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Introduction

The first definitions for quasiconformal maps were introduced by
Grötzsch in 1928 and by Lawentjev in 1935. These classes are not closed

v'ith respect, to uniform limits, even if constants are excluded. A third
definition without this drawback was given by Morrey in 1938, and in
several other equivalent forms in t'he fifties. Today these maps are usually
called quasiconformal, and in the present paper we use this terminology.

\\rhile Grötzsch maps are easily seen to be continuously differentiable
quasiconformal rnaps, it is more difficult to see the position of Lavrentjev
maps, often called maps with continuous characteristics p and @, in
the hierarchy of quasiconformal maps. The fundamental result in this
direction is due to Bojarski: Lavrentjev maps are generalized homeo-
morphic solutions of Beltrami equa,tions with continuous coefficients.
It follows, in particular, thal Lavrentje'r maps constitute a proper sub-
class of quasiconformal maps.

In the present peper we st'udy once more the relationship between
Lavrentjev maps and quasiconformal maps. A new proof, based on a
method of Gehring, is given to the effect that the former maps are quasi-
conformal. Our main result concerns the local behaviour of Lavrentjev
maps /. We prove that the characteristic p(z) coincides at all points
with the circular dilatation H(z), defined as the upper limit of
m1x)f(z * re'") -/(z)l/m*in lf(z -t ret") - f(z)l as r->0. From this it

follows that p is also everyu,here equal to the local maximal dilatation
of the map. We conclude the paperivith some examples: a Lavrentjev
map non-differentiable at a point. a Lavrentjev map whose inverse is
not a Lavrentjev map, and two Lavrentjev maps whose composition is
not a Lavrentjev map.

7. Definitions of quasiconformality

l.l. Ahl"fors-Pfluger d,efinition. A quad,rilateral, A is a Jordan domain
with four specified boundary points 21 , ?2 t zs , 24, whose order coincides
with the positive ordering with respect to the Jordän domain. For every
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Q there exisbs a class of rectangles with vertices at 0,d., d+iP, i,P,
a > 0, § ) 0, which can be conformally mapped onto A such that
the vertices correspond to 21 1 22 t zs t and 24, respectively. The ratio

M{Q): 
"l§

depends only on @ and is called the mod,ul,us oJ the quad,ri,late,ral Q .

Definition 1. Let f be a sense-preserving homeomorphism of a domain
G. Itforallquadrilateral" 0, QCG,

M ff(A» < KM(Q) ,

l<K ( @, f is K-quasiconformal.

1.2. Morrey ilefinitdon. A continuous function t : G --+ G' is ACL or
absolutely continuous on l,ines in a domain D c G , if for every rectangle
R :{z- r I iyla <r <b, c 1A <d}, Rc D, f(r I iyo) is abso-
lutely corrtinuous in a.:r<b for almost ever;r Ao in c1Ao1d,
aud f("o * iy) is absolutelv eontinuous in c < y < d for almost all
r, in o{fio{b.

The following theorem, often stated as the analvtic definition, yields
another characterization for K-quasiconformal ma,ps:

Theorem. A sense-preseruing homeontorphisnt f o! a ilomai,n G ,is

K-quasiconJormal if ancl only if
(i) f is ACl, in G

(ii) rnax lä"./(z),2 < KJ(z) a.e. in G ,

where J elenotes the Jacobian of f ancl 0*,1 the deri,uatiue i,n the d,irection a .

1.3. Laurentjea clefini,tiora. Given an ellipse, u.e define its characteristics
astheratio plI of itssemiaxesand,if p> 1, theangle @ (mod. z)
between its majoraxis and the positive r-axis. They define the ellipse
up to a similarity transformation. The ellipse rryith centre at z . semi
minoraxis of length h and characteristics p , @ , is denot ed by E o(gt , @ ; z)
and the open point set bounded by the curve ,8, (p , O ; e) and containing
the point z by Ef;(1t , O ; ") 

.

Definition 2. A homeomorphisrn / is said to mop the inJinitesi,mal ellipse
E(p , O : zr) onto u,n dnfinitesi,mal circle if

rnax lf@) - f@o)"
r. zeEl
Inn.,-'
,,.-, min lJ\z) -- f{ri,,

zeEh
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Es1reeia115. if p : 1 , we say that the infi,nitesimal circle is ntappecl
onto an infinitesi,ntal circle.

\Ye eall p , @ the characteristics of f at zo.
Definition 3. In a domain D a continuous d,istribution of cha,acteri,stics

p , O is defined, if p is a continuous real-valued rnap of D such
that p(z) )> I forall zeD and @ isacontinuousreal-valuedmapof the
set, {z z€D, p(z)> I} suchthatthevaluesof @ are definedmod.z.

Definition 4. Let p , @ be a continuous distribution of characteristics in
a donrain D such that p is bounded. A sense-preserving honreornorphism

f of D is said to be a Laarentjeu mup v'ith characteristics p , O if,
for evetv z e, D , / maps the infinitesimal ellipse E(p(z) , O(z) ; z) onto
an infinitesimal circle.

Remark 1. By the definition, Layrentjev maps are preserved under
confornral maps. As for the characteristics, if f : fr",fr, rvhere f, is
confonnal and l, a Lavrentjev map with characteristics ? ,@ , / has
clraracteristics yt, O - aryfi, while in the case f : lzo Jt the character-
istics renaiu invariant.

Remark 2. The class of Lavrentjev maps wa"q extended by considering
maps rrhich transform »infinitesimal ellipses onto infinitesimal ellipses»:

Definition 5. A homeomorphism / is said Lo map the infinitesimal
ellipse, E(p, , Or; z) onto the infinitesimal, el,ligtse E(p, , Or; f(z\) if the
image of Eo{p, , @t i z) under / lies betrveen the curr.,es Eo(p, , Or; ltz))
and E,(pr,Or;f1z)), k <1, such that

tim(Ub:1.

