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TIIE COEFilCIENTS OF qUASICONFORMALITY OF ELLIPSOIDSI)

7. Introrluction

The problem of extremal plane quasiconformal mappings was first
treated by II. Grötzsch [12], who proved that the extremal quasiconformal
mapping of one rectangle onto another with vertices corresponding in the
same order is the affine mapping. As observed by Ahlfors [t], this aotually
shows that the extremal quasiconformal mapping of one quadrilateral
onto another is the composition of a conformal mapping, an affine mapping,
and a second conformal mapping. Moreover, the work of Teichmtiller [I7]
shows that there is a large class of extremal quasiconformal mappings that
are given locally by such a sequence of mappings.

Next, suppose that Z and Z' are finite right circular cylinders in .BB

with bases of equal area and with lengths Z and .L', respectively. It is
easy to show by mea,rrs of an extremal lengths argument, that the natural
affine mapping of Z onto Z' is extremal among all quasiconformal maps
of Z onto Z' that preserye the bases. Moreover, from this and Theorem
I1.2 of [10] it follows that the affine map is extremal among all quasi-

conformalmappings of Z orfto Z' when 2-L <L'IL <2i.
X'or such reasons it is then natural to ask if in 3-space the affine mapping

is extremal in the class of all quasiconformal homeomorphisms of an ellipsoiå
onto the unit ball. In the present paper we disprove this conjecture in serreral
cases by constructing mappings with lower dilatations than those of the
affine mapping. rn several instances our work also gives the correct order
for the coefficients of quasiconformality. x'or the prolate ellipsoid these
coefficients are bounded, while in another case the dilatation of the affine
map has the same order as that of an extremal mapping.

Before attacking these problems, we introduce in the next section some
basic terminology and results, most of which are contained in [f 0].

1) This research was supported in part by the National Science Foundation, Grant
18913, and by a Fellowship from the rnstituto of Science and rechnologv in 1g65.
The work is part of a Ph,D. thesis written under the direction of Professor F. 1V.
Gehring at the lfniversity of Michigan.
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2. Quasiconformal mappings

Suppose tinat f is a diffeomorphism of a 3-space domain Q ont'o Q''
Then / is locally affine - if P € O the differential mapping d'f@) fakes

the unit ball onto an ellipsoid with semiaxes of lengths, say, a, ) b ) c'

Then each of the dilatation functions

Hr(P,f) : # , Ho(P ,f) : #
is greater than or equal to unity, with equality at a point P if and only

if / is conformal there. Moreover,

(2) Hr(P ,f) I Ho(P ,I)', , Ho(P ,l) ! H,(P ,I)',

foreach PeQ.
Next, the functionals

(3) K,(fl :;åå rl, ,f) , Koff): 
i:P" 

Ho(P ,l)

are called the 'i,nner and outer d,i,latati,ons2) of /, respectively; each is a
natural me&sure of how far / is from being a Möbius transformation of O.

Then

K,(f) a Ko(f), , Koff) < Kr(f)', ,

(1)

(4)

so that these dilatations are both infinite or finite. If both are bounded by

K, I 1K < a, then / is called a K-quasi,conformal mapping' A quasi'-

aanformal, mappi,ng is one which is K-quasiconformal for some 1l'
The above d.efinitions may be generalized, by means of extremal lengths,

to include an arbitrary homeomorphism f of A onto l)'. If l- is a
family of arcs in .83, we let -X'(,t-) denote the family of density functions

g that &re nonnegative and Borel-measurable in -EB and for u'hich

r
,\i

J

for each y e f .

respect to linear
modulus lYIg)

(5)

If y is not locaIly rectifiable,
measure t16]. Then followirg

of the arc family f as

/.

tw|) :,r:r J Qs d* ,

the integral is taken \4'ith

Väisälä [18] \\'e define the

2) sometimes tho inner and. outer dilatations are defined as the square root of
these oxpressions.
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where the infimum is taken over all q e E g) (See

Given an arbitrary homeomorphism f of A onto Q',
dilatations of f are defined by

also t6l and [10]).
the inner and outer

(6)

(7)

(8)

K,(I) :.Y,n W, Koff) - -}p ffi ,

where the suprema are taken over all families f in A for which Jl[(J")

and. II(f(l)) are not both 0 or co2).

It is easily verified. that these definitions agree with (3) when / is a
diffeomorphism. Moreover, it follows from Lemma L.2 of [10] and Theorem
5 of [9] that inequalities (a) hold also for definitions (6), hence t'hah K1ff)
and K6ff) are both infinite or finite. In the latter case, / is said to be

quasiconformal; f is K-quasiconformal if

X(fl : max(I(r(/), KoffD < K .

X'inaIIy, given a domain O homeomorphic to the unit ball Bt, let'

where the infima are taken over all homeomorphisms f of Q onto -83.

If .o is not homeomorphic ho B3, set K1(O) : Ko@): oo. The numbers
Kr(A) and Ke(Q) are called lhe 'i,nner and outer coffici,ents of quasi,con-

formality of Q, respectively. From (4) we have

I{r@) - inf Kr(f) , Ko(Q) - inf KoU) ,

f.f

Kr(A) a Ko(Q)' , Ko{Q) < Kr(Q)' ,

so that these coefficients are both infinite or finite. In the latter case, (J

is called a quas'i,conformal ball. By (8) clearly Kr(A) ) I and K6(g) > L;

by Liouville's Theorem (Theorem 15 of l9l) one, and hence both, of these
coefficients is I if and only if O is a ball or half space.

3. The prolate ellipsoid

We consider first, the prolate ellipsoid. \tr7e prove
Theorem 1. Let E, be any prolate ellipsoid,. ?ken tke affine mappi,ng

ol Eo onto the uni,t bal,l, ,i,s not ertrem,al, for either the 'inner or the outer coef-

ficient. Both coeffici,ents of a prolate ellipsoid" are bound,ed,.

Proof. According to [13, p. I77] or [14, pp. 295, 296], the plane mapping
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maps the ellipse *?,lo'

h*itrr-sin( and
integrals defined by

+ nZlbz < I
€-e+'i§.

conformally onto
Here K and

the unit disk, where
K' are the elliptic

sn denotes the

(10)

t(l - r') (1 kzrz))-* d,* ,

(l lr')', ,

sine functioh, and

nK'

(e)

(1 1)

(12)

(13)

l

K', - K(k',) , k' -
Jacobian elliptic

q,-coshf,

If the r, { 'i,r, and y, ! iy, planes are rotated about the real axes,
there results a diffeomorphism y : fo@) of the prolate ellipsoid Eo:
*?,1o, + 

"31U, 
+ *31b, < I onto the unit ball. That is, v'e let

h*is:f(*r+ir),V:0,
where (r ,0) and (s , g) are polar coord.inates in the xzre and UzUz

planes, respectively.
In determining the dilatations of f o it is convenient to rnake use of the

hyperbolic density [I5]. Suppose O is a simply-connected plane domain
with more than one boundary point, in the ( plane, and let a;(() be a
conformal mapping of O onto the upper half plane Im a; ) 0. Then the
hyperbolic density for Q is defined to be

ld*lIIt---i

wei
2Trn r,t'

rlpper half plane 9t : rz ) 0 ,Hence the hyperbolic densitr- gr of the
frB:O is

Next, by virtue of the reflect'ion principle, the plane mapping f(a:, t irr)
carries the semi-ellipse Qr:rllcoshz 2t + rf,1sinh,2t <1,tr2) 0,rr: Q

conformally onto the upper half plane !/z) 0, Us,:0. Hence the hyper-
boiic density of O, is

I

Qz : g@r * i*, , er) -=- 
lf '(rt * ix') 

1

2 ,y,
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X'rom (r2) and (13) and the fact that the hyperbolic density p(C , Q)
is a monotonic decreasing function of domain we arrive at the following
form of the Schwarz Lemma: For aII points in 9, ,

(14) Qz *z 
't" > L .

Qt aztJ t -
It is now easy to see, using (3) and (14), that

(r5) K,(fo)- sup (;tt',)' , Ko(lo): sup (;V',) ,

where the suprema are taken over all points (r, , r, ,0) in the ellipse
n1.la2 + *Zlb' < | , nr:o, with a arld ä as in (10).

Next we use the fact that the hyperbolic density g satisfies the differen-
tial equation Alog Q:4 Q2, where / is the Laplacian operator. From
this fact and the inequality (I4) it follows that

(16) ltogq : +(p3- a?) > 0
Qr

in O, and hence, by symmetry and continuity, throughout the ellipse n?laz +
*Zlb' < l, nB: 0. From (16) we conclude that log (gr/gt) is subharmonic in
this ellipse as a function of r, and rr. Consequently the suprema in (15)

must occur on the boundary. fn fact, by symmetry, it is clear that the
suprema, will be achieved.onthe arc y:rllaz a *Zlb': I ,rr) 0, rr: Q.

Since p:t:nK'l4K on ft where xr|. irr:sin(or+i,8),

(1i) l@, * ir,) : rr ," (T x r it ,r)

thero. Then use of the addition theorem for sn ([4, p. 38], 15,#125.01)),
the special values sn (I{'f 2, k') : (L + A)-+, cn(K' f 2, k') : lkl\ + Ul+,
dn(K'12, t') : ki (lr, #t22.107, [11, p. I20]), and the identity kz snz u
: 1 - dnz u (14, p. 91, 15, #12L.00)) replaces (t7) by

(I8) f(*,*ir,):t++*4
on y. Here we have employed the notation

/2K \ /2K \ /2K \(19) s: snl- o, kl ,c: cn [- 1, kl , d: dn l- o, kl .
\xt I \?t / \?t /

X'inally, employing the Gauss Transformation ([4, pp. 72,73], [5, #164.01
-.021) we may reduce (19) to

(20) f(x,*ir,):," (+ o,t) -;,"(ff -,t)
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on T, where

(21)

2k*i'- L+k'tr':
1k
I + lt'

k)K , A' : K(1') -
Then differentiation of (20) with respect to nL

+ cttz tt, - I yields

K'
(1 + k)T

* 'irz and use of the
'tL and the identity sttz tt

(22)

But on the arc / t frz
(22) we achieve

2A
lltttJ I - 7T

- fm sin(a

dn (+-,r)
\JT

u"(T ",2)\ x't

[cosz x { sinh2 il+ 
'

+ i,t) : cos a, sinh f , and with (20) and

fro 2A

;if i-;(23)

The value of

slnce

(24)

cos e sinh /

+ -nK' -nA'"4K2A

by (10) and (21), it follows that the suprema in (15)
if and only if the followirg holds:

2A

cn (+ " ,r) 
[cosz a + sinh2 r]å

dnz (+",4 (cos2a) (.o*r,'#)
\?T

are achieved for c. - 0

, ,12 <-x<*12,

I zl \ nr|,'
cn2 \; ",f)eos2 a + sinh2 

2A

A proof of this lemma is given in t3l. Thus (15) becomes

I zl ntL'\z 2A nA'(25) K,(fo) : \; tanh ,il , Ko(fo) - ; tanh M

8
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That these dilatations, and hence the coefficients of Eo, are bounded

is a consequence of the limit

2A rcA'
,,S ; tanh zA - [Iim A'f l;'li rrA' | 2

L'-' u l
(See also [3]).

we wish to compare the dilatations (25) with those of the natural affine

mapping go(r): (rrla,rrfb,*rlb) of Eo onto the unit ball. Since g, is a
diffeomorphism it is easy to see that

/a\2 I nA'\z

(261 
K'(so): (;i : 

\coth 
'zA)

Ko@n):+:"otu,ff.
But in [3] we have proved
Lemma2. Ior 0<)'<1,

/ 2A\ nl'
å(t + -)rar,h zA <t,

with stri,ct i,nequality if 0 < ). < L .

But since triviary (T)r 
= {, .'+)it fouows from this remmathat

Kr(fr)<Kr(go) and Ko(fo)<Ko@r) when 0<r,<1, so that the

affine mapping is not, extremal for either coefficient.

4. The outer coefficient of the oblate ellipsoid

we turn our attention nortr to the oblate ellipsoid. we begin by proving

Theorem 2. Let E" be any oblate ellipsoi,d,. Then tke affine m'appi'ng of
Eo onto tke unit ba,tl i,s not ertremal for the outer coeffic'ient.

proof. The proof we present is based on a generai mapping introduced

by Gehring and Väisälä [10]. We define a radial mapping U : h(r) ftom
E":rllaz*rZlb'+*?la'<L,a>b to the unit baII as follows: If
P eE",P +0, then P has auniquerepresentationof theform P:rQ,
where }eAD" and 0<r<1. X'oreachsuch Pe E, define

(27) h(P) : rP k(Q) , h(8) : 
#1,

where p is some fixed positive number, and let ä(01 : g .
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I{ext, for each. Q e A E, let ,!(q denote the
tangent plane at A makes with the ray from 0 to
y,(8). An elementary geometric a,rgument shows
(a' + b'). Now take the exponent p in (27) to be

acute angle which the
8, and let y) - min

that T : arcsin 2 abl

2ab
(28)

Then by Theorem 5.1 of [10]

(2e) Ko(h) < 2t

For the affine mapping go

(30)

it follows that

.1t) 1p a, lZaz \+cotTcosT: b\"r+b4 '

of E o onto the unit ball we have

Ko@,): (+)'

p-sin!):
oz :- gz

But comparison of (29) and (30) shows that Ko@,) > Ko(h) because a > b.'We conclude that the affine mapping is not extremal for the outer coef-
ficient.

5. The inner coefficient of the oblate ellipsoid

In Theorem I we showed that for the prolate ellipsoid Eo: rliaz + n\lb,
+ t\lbz <L the affine mapping g, has the dilatations Rr(go): @lb),
and Ks(gr) : alb, while the coefficients of E, are of the order O(1) as
a/ö tends to co. Thus for large ulb the affine mapping is r.er} far from
beirrg extremal.

The situation is similar for the outer coefficient of the oblate ellipsoid
E":rlfaz+n\lbr+"Zlo,.--t,a;b. For the affine mapping go has
outer dilatation Ko@): (alb)r, while in Theorem 2 there .ras given a
mapping h of E" onto the unit ball such that

a / zaz \r /a\Ko(h)<1\.,au,)':o\u)

as alb tends to oo.

The problem of determining whether the affine mapping of an obrate
ellipsoid is extremal for the inner coefficient, appears to be more difficult.
For in this case Theorem 3 below shows that the inner dilatation of the affine
map has the same order as Kr(E,) as alb tends to @.
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Theorem 3. Let E" be the obl,ate elli,Ttsoi,it, uzrlaz + nzlb' a rllaz < t,
a> b. Ihen Kr(t.)l@lb) i,s monotonicall,y d,e$easing as alb tenils to a, and

(31)

where 0.22<A<1.
Proof. since the affine mapping g. of E" onto the unit ball has inner

dilatation Kr@") : alb, we see immediately that Kl(E.)l(alb) < I for

aII values of alb.
X'or convenience we now assume, as we obviously may, that b : l'

To prove the monotoneity, let f, be any quasiconformal mapping of
E.: E"(ar) onto the unit ball and let

r' : g(r) : (ttrr,rla2, rr, arrrf ar)

be the natural affine mapping of E,(ar) onto E"(ar), v'here ez) at'

Then y : fr(*) is a quasiconformal mapping of E.(ar) onto the unit ball,

where fz:h"g. It is easy to see fhat, Kr(g): azlclt, and by (6) there

results

(32) Kr(fr) < Kr(fr) K,(s) : ? Urtfr) .
uL

Taking the infimum first over all /, and then over all /, in (32) we achieve

Kr(E"(ar)) <Y Iir1a"Pr11 ,ul

from väic,h the asserted monotoneity follorvs.

IÄ7e norv obtain the lower bound in the theorem. our method is similar

to an unpublished argument of Gehring and väisälä. Ler f be any quasi-

conformal mapping of E. onto the unit ball. Let Ei denote the arc of
the circle ni + n? : sz , nz: O that is contained in the closed '-th
quatlrant of rr: g, 'i, : L,2,3, 4, and let J-, and l-, b" the families

of arcs that join frL to EB and Ez to En, respectively, in E,
No.vl, let H Jce the portion of E o that is included between the

frt -f frs : * a ) and 1e1, A be the densitv function u'hich is

H ancl 0 elsey,here. Then g e? (fr) Iloreover, an elementary

shows that'

5f,
m(H): 6 rr&2.

'Ihus

(33)

two planes

2-+ a-L in
integration

I
m(H) 5n

Y L4/\ ' Z{C a, LZa
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Next, by Corollary 3.3 of [10] we have either

(34) M(f(rrD > ?,(1) or M(f(rrD ) a(1) ,

where for r ) O, a(r) denotes the modulus of the family of arcs which
join the segment -I < rut30, n2:rr-0. to the ray r1r, <-cp,
nz: ns: 0 in the half space rr) 0. By a simple estimate based on Theorem
8 of [2] it is easy to show that

(35) o|l > jL
\+.6)2'

Hence by (33), (34), (35), and (6) we have

M(f(h)
K,(I) > y: ,ffi 2 0.22 a ,

so that Kr(E.): iqf Kr(f) > 0.22 a .
I

Remark. Let I denote the family of curves in E. that join the axis

-l<fr231,frr:frs:0 to the circle "1+*?:s2,rz:0, and
let / be any quasiconformal mapping of E" onto the unit ball. In (8.1a)
of [0] Gehring and Väisälä conjectured tha,t il[ff€» ] (nlilr, where

e:2t K«+)+):2.62.... If this conjecture were true, then an argument
similar to that given above shows that the lower bound for A in the theo-
rem could be improved to A > 0.39.

6. The general ellipsoid

X'inally we consider a general ellipsoid, that is, an ellipsoid rvhich is
not, necessarily an ellipsoid of revolution. We proye

Theorem 4. Let E be any ellipsoicl,. Then the aJfine ru,apping of E
onto tke uni,t bq,l,l is not extremal, for the outer coffici,ent.

Proot. By Theorems 1 and 2 we may assume lhat E is neither prolate
not oblate. Thus let I < ä < o, I e, and let E denote the ellipsoid
n1la,2 + *!..y r!1Oz < t. The affine mapping

y : g(r) : (urla, rr, rrlb)

of .E onto the unit ball may be regarded as the composition of trvo affine
mappings - an affine mapping

r' : gr(r) : (brrf a, nz, rs)

of E onto the oblate ellipsoid E.:r'lfbz + *'tr* r'!1bz <t, followed
by a second affine mapping
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g : gr(r') : @ilb, ri, rlu1U1

of E. onto the unit ball.

rt is easy to see that Ko@) : ab' Ks(g,) : alb' and Ko(g'l : b2'

Consequently

Ko@) - Ko(gr) Ko@r)

13

(36)

Now let f, b" the quasiconformal mapping of the oblate ellipsoid -8,

given in (22). Then the composition of g, with /, is a new quasiconformal

äappirg h of E onto the unit, ball' Hence by (6), Theorem 2, and (36)'

we have

Ko(h) < Ko@r) Koffr) l Ko@r) Ko@r) : Ko@)'

This completes the proof of Theorem 4.

We return in conclusion to the notation tllaz + r\lb' + u!1c' < t,
a ) b >> c for the general ellipsoid D. Ir follows easily from Theorem I
irr Sau,uorr" that (i) if *-- co with ä and c fixed then K1(E) and Ks(E)

a"" boond"d, while the methods of proof in fheorem 3 show that (ii) if
a-+ @ and Ö-> oo with c fixed then both coefficients become infinite.

These observations were also made by Gehring in a recent, treatment [7],

his proof of (ii) being based on Theorem 3 of [19] and Theorem 2'3 of [10].

Michigan State l)niversitY
East Lansing, Michigan, USA
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