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1. Introduection

The classical Dirichlet problem in the plane is: Given a bounded plane
region with prescribed values on the boundary, determine the function which
is harmonic inside the region and obtains these boundary values. When
encountered in practice, this problem has been subordinate to certain
restrictions on the regularity of the boundary and the boundary values:
they have been piecewise analytic. Hence it does not seem to be too restric-
tive for the applicability of the results if an investigation of the error of
specific practical approximate solutions is subject to the same limitation.
On the other hand, particularly considering the usability, only piecewise
analyticity has to be required, because the common practical situation —
almost without exceptions — is that the boundary curve is composed of
several analytical arcs on which piecewise analytic boundary values are
prescribed. Therefore corners where different arcs meet forming some interior
angles am with x <, =or> 1 have to be taken into consideration.
This is important to notice, since specifically the corners originate the sin-
gularities whose presence is significant when estimating the precision and
serviceability of an approximation method.

When finite difference approximation on a square net with mesh size
h and with the simplest five point difference operator is used the crucial
effect of the corners has been previously noticed. It was shown ten years
ago [5] that if the pointwise error is to be represented in the form O(%),
then the exponent x is decisively dependent on the greatest angle. More
precisely, if the greatest angle is « #z and no requirement on the continuity
of the boundary values at the corner points is presumed then the »x to
be used in the estimate is

[2, if o <1/2;

(1.1) ® = .
1 ljx—e, 6> 0, if a>1/2.

Though these results were given as valid for any subdomain excluding the
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corner points, the material outcome of the proof can be given in the more
informative estimate for the discretization error at a point P :

h\*
o] < KX (;—)

where K is a constant, independent of A and P, the summation contains
terms corresponding to all corners, r,’s are the respective distances of P
from the corner points, and x,’s depend by (1.1) on the corresponding
corner angles. The estimate is valid for any point which has all its 7, values
> kh, where k is a constant independent of % . When the result is
represented in this form, one immediately notices that as a matter of fact
the restriction on location of P is unnecessary, because in any kh -neigh-

h
borhood of a corner the quotient - is bounded away from 0 and on the

other hand [0x| is bounded by the maximum variation of the boundary
values.

For piecewise analytic boundary values which are continuous at the
corners it was shown that

(1.2) x=2, if x<1.

More precisely, the proof implied the existence of a constant K such that

2

[ K KX o

is valid outside some k% -neighborhood of the corner points. Actually, again
this restriction is unnecessary, because the proof contains a statement that
on = O(r) and in the excluded neighborhood this, of course, may be replaced

2
s o)
r

In another paper [6] the following conjecture on the behavior of the
discrete solution in the corner was made:

(1.3) Jo—Jfo= 00",

where f, is the value of f at the corner point. According to the paper,
this should imply for corners with continuous boundary values the point-
wise estimate

(1.4) oh=00F), n=2/0 —e,e>0, for a >1.

Two years ago Hubbard in a symposium talk [3], which was partially
based on common work with Bramble and Zlamal [1], gave new results on
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the effect of singularities on the discretization error. One of the implications
is that the error in the case of continuous boundary values is

0| < KW ,x=1/x —e,e>0, for 1/2<x <2

uniformly in the region. As far as the dependence on % is concerned for
obtuse angles this result is weaker than the previous result (1.2) (only as
good as (1.1), valid for discontinuous boundary values) and for concave
angles weaker than the conjectured expression (1.4). However, by explicitly
stating for this weaker expression its independence of r it immediately
leads to the conjectured behavior (1.3) (only »* with » << 1/x replacing
r/*) and so enables one to prove the more precise result

[On] << KRM>—% p=tate o> 0, for a>1.