Definition 6. Let f : Dr---> D, be a sense-preserving homeornorphism
and p1,O1 , pr,O, continuolls distributions of characteristics irr Dt ancl
1), . TIre map / is called a generali,zecl, Laurentjea map with characteristics
p-.,Or trnd 7r, ,Oz if, for everv z e Dr, / maps the infinitesimal ellipse
E(ttrG) , Or(:) ; z) onto the infinitesimal ellipse E(pr(f(z)) , Or(f (r)) ; f (z)) .

L.1. )I«psof clctss Ct cmdLa,arentje.umaps.Let f :D---D', I €C11) .

It follo's-s that all points zo € D are regular for f 2) and ,/ has the repre-
sentation

/(=) :f(zo) + J,@o) - zo) r fz(ro) Q - 2r) + o(z zr) 
1

r,vhere o(z - zr)l@ - eo) -+ 0 as z - zo. Hence, f maps the infini-
tesimal ellipse

(z

1) Å horneomorptrisrn
in\-er-qe, is ciontinuously

') \\-e call a point z

f is saicl to belong to the class C, , if it, together \Mith its
dif f'erentiable. \Ye also assllme f to be serrse-preserving.
regular for I if I is differentiable at, z \\,ith J (z) + 0 .
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E(V.?Jtl.f,(2,)l rl l,@i \ \
r trL.", - TL ro)t ', T lars [,1a) 

+ :t): zo)

onto an infinitesinral circle.
The corresponding result is 'i'alid for .f-' . The relations betn-een the

derivatives of ,/ and /'-1 imply the equation

hQol : Pr-,ff(zo)) .

Since the derivatives define continuous distributions of characteristics,

I and f -' arc Lavrentjev maps provided that p is bounded.
Tf f eCr and,for every z€D, gt(z) <1+e, / issaidto bean

e-Laarentjeu map. The same is then valid for /*1 .

Let f : I) ---> D' , g : D' ---> D" be Lavrentjev maps of the ciass L'r .

The combined map g " f e Cr artd the characteristics satisfy

Pg.1@) < nr(I@)) Py@) ,

since the same is valid for the composition of the alTine maps consisting
of the differentials of g ar.d f .

2. Lavrentjev maps are quasiconformal

With a proof modified from that of Gehring [3], Theorem 2, l'e shon'
in 2.2 that Lavrentjev maps form a subset of quasiconformal maps. In
2.3 rve present an example to show that the subclass is proper.

This relationship was proved in different ways by Pesin and by B':jarshi

[2]. The former extends in [7] the class of generalized Lavrentjev maps
and in iSl shorvs the equivalence of the new definition with the Ahlfors-
Pfluger one. The result was already mentioned by Belinskij and Pesin in
l1l. Bojarski has established the proof by studying the generalized homeo-
morphic solutions of Beltrami differential equations.

2.1. For our proof rn e list some properties of maps carrying iufinitesirnal
ellil:ses onto infinitesimal circles.

Lemma 7. If a map I carries the infi,nitesimal ellipse E(p . O ; z)

onto an i,nfinitesimctl ci,rcle qncl the der'iuatiue lä"/(.)t e*ists fr.»' .som,e

di,rect'ion s0 , it erists in euery clirection, s and

I
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Proof. Let z : f(z) : 0 and let lloz"l denote the moclllus of the
point on the curve Eo(p, @; 0) which lies in the direction s. The modu-
lns of the image point is denoted by l/ol"l. Then, for anv s

lim l:lofs/i lr./,"1 : I .

Furthermore,

lim l/ä.f""1 f lzloz""l: i4,./(0)l

and l,4uz""lll/oz"l : c"0," , llp { c"u," 1g), lvhere c"o,", cloes not de-
pend on ä . Hence, there exists the limit

ia"/(O)l - llf 1tof"j ll/1,2"1: lä""/(0)l c""." .

In the case of lA""fl")l: 0 it follows
Lemma 2. Let ,f carry tlte ,infinitesi,mal ellipse D(,p , O : :) onto cut

i,nfinite.simal circle. fJ )A"J@)l uanishes for some d,irection so , it uanishes

.for euery d,irection and there erists cr, d,eriuatiae l'@) : 0 .

tr'or a differentiable map Lemmas 1 and 2 yield
Lemma 3. If f is di,fferenti,able at z anil caru,ies the inJinitesirnul el,l,ipse

E(p , O ; z) onto an i,nJinitesimal circle, then either z ,is o regular point
tor f anrl

max lä"/(z)12 < JJ(z)i p@) ,

or f hu,s a, uanishingl d,eriuati,ae l'@) .

Proof. The inequality (1) vields maxlä"/(z)l (pmin ä",f(:) Com-

bined 'll'ith the relation I,J(z).: -u* lä,71r11 min iä,/(zl. tJrjs conclude-{
the proof. § §

2.2. After these remarks l-e are ready to prove
Theorem l. Laurentjeu ?ncrps are qu,ctsiconformal.
Proof . Let f be a Lavrentjev map of a domaiu (] and

ilIorrey definition:

(i) I is ACL in G

(ii) max j0..1(e)i2 {KJ(z) a.e. in G.

Sre can presume that neither G nor its image G' contrrins the point
at, infinity, because an isolated singularity c&n be remor,'ecl. Lct,
R :{* * iA)a <x <b, c <y <d}, R cG, Ir,:,8fl {;t - iy y : Uo},
and let ?(yi denote the Lebesgue plane measure of the /'-image of
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{r*iy'ta<r<b, cly{yo}. Since T is monotonic and finite,
it has afinite derivative T' for almost elrery Ao,c<y, <d. Accord-
ingly, for (i), it is sufficient to prove the absolute continuity of f on Ir,
when T'(yo) exists.

Assume thab T'(Ad exists and denote Ir": I. Let F c I be a

closed set and .F' its image under ,f . We shall first derive a majorant
for the linear measwe l,(?') of 1' which vanishes witli l(1) . The result
is then extended to the Borel subsets of 1 . We use the shorter notation
En@): En(p\z) ,O(z); z), *-here p,O are the characteristics of f .

Denote

M(h , z): ma,x lf@) - f(zr)t,
z e Ep$n)

J(h,;u) : nin tl|) - f@i .

;€ EhQs)

Take e)0 suchthat 1ie<cl(?,-B). u-her"e cl(F,- A) denotes
the distance of I and the complement, of -ts . Let

(2)

(3)

Then hp(z){eK{d@.-1?) for z€Ir'. and /z{e. Hence, -E con-
tains tlre ellipses Eo@) for z € F. and ft. ( e . In the following, we let e

only assume values l/q , rvhele q is a natural nurnber.
Let ,s be an accumulation point of the set F, . If ,u has a neighbour'-

hood containing no points rvhere p : L, the functions p , @ , and /
are all continuous, and z e I, . The other possibility is that p takes the
value I in everv neighbourhood of ? . 81.- the continuitv of p , the
characteristic ellipses belonging= to the points of a sufficientlv small
neighbourhood of z are arbitrarily close to cireles. So also in this case

z e F,. Hence, the sets F, are closed. As o -> 0 , they form a non-
decrea,sing sequence converging to F so that, tr' : U F, . Hence

lim l(F',) == l{F'}
€-+ ('l

As a bounded and closed set I, is compact. It has a finite co'rrer

of ellipses El,(r-), 1L:1,2,....'t7,t suchthat i?n+r--in )r:
n : L,2,...,%u - l, z,"e Fo.'Ihis is seen as follot's. ltr-e assume ?, + g .

Let, zr:tr*iy» rvhere ff1 :inf rez, z €I,. Then zre Fu, because

I, is compact. Denote the intervat {r: :r'* iyo;rr - t < I < r, f e}

by Ir. The set F, -- I, is also compact. If I, - I, + fr , choose

zz::r2+iuo where rz:inf.tez, ze ?,-Ir. The points zL and z2

satisfy '2, - "tl 
) e . Continue in this rvay and terminate r.vhen 7', - U 1,"

is emptl-. Since 1-. is bounded, this happeirs u'ith a finite ra .
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The major axis of the ellipses Dl\"^), rL: L ,2, . . ., %u, is at most
of length 2 K and the distance of their centres at least e . These ellipses
cover .E at most 21( times. The length of each interval E!(r") fl 1 is
at least 2e . For the union of the ellipses, Ey : U El(") , v'e have

11

(4)

Let O c I be an open set, I c O. We can choose O such that
l(O - ?) < e', rvhere e' > 0 is arbitrarily small. Fix e > 0 such that,
Ke1d(F,I-O). Thisispossiblesince d(F,I -O) >0. Then O

contains also the set Z'f O 1 and

\E: n r) <t(o) < t(E) + t(o - x) < t(x) * e' .

Hence

,tT,.r", l@: n I) < l,(F1 .

On the other hand, I,c 80, (1 I for every e ) 0 . Since l(F,) -->l(I)
it follows that

(5) lim l(z'f n /) : /(I) .

The ellipses E!(r^): lL: L,2,....fl., are containedintherectangle
{r -fiala <n <b,yo- I{e 1U lAo *fie} and cover it at most 2K
times. Similarly, in the image plane 

Dt

(6) 2KlT(yr* Ku) - T(yo- Ko)l > lm1E0,'12^11 ,

where E!'(".) is the /-image of E!(z^). U, til,
fl, tu, Jr n,

(7) lm(E!'(z^)) > nåtn"(',2)f2 > i ZrltuI(t,z^)12.
The Schwarz inequalitv, combined with (6) and (7), ;,ields

tu,

2KlT(yo-i- 1le) - T(yo- (u)l i ;; [I -rrt' ,r)f' .
+ il,, -nzt

From (4) it follov's that

The image of fr!, (=,)

For tole,

T(yo 1- /(e) - f (yo - Ku)

2Ke

is contained in

16 K3

with radius lt (e , zn)

tl ,.(:

"IIn-r:L
M(u , r)j'

(8) t(Ei n /)

a, disc
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c

2I MG,i,,)
n:l

sup M(t, 3,,) *
lr.easure.

(e)

,..

F'uo. 
:, 

E|' (z*)

r0 , I',0 has a cover of discs, whose diameter is al most

The function f is uniformly continlrous in R , hence

0 as 6 -> 0 . Therefore, b;, the definition of the linear

tu,

l(F',,) <2liminf I M@,zn)
t-+ 0 n:1

{or every s, } 0 . The same result holds for the length of I' , because
of (3). By (5), the left hand side of (8) tends to the limit, l(1) T'(yo) as
e --> 0 . To.eether with (9) this yields

l(F) T'(yo) > nl(?')21(64lf') .

This is the clesired majorant for l(F') :

(10) l(F'12 .r 64 Ks l(I) T'(yr)/, .

Here -F c 1 is any closed set. The following step is to generalize the result
for all Borel sets B c I .

We show first that the image I' of I is o-finite with respect to linear
measure. Let E be a closed subinterval of I . By (10), its image E' lnas
a finite linear measure. The sei 1 is a countable union of closed intervals,
therefore, .I' is o'-finite.

Let B c.I lte a Borel set. The set f is o-finite, so Tre c&n find a se-

quence of closed sets -Fi C B' , k : L , 2 . . . . , such that lim l(I;) : l(B') .

