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Some remarks on Picard sets

1. By the definition in Lehto’s paper [4], a Picard set E means a totally
disconnected closed set in the extended z-plane, in whose complementary
domain £ each single-valued meromorphic function f(z) with atleast one
essential singularity in E takes every value infinitely often except for
at most two values. Our definition given in [7] is slightly different from
Lehto’s. We restricted the class of functions f(z) in the above to that of
functions f(z) with E as the set of essential singularities, that is, we called
E an n-Picard set, simply a Picard set for n = 2, if each f(z) with E
as the set of essential singularities has at most = exceptional values at
any singularity € E. Now we call £ an n-Picard set in Lehto’s sense
if each f(z) with at least one essential singularity in E omits at most =
values in the intersection of £ and every neighbourhood of any essential
singularity (€ F. We remark that omitted values may be taken by
f(z) at points of E where f(z) is meromorphic. Of course n-Picard set
in Lehto’s sense are ones in our sense, but, for instance, countable E are
Picard sets in our sense because f(z) has isolated singularities, while they
are not always Picard sets or even n-Picard sets (n = 3) in Lehto’s sense.
Indeed let w;,w,,...,w, be finite and distinct and let E be the union
of all the w-points (¢ =1,2,...,n) of a non-rational entire function
and the point at infinity. Then E is not an n-Picard set in Lehto’s sense.

As for the existence, Lehto [4] showed that all sufficiently thin countable
sets with one limit point are Picard sets in his sense. For non-countable E,
Carleson [2] gave examples of 3-Picard sets in Lehto’s sense by means of
Cantor sets. We [5], [6] also gave some sufficient conditions for E to be
n-Picard sets in Lehto’s sense for n = 3 and showed the existence of per-
fect sets satisfying the conditions. Further we showed that there exist
perfect n-Picard sets in Lehto’s sense (n = 3) which are not (n — 1)-
Picard sets. Recently we have succeeded to give Cantor sets which are
Picard sets in our sense. We have proved that any Cantor set with suc-
cessive ratios &, satisfying the condition

fup1=0(&)

is a Picard set (see [7] and also [8]). But from our proof, we cannot see
whether these Cantor sets are Picard sets in Lehto’s sense or not. In this
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paper we shall show that Cantor sets are certainly Picard sets in Lehto’s
sense under a much stronger condition. We shall also show that Lehto’s
condition for ccuntable set with one limit point to be Picard sets in his
sense can be relaxed considerably.

2. First we shall be concerned with the countable case. Let {a,},—1.. ...
be a point set whose points converge to infinity and let £ denote the union
of {a,} and the point at infinity. The result to be established is as follows:

Theorem 1. If the points of {a,},—1., ... satisfy the condition

(*) la,* = 0(lap ;1)

then E is a Picard set in Lehto’s sense.
Remark. Lehto [4] proved the same assertion under the stronger con-
dition
(log |a,|)*** = 0 (log |a,,[) (6 >0).
3. Before proving the theorem, we give some lemmas. We shall con-
sider the Riemann sphere X with radius 1/2 touching the w-plane at the

origin. For w and w’ in the w-plane we denote by [w,w'] the chordal
distance between them, that is,

V(14 ) (L4 [w'P)

o — | |
if w+# coandw’ #% w0
[w,w'] =3 |
— if w = 0.
' V1+ lw?
Further we denote by C(w ; d) (6 > 0) the spherical open disc with center
w and with chordal radius ¢ .

Let w = f(2) be a single-valued regular function in an annulus
1< |2] < €' (1 >0) omitting two values 0 and 1. Our first lemma is
a consequence of Bohr-Landau’s theorem [1]:

If g(z) is regular in |z < 1 and g(z) #= 0, 1 there, then

Klo 0)] + 2
p( g(llg_(_)r—}_ ) ‘forcz;zyr,0§r<l,

max |g(z)] = ex

|3|=r

where K is a positive constant (a precise form of Schottky’s theorem).