For two reasons in the following, where the main goal is proving of
this estimate, however, Hubbard’s result has not been used, though  this
would have shortened the longest section, the third, to a few statements.
For one thing, now the proof is accomplished consistently with those in [5],
solely by modifying Gerschgorin’s method, without need to resort to results
obtained by discrete Green’s functions. More material, however, has been
the wish to avoid those restrictions on the placement of the mesh which
burden the results in [1] and [3]. After the preliminaries in section 2 and
the auxiliary theorem in section 3 the main result is proved in section 4,
whereafter a concluding section summarizes the outcome of the previous
and the new results.

2. Preliminaries

Since the result of this paper actually completes the previous paper [5]
by discussing the case with continuous boundary values and greatest angle
reflexive, which earlier had not been settled, similar notations are used: D
is a region in the plane, B its boundary composed of a finite number of
arcs, each of these being analytic including the endpoints; D, denotes the
net of those mesh points of the square grid of the plane which lie in D or
on B; f is a given boundary function, piecewise analytic in the local arc
length of B; f(x,y) is the solution of the Dirichlet problem corresponding
to D and f; fa(x,y) is the discrete approximation of f(x,y), defined
as the solution of the difference equation

Mful,y) =2 [fale +N,y) + fulx, y +0) + falx — 1, y) +
fu@w,y — k) —4fi(x , )] =0

when the boundary conditions have been taken into account in a manner

(2.1)
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to be described hereinafter; du(z,y) is the discretization error, i.e., the
difference of fi(xz,y) and f(x,y) at points of D, .

An equation (2.1) corresponds to each regular interior point of Dy,
i.e., to those points whose four neighbor points also belong to Di. The
remaining irregular points in D), are so close to the boundary that at
least one of the neighbor mesh points should lie outside the region. To have
the necessary equations for these points, too, several methods have been
applied. In the paper [5], to obtain the maximum accuracy, the linear
extrapolation principle proposed by Collatz [2], was used: If the mesh line
through an irregular mesh point P(z , y) cuts the boundary B for instance
at (x —ah,y),0 <« <1, then take the neighbor mesh point at the
opposite side (x + A ,y) (or, if this is outside the region, the boundary
point (x 4 Bh,y),0 < p < 1), and require the linearity of f, on these
three consecutive points, of which at least one carries a prescribed value
Of fh .

Another means to supply the irregular points with corresponding linear
equations is the adoption of the irregular difference schemes for the Lap-
lacian (see, e.g., [3]). The so-called Shortley-Weller scheme uses for instance
in the above described case the linear combination

2
(x + p)I

to replace the derivative f..(x,y) and in a symmetrized form the com-
bination

1 11 1
[;fh(x—ah,y)—(; + E) fh(x,y)+/§“fh(x+ﬂh,y)]

1
B

In the following it will be assumed that any of these three methods is used.

Expansion of f(x,y) in the first terms in its Taylor’s series at an ir-
regular mesh point P shows that if Collatz’ method of boundary adjustment
is applied then

171 1 1
5 [;fh(x—och,y)—(‘; + E)fh(x,y)Jr fh(x+/3’h?/)}'

(2.2) 10(P)| <5 104(@Q)] + KM@,

1
2
where @ is the neighbour mesh point used in the linear extrapolation and
M® is some upper bound of the respective »:th order derivative of f
on the three point mesh line segment. In case of either of the two five point
crosses on an irregular mesh point P the corresponding estimate is

(2.3) [0w(P)| < :lt 2|0(Q®)| + m2M®@
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where the sum contains at most three terms corresponding to all neighbor
nodes QW of P belonging to Dy and M® is an upper bound for the
second derivatives f. and fy, on the four legs of the mesh line cross at P.

3. The behavior of the discretized solution in a reflexive corner

The first derivatives of the solution of the Dirichlet problem in a corner
am > depend on the distance r from the corner point by a function
0@y (see e.g., [4]), which implies the behavior O(r''*) of the variation
of f. In [6] the conjecture (1.3) was made that this is true also for the
discretized solution fi. In the following a theorem will be proved whose
limiting contents (for &— 0) would confirm this conjecture.

Theorem 1. If the plane region has a corner at O with the interior
angle am,x > 1, between two analytic arcs, where the analytic boundary
values on both sides have the same limit f, at the corner point, then there
exists for each ¢ > 0 a constant K such that the discrete approximations
fu of the Dirichlet problem solution have a variation

o — fol < Ert=c, >0

where r is the distance from the corner point; however, if r < /2, then
the right hand side must be replaced by KAr'*~*.

Proof. Obviously it does not essentially restrict the general validity
of the proof when in following the value f, is normed to be fo = 0.

Introduce a local polar coordinate system (r, @) with » =0 at the
corner point O and ¢ = 0 the bisector of the interior corner angle. The
analyticity of the corner sides implies, for any &> 0, the existence of
positive constants «;, with

o —e < 1oy < 1/,

and 7, such that up to the distance r; the region is located totally in the
angle

lp| < oym/2.
r, may be assumed to be so small that no other corners belong to the circle
on O with radius r,. Choose any positive constants x; and x, subject
to the inequalities
o —e < < lfxy < 1o .

Consider first the strictly concave angles «m > 7 ; at the end of this
section a remark will be included to substantiate the correctness of the
proof for the limit case « = 1.
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The function f, will be compared with the function KF(P) where
F(P) = F(r, ¢) = 1"[cos xp — ¢,]
¢; = cos (xx7/2) > 0

and K will be determined later. Let & be another positive constant which
also will be determined later. When only mesh constants % < r,/k are
considered, then there exists for each A an annulus with the fixed outer
radius r; and the %- dependent inner radius kk. The mesh points in the
intersection of this annulus and D will be denoted by D, , and in parti-
cular the set of the regular interior points by D, , and the set of the ir-
regular ones by Dy .. By the definition of the parameters «,, &, ,# and
r; we have

(3.1) F(P) > b, PeD,,

b = cos (xx;7/2) — cos (xx;7/2) > 0 .
The discrete Laplacian of F in D, , is
AF = AF + RPOFW)
= —cp® T ++ K200 Y

k2
— ——clx2r"‘2[1 + 0( )]

7”
where F® stands for an upper bound for the absolute values of the i:th

derivatives of F on the mesh line cross in question. The last expression
implies the existence of a positive constant £k, such that if £ >k, then

1
(3.2 MF(P) < — = e~ 7, PeD,,.
2 1 s

Later on £ will be submitted to a second similar condition.

Besides fr, which is defined at all interior points D, another discre-
tized function, f¥, will be considered which is defined on D, ,. For this
purpose D, , must be completed by the necessary boundary points, which
are either mesh points outside the circle » = r;, mesh points inside the
circle r = kh, or points of Bi. On all these boundary points the value
of f is also given for the function f¥. Then the requirement A,f# = 0
defines fif uniquely in the interior points D, ,. Let 0f =fF —f. Its
discrete Laplacian on D, , is

1 &
Mdf = — if = — 5 IEM® = 0= = = 02,
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Hence for a suitably chosen positive constant K’
|AwdfF| < K'r*~?

on D, ,. If K is chosen to satisfy the inequality
1

(3.3) 3 c*K > K’ ,

then by (3.2) the discrete Laplacians of

(3.4) KF + &f and KF — §F

are negative on D ,.

Next an argument by contradiction will prove that if £ has been chosen
great enough then there exist constants K so large that for any net these
functions are positive on Dy, ;, at least for sufficiently small mesh constants
h. The opposite assumption implies the existence of a monotonically de-
creasing sequence of mesh constants, 7%, %y, ..., such that for any &,
there exist a set D, ,, a point P, on the subset D;:wk of D, ., and
a constant K, such that the two functions (3.4) for K = K, are non-
negative on D’Zwk’ and at P, one of them vanishes, and the factors
K,, all satisfying (3.3), increase indefinitely with » — oco. These functions
then are also non-negative on D,',v, ke

Let @ be the neighbor nodes of P,, whereby their number is either
1, 2 or 3. From the relations