The preimages -Fu : f -,(F;) are also closed and (10)holds for I : Fr".
Hence, (l{)) is also valid for the limits l(B) ancl l(B') . Therefore, any
Borel set B c I satisfies the inequalitl'

l,(B')' <. A+ Ks l(B) T'(Ao)ln .

This implies the absolute continuity of f on 1 r,r,ith respect to the
linear measure L So / is absolutely continuous on .I as a function of
one variable. A similar method shov's the absolute continuity of / on
almost every vertical interl,al in -rB .

It remains to verify the condition (ii). By the first part, f is absolutely
continuous on Iy for almost every U, c <y <d,. From the Fubini
t'heorem we conclude that ! has a finite derivative f* u.". in .E . A similar
result is valid for !r. The domain G is a countable union of rectangles
rvith sides parailel to the co-ordinate axes. ConsequentJy, I has finite
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partial deriavatives a.e. in G . By a theorem of Gehring and Lehto [4],
this implies thaf f is differentiable a.e. in G .

Let z be a point of differentiability. The derivative 0,1@) exists in
every direction s . By Lemma 3, either a is a regular point or / has a
vanishing derivative f'("). In the latter case (ii) is trivially satisfied.
In the former case we have

*1" 10"f(r)P a p@) J(z) < KJ(z)

2.3. A quasiconformal map wi,tlt, is not a Laarentieu magt. The map /,

3. Lavrentjev maps and Beltrami equations

Åll maps considered in the following are homeomorphisms of the open
unit clisc D onto itself. The results are applicable to Lavrentjev maps
of domains conformally equivalent with the unit disc, because auxiliary
conformal maps do not affect the results.

Bojarski [2] has proved the equivalence of generalized Lavrentjev
maps with generalized homeomorphic solutions 1) of Beltrami equations

13

(x"+iu for r)0
/t,l :]r , K)r,

I - tl'iu for r(0
[^

is quasiconformal. The characteristics of / are p : K, O : nl2 for
r>0, and p:K, @:0 for r<0. For r:0, / carriesnoin-
finitesimal ellipses onto infinitesimal circles. Therefore it has no continuous
distribution of characteristics in the whole plane.

The map ./ serves also as an example of a quasiconformal map which
is not a generalized Lavrentjev map.

(1)

\lrhere the functions xL

Furthermore, the class of Lavrentjev maps is proved to coincide with
the class of generalized homeomorphic solutions of

(2) fr-xL:O,x continuousir,D, suplz(z)l <I.
In this connection Bojarski also establishes the fundamental existence
theorem, proved by Lavrentjev in [5]:

fn a, clornain G a map I is
( 2) respectively, if I is

and xz are continuous in D and"

a generalized homeomorphic solution of the equation
ACL in G and satisfies the equation a.e. in G .

,)

(1) or
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The existence theorem for Lavrentjev maps: Let p , O be a continuous
d,i,stri,bution of characteristics ,in D such that p ,is bound,ed,. Tlten there exists
a homeom,orythism J : D --> D, such that f i,s a Laarentjea nxap u:ith ck,nructer-
i,stics gt , @ and, unigue up to a linear transJormation.

From the proof it follows, cf . l2l, [9]: The map ,f is in D the uniform
limit of a, sequence of Lavrentjev maps of the class C1 ; moreover, their
characteristics converge in D uniformly Lo p , @ .

By using Lavrentjev's existence theorem we reach in a different man-
ner Bojarski's result on the equivalence of Lavrentjev maps v,ith generalized
homeomorphic solutions of (2).

Theorem 2. Laurentjea rnaps coi,ncid,e with the general,ized, honteortorphic
solutions ol Q).

Proof.LeL J be a Lavrentjev map. By Theorem 1, / is quasiconformal.
Hence, almost all points of D arc regular for J . At regular points there
is a one-to-one correspondence between the complex dilatation zr : ,f, I f,
and the characteristics of I by

(3)

Denote

(4)

(5)

Thefunction z isdefinedforall z€D.If p(z):L, O(z) isnotdefined
but neither is arg x(z) defined, since lx(z)l : 0 . Furthermore, z is
continuous in D . By (3) and (4) Nt: x a.e. Since / is quasiconformal,
it is a generalized homeomorphic solrrtion of (2), where z is defined by (+).

It still remains to show that every generalized homeomorphic solution
of (2) is a Lavrentjey map. X'or this, let z be a function satisfying the
conditions in (2). It defines a continuous distribution of characteristics
in D by the equations

p(z) - (1 -r- irQ)l )i (1 l*(r)i)

O(r) -j Ll2 (org x(z) + 1r) ,

where p is bounded. By Lavrentjer,'s existence theorern, there exists
a Lavrentjev map / with characteristics p , @ , unique up to a linear
map. Because of (3) and (5), xt: x at regular points. Theorem I yields
that f is quasiconformal. Hence, /"1 : x a.e. and / is a generalized
homeomorphic solation ot

f, Y.f , : o
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Let f, be another generalized homeomorphic solution of the same
eqnation. The combined map ,fr. f -' is conformal. Since f, : Ur. f -') " f ,

it rs a Lavrentjev map with characteristics (5).

Theorem 3. II I is a generali,zed, homeomorphic solution of (2), then its
compler d,ilatati,on ry equ,als x in its whole d,omain of de.f,ini,tion.

Proof. The dilatation ,q is defined only at regular points. At such
points, there is a one-to-one correspondence between xy and the character-
istics p,@ of /. DuetollheoremZ,the sameisvalidfor p,@ arrd ?(

in D . The equations (3) and (5) representing t'he correspondence are the
same, therefore, x7 : ,t al regular points.

Remark. As we have pointed out in the beginning of the section, Theorem
2 and Theorem 3 are valid for domains conformally equi'ralent rryith the
unit disc.

4. Local ililatation measures

\4re list in 4.1 the definitions of the local dilatations ä , ? , D, x a:nd

4.2 v-ell-known connections between thern. In 4.3 the local dilatations
a Lavrentjev map are examined. The main result established is that
and p are every'rvhere equal.

a.L. Defini,ti,ons oJ H,I, D, and, x. Let f be a homeomorphism
of adomain G and zeG. Thec,i,rculard,ilatati,on H of / at z isde-
fined as follows

max

Hl") - H (z) - lim sup -_g-
r--+ + 0 11lll1

C[

Let U,cG be a neighbourhood of a point z. The map / carries
everyquadrilateral Q, QcG, ontoaquadrilateral Q'. Let

K(U,) - slrp WI(Q')lM@)1,
dcuu

where .4{ denotes the conformal modulus. The m,arimal, d,i,latotion of f
at a is defined as follo'ws

1@) - F(z) - inf K(U,) .

Uä

Let z, e G be a, regular point for f . The ratio

max ia"f@)i
Dr@)-D(z)-L*jrl Ia"f@)l

15

in
of
H

if@*re'o) -f@)l

if@*re'o) -f(z)i
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is called the clilatation quotient of f at, z . D is the ratio of the axes of
the ellipses which the differential of f al z maps on circles.

In Section 3 we have introduced the compler dilatation N )

x(z) : Jr@)lf ,Q). It is related to D Ly the equation

D(") : (t t lx(z)l)lQ - lx(z)l) .

The function z also defines the direction of the maximal distortion. Since
O*.f(z) : L@) I .fr(") "-"", the function P",f(z)l assumes its maximal
value lf,@)l G * lx(z)l) for

o( : Llz arg x(z) .

4.2. Local clilatation measures of a quasi,conJormal mapt. The local dilata-
tions of a quasiconformal map satisfy the following relations

F(zn) : rti,::, ?(z) : rr-,_:y, ess 7(z) : lim sup D(z)

: lim sup ess D(z) : lim sup ess ä(z) .

For proofs, see 16], p. 207.
Especialll- if z is a regular point for f , the definitions of the dilata-

tions yield

Hy-,ff(z)) : ot-,$@)) : ?r,ff@)): [1 + lx1-,ff(z))fillt - lxy,(f(z))l)
: Hr@) : Dr@) : pr|): [1 + lry@))]llr - l"r@)il.

4.3. H und ? ,for ct Laarentjeu mop. Let J be a quasiconformal map.
Then p is not necessarilv defined at er-erv point, cf. 2.3. Hence, wanting
to compare H(z) and p(z) at an arbitrarv point z , \rre assume / to be
a LavrentjeY n1ap.

By the definition o{ p , it seems natural that Hy-,$(z)) is equal to
p(z) . This is proved in Theorem 4. \\:e then establish the less obvious
result that for Lavrentjev maps ,p , H , and .F, coincide at every point.
In the proof u-e use Lemma 5 on the distortion of ellipses. The correspond-
ing lemma on circles u,as used by Lavrentjev in his proof for the existence
theorem.

Theorem 4. Let f be a Laurentjett mu,1t tci,tl't characteri,sti,cs p , @ . Thp"n

Hy-ff@)) : p(z) a,t all poi.nts.

ProoJ. We assume / to be a homeomorphism of the unit disc onto
itself. This is no essential restriction, since H ar'd p ar.e local properties
and conformal invariants.

Fix a point zre D and denote En : En(It("d,@@o) ; z) . In the
image plane lr-e construct the closed annulus Ah with /(ao) as centre and
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with radii max ll(z) - J@)l and min ll(z) - f("r)l , z e E^. The ellipse

En is contained in the preimage l-'(A^). Let the closure of
a'r : gi(e(zo) , @(zo) ; zr) corrtain f-'(Ao) and have & common boundary
point'w,ith f-t (Au). Then

(2) min l/(z) - f(zil : max lf@ - l@il.
zeEp zeE6

Combined u.ith (2), the definition of Lavrentjev map yields

max l/(z) - f\o)l
lim"ot :I.
r+o rrin lf@) - f@o)l

z€Ep

Hence, the module of the annulus with centre f(zo) and with the radii
max l/(z) -f@tl and min l/(z) -f@ll, tends to zero as h->0. The
zeEk zeE6

same is valid for its subdomain f(Cn), bounded by the images of E6

and E*. By the quasiconformality of I this also holds for the preimage

Ca.
The affine transformation g which carries the ellipses En and E*

onto circles maps the ring Cn onto an annulus whose module equals

log (lclh). The map g is p(zo)-quasiconformal, so that

I
e@i 

ros (klh) < M(Cn) .

Since J1(C'r,)-+0 as h--> 0, it follows that klh---> I as ä->0.
The preimage of the circle Yh with /(zo) as centre and radius equal

to nrax l(:) - f@i] , z e Eo, is contained in d, and has at least one

point in comlnon v,ith the boundary curves En and En. Hence

lPt' k) -rä:älf-'(f(z)) - 
f-'(f("))l

ura§r -r<\- <Pk""'* L k' ph ) - 

-*i1 
7-rffeD - l u (f(roDl - h'

l(4 e Yn

wlrere ,p:.p(z;. Since lcllr,-->l as h-+0, thisyields llr-,ff(zo)):p(zd.
In Lemma 5 we need the following result on conformal maps:

Lemma 4. Let A be any conJormal map Jrom the tnit d,isc D, 0(0) : 0 .

Ior eaery e > 0 there erists a natural number n , the same for all, maps

A , suc,h thcLt

'tgy!;" I
i g (zr) zz

t7

(3)

fu a,ny p$ir of po'ints
D.)

(e
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Proof. It clearly suffices to establish (3) in the case A'(01 :1. \Ye
combine the relation

J:
\\,ith Koebe's inequalities

| -'.zt I -l lzl

(r+lzl)'<la'Q)l < 1rfr;
It follows that

A@)' L*r

- '< j, -,),'
Hence, the functions ö ,

b@):a@)p, dp1 :1,
are locally uniformlv bounded. Therefore, bv a well-knou-n theorem,
they constitute a famill. whish is equicontinuous at z,: 0 . Frorn this
(3) follows immediately, since b1r\--- I as z -+ 0 .

In the follo'w'ing we use the notation Do,,o"(p,@;z) for the ring
with boundary curves Eo,(p,O;z) and En,(p,O;z), hL < 11,. If the
direction @ has no significance, it is omitted.

Lemma 5. Let p )> L and, J be an tr-Lourentjeu map oJ D orrto fi-
sel'f such that f(0) : 0 . ?he inequaliti,es

IGrl-fki zr-io ,..t^ -\
J'kr) - ft:o) iz_ zo ' \ r/o\c1 ' cl

(4\
f("r) - f(rr) zr - zo

ar9 
1Pr1 - J6o1 - 

ar'- 
t', - to ( 1' (r' ' s)

ore then sati,sJiecl Jor euery

E tr- t\tr , h@ ; zo) w'ith o < ltP
tl p depencls only on 11 ond t

We only prove the former
in a similar \{ra\r.

If the lemma is false, there exist real numbers p) L anci t1n') 0
such that to arbitrarily small e, ) 0 and e ) 0 , there corresponds
a map / and a ring Ep.-u1o.o(p;zd both satisfying the conditious in the
lemma, and the ring containing a pair of points z, and z, for whiclr

zo e D end ony pa,ir of points ir , t+ itt

inequalit;r beca,use the latter can l:e verifiecl

(5)
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Here tu,o possibilities can occur: Either lim sup ä > 0 , as e, , e --> 0
or lim h, : 0. fn the former case rye apply the follou,,ing theorem of Lav-
rentjer, [5]:

Let J tLe an, er-Laurentjeu ru,ap of D onto i,tsel,J such that ./(0) : 0 ,

/(1) :1. ?tten

lf(z) - zi < ).(er) ,

uhere i iepend,s only on e, an,cl lim 2 : 0 as e, --> 0 .

From this result it follows immediately that (5) cannot hold for all
positir.e values of e, .

In the latter case lim å : 0 . We note first that there is no loss of
generalitv of rve assuma ?n: f@o) : 0 . In order to see this v-e continue
/ b1' settin_a

!@ - tfqztl-' .

Let Z rrap the disc ]z] < 2 conformall;. onto D such that ao is carried
to the origin. Then

t9

_ Z(rr) zL ;o
ll' Z (rr) ^J.d :o

Since /i *- {,} äs Er , r -> 0 , the ratio

Z (.zt) ,, za

Zfa';1 :=o

js thelt Eirflitrarilv near to unitv for .!'1 and
arsrllnellt can be Llsed to show that Jkå -=

l\-itir the asslrmptions z{} : J{zn) - 0

tire fi-lr'r:L

(6) l{*+ -_ -t, >J \-:' -z

r small enough. The satne
0 is no essentia I restri ction .

the ineq.rality'(5) assrrmes

]i tt

fu\12-ii/-
t /-0.L

rvlrere :i € Err_*)r,, o 0t ; A), i : 1, 2.

Let, O be anv conformal map from D, O(0) : 0 . From Lemma 4
rve conelnde: For any q > 0 there exists a natural. number zz, such that
for all points in 8.. .,, r (p;0)' (r .,

(i)

fcrr tt, )-. tit

| fr (zr) ',, z, _..r' fr @r)

iaeJ: - ;, \,frt,) zL ti."/
i-

zzi 2
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Let mo be the number corresponding to 4o . Since lim /i : 0 , we

can choose ft, such thal moh < 1 . Let G be thel-image of {zlie', < moh\

and r the distance of its boundary and the origin. The function F ,

is an er-Lavrentjev map, which maps D onto a
G alld containing the unit disc. Since f satisfies

domajn T, sirnilarto
(6), E 

rr--) -1-, -,0- 
(P ; 0)

, s*ch that 
rrro 

'rto

onto T such that O(0) - 0 ,

g \4.ith zr -- ctr:

(8)

Let g be
g(L) -- r(1) .

(e)

(r 0)

On the other hand,

a conformal map from I)
We apply the result (7) to

b (nr) I al
g(") -,

17a

2'
nd

170

o2

Combined with the triangle inequalitv, (8) a (e) vield

b (*r) F (ctt)

O1"r1 Ft"l

(I1) ifr@,)\>(1 -')l*o, i:t,2,
because the domain ? contains the unit clisc.

Let e ( ll2 and choose e, so small that. for eyery z e E,r_r* j; (p ; (t) ,

(12) jA@) - F(")' < t1oif{run(L I 2p * ,io)l .

This possible because of Theorem l' [5]:
Let ? be an er-Lcturentjet ntap «ncl A a conformal map, both J'rom the

urtitdi,scontoaJordatzdomuin G suchtkat F(0): A(0):0, 1'(1) : g(l).
Then there eri,sts a function )"(er, r, d), e, ) 0, 0 < t' { 1, el > 0

d,enoti,ng the tl'istcr,nce between b(0) and the bounclcLry ,f G , tL:lt.iclt tend,s

clecreasi,ngly to zero u;ith e, , such tlrut

l0(")- J,(z)l < 2(er,r,cl)
for z1r.

BJ, (9), (11), and (12),

F(or) A@r) ,', . I I @(ar) , O@z\ tto
< max l-F'(a;) - A(qt'r@,rf o@r) i--r,: ) 

-agr1 - rgS- o1,r,) - 2

This is in contradiction with (f0).

"i 

I (ot)
l,l, P @r)
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An estimate derived from Lemma 5. Let f be an er-Lavrentjey rnap
satisfying the conditions in Lemma 5. We use the inequalities (a) to ex-
amine the distortion under f of a fing E bounded by two similar ellipses.
Since the inequalities (4) are invariant under similarit5r transformations
of lhe z- and /(z)-plane, $'e may assume that E has the form
E : Do,,o,(p ,nl2;0) and /(0) :0 , f(iphr) : iph,. By (a), any point
z€E thensatisfies

(i)
ilf@)i - irit <qptbz

larg f (r) arg zi < q tl-tlp(ur,1-hrlhr)

Because of Lemma 5. \,\,'e can choose s1 and I - ltrflt,, so small that

(i)'

21

We also require

(i)"

\4ie \r'ant to show that there exists a ring
such that

Hr: ht\ - Crrl)

Hz: hz(L * Cz1) ,

lrhere Cr and Cz are positive constants.
Denote

- I I t+tantzr
A(r) : n ), ,r_r^rrv.

The point u,ith polar co-ordinates r : ht R(x) , ,p : r , iies on the ellipse
Eo,(p,wl2;0) and rnav be transformed under f to a point r.vith
r:hrE(x)-qp1tr, ,;-)j 1q, lx-ltj. Similarlv, the point on
Eo,(p , nl2 ;0) in the direction n has polar co-ordinates r : hzR(r) ,

g : *. Hence, E must cover the points with r : hz*(x) { qphr,
d. - 11 <Ezaef 4. Becauseofsymmetry, we mayassume a € [- n,nl2 + q).
In fact, it suffieesto considerthe cases Er:a*\, a€[0,nf2-t1f ,

Vz: e-1t aelq,nlTl. This yields the inequalities

hr(t Cr?l) A(* * U) < lt, R(a) - Tphz

hr(r + CzT) .B(* - li) > h,, R{x) -r- Tphz

E - Vru,,H,(p ,nl2; U) , fr ) ,f(E) ,

(ii )
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The mean value theorem applied to the function -E yields

lR(" * n) - R(")) l rtp'(p'- I) .

The inequalities (ii) are thus satisfied for

Cr: 2p I fl'(p' - L)

Cz: ? * tt'(p'- l) .

Hence, by (i)' and (i)", there exists a ring A = f1E1 such that

(14) HrlH,th,rfh,*ll2p * 8p2(pz - r[rlo (u,,1- hrlhr).

Remark 3. Let a sequence of er-Lavrentjev maps gn converge uni-
formly towards a Lavrentjev map g . If the conditions (i)' and (i)" are
fulfilled for g*,nlno, and a ring B : En,,o"(p,O;z), then (14) is
applicable to the limit function g and E . This follows frorn the fact
that g satisfies the inequalities (i1) rvith q : t,1r(t, . I - hlh) .

We are now prepa,red to establish the main result of this section.
Theorem 5. Ior a Laurentjea map p(z) : H(z) at all poi,nts.

Proof . -l'1 and p arc local properties and conforrnal invariants. Hence,
we can assurle that f maps the unit disc D onto itself such that /(0) : 0 .

B;r the proof for the existence theorem, there exists a sequence of Lavrent-
jer,,maps f,,f"e Ct, å(0) :0, such that f^->/ uniformlyin D. Ifore-
or.,er, the characteristics 1c, , O^ of f, converge uniformlSr to the character-
istics p,O of / in D.By thisrvemeanthat p*-->p uniformlyin D
and O, -+ O uniformll- in everv closed subset of D not contaitring points
at which p has the r.'alue l.

Lel zoeD, and denote )-o(zo) - {, , -- ?t, : kt\. \1'e l'ant to sh"orv

that for all sufficientlr. small values of ä. the/-irnage of I'n(zo) is covered
by a ring E,,u(p@o);JQo)), tLrere b;a is arbitrarily near to unity.

The first step is to sholr- that to e'i'ery s, ) 0 , there corresponds a
natural number nt such that ever5, map l, , n ) rzz , admits a represen-
tation

l*:- (f* " f ;') o f,n ,(15)

u,here J^. f ;' is an er-Lavrentjev map.
In otherwords, it must be proved that the characteristi" pI^ of J,,,.f-r

is at most I -i- e. . \Ve shorr this b;r direct computation. For'the composed

rnap we have

'if,,,.f1,] (J,"Q)), :

Let K - srlp srlp p"(z) .

tlz

3:?_?:(::) ,

1 xf,,(z)r"r*@) 
i

t {bllor,r,s that

nJ;,(r) xr*(z)',

1 ',x.fnQ)xy*Q) r

I
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llxy*@)l 1xr*(z)l ez 
i (o m - o 

") I

lrr*"r; (f *(r))i <

I
z lp*@) - p"(z)l

For eYery sr ) 0

% 7 rn and eYery z

lK r\2I l_ r

\zr + tl
there exists a natural number n't, such that for all

e D either

(16)

(1e)

or

(17)

Hence . if (16) holds

l*r^"r-,i ff^@))i ! erl Q { er')

and so
p}^ff^("))(Ifet.

In the case of (17), we assume e, ( I and use the inequality

pl^(f^(z)) <-p,(z) pr;$^(z)) : p"(z) p^(z) 1l * er ,

cf. 1.,t. The representation (15) v'ith the desired properties has thus been

established.
Fix a point zre D. Given an €, 1> e > 0, u'e show that for

n ) nr, (.1 < h t ho, no and h,, depending only on e , the f,-image
of l'o(eo) is covered by aring Eu,,r,(p(zr);f"(zd), where HrlHt ( I f e.