Lemma 1. There exists a positive constant A such that the length, con-
sequently the diameter of the image curve of |z| = ¢'* by f(z) with respect
to the chordal distance is dominated by Ae™"?* for sufficiently large u (Carle-
son [2]. See also Matsumoto [6]).
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For completeness, we shall give the proof.
Proof. From Bohr-Landau’s theorem, we can see easily that if w = g(z)
is regular in 1< |z| < ¢’(0 > 0) satisfying the conditions

g(z) # 0,1 and min |g(z)|< a for a positive «a,

|sj=e7/?
then there is a positive constant b depending only on @ and ¢ such that

max |g(z)| =0.
5] =72
For a fixed ¢ >0, first we shall show, supposing x > o, that there

exists a positive number & not depending on u and f(z) such that the
images of |z| = ¢ and |z]| = ¢"7"* by f(z) lie outside at least one of
three dises C(0;¢), C(1;06) and C(co;9). In fact, let 2z and 2z, be
points on |z] = ¢ and |z| = €“"°” respectively. Then f(z) and
}(z) lie outside at least one of three discs C(0; ¢), C(1;0") and C(c0;d'),
where ¢ is a positive constant such that these three discs are mutually
disjoint and hence can be taken independently of ux and f(z). Suppose
that f(z) and f(z,) lie outside C(co;¢’), then by the fact mentioned
above, we see that there is a positive 6, such that the images of |z| = ¢
and |z| = e¢*77* lie outside C(o0;9,). Next suppose that f(z;) and
f(z,) lie outside C(1;6"). Then we see using the linear transformation which
transforms points w = 0, w = 1 and the point at infinity to points w = 1,
the point at infinity and w = 0 respectively that there is a positive o,
such that the images lie outside C(1; d,). Similarly we can find a positive
d, and set

6 =min{dy, d;, 0,3 >0.

Obviously this d satisfies our conditions.

Now by the maximum principle we see that the image of ¢’* =< |z| < e~ "*
by f(2) lies outside at least one of C(0;9), C(1;0) and C(o;9). Since
the chordal distance remains invariant under the linear transformation
(1 + @gw)/(w — w,) for any w, # oo, we may assume that this image lies
outside C(co; d). Then

V1— 8 "
J— ) { G A

f@)| =M = 5

é !z] § e.u—z;/z .

By Cauchy’s integral theorem, we have

| f(Z) J(0)
1'R) = i l/lf‘=e'u_al2 =2 df — /m::/z —27 ac

forevery z on |z| = ¢ and hence,if u =2+ o,
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, - 2M - 2e*t0 Yot
') = (b= _ 1) = (e — 1) e .

Therefore we have

) o 20+ ot " dme*+o e
/[2i=:¢/2 If'2)] 1dz] = (e — 1) € 2m e = (e — 1) Mem"".
Since the length of the image curve f(|z| = ¢“*) with respect to the metric
|dw| is not smaller than that with respect to the chordal distance, we can
take (4me**/(e—1)*)M as A, for M dependsonlyon 6 and ¢ and hence
does not depend on the function f(z). Our lemma is proved.

4. Let A be a triply connected domain with boundary components
I, I, and I'; and let f(z) be single-valued, regular and omitting two
values 0 and 1 in 4. We assume that the images of I3, I, and I'y; by
f(z) are contained in spherical dises (', C, and C, respectively and prove

Lemma 2. Let 6 >0 be so small that the three spherical discs C(0 ; 26),
C(1;26) and C(o ; 20) are mutually disjoint. If the radii of C,, C, and C,
are less than /2, then either (1) C,, Cy and O contain the origin, the point
w = 1 and the point at infinity one by one, so that they are contained in
C(0;9),C(1;0) and C(oo; 0) one by one and f(z) takes each value outside
the union of C(0;9), C(1;0) and C(oo;d) once and only once in A, or
(2) any one cf them cannot be disjoint from the union of the other two, so that,
by the maximum principle, there is a disc with radius less than 36/2 which
contains the vmage of A.

Proof. First we shall prove that f(z) takes each value outside the union
of C(0;0),C(1;6) and C(o;0d) once and ouly once in A, if O, C,
and C; are contained in these three discs one by one. We may assume
without any loss of generality that O}, C, and C; are contained in C(0 ; ¢),
C(1;0) and C(co; 0) respectively. Contrary suppose that f(z) takes a
value w, outside the union at two points 2z’ and 2” in A and join w,
to C(0;0) and C(co ;0) with two curves which lie outside the union, do
not intersect each other except at w, and do not pass through any pro-
jection of branch points of the Riemannian image of 4 by f(z). The elements
of the inverse function f~' corresponding to 2z’ and 2z’ can be continued
analytically along these curves to their end points and further from them
along radii of C(0;0) and C(o0 ; d), sothat the curvesin A corresponding
to these continuations join each of 2z’ and 2" to I} and Iy and bound
with parts of Iy and I'y a domain not containing I,. This domain must
be a subdomain of 4 and f(z) must take the value 1 there; this is a con-
tradiction. We see thus that f(z) takes each value outside the union once
and only once in A.
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Next we suppose that both of the cases (1) and (2) do not occur, that
is, one of three points, say the point at infinity, is not contained in any
one of C;,C, and C; and one of these three discs is disjoint from the union
of the other two. Then there is 2z, in A such that f(z,) lies outside the
union of C;,C, and C;. The point f(z,) can be joined to the point at infinity
with a curve /A lying outside this union, and we are led to a contradiction that
the element of the inverse function f~! corresponding to z, can be coa-
tinued analytically along A up to a point arbitrarily near the point at
infinity, so that f(z) has a pole in 4. Thus we see that the denial of the
case (1) implies the case (2). The proof is now complete.