0F(P,)| = K,F(P,)
OFQY)] < K, F@Y)

and from the equations (2.2) or (2.3) we deduce the inequalities
1
K, [F(PV) -3 F(Qﬂ)} < BRM®

in the first type boundary adjustment, and

1
K [F(Pp) — EF(Q(";))} < M

v

in the second and third type boundary adjustments, respectively. Since
the points @, have distances <h from P, we have

IF(Q(:)) —FP) < MFY — kO(Tz—l) )

This leads, by the above inequalities, to the relation
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1
K, [74 F(P,) + how-l)J < BN,
or in view of the lower bound (3.1),

i K, F(P,) {1 + 0 (Z:—)J < BM® .
The expression in brackets implies the existence of a constant k, such
that if k& > k,, then for P, belonging to D, ,, this bracket is greater than
a positive constant. This leads, however, to a contradiction with the pro-
perties (3.1) for F, M® = O("*~?), and with the possibility of K,
increasing indefinitely.

The existence of such a constant K thus assures that the functions
KF 4 6F are positive on D, , and have negative Laplacians on D,
irrespective of A which however has to be sufficiently small; thus the
inequality

ol < KF
is found to be valid in D, ,. Considering the behavior f= O('*) = O(*)
of f this implies the existence of a constant K such that

(3.5) I < UL+ Jor ) < B

is true for any sufficiently small %2 in D, ,.

Now it will be proved that a similar bound is valid for an extension
function f* of f¥ to mesh points with » < kh. Assume that K is so
large that

If| < Kb
in the intersection of D, + B and the circle on O with radius kh, and
¥l < KW

in the intersection of D, , and the circleon O withradius (k£ + 1) . The
existence of a constant subject to the former condition is motivated by
the behavior of f in the corner, mentioned above, whereas the second
condition is a direct application of (3.5). We will now define f§ and prove
the existence of a constant C, dependent only on the number %z of mesh
points in the intersection of D, + B, and the circle on O with radius £,
such that

If¥ < CKh*.
To this end we will join to D, , those points P, P,, ..., P, with
r << kh which were previously excluded from D, , and which are not

among its later associated boundary points, one at a time; first all mesh
points, then the intersection points of mesh lines and B. Let the value
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of f be given at the point P; at the time the point is joined to the set,
whereafter the necessary revaluation will be performed in the entire point
set D, -+ P, + Py+ ...+ P; in order to bave the discrete Laplacian
vanish at each interior point. The new function may be called f, ; with
fu.o = fi; define f, , = f¥. The difference of f,; and f, ;_; will now be
evaluated.

The adjunction of P; to D,,+ P, + ...+ P;_; may change the
status of some of its neighbor mesh points in the previous set from boundary
points to interior points. If none of them changes status, then f; ; = fu,;j_1-
Let now Q be a neighbor mesh point where such a change happens. In
general the value f(P;) does not suit to the previous values f, ;_; at @
and its other three neighbors to make the discrete Laplacianat ¢ vanish.
If M;_, is any upper bound for f,; _, at @ and at those three previous
neighbors, then such a fitting valueat P; would be absolutely <7 M;_,,
thus at most 8 M;_, different from f(P;), if M;_, isalsoanupper bound
for |f| in 7 < kh. Therefore the change from f, ; ; to f,; must be
absolutely less than 8 M; , everywhere on D, .+ Py...+ P;_,. If
M;_, is defined as an upper bound for f, ; not only at @ and its neigh-
bors but at all pointsin 7 << (k -+ 1) where this function is defined and for
f in r <<kh, then

Mi<9M j—1-

This recursion inequality shows that C = 9" is acceptable. Since the
number # has an upper bound which is determined solely by k, the
existence of a constant K* has been shown such that

(il < K*h

is valid at mesh points with r < kk. In this inequality the power A”
may be replaced by »* at all points with » > A or even at all points with
r > ah, with a > 0, if the factor K* is modified correspondingly. By
choosing @ < % the rule hence is obtained that this upper bound is Kr”
for all points eventually with one exception, the point lying closest to the
corner point; for this point the bound is KA*. (A closer study shows that
this exception is unnecessary for x < %).