Choose e, ) 0 and e, ) 0 so small that

(18) ,

Together with (16) or (17) we finallv require

lp"@) - p(z)i I s2 ,

ItZ

tt +- t;'

z e f), fur all sufficiently large values of n .



where

(1e)'

Since p.r,l$*@o))

where
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Let no be an integer such that (I9), and (16) or (17) are satisfied for
n ) no, and fix a map /- , m ) nr. The reasoning in Theorem '1 is
applicable to f;', since ,f;' i. a Lavrentjev map. It follows that there
exists an ho) 0 such that, the /--image of any circle Yo@o), h aho,
is covered by a ring

Et : E*,,r",(ny;(f,"@o)) , @tÅ, U*@o)) ; f^(zr)) ,

: p^@o), the ring EL lies in a ring

Ez: En,,o,(p@) ,@r;,](f*@i) ; f,"(rr)) ,

hz , kz lp*@i p@i 
1

By (1e) and (1e)'

(20)

The functions !^o f-L are er-Lavrentjev maps for n ) nr. The esti-
mate (14), combined with (20) and (I8), yields the result that the l""f;'-
image of D, is covered by a ring

Ea: EH,,u,(P@o) ; f^(z)) ,

where

HrlHr(1fe.

The same is valid for the /,-images of the circle Yo@i , h t ho. n ) ns ,

since /,(Io(zo))c (f^"f;') (,Er) . As n'--> @, the functions f^ conYerge

uniformly towards f . B,emark 3 with g*: f.. f^' implies that also

(f . f;') (Dr) c Er,.r,(p(zo) ; f@d), where HrlH, ( I f e. Since

f(Yo@oD c (f " f;') (Er) , the theorem follows.
The following result is an immediate conclusion of the above theorem.

Corollary. nor a Laarentjeu map F(z) : p(") at all poi,nts.

Proof. By the above theorem, H equals p , so H is continuous.
The equality

I(z) : lim suP ess ä(z)

therefore yields I(z) : H(zo) : p(z) for every zo.
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5. Counterexamples

We show in 5.1-5.2 that neither the composition of two Lavrentjev
maps nor the inverse of a Lawentjev map need be a Lavrentjev m&p,
and in 5.3 that Lavrentjev maps form a, proper subset of generalized
Lavrentjev maps. We conclude the paper with some examples of non-
differentiable LavrentjeY maps.

5.1. Compositi,on of Laarentjeu maps. Let us consider the map fr,

fr(r) - z n$tos l'i)'/' .

f'rom

we conclude that *y,: ff)rlffr), is continuoos also at z:0. Herrce,

l, is a Lavrentjev map.
We combine /, with the affine map å,

fr(w) : u t i, Ka t ln : u { i,a, K> l.
tr'rom

x7,: (r - K)10 + K),

lzy,l --+ 0 as z -'> 0

we conclude that,

r-K
\,.1,(") :, + K "-zi(tog')'t' + e(z),

where e(z) -+ 0 as z ---> 0 , Hence, %f""h is discontinuous at the origin,
and /, " /, is not a Lavrentjev map.

6.2. Inuerses of Laurentjea maps. tr'or the homeomorphism /,

(fr),(r) - + + (log lzl)-zt3 ei(ros iz )rra

(1)

lYe have

J@)- lr * i Kyl ri(togi')''' ,
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r I t .-1
l,@): Z Lr* v+ zzlrli,Kvl(loglzl)-'zi31 "i$ogzt':x,

r - K * i(r * i, Ky) (log izl)-'r31sz;-r
tur\'t - l + K * i(r * i,Ky)(log lzl)-'tr1lz)-r'

Since zy is continuous, / is a Lavrentjev map.
For the complex dilatation of the inverse map ,/-1 rrye have

xy-,(f(z)) : - ry@) r2iaryr'Ql

As z-+0, ry--->(l - K)10 f 1() and argf,-> - co. Hence, zr-, is

discontinuous at z : 0 , and 7-r is not a Lavrentjev map.

5.3. Laurentjeu magts ancl, generalized, Laurentjeu nlaps. The inr.erse
of a Lavrentjev map / is ahvaSrs a generalized Lavrentjev map. Tliis is
seen as follows. Let zo and fo : I@d be regular points for f atd f'l ,

respectively. From

/iIfJ : 
ä f,@i,,ri--'(§o) : ä f,@,),

it follows lhat, f-t is a generalized homeomorphic solution of the equation

,f.='(6) a ,7(I-' (6))/-.. 16) : o.

By 3 (1), ,f-' i. a generalized Lavrentjev map.
The inverse of (1) is thus a generalized Lavrentjev map but not a Lav-

rentjev map.

5.a. Non-differentiable Laarentjeu maps. Tbe map f ,

(2) f(") : /0 - log lzl) ,

possesses a continuous complex dilatation

xy@) - zll22(312 - log lzl)l .

The inverse map satisfies

xr-,(f(z)): - xt(z) ,

so that also /-1 is a Lavrentjev map. It is not, differentiable at e : 0,
for limlzl!@)l: a as z--0.1 From (2) it follows that ft-,(0) : I,

Slightly modifying the above example we also get a Lavrentjev map
which is non-differentiable at a point z at which p(z) > I . We set
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f(") : lKr * dy)ll - log lzl) ,

and conclude that the inverse of / is a Lawentjev map.
As above, we shou' that l-L is non-differentiable at the origin. fn

this case, ?t-,(0) - K .

A third example is given by the Lavrentjev map Å in 5'I. It has no

partial derivatives at z: 0 . However it, satisfies the equations

lim soup lfr@)lzl: liminf if ,@)pl : t .

Universit;r of Helsinki
Helsinki, Finland
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