5. Let S, denote the ring domain |a,| < 2| < |a,,,|, let I, denote
the circle |z| = V4 la,a,,,| and let A4, denote the triply connected domain
with boundary [I,U{a,,,}UTI,, ;. The harmonic modulus of S, is
equal to log |, ,/a,|, so that we see from Lemma 1 that the diameter of
the image of I, is dominated by 3, = 4V \a,/a, .| and hence there is
a spherical disc C, containing this image with radius less than 4,.

Lemma 3. Let f(z) be meromorphic in the finite z-plane and omit three
values 0, 1 and oo outside E and let 6 >0 be so small that the spherical
discs C(0;20), C(1;20) and C(o0;20) are mutually disjoint. If the points
of E satisfy the condition (*) and if there is only a finite number of A.’s
such that its three boundary components are mapped by f(z) into C(0; 0),
C(1;98) and C(c0;d) one by one, then f(z) is rational.

Proof. From the condition (*), we obtain

oa, 2
—of 1=l )
| an-|—ll

so that §, tend to zero in the way that
6n+1 =0 (63) *

i an-l—l

|
[ Oni2

Therefore there is an #n, such that

8,< 6/2 forany n =n; and > 4,< 1/8.
Suppose now that there exists only a finite number of 4, such that their
three boundary components are mapped into the discs C(0;6), C(1; 9)
and C(co; 8) one by one and denote by 7, the maximum of » taken over
all such 4,. Then we see by Lemma 2 that for any n = n, = max {n, , n,},
the image of 4,, consequently that of 4, U{a,,,}, is contained in a spher-
ical dise D, with radius less than 24,.
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Since the union of D, (n = n,) is a counected set, its diameter with

respect to the chordal distance is dominated by 2 ' 24, <4 > 6, < 1/2.

By means of a linear transformation we can consider from this fact that
f(z) is bounded near the point at infinity. Hence f(z) must be meromorphic
in the extended =z-plane, |z| =< 4+ o0, so that it is rational.

6. We now estimate the harmonic modulus of any ring domain con-
tained in 4,U T, U4, , such that one connected component of its
complement contains the point «,., and the circle I', and the other con-
tains the point @, , and the circle I, ,. Denoting by log?(P/[o) (P, v > 0)
the harmonic modulus of the normal domain of Teichmiiller, the complement
of the union of the two segments, — o <2 <0,y =0 and P <z < 4 o0,
y = 0 in the z-plane (¢ =z + 7y), we see that the harmonic modulus
of our domain is dominated by log ¥ (la, s/, ,]). It is well-known that

P
P (Plo) < 1654.— 8

and we obtain the following

Lemma 4. The harmonic modulus of any ring domain considered above
is dominated by log (32|a,../a,. ).

7. Proof of the theorem. It is obviously sufficient if we can prove that
the assumption of the existence of a function f(z), single-valued, mero-
morphic and non-rational for z % o, and different from 0,1 and oo out-
side F, leads to a contradiction. Here we may assume without any loss
of generality that {a,} consists only of zeros, 1-points and poles of f(z),
for otherwise, we delete from {a,} all other peints and the remaining points
also satisfy the condition (*).

We take 6 >0 so small that the dises C(0;20), C(1;26) and
C(©;26) are mutually disjoint. Let n, be so large that §, = A\/E,’a,&l:
< 0/2 for any n = n,. By Lemma 3 there is a 4,(n = n,) whose three
boundary components are mapped into C(0;9), C(1;06) and C(o0;9)
one by one, where we may assume that f(I°,.,) € C(c ;0). Consider the
quadruply connected domain 4, U I',,; U 4, ;. Theimage of its boundary
component I, ., is contained in some spherical disc C,, , with radius
less than 6,,, < 6/2 and we see that f(z) has a pole at a,., and C,_,
is contained in C(co ; 20). In fact f(a,,,) = o or C,,, must contain the
point at infinity and hence is contained in C((o0 ; d), for otherwise, f(z)
mast take the value oo in 4, UTI, U4, ;. Suppose that f(a,.,)
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or C,., is not contained in C(o0; 26). Then there is a point z€ 4,
whose image f(z) lies in C(c0;20) — C(0;0)UC, U {fl@,,,)} and
can be joined the origin or the point w =1 with a path not intersecting
the image of the boundary of 4,,;, so that f(z) takes the value 0 or 1
in A4,,,. Contradiction. Now it is obvious that f(z) has a pole at a,,.
Thus we can find a positive d such that d < 26 and the disc C(0;d)
contains C, ,.