As to the fi in the circle r <, one notices that its difference from
f# cannot be greater than their difference on those boundary nodes of
D,., which are outside this circle and where f¥ was defined to coincide
with f. But according to [5] this difference, the discretization error at
these points, is O(h*) and hence does not essentially change the result.
Finally the very same kind of bound is found to be valid also outside the
fixed circle r = r; simply due to the fact that fi is bounded there.

If ¢ < 1/x, then the choice » = 1/x—e& completes the proof of Theo-
rem 1; in the opposite case the validity is obvious.



12 Ann. Acad. Sci. Fennice A.I. 408

If the angle, instead of being > x, is = x, only a few modifications
in the above proof are necessary. The essential reason for these modifications
is that in the case « = 1 the upper bounds for the »th derivatives of f
is not M® = O@'*~*) but M® = O@*~?|Inr|). However, in those two
cases, where such bounds have been used, these actually have been needed
in the form M® = O(*~*) which now for » <« =1 is implied by the
M® = O@*~* [Inr|). — The very same argument may be applied in the
next section to establish the correctness of the result for &« = 1.

4. The discretization error

In the following theorem only one corner is considered but the general-
ization to any finite number of corners is apparent.

Theorem 2.  The discretization error d, in a region with its only
corner of the type explained in Theorem 1 depends on the mesh constant
h and the distance r from the corner point by

féh{ < KhZ/a—2g 7.—1/04+8 , € < 0

Proof. Let oy, a5, % 1, ¢, b be the same constants as in section 3.
To apply Gerschgorin’s method use the majorant function

Gi(r , @) = B [r7"(cos #p — ¢;) + ¢,
multiplied by a constant to be determined later; here ¢, is any constant
Co > (24c¢y) 1™

G is obviously positive on D + B. By almost identical arguments with
those in connection of A4F in section 3 the following result is obtained:
there exists a positive constant k& such that in the regular interior points
D, ,, of D, , which is obtained from D, by excluding points with r < kb,
we have

1
dApGh(z , y) < — 5 cpph TR

The discrete Laplacian of 0, on the other hand, in D, , is
Mwbn = — Anf = R2O(M*~%) = K700~ *7%)

Therefore if K is sufficiently great, say K > K’, then both KGi -+ 6
and KG, — & have negative discrete Laplacians in D, .

Now consider these two functions on the irregular points D, ,. For
each value of £ and some corresponding mesh the factor K can be chosen
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so great that the functions are non-negative on Dj ,. But how do the
sufficient coefficients K behave for »— 0? Especially, is
(4.1) lim sup max  |[0n(P)|/Gr(P)

h—>0 PGD'/:’k
finite or infinite? An argument by contradiction will now show that it
is finite.

If this were not true, then a monotonically decreasing sequence of mesh
constants, hy, ke, ..., could be chosen such that to each %, would corre-
spond a set D, ,, a point P, € D;,'r, w» and a constant K, > K’, for which
the functions

K Gy, + On, and K,Gh, — On

v

are non-negative on ‘D’I'/p»k and one of them vanishes at P, and moreover
lim K, = co. From these facts and from the definition of K’ it would

y—> 0

then follow that
(4.2) |6h,(Q)I < KVG}.,, @), Q€ th,k
(4.3) |0n,(P,)| = K,Gh, (P,) .

Let o, be the distance of P, from 0. Next it will be shown that
lim g,/h, = 0. This is a consequence of estimates for both sides in (4.3).

y—> 0

The left hand side has, by Theorem 1, an upper bound
1\
0P| < Klo, + 1y < K 1+ ;) (e, )"
whereas the right hand side has, provided ¢, <r;, the lower bound
K,Gi(P,) > K, bki(o,/h,)” "

This comparison gives the inequality
by > K ’ /1 1)_,,
(@v/ 'v) > K, - K ( + Lk

which implies the indefinite increase of ¢,/h,. If 0, > r; the same con-
clusion is evident.

Since P, cannot belong to the kh -neighborhood of O it is an irregular
interior point of the original set Dy and hence either (2.2) or (2.3) is appli-
cable there. When (4.3) is used on the left hand side and (4.2) on the right

hand side, the respective inequalities

1
(4.4) K, |Gy, (P,) — 5 Gi(Q)| <WM®
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1
(4.5) K, |Gi, (P,) — 7 26, Q)] | < 12N

are obtained, where the Qs are the respective interior neighbors of P,.
In (4.4) the left hand side bracket may be estimated on the basis of the
character of G4 = O(r™*) by

1

Gn,(P,) — ) G, (@,) Gu(P,) + K10 *—1)

Il

Wl = bo| =

b g7 (1 + O(hyJa,) )

\Y%

if o, <7, and by

1
Ghv(Pv) -

1
3 Gn(Q,) > B B¥ry (1 4 O(h,[ry) )

1
> 5 oy (1 + Olhfo,))

if o, > r;. The right hand side is
B2)@ — hZO(g},"“‘z) _ 702”0(9:”) .

so the inequality (4.4) is incompatible with the indefinite increase of K,.
Similarly the inconsistency of the inequality (4.5) where X contains at
most three terms is shown.

This brings the argument by contradiction of the finiteness of (4.1) to
a conclusion, which proves the existence of a uniform constant K’ such
that K"'Gj — |0s] is positive on D, ,. Obviously this result may be
modified to assure the existence of a constant K such that

(4.6) 0] < Kh* v~

is valid on D, ;. As a matter of fact, the region of validity of this estimate
may be extended to the entire D because in section 3 it was found that
at points with » < k% estimates 'f — f,| = O(h*), |fu — f,| = O(k") and
hence |0x] = O(h*) are true, which directly verifies (4.6) on Di — Dy ;.
The choice » = 1/x—e¢ in the case ¢ << 1/x completes the proof; in the
opposite case the correctness of the claim is obvious.

5. Some final remarks

In the cases of discontinuous boundary values or of continuous boundary
values and convex angles estimates for the discretization error, described
in the first section, were derived in [5] for the Collatz type boundary value
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adjustment. However, it is quite apparent that the two other schemes
applied in this paper could also have been applied there. It has already been
pointed out that it is unnecessary to restrict the region of validity of the
estimates to a subdomain which excludes the corner points. Therefore the
following theorem, which summarizes the previous as well as the new
results, is free from restrictions of that type:

Theorem 3. TUnder the assumptions of piecewise analyticity of boundary
and boundary values described in section 1, when the simple five point
difference scheme for the discrete Laplacian and any of the three boundary
value adjustments described in section 2 are applied, the discretization
error d, of the Dirichlet problem solution can be estimated uniformly
in the region by

|0n] < K(Zhvr; ™ + h2);

where each corner contributes one term to the sum and r, is the distance
from the corner point; the exponents depend on the respective corner angles
x,7 by the rules:

for discontinuous boundary values at the corner

%, =2, =min (2, l/x, — ¢) ,
for continuous boundary values at the corner

%, = min (2, 2/x, — 2¢),

A, =min (1, I/x, — ¢);

& is any positive number and K may depend on .

As to the relaxation of the requirements on the analyticity of the bound-
ary curve and the boundary values, the following remark may be put forth.
The actual significance of analyticity is its bearing on the assumption that
for the nth derivatives (n << 4) of the solution of the Dirichlet problem
have the behavior

J =06
at corners with discontinuous boundary values and
owt—m, x <1
f®= 00" " nr|), x=1
or'*=ry, x> 1

at corners with continuous boundary values. If this behavior at the corners
and the continuity elsewhere is secured, and some vicinities of the corners
can be covered by circular sectors with angles (x + %)z ,#n positive but
arbitrarily small, then the essential conditions of the theorem are satisfied
and the analyticity is unnecessary.
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