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Introduction

The first definitions for quasiconformal maps were introduced by
Grotzech in 1928 and by Lavrentjev in 1935. These classes are not closed
with respect to uniform limits, even if constants are excluded. A third
definition without this drawback was given by Morrey in 1938, and in
several other equivalent forms in the fifties. Today these maps are usually
called quasiconformal, and in the present paper we use this terminology.

While Grotzsch maps are easily seen to be continuously differentiable
quasiconformal maps, it is more difficult to see the position of Lavrentjev
maps, often called maps with continuous characteristics p and 6O, in
the hierarchy of quasiconformal maps. The fundamental result in this
direction is due to Bojarski: Lavrentjev maps are generalized homeo-
morphic solutions of Beltrami equations with continuous coefficients.
It follows, in particular, that Lavrentjev maps constitute a proper sub-
class of quasiconformal maps.

In the present paper we study once more the relationship between
Lavrentjev maps and quasiconformal maps. A new proof, based on a
method of Gehring, is given to the effect that the former maps are quasi-
conformal. Our main result concerns the local behaviour of Lavrentjev
maps f. We prove that the characteristic p(z) coincides at all points
with the circular dilatation H(z), defined as the upper limit of
max [f(z + r¢™) — f(z)!/min |f(z + re™) — f(z)] as r—>0. From this it

o a2

follows that p is also everywhere equal to the local maximal dilatation
of the map. We conclude the paper with some examples: a Lavrentjev
map non-differentiable at a point, a Lavrentjev map whose inverse is
not a Lavrentjev map, and two Lavrentjev maps whose composition is
not a Lavrentjev map.

1. Definitions of quasiconformality
1.1. Ahlfors-Pfluger definition. A quadrilateral ¢ is a Jordan domain

with four specified boundary points 2, z,, 23, 2, , Whose order coincides
with the positive ordering with respect to the Jordan domain. For every
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@ there exists a class of rectangles with vertices at 0,x, &« -+ iff, 8,
«>0, B> 0, which can be conformally mapped onto @ such that
the vertices correspond to z;, z,, 23, and z,, respectively. The ratio

M(Q) = «/p

depends only on @ and is called the modulus of the quadrilateral Q .
Definition 1. Let f be a sense-preserving homeomorphism of a domain
G. If for all quadrilaterals @, @ c G,

M (f(Q) = KM(@Q),

1< K< o, [fis K-quasiconformal.

1.2. Morrey definition. A continuous function f:G — G is ACL or
absolutely continuous on lines in a domain D c @, if for every rectangle
R={z=a+iyla<az<b, c<y<d}, RcD, fx+ iy, isabso-
lutely continuous in « <2 <<b for almost every y, in ¢ <y, <<d,
and f(x, + ty) is absolutelv continuous in ¢ <y < d for almost all
Xy In a<<wy<<b.

The following theorem, often stated as the analytic definition, yields
another characterization for K-quasiconformal maps:

Theorem. A4 sense-preserving homeomorphism f of a domain G 1is
K-quasiconformal if and only if

(i) f is ACL in @
(ii) max|0,f(2)? < KJ(z) a.e.in G,

where .J denotes the Jacobian of f and 0,f the derivative in the direction « .

1.3. Lavrentjev definition. Given an ellipse, we define its characteristics
as the ratio p > 1 of its semiaxes and, if p > 1, the angle O (mod. =)
between its majoraxis and the positive a-axis. They define the ellipse
up to a similarity transformation. The ellipse with centre at z, semi
minoraxis of length % and characteristics p , @, is denoted by E,(p, O ; z)
and the open point set bounded by the curve E,(p .0 ::z) and containing
the point = by H)(p,0;z).

Definition 2. A homeomorphism f is said to map the infinitesimal ellipse
E(p, O: z) onto an infinitesimal circle if

max [f(z) — f(z),
2€E,
=1, B, =E, (p,0;z).

1 —_— ;
oo D [ f(2) — f(zo),
zeEh
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Especially if p =1, we say that the infinitesimal circle is mapped
onto an infinitesimal circle.

We call p,@ the characteristics of f at z,.

Definition 3. In a domain D a continuous distribution of characteristics
p .0 is defined, if p is a continuous real-valued map of D such
that p(z) > 1 forall z € D and O is a continuous real-valued map of the
set {z. 2 €D, p(z) > 1} such that the values of @ are defined mod. = .

Definition 4. Let p,©® be a continuous distribution of characteristics in
a domain D such that p is bounded. A sense-preserving honmeomorphism
f of D is said to be a Lavrentjev map with characteristics p, @ if,
for every z € D, f maps the infinitesimal ellipse E(p(z), O(z);z) onto
an infinitesimal circle.

Remark 1. By the definition, Lavrentjev maps are preserved under
conformal maps. As for the characteristics, if f=f,of,, where f, is
conformal and f; a Lavrentjev map with characteristics p, @, f has
characteristics p, 0 — arg f,, while in the case f = f,f, the character-
istics remain invariant.

Remark 2. The class of Lavrentjev maps was extended by considering
maps which transform rinfinitesimal ellipses onto infinitesimal ellipses»:

Definition 5. A homeomorphism [ is said to map the infinitesimal
elipse E(p,.0,;z) onto the infinitesimal ellipse E(p,, Oy ; f(z)) if the
image of E,(p,,0,;z) under f lies between the curves K. (p,, 6, ; f(z))
and E/p,, Os; f(2)), k<1, such that

lim (I/k) = 1.
h>(C
Definition 6. Let f: D, — D, be a sense-preserving homeomorphism
and 2.0, . p,,0, continuous distributions of characteristics in D; and
D, . The map f is called a generalized Lavrentjev map with characteristics
p-.0; and p, . 6, if, for every z € D;, f maps the infinitesimal ellipse
E(py(z), 0y(z);z) onto the infinitesimal ellipse E(p,(f(2)) , Ox(f(2)) ; f(2)) .

L4 Maps of cluss C* and Lavrentjev maps. Let f: D -— D", f€Ct1),
It follows that all points z, € D are regular for f?) and f has the repre-
sentation

f2) = f(z) + fulz0) (2 — 2) — Siz) (2 — %) + oz — z,) ,

where o(z — z))/(z —2)—0 as z-->z,. Hence, f maps the infini-
tesimal ellipse
1) A homeomorphism f is said to belong to the class C', if it, together with its
inverse. is continuously differentiable. We also assume f to be sense-preserving.
?) We call a point z regular for f if f is differentiable at z with J(z) 4 0.
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B (ifz(z())l 4 1 f: (=) i<ar 4 fi(zﬂj B 7> . 7)
A ) s

onto an infinitesimal circle.
The corresponding result is valid for f=1. The relations between the
derivatives of f and f-! imply the equation

Py(z) = Py (f(2)) -

Since the derivatives define continuous distribations of characteristies,
f and f-1 are Lavrentjev maps provided that p is bounded.

If fe€C' and, for every 2z €D, p(z) <1+ ¢, f is said to be an
e-Lavrentjev map. The same is then valid for f-1.

et f:D—D", g: D — D" be Lavrentjev maps of the class 1.
The combined map go f € C* and the characteristies satisfy

Py =f(:) < pg(j(z)) Pf(z) s

since the same is valid for the composition of the affine maps consisting
of the differentials of ¢ and f.

2. Lavrentjev maps are quasiconformal

With a proof modified from that of Gehring [3], Theorem 2, we show
in 2.2 that Lavrentjev maps form a subset of quasiconformal maps. In
2.3 we present an example to show that the subclass is proper.

This relationship was proved in different ways by Pesin and by Bojarski
[2]. The former extends in [7] the class of generalized Lavrentjev maps
and in [8] shows the equivalence of the new definition with the Ahlfors-
Pfluger one. The result was already mentioned by Belinskij and Pesin in
[1]. Bojarski has established the proof by studying the generalized homeo-
morphic solutions of Beltrami differential equations.

2.1. For our proof we list some properties of maps carrying infinitesimal
cllipses onto infinitesimal circles.

Lemma 1. If a map [ carries the infinitesimal ellipse Lip , 0O ;z)
onto an infinitesimal circle and the derivative  0,f(z), exists for some
direction s, , it exists in every direction s and

1
(1) ;Jaso.f(Z)E = 10.f(z)! = p18,f(2)! -
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Proof. Let z=f(z) =0 and let |4,z denote the modulus of the
point on the curve E,(p, ® ; 0) which lies in the direction s. The modu-
lus of the image point is denoted by |4,f]. Then, for any s

im (A f A = 1.
h0 ’
Furthermore,
lim [, f 1[I0z, == 19,,f(0)]
h—0 ’ ’ *
and [z, || A2 = ¢, o, 1p <c,  <p, where ¢, ., does not de-
pend on % . Hence, there exists the limit
O, f(0)] = lim [ 1, £} /14,2, = 19, f(0) e, .
h—>0

In the case of [0, f(z) = 0 it follows

Lemma 2. Let [ carry the infinitesimal ellipse E(p ,0 ::) onto an
infinitesimal circle. If [9,f(z)] wvanishes for some direction s, , it vanishes
for every direction and there exists a derivative f'(z) = 0.

For a differentiable map Lemmas 1 and 2 yield

Lemma 3. If f s differentiable at z and carries the infinitesimal ellipse
E(p, O;z) onto an infinitesimal circle, then either z is a regular point
for f and

max [ 9,f(2)* < |/ (2)] p(2) ,
or [ has a vanishing derivative f'(z).
Proof. The inequality (1) yields max |d,f(z)] < p min d,f(z) . Com-

bined with the relation 'J(z) = max 0,f(z) min 'd,f(z)/, this concludes
the preof. : 4

2.2. After these remarks we are ready to prove

Theorem 1. Lavrentjer maps are quasiconformal.

Proof. Let f be a Lavrentjev map of a domain & and
K =supp(z), z€G. We show that f satisfies the conditions in the
Morrey definition:

(i) f is ACL in ¢/
(i) max!9,7(2)? < KJ(z) ae. in G.
s
We can presume that neither (7 nor its image (' contains the point
at infinity, because an isolated singularity can be removed. Let

R={x+iya<e<b,c<y<dy, Rcd, I, =RN{v iy y=y,),
and let 7(y,) denote the Lebesgue plane measure of the f-image of



10 Ann. Acad. Sci. Fennicwe A.I. 410

{e +iya<ae<<b, ¢c<<y <<y, . Since T is monotonic and finite,
it has a finite derivative 7" for almost every y,,c <<y, <d. Accord-
ingly, for (i), it is sufficient to prove the absolute continuity of f on I
when T'(y,) exists.

Assume that 7"(y,) exists and denote [, = 171. Let Fcl be a
closed set and F’ its image under f. We shall first derive a majorant
for the linear measure [(#’) of F’ which vanishes with [(#). The result
is then extended to the Borel subsets of /. We use the shorter notation
E,(z) = E,(p(z),0(z); z), where p,O are the characteristics of f.

Denote
M(h,z) = max | f(z) — f(z,)
:GEh(:O)
N, z) = min "f(z) — f(z,) -
:EEh(:O)

Take &> 0 such that ANe << d(F, — R). where d(F, — R) denotes
the distance of F and the complement of R . Let

(2) F.={zz€F, 6, h<e= NN <2}.

Then hp(z) <eK <d(F, — R) for z€F, and h <e. Hence, R con
tains the ellipses £, (z) for z € F, and & <e¢. In the following, we let ¢
only assume values 1/g, where ¢ is a natural number.

Let z be an accumulation point of the set /. If z has a neighbour-
hood containing no points where p =1, the functions p, @, and f
are all continuous, and z € F_. The other possibility is that p takes the
value 1 in every neighbourhood of z. By the continuity of p, the
characteristic ellipses belonging to the points of a sufficiently small
neighbourhood of z are arbitrarily close to circles. So also in this case
z €F,. Hence, the sets F, are closed. As ¢— 0, they form a non-
decreasing sequence converging to F so that F = U F . Hence

(3) lim [(F) = I(F') .
g0

As a bounded and closed set F, is compact. It has a finite cover
of ellipses E!(z,), n==1.2.....n . such that 'z, —z, = .
n=1,2,...,n,—1, z €F . This is seen as follows. We assume F, £ 0.
Let z, = ay + iy,, where 2, =infrez, z € F, . Then 2z € F,_, because
F, is compact. Denote the interval {z = a4+ iy, v, — e <o <<, + ¢}
by I;. The set F,— I, is also compact. If F_— 1, = O, choose
2y = Xy — 14y where a, =infrez, z€F, — I,. The points 2z, and =z
satisfy 'z, — 7, > ¢ . Continue in this way and terminate when # — U I
is empty. Since /I, is bounded, this happens with a finite = .
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The major axis of the ellipses E’(z,), n=1,2,...,n,, isat most
of length 2 K and the distance of their centres at least e. These ellipses
cover R at most 2K times. The length of each interval E!(z,)N I is
at least 2¢. For the union of the ellipses, E’ = U E’(z), we have

(4) E'NT)>2en/2K).

Let Oc I be an open set, F'c O. We can choose O such that
(O —F) <&, where ¢ > 0 is arbitrarily small. Fix ¢> 0 such that
Ke < d(F,I — O). This is possible since d(F ,I — O)> 0. Then O
contains also the set B! NI and

IE°NT) <10)<UF)+ 10— F)<UF)+¢.
Hence
lim sup (B N I) < I(F).

&=>0

On the other hand, F,c E°N I for every &> 0. Since [(F,)— I(F)
it follows that

(5) lim (B NI)=1F).

The ellipses E!(z,), n=1,2,....n,, are contained in the rectangle
{fx+iyla <w <b,y,— Ke <y <y, + Ke} and cover it at most 2K
times. Similarly, in the image plane

(6) 2K(T(y, + Ke) = Tlyy — Ko)) = X m(EV ().

where E"(z,) is the f-image of E’(z)). By (2),

™) Som(B ) = x Y Ne AR = Y (M, 2P
n=1 n=1 n=1

T
2K [T(yy — Ke) — Ty, — Ke)] = T [Z M(e, z,l)]2 .

From (4) it follows that

T(yy -+ Ke) — Tlyo— Ke)  a[Y M(e,z)]
n=1

2Ke = 16 K3

(8) 1(E' N I)

The image of E!(z,) 1is contained in a disc with radius M(e,z,) .
For ¢ > ¢,
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F;o C U E(?I (Zn) M
=1

n=

For every ¢ <g¢,, F;n has a cover of discs, whose diameter is at most

n.

2 ' M(c,z,). The function f is uniformly continuous in R, hence

n=1
sup M(e,z,)—0 as &—0. Therefore, by the definition of the linear
measure,
9) UF!) < 2liminf Y M, z,)

>0 n=1

for every &, > 0. The same result holds for the length of F’, because
of (3). By (5), the left hand side of (8) tends to the limit I(F)T"(y,) as
e — 0. Together with (9) this yields

IF) T (yy) = a l(F')?/(64 K3) .
This is the desired majorant for I(F'):
(10) UF'? < 64 K3U(F) T ()] .

Here F c I is any closed set. The following step is to generalize the result
for all Borel sets Bc I.

We show first that the image I’ of I is o-finite with respect to linear
measure. Let E be a closed subinterval of I. By (10), its image E’ has
a finite linear measure. The set I is a countable union of closed intervals,
therefore, I’ is o-finite.

Let Bc I be a Borel set. The set I’ is o-finite, so we can find a se-
quence of closed sets Fyc B',k=1,2,..., such thatlim {(F}) = I(B').
The preimages F, = f-1(F},) are also closed and (10) holds for F = F, .
Hence, (10) is also valid for the limits [(B) and [(B’). Therefore, any
Borel set B c I satisfies the inequality

IB'): < 64 K31(B) T'(y,) /7 .

This implies the absolute continuity of f on I with respect to the
linear measure [. So f is absolutely continuous on I as a function of
one variable. A similar method shows the absolute continuity of f on
almost every vertical interval in R .

It remains to verify the condition (ii). By the first part, f is absolutely
continuous on I, for almost every y, ¢ <y <d. From the Fubini
theorem we conclude that f has a finite derivative f, a.e.in R. A similar
result is valid for f, . The domain G is a countable union of rectangles
with sides parallel to the co-ordinate axes. Consequently, f has finite
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partial deriavatives a.e. in G'. By a theorem of Gehring and Lehto [4],
this implies that f is differentiable a.e. in G .

Let z be a point of differentiability. The derivative o, f(z) exists in
every direction s. By Lemma 3, either z is a regular point or f has a
vanishing derivative f’(z). In the latter case (ii) is trivially satisfied.
In the former case we have

max |3, fG)? < p() J(z) < KJ(2) .

2.3. A quasiconformal map with is not a Lavrentjev map. The map f,
le +iy for x>0
f(Z) - l 1 ’ K > 1 )

N + 1y for x <O
is quasiconformal. The characteristics of f are p =K, O = n/2 for
x>0, and p=K, O =0 for x <0. For x =0, f carries no in-
finitesimal ellipses onto infinitesimal circles. Therefore it has no continuous
distribution of characteristics in the whole plane.
The map f serves also as an example of a quasiconformal map which
is not a generalized Lavrentjev map.

3. Lavrentjev maps and Beltrami equations

All maps considered in the following are homeomorphisms of the open
unit dise D onto itself. The results are applicable to Lavrentjev maps
of domains conformally equivalent with the unit disc, because auxiliary
conformal maps do not affect the results.

Bojarski [2] has proved the equivalence of generalized Lavrentjev
maps with generalized homeomorphic solutions?!) of Beltrami equations

(1) fo—mf.—wmf. =0,

where the functions %, —and %, are continuous in D and
sup {l(:) — @)} < 1.

Furthermore, the class of Lavrentjev maps is proved to coincide with
the class of generalized homeomorphic solutions of

(2) f:— xf, =0, % continuous in D, sup |»(z)] <1.

In this connection Bojarski also establishes the fundamental existence
theorem, proved by Lavrentjev in [5]:

1) In a domain G amap f is a generalized homeomorphic solution of the equation
(1) or (2) respectively, if f is ACL in G and satisfies the equation a.e. in G,
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The existence theorem for Lavrentjev maps: Let p, O be a continuous
distribution of characteristics in D such that p is bounded. Then there exists
a homeomorphism f:D— D, such that f is a Lavrentjev map with character-
istics p, 0 and unique up to a linear transformation.

From the proof it follows, cf. [2], [9]: The map f isin D the uniform
limit of a sequence of Lavrentjev maps of the class C1; moreover, their
characteristics converge in D uniformly to p, 0.

By using Lavrentjev’s existence theorem we reach in a different man-
ner Bojarski’s result on the equivalence of Lavrentjev maps with generalized
homeomorphic solutions of (2).

Theorem 2. Lavrentjev maps coincide with the generalized homeomorphic
solutions of (2).

Proof. Let f be a Lavrentjev map. By Theorem 1, f is quasiconformal.
Hence, almost all points of D are regular for f. At regular points there
is a one-to-one correspondence between the complex dilatation = = f./f.
and the characteristics of f by

(3) #p(2)) = (p(z) — D/(pR) + 1)

arg xp(z) = 20(z) — x.
Denote

(4) [#(2)] = (p(z) — D/(p() + 1)

The function x is defined for all z € D. If p(z) == 1, O(z) is not defined
but neither is arg x(z) defined, since |x(z)] = 0. Furthermore, » is
continuous in D . By (3) and (4) 2 = » a.e. Since f is quasiconformal,
it is a generalized homeomorphic solation of (2), where x is defined by (4).

It still remains to show that every generalized homeomorphic solution
of (2) is a Lavrentjev map. For this, let » be a function satisfying the
conditions in (2). It defines a continuous distribution of characteristics
in D by the equations

(%) pz) = (1 + [2(2)])/(1 — [%(2)})

where p is bounded. By Lavrentjev’s existence theorem, there exists
a Lavrentjev map f with characteristics p, @, unique up to a linear
map. Becauase of (3) and (5), »# = » at regular points. Theorem 1 yields
that f is quasiconformal. Hence, % = » a.e. and f is a generalized
homeomorphic solation ot

fi—#.=0.
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Let f; be another generalized homeomorphic solution of the same
equation. The combined map f; o f= is conformal. Since f; = (fi o f) o f,
it 18 a Lavrentjev map with characteristics (5).

Theorem 3. If [ is a generalized homeomorphic solution of (2), then its
complex dilaration x; equals = in its whole domain of definition.

Proof. The dilatation 2, is defined only at regular points. At such
points, there is a one-to-one correspondence between 2, and the character-
istics p,0 of f. Due to Theorem 2, the same is valid for p,0 and =
in D . The equations (3) and (5) representing the correspondence are the
same, therefore, »; = » at regular points.

Remark. As we have pointed out in the beginning of the section, Theorem
2 and Theorem 3 are valid for domains conformally equivalent with the
unit dise.

4. Local dilatation measures

We list in 4.1 the definitions of the local dilatations H , ¥, D, » and
in 4.2 well-known connections between them. In 4.3 the local dilatations
of a Lavrentjev map are examined. The main result established is that
H and p are everywhere equal.

4.1. Definitions of H, F, D, and ». Let f be a homeomorphism
of a domain G and z € . The circular dilatation H of f at z isde-
fined as follows

max [f(z + re®) — f(2)]

Hf(z) = H(z) = llrr[iil(}l) min |f(z + re™) — f(z)|

Let U, c G be a neighbourhood of a point z. The map f carries
every quadrilateral @, @ € G, onto a quadrilateral @'. Let

KU, = sup [M(Q")/MQ)],

Qcu,

where 3 denotes the conformal modulus. The maximal dilatation of f
at z is defined as follows

Fr(z) = F(z) = i{lf]((U,) .

U

z

Let z € ¢ be a regular point for f. The ratio

max |9, f(z)]|
Di(z) = D(z) = min |2, f(z)|
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is called the dilatation quotient of f at z. D is the ratio of the axes of
the ellipses which the differential of f at z maps on circles.

In Section 3 we have introduced the complex dilatation
%(z) = f.(»)/f.(z) . It is related to D Ly the equation

D(z) = (1 + [#(2)D/(L — [#(z)]) -

The function  also defines the direction of the maximal distortion. Since
0, f(z) = [.(2) + f:(2) e7*™, the function |3, f(z)] assumes its maximal

value |f.(2)] (1 4 |=(z))) for
o = 1/2 arg »(z) .

4.2. Local dilatation measures of a quasiconformal map. The local dilata-
tions of a quasiconformal map satisfy the following relations

F(z,) = lim sup F(z) = lim sup ess F(z) = lim sup D(z)

z>% 2% 2>z,

= lim sup ess D(z) = lim sup ess H(z) .
For proofs, see [6], p. 207.
Especially if 2z is a regular point for f, the definitions of the dilata-
tions yield

Hp i (f(2) = Dpi(J(2)) = pp-(f(2) = [1 + [ (FEDIL — P (f(R))1]
= Hy(z) = Ds(z) = ps(z) = [1 + [ (2)[J/[1 — l(2)1] -

4.3. H and p for a Lavrentjev map. Let f be a quasiconformal map.
Then p is not necessarily defined at every point, cf. 2.3. Hence, wanting
to compare H(z) and p(z) at an arbitrary point z, we assume f to be
a Lavrentjev map.

By the definition of p, it seems natural that H,.(f(z)) is equal to
p(z) . This is proved in Theorem 4. We then establish the less obvious
result that for Lavrentjev maps p, H, and F coincide at every point.
In the proof we use Lemma 5 on the distortion of ellipses. The correspond-
ing lemma on circles was used by Lavrentjev in his proof for the existence
theorem.

Theorem 4. Let [ be a Lavrentjev map with characteristics p ,0 . Then
H._.(f(z)) = p(z) at all points.

Prooj. We assume f to be a homeomorphism of the unit disc onto
itself. This is no essential restriction, since H and p are local properties
and conformal invariants.

Fix a point 2z,€D and denote E, = E,(p(2),0() ;%) - In the
image plane we construct the closed annulus 4, with f(z,) as centre and
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with radii max |[f(z) — f(z,)] and min |f(z) — f(z,)|, z € £, . The ellipse
E. is contained in the preimage f~'(4s). Let the closure of
E) = E)(p(z,) , Oz) ; %) coutain f~(4,) and have a common boundary
point with f~1(4;). Then

(2) min |f(z) — f(z)] = max [f(z) — f(z)! -

2€ Ej, s€ Ep

Combined with (2), the definition of Lavrentjev map yields

max |f(z) — flzo)|
lim €%
w0 min | f(z) — f(z)]

2€EEy

=1.

Hence, the module of the annulus with centre f(z,) and with the radii

max |f(z) — f(z)] and min |f(z) — f(z)|, tends to zero as h—0. The
z€ Ep, z€ Ep

same is valid for its subdomain f(Ch), bounded by the images of K,
and E,. By the quasiconformality of f this also holds for the preimage
Ch .

The affine transformation ¢ which carries the ellipses E, and K
onto circles maps the ring C, onto an annulus whose module equals
log (k/h). The map g is p(z)-quasiconformal, so that

1
log (k/h) < M(Ch) .
p(zo) g / ) ( )
Since J/(C}) —0 as h—0, it follows that k/h—1 as h—0.
The preimage of the circle Y, with f(z,) as centre and radius equal
to max f(z) — f(z,), z€E,, is contained in C, and has at least one
point in common with the boundary curves E, and E,. Hence

max [f71(f(z)) — [~ (f(z0)]

ph ke k
A P];’T} < 9 . - < '1)7
L P min [f71(f(z)) — f7H(f(20))] ’
flz) €Yy

where p = p(z) . Since k/h—1 as h— 0, thisyields H;.(f(z))) = p(z)-
In Lemma 5 we need the following result on conformal maps:
Lemma 4. Let O be any conformal map from the urit disc D, 3(0) = 0.

For every e > 0 there exists a natural number n , the same for all maps

O, such that

—1 <

‘ O(z) = l
@) O@) 2 |

or any pair of points z;, 2, 0 <lz] < 1/m, 1=1,2.
yp p 1 2 1<l
3
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Proof. It clearly suffices to establish (3) in the case @’(0) =1. We
combine the relation

IA
A

0()] = 10() — 0(0)] = /@'(z) dz <z max |0'() . =

with Koebe’s inequalities

1 —iz! o 1+ 2]
e
It follows that
O(z) 147
: T 1 —rp

Hence, the functions 0 ,

0() = O(z)/z, O@0) =1,

are locally uniformly bounded. Therefore, by a well-known thecrem,
they constitute a family which is equicontinuous at z = 0. From this
(3) follows immediately, since é(z) —1 as z—0.

In the following we use the notation &, , (p,0;z) for the ring
with boundary curves FEi (p,0;z) and E,(p,0;2), hy <h,. If the
direction @ has no significance, it is omitted.

Lemma 5. Let p > 1 and [ be an e-Lavrentjev map of D onto it-
self such that f(0) = 0. The inequalities

T ) - aTa < (e, €)
f(ZZ) - f(:o) Ry — 2y /p\c1
4) | ~ o
arg M — arg e T — (e 8)
P ) —feg) T s TR

are then satisfied for every zy €D and any pair of points z, . = in
Ei o wpiz) with 0<hp <1— z/, 0<e<1, where the function
7, depends only on & and e and limi,(s,¢) =0 as ¢ .e—0.

We only prove the former inequality because the latter can be verified
in a similar way.

If the lemma is false, there exist real numbers p > 1 and s, > 0
such that to arbitrarily small & > 0 and &> 0, there corresponds
a map f and aring B,_,, ,(p;z) both satisfying the conditions in the
lemma, and the ring containing a pair of points z; and z, for which

j J&) — f(z) AL A

(5) =t~
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Here two possibilities can occur: Either lim supZz > 0, as & ,e—0
or lim /& = 0. In the former case we apply the following theorem of Lav-
rentjev [5):

Let [ be an  e-Lavrentjev map of D onto itself such that f(0) =0,
f(1y =1. Then

Jz) — 2 < Ae)

where 7. depends only on ¢ and lim i =0 as ¢ —0.
From this result it follows immediately that (5) cannot hold for all
positive values of ¢ .

In the latter case lim 2 = 0. We note first that there is no loss of
generality of we assume z, = f(z,) = 0. In order to see this we continue
[ by setting

J&) = [f(1)]7 .

Let Z map the disc |z < 2 conformally onto D such that z, is carried
to the origin. Then

Z(Zl) ) Zo(zo — 21) =

. — - P
Z(zy) oz — 2, 4 — Zyz, 3

is then arbitrarily near to unity for & and ¢ small enough. The same
argument can be used to show that f(z,) = 0 is no essential restriction.

With the assumptions 2z, = f(z,) = 0 the inequality (5) assumes
the form
(6) 7 =y
where € E, ., ,(p;0), i=12

Let O be any conformal map from D, O(0) = 0. From Lemma 4
we conclude: Yor any # > 0 there exists a natural number m such that
for all points in £ 11 (p;0)

=5,

O(z) ! O(z) /|

7 R _ .
) - 0(z) T 0z oz 2

for n > m.
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Let m, be the number corresponding to #,. Since lim /= 0, we
can choose % such that myh < 1. Let G be the f-image of {z 'z < myh}
and r the distance of its boundary and the origin. The function ¥,

1
FG) = fonga),

is an ¢-Lavrentjev map, which maps D onto a domain 7', similar to
G and containing the unit disc. Since f satisfies (6), £ 11 (p;0)

(=) n, | mg
contains a pair of points «; = z;/(mgh), i =1, 2, such that
CF(a) ! ay
8 f — = >,
®) - Fay) ‘(‘2:)”0

Let @ be a conformal map from D onto 7 such that ©O(0) = 0,
0(1) = F(1). We apply the result (7) to @ with z = a;:

O(ay) i "o
) O(a,) B a_‘z = 2
Combined with the triangle inequality, (8) and (9) yield
O(a F(a
(10) ( 1_) () - Mo
O(ay) F(a,) 2

On the other hand,

(11) O@) = (1 —9)fm, i=1,2,

I

because the domain 7' contains the unit dise.
Let ¢ < 1/2 and choose ¢ so small that, forevery z EE(I_ 11 (pi0),

(12) 0() — Fz) <ojg [+my(1 4 2p 4 1)] -

m, m,

This possible because of Theorem 1’ [5]:

Let F be an e-Lavrentjer map and O a conformal map, both from the
unit disc onto a Jordan domain G such that F(0) = @(0) = 0, F(1) = O(1).
Then there exists a function I(ep, r,d), >0, 0<r<1. d>0
denoting the distance between ©(0) and the boundary of G . whicl tends
decreasingly to zero with ¢, such that

[9() — F(2)] < (e, 7, d)

Jor z <r.

By (9), (11), and (12),
F(ay) 9 () i: L4 O(ay) | Ofa,) ‘Jo
= Y ax |Fla) — Oa) ———— L
Pl T Oy = RS = 06 G0 Ry — 0w, 2

This is in contradiction with (10).
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An estimate derived from Lemma 5. Let f be an ¢-Lavrentjev map
satisfying the conditions in Lemma 5. We use the inequalities (4) to ex-
amine the distortion under f of a ring £ bounded by two similar ellipses.
Since the inequalities (4) are invariant under similarity transformations
of the 2- and f(z)-plane, we may assume that FE has the form
E=E, , (p,a/2;0) and f(0) =0, f(iph,) = iph,. By (4), any point
z € I/ then satisfies

. @) — 2 < 5 ph,
(i)

arg f(z) —argzl <y =y,(e, 1 —hyfhy).

Because of Lemma 5, we can choose ¢ and 1 — h;/h, so small that

(i) pler, U—"Tulhy) < [2(2p + p*(p* — ).

We also require

(i) hofly < 2.
We want to show that there exists a ring E— Ey u(p,a/2;0), ED J(E),
such that

Hy = h (1 — Cin)

Hy, = hy(1 + Cyy),

where () and C, are positive constants.
Denote

R) — p ]

p?+tan?x’

The point with polar co-ordinates r = %, R(x), ¢ = x, 1es on the ellipse
E, (p,n/2:0) and may be transformed under f to a point with
r=h R(x) —uphy, x—1 <g¢; <x-+i. Similarly, the point on
E, (p,a/2;0) in the direction ~x has polar co-ordinates r = hy, R(x),
¢ =« . Hence, E must cover the points with r = hy, R(x) + uph, ,
o —1 <@, < -+17. Because of symmetry, we may assume « €[ — iy, 7/2 + 1] .
In fact, it suffices to consider the cases ¢, =o + 7, ¥ €[0, 72 — 5],
gy =o —1, x€[n,n/2]. This yields the inequalities

hy(1 — Cpp) R(x + ) < hy R(x) — 3jph,
(ii)
ho(1 + Co) R(x — 97) = hy R(x) + 1ph, .
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The mean value theorem applied to the function R yields
RB(x + ) — R(x), < yp*(p* — 1)
The inequalities (i) are thus satisfied for
Oy =2p+p(p*—1)
Co=p+p@*—1).
Hence, by (i)’ and (i), there exists a ring EDf(E) such that
(14) H,/H, < hy/h; + [12p + 8p*(p* — 1)] 7, (&, 1 — hylhsy) .

Remark 3. Let a sequence of e-Lavrentjev maps ¢, converge uni-
formly towards a Lavrentjev map g¢. If the conditions (i)’ and (i)’ are
fulfilled for g¢,,n >mn,, and aring £ =E, ,(p,0;z), then (14) is
applicable to the limit function g and E . This follows from the fact
that ¢ satisfies the inequalities (4) with 4 = 1,(e; . 1 — hy/hy) .

We are now prepared to establish the main result of this section.

Theorem 5. For a Lavrentjev map p(z) = H(z) at all points.

Proof. H and p are local properties and conformal invariants. Hence,
we can assume that f maps the unit disc D onto itself such that f(0) = 0.
By the proof for the existence theorem, there exists a sequence of Lavrent-
jev maps f,.f, €C', f.(0) = 0, such that f, — f uniformly in D . More-
over, the characteristics p, , @, of f, converge uniformly to the character-
istics p,0@ of f in D. By this we mean that p, — p uniformly in D
and O, — O uniformly in every closed subset of D not containing points
at which p has the value 1.

Let z,€D, and denote 1, (z)==1{z z—z, =Fh}. We want to show
that for all sufficiently small values of %, the f-image of 1, (z,) is covered
by a ring E, ,(p(z) : f(2)) . where b/a is arbitrarily near to unity.

The first step is to show that to every e > 0, there corresponds a
natural number m such that every map f,. n > m, admits a represen-
tation

(15) Jo= oo fa) e fus

where f, o f-! is an e-Lavrentjev map.

In other words, it must be proved that the characteristic p¥, of f,of."
is at most 1 + & . We show this by direct computation. For the composed
map we have

iy ( f (~)) ‘ /f';(i) - /f'"<z,),, < ,,,f,,(:\),j,ff'" (_) _
i fm MmATHL T # (~)':f7;gi) B | e (:)/fm(:)t ‘

Let K = sup sup p,(z). It follows that

n z
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”/f @) — %, (2)] €1Om=On)|
ly/n fm(z = K — 1
b (K n 1)

1 K —1
3 [Pa@ = Pu@) + 210,6) — Ou()]

. (K — 1)2
T\K +1
For every & > 0 there exists a natural number m such that for all
n > m and every z €D either

Pa(z) — pRR)| < 22 e [1 ( K+ 1 ”

=<

(16)
K + 1 2
0,(z) — O@)] S(K_ 1 2+81 [ < }
or
&
(17) Pa(e) =11 = 5

Hence, if (16) holds
[% opo (fu @) < &/(2 + &)
and =0
pfm(fm(z)) S 1 + & -

In the case of (17), we assume & < 1 and use the inequality
P (fn(2)) < 2a(2) P (fn(2) = Pu(®) P (2) < 1+ &y,

cf. 1.4. The representation (15) with the desired properties has thus been
established.

Fix a point z,€D. Given an ¢, 1> &> 0, we show that for
n>mn,, O0<h<hy, n, and hy depending only on e, the f -image
of Y,(z,) is covered by aring Ey g (p(z);/fa(z)), where Hy/H; <1+ e.

Choose & > 0 and & > 0 so small that

(L4 &Pl — &) <14 ¢/2,
(18) 9/ 9 1 — — &
ey - d) < sf[24p + 16pp2 — 1)] for 0<d <1—
( + 52)
Together with (16) or (17) we finally require
(19) 12.(2) — P(2)| <&,

z € D, for all sufficiently large values of = .
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Let m, be an integer such that (19), and (16) or (17) are satisfied for
n>mn,, and fix a map f,, m >mn,. The reasoning in Theorem 4 is
applicable to f,,', since f,' is a Lavrentjev map. It follows that there
exists an %, > 0 such that the f, -image of any circle Y,(z), & < hy,
is covered by a ring

E, =E, ., (Pf,;'(fm(zo)) > Of,;’ (fu (20)) 5 fm (20)) 5

where
(19) kolky < (1 + &)/(1 — &) .
Since  p,-i( fn(z0)) = Pm(z,), the ring K, lies in a ring

E2 = Ehl,hz(p(z()) ’ @f,:(j"'(zo)) 7fm(z0)) )

where
hy ky Do (%) P(Zo)]
— < — max | ,
S ) oot
By (19) and (19)
(20) holhy < (1 + &)?/(1 — %) .

The functions f,of.' are &-Lavrentjev maps for n > n,. The esti-

mate (14), combined with (20) and (18), yields the result that the f, - f, L
image of K, is covered by a ring

E; = EHI,H,_,(p(ZO) 3 fa(Z0)) 5
where

H, H, <1+ e¢.

The same is valid for the f -images of the circle Y,(z), & <h,.n = n,,
since f,(Y,(2) C (foofu') (By) . As n— oo, the functions f, converge
uniformly towards f. Remark 3 with g, = f,of,' implies that also
(f o fu!) (By) C Eg, u, (pz0) ; f(2)), where H,[H; <1+ ¢. Since
f(Y.(z)) C (foful) (B,), the theorem follows.

The following result is an immediate conclusion of the above theorem.

Corollary. For a Lavrentjev map F(z) = p(z) at all points.

Proof. By the above theorem, H equals p, so H is continuous.
The equality

F(z,) = lim sup ess H(z)

>z

therefore yields F(z)) = H(z,) = p(z,) for every z,.
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5. Counterexamples

We show in 5.1—5.2 that neither the composition of two Lavrentjev
maps nor the inverse of a Lavrentjev map need be a Lavrentjev map,
and in 5.3 that Lavrentjev maps form a proper subset of generalized
Lavrentjev maps. We conclude the paper with some examples of non-
differentiable Lavrentjev maps.

5.1. Composition of Lavrentjev maps. Let us consider the map f;,

fie) = = b,

From
1: . 1
(H):2) = |1 + n (log |z|)~%3| ¢illesi=)”

7

(f):(z) = 6

—2/3 4i(log =)

[STRIEN

(log |2)

we conclude that 2, = (f);/(f,). is continuoas also at z = 0. Hence,
f1 is a Lavrentjev map.
We combine f; with the affine map f,,
fwy=u+iKv, w=u—+iw, K>1.

From

#,= (1 — K)/(1+ K),

%] —0 as z2—0
we conclude that

1— K

%f2cfl(z) — 1__’__12 e—2i(log]z;)‘lﬂ + 8(2) ,

where &(z) =0 as z—0. Hence, %5, 18 discontinuous at the origin,
and f,o f; is not a Lavrentjev map.

5.2, Inverses of Lavrentjev maps. For the homeomorphism f,
(1) J@) = [z + i Kyl &=,

we have
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1 7: i 13
f.(2) = 5 |1+ K + 3. [ + i Ky] (log [2]) 73| e'fos =)

.

1 — K + i(x+ i Ky) (log [2))"**(32)"
%f(Z) = 1+ K+ 1,(% i @K:l/) (lOg lzl)—2/3(32)—1 .

Since x; is continuous, f is a Lavrentjev map.
For the complex dilatation of the inverse map f~1 we have

- (f(2) = — #(z) €770
As 2—0, »— (1 — K)/(1 + K) and argf,— — o . Hence. .. is

discontinuous at z =0, and f~! is not a Lavrentjev map.

5.3. Lavrentjev maps and generalized Lavrentjev maps. The inverse
of a Lavrentjev map f is always a generalized Lavrentjev map. This is
seen as follows. Let 2z, and & = f(z,) be regular points for f and f1,
respectively. From

— 1

7 = G fla) T = e )

it follows that f—1 is a generalized homeomorphic solution of the equation
fEHE) + 2 (VT E) = 0.

By 3 (1), f! is a generalized Lavrentjev map.
The inverse of (1) is thus a generalized Lavrentjev map buat not a Lav-
rentjev map.

5.4. Non-differentiable Lavrentjev maps. The map f,

(2) fz) = 2/(1 —log [z) ,

possesses a continuous complex dilatation
#(2) = 2/[24(3/2 — log [2])].
The inverse map satisfies
- (F2) = — #/(2)

so that also f~! is a Lavrentjev map. It is not differentiable at z =0,

for lim |z/f(z)) = o as z—0." From (2) it follows that Pp-1(0) =1,
Slightly modifying the above example we also get a Lavrentjev map

which is non-differentiable at a point z at which p(z) > 1. We set
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f(z) = [Kx 4 ay]/(1 — log [2]) ,

and conclude that the inverse of f is a Lavrentjev map.
As above, we show that f~1 is non-differentiable at the origin. In
this case, p;-.(0) = K .
A third example is given by the Lavrentjev map f; in 5.1. It has no
partial derivatives at z = 0. However it satisfies the equations
lim sup | f, (2)/z] = lim inf |f, (z)z| = 1.

z—>0 z>0

University of Helsinki
Helsinki, Finland
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