Next we shall prove that f(z) takes each value outside the union of the
three dises C(0;6), C(1;9d) and C(c0;d) once and only once in 4, U
r,.,u4,,,. By Lemma 2, f(z) takes each value outside the union of
C(0;06),C(1;0) and C(oo;0) once and only once in 4, so that the in-
verse image I' of the circle [w, w]=2¢ on A, is a simple closed
curve and separates I, and a, ., from a,,, and I}, Now suppose that
f(z) takes a value w, outside the union of C(0; ), C(1;6) and C(oo; d)
at two points 2z’ and 2" in A,UT, U4, and join w, to C(0;0)
with a curve A which lies outside the union and does not pass through
any projection of branch points of the Riemannian image of 4,UT,,
Ud4,,, by f(z). The elements of the inverse function f~' corresponding
to 2z’ and 2" can be continued analytically along A to its end point and
hence every value on / is taken by f(z) at least two timesin 4, U I',,
U4,,;. Therefore we can assume that w, lies outside (oo ; 24). Then
one of 2z and 2z’ must lie in the domain bounded by I" and I, , and
the corresponding element of f~' can be continued analytically to the origin
along a curve outside C(oo0;20), so that f(z) takes the value 0 there;
this contradicts our assumption.

Now we estimate d from below. To this purpose we consider the annulus
R 2 < |w< V1 — @|d corresponding to the anuulus 1/\/5> [w, o]
>d on the Riemann sphere Y, which separates C(0;0) and C(1;9)
from C(w;d). As we have seen above, the Riemannian image of 4, U
I,.,U4,,, covers R univalently, the ring domainon 4,U7I, U4,
corresponding to R has the same harmonic modulus as R and separates
the boundary components I', and a,., from the boundary components
a,,, and 4, ,. By Lemma 4 we have

har. mod. of R = log (V1 — d*/2d) < log (32 |, 1o/@u 1)) -
Since d < 20 < 7/6, we have the estimate that
d = (V1—(a]6)}/64) |, 11/a, 0] = 8%/M -

This implies that C,., must intersect the disec [w, ] = 0% /M = m.
Consider the domain 4,,,. As mentioned in the proof of Lemma 3,

571—[-1 =0 (5721) H



10 Ann. Acad. Sci. Fennice A 1. 403

and we can suppose that n is so large that

4M 6, ., =0, , foreach p=1.
Then
Onpo < 021 /4M = m[4

and hence C,,,, the disc containing the image of the boundary component
I',., of 4, ,, cannot contain the point at infinity. Since the image of the
boundary component I, , of 4,., is contained in a disc C, 43 with
radius less than 0,,,< 6,,,, we see by Lemma 2 that C,., cannot be
disjoint from C,_; and the image of 4,.,U{a, ,} is contained in a spherical
disc D,,,20C,,,UC, ; with radius less than Gnio+ 0,,5<< m/2. The
disc D,,, cannot contain any one of the three points w = 0,1 and o
on the one hand and the point a, +3 must be a zero or a 1-point or a pole
of f(z) on the other; this is a contradiction and our theorem is established.

8. We shall be concerned here with the perfect case. Let E be a Cantor
set on the closed interval I —1/2 <2 =<1/2,y =0 on the real axis
of the z(= x + dy)-plane with successive ratios &, ,0 < £, =21,< 2/3.
Defining the Cantor set K, we repeat successively to exclude an open
segment from the middle of another segment and there remain 2" segments
of equal length I7;_, 1, after we repeat n times, beginning with the inter-
val I,. We denote these segments by I,(n=1,2,...;k=1,2,...,
2") and denoce by S,, n=1,2,...;k=1,2,..., 2") the following
annuli on the complementary domain Q of E :

Sup={2s I L) (V=L)< iz — 2, < (I21L) (1 —1,)/2},
where z,, is the middle point of I,,. The barmonic modulus u, of S,
is greater than log (2/3¢,). We map &S,, conformally onto the annulus
1 < [p| < ¢ and consider the inverse image I',, of the circle 5| = e
on 8, Supposing that S,, encloses Sui1m—1 and 8,5, we denote
by 4, the triply connected domain bounded by three carves L
Fn+1,2k—1 and Fn+1,2k'

We now prove

Theorem 2. