

In determining the dilatations of f, it is convenient to make use of the
hyperbolic density [15]. Suppose {2 is a simply-connected plane domain
with more than one boundary point, in the { plane, and let o({) be a
conformal mapping of £ onto the upper half plane Im o > 0. Then the
hyperbolic density for 2 is defined to be

(11) o) =o(l, Q)= 5

Hence the hyperbolic density o, of the upper half plane Q;:2,> 0,
xg =0 is

1

T2,

(12) 01 = o(x; + 1y, )

Next, by virtue of the reflection principle, the plane mapping f(v; -+ i)
carries the semi-ellipse 0, :x;/cosh? 2t 1 a3/sinh? 2t < 1,2, > 0,23 = 0
conformally onto the upper half plane y, > 0, y; = 0. Hence the hyper-
bolic density of £, is

ey A+ i)

(13) 02 = 0(%; + 17y, £2y) = 2 1
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From (12) and (13) and the fact that the hyperbolic density o(C, 2)
is a monotonic decreasing function of domain we arrive at the following
form of the Schwarz Lemma: For all points in £, ,

Q2

14 ——§'>1
(14) w ==L

It is now easy to see, using (3) and (14), that

Ly 2 Ly
(15) Kty = sop (2 71) ot = s (2177

where the suprema are taken over all points (x;,,,0) in the ellipse
xfja? + a3/b® < 1,2, =0, with ¢ and b as in (10).

Next we use the fact that the hyperbolic density o satisfies the differen-
tial equation 4log o = 4 ¢*>, where A is the Laplacian operator. From
this fact and the inequality (14) it follows that

(16) Alog 2 = 4(3 — ¢} = 0
0
in £, and hence, by symmetry and coutiauity, throughout the ellipse }/a2 1-
23/b? < 1, 23 = 0. From (16) we conclude that log (oy/0;) is subharmonic in
this ellipse as a function of a; and a,. Consequently the suprema in (15)
must occur on the boundary. In fact, by symmetry, it is clear that the
suprema will be achieved on the arc y:aj/a? + a3/b2 = 1,2, > 0,2, = 0.
Since f=1t==nK'[4K on vy, where x; + ix, = sin (x + ),

2K K’
snl—a +-17—,k

)

(17) flay + iay) = &

T 2

there. Then use of the addition theorem for sn ([4, p. 38], [5, #£125.01)),
the special values sn (K'/2, k') = (1 +— Ic)_%, en(K'J2, k') = [k/(1 + k) %,
dn(K'[2, k') = k¥ ([5, #122.10], [11, p. 120]), and the identity k2sn®u
=1—dn?2u ([4, p. 9], [5, #121.00]) replaces (17) by

(I + k)s + icd

on y. Here we have employed the notation

2K 2K 2K
(19) s:sn( oc,k),c:cn(-_—[—_x,k),d:dn<7a,k).

43

(18) Sy 4 ixy) =

Finally, employing the Gauss Transformation ([4, pp. 72, 73], [5, #164.01
—.02]) we may reduce (19) to

24 21
(20) fl@, + 1x,) = sn (T o, /1> + ten (— o, 2)

44
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on vy, where

2kt 1—k

l=1+k’2=1+k’

(21) ,

A=K(@) =1+ BE, A = K@) =1+ k)~ .

Then differentiation of (20) with respect to x; + iz, and use of the

relations (snu)’ =cnwudnwu, (cn %)’ = — snw dn % and the identity sn2u
+ en?u =1 yields
WEN
. n\—u«x, A
(22) . 24 7

7w [cos®x -+ sinh? t]*li ’

But on the arcy ,x, = Im sin(x + ) = cos« sinh ¢, and with (20) and
(22) we achieve

24

Zy o, 24 dn (7 x> l) cos o sinh ¢
(23) = |f'l=— 1
Y2 7 (2/1 ) [cos? x -+ sinh? ¢]?

cn ? &, A

24
The value of (23) is easily seen to be —;z— tanh ¢ when « = 0. But
since
aK'  zmA’
"=k =24

by (10) and (21), it follows that the suprema in (15) are achieved for x = 0
if and only if the following holds:
Lemma 1. For each 1,0 <A <1, and all «,—x/2 <x

) 24 \ 271/1’
dn 704,2 (cos? &) | cosh 51

ad —

24

IA

a2,

/

(24)

21
cn? — % A) cos? x + sinh?

A proof of this lemma is given in [3]. Thus (15) becomes

24 AN\2 24 ad’
(25) K(f,) = —;T—tanh EVIE Ky(fp) = — tanh 91

T
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That these dilatations, and hence the coefficients of E,, are bounded
is a consequence of the limit

nd’
24 ad ) . tanhﬂ 7
P E h FE
24

(See also [3]).

We wish to compare the dilatations (25) with those of the natural affine
mapping g,(x) = (¥,/a, ,/b, x4/b) of E, onto the unit ball. Since ¢, is a
diffeomorphism it is easy to see that

i = (5 = o 37
igp) = 5] = \coth ——]
(26) g b 2/

A’
24

@
Kolgp) = 7= coth

But in [3] we have proved
Lemma 2. For 0 <i<1,

. 24 aA’
51—{—7 tanhﬂgl,

with strict inequality if 0 << A <1.

A\E

2 24
But since trivially <?> < %(1 + ?) it follows from this lemma that

K(f,) < Kig,) and Ky(fp) < Kolgy) when 0 <2 <1, so that the
affine mapping is not extremal for either coefficient.

4. The outer coefficient of the oblate ellipsoid

We turn our attention now to the oblate ellipsoid. We begin by proving

Theorem 2. Let E, be any oblate ellipsoid. Then the affine mapping of
E, onto the unit ball is not extremal for the outer coefficient.

Proof. The proof we present is based on a general mapping introduced
by Gehring and Viiséild [10]. We define a radial mapping y = h(z) from
E,:2}a? 4+ @32 + 23fa® < 1,a>0b to the unit ball as follows: If
P€E,, P =+0, then P has a unique representation of the form P =rQ,
where Q €9 E, and 0 <r < 1. For each such P € E, define

(27) MP) =" h@Q) , k(@) = o
h

where p is some fixed positive number, and let ~(0) = 0.
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Next, for each Q € 9 E, let u(Q) denote the acute angle which the
tangent plane at ¢ makes with the ray from 0 to @, and let y = min
y(@). An elementary geometric argument shows that ¢ = arcsin 2 ab/
(a® 4 b?). Now take the exponent p in (27) to be

2ab

N

(28) p=siny =
Then by Theorem 5.1 of [10] it follows that

a 2a* \:
(29) K(k)<2% cot—co E~~<——)2.

For the affine mapping ¢, of E, onto the unit ball we have
a 2
(30) KO(go) = <€> .

But comparison of (29) and (30) shows that K(g,) > K,(h) because a > b.
We conclude that the affine mapping is not extremal for the outer coef-
ficient.

5. The inner coefficient of the oblate ellipsoid

In Theorem 1 we showed that for the prolate ellipsoid E, : 22/a? - a3/b2
+ a3/b? < 1 the affine mapping g, has the dilatations K,y I(JP) = (a/b)?
and Ko(gy) = a/b, while the coefficients of K, are of the order O(1) as
a/b tends to oo. Thus for large a/b the affine mapping is very far from
being extremal.

The situation is similar for the outer coefficient of the oblate ellipsoid
E,:afja® + 23[b* + 23ja® < 1,a>b. For the affine mapping ¢, has
outer dilatation Ky(g,) = a/b)2 , while in Theorem 2 there was given a
mapping % of E, onto the unit ball such that

X a<2a2 >% (a>
o()Sz pESE =0 2

as a/b tends to oo,

The problem of determining whether the affine mapping of an oblate
ellipsoid is extremal for the inner coefficient appears to be more difficult.
For in this case Theorem 3 below shows that the inner dilatation of the affine
map has the same order as K,(E,) as a/b tends to co.
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Theorem 8. Let E, be the oblate ellipsoid x}la® + x3[b% + a3la® < 1,
a>b. Then K (E.,)(a/b) is monotonically decreasing as a[b tends to o, and

(31) lim =4,

where 0.22 < A <1.

Proof. Since the affine mapping g, of E, onto the unit ball has inner
dilatation K,(g,) = a/b, we see immediately that Ki(&,)/(a/b) <1 for
all values of a/b.

For convenience we now assume, as we obviously may, that b = 1.
To prove the monotoneity, let f; be any quasiconformal mapping of
E, = E,(a;) onto the unit ball and let

v = g(x) = (a,2]ay , Ty, A125]05)

be the natural affine mapping of E,(a,) onto KE,(a;), where a, > a,.
Then y = f,(x) is a quasiconformal mapping of E,(a,) onto the unit ball,
where f, = fiog. It is easy to see that K(g) = ay/a;, and by (6) there
results

(32) Kmas&mummszﬁm

Taking the infimum first over all f, and then over all f; in (32) we achieve

A
Ki(Byay) < - K (Boa)) ,
1

from which the asserted monotoneity follows.

We now obtain the lower bound in the theorem. Our method is similar
to an unpublished argument of Gehring and Viisild. Let f be any quasi-
conformal mapping of E, onto the unit ball. Let k; denote the arc of
the circle a2 + a? =a?,x, = 0 that is contained in the closed :—th
quadrant of z, =0, 1=1,2,3,4, and let I', and I, be the families
of ares that join E; to E; and E, to E,, respectively, in B,

Now let H be the portion of E, that isincluded between the two planes
@, + a3 = -+ a, and let o be the density function whichis 27% ¢! in
H and 0 elsewhere. Then o € F(I7). Moreover, an elementary integration
shows that

Thus

(33) Mm=mms/fmzm%)=3.
H
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Next, by Corollary 3.3 of [10] we have either
(34) M(f(I)) Zv(1) or M(f(I}y)) = (1),

where for r > O, »(r) denotes the modulus of the family of arcs which
join the segment —1 <ax; <0, @, =2;=10 to the ray r <a, < oo,
%y = x3 = 0 in the half space z,> 0. By a simple estimate based on Thecrem
8 of [2] it is easy to show that

(35) o) = s

Hence by (33), (34), (35), and (6) we have

M(f(I7)

K (f) > max

—_— 022 a,
oy My

so that K, (H,) = il}f K(f) > 022a.

Remark. Let I' denote the family of curves in £, that join the axis
—1<ax<1,r,=2,=0 to the circle aj+ 2} =a%,2,=0, and
let f be any quasiconformal mapping of E, onto the unit ball. In (3.14)
of [10] Gehring and Viisild conjectured that M(f(I')) > (x/q)?, where
q= 2t K ((%)%) =2.62.... If this conjecture were true, then an argument
similar to that given above shows that the lower bound for 4 in the theo-
rem could be improved to A4 > 0.39.

6. The general ellipsoid

Finally we consider a general ellipsoid, that is, an ellipsoid which is
not necessarily an ellipsoid of revolution. We prove

Theorem 4. Let E be any ellipsoid. Then the affine mapping of E
onto the unit ball is not extremal for the outer coefficient.

Proof. By Theorems 1 and 2 we may assume that E is neither prolate
not oblate. Thus let 1 <b <a < oo, and let E denote the ellipsoid
aija® + x5 + a3/b* < 1. The affine mapping

Y = g(x) = (%1/a, x5, 23/b)

of E onto the unit ball may be regarded as the composition of two affine
mappings — an affine mapping

¥ = gi(x) = (by/a, x,, x3)

of E onto the oblate ellipsoid E,:2'}/b + 2’3 + a'3/b> < 1, followed
by a second affine mapping
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Yy = g2(x,) = ({K;/b, IE;, x;/b)
of E, onto the unit ball.

It is easy to see that Ky(g) = ab, Ko(g1) = a/b, and Ky(g,) = b%
Consequently

(36) Ko(g) = Kol9:) Kolge) -

Now let f, be the quasiconformal mapping of the oblate ellipsoid E,
given in (27). Then the composition of g, with f, is a new quasiconformal
mapping h of E onto the unit ball. Hence by (6), Theorem 2, and (36),
we have ‘

Ko(h) < Kolgn) Kolf2) < Kolgr) Kolge) = Ko(9) -
This completes the proof of Theorem 4.

We return in conclusion to the notation x7/a? + 3/b* + z3fc® < 1,
a >b>c for the general ellipsoid E. Tt follows easily from Theorem 1
in §3 above that (i) if @ — co with b and ¢ fixed then K (E) and Ky(F)
are bounded, while the methods of proof in Theorem 3 show that (i) if
a— oo and b—> oo with ¢ fixed then both coefficients become infinite.
These observations were also made by Gehring in a recent treatment [7],
his proof of (ii) being based on Theorem 3 of [19] and Theorem 2.3 of [10].

Michigan State University
East Lansing, Michigan, USA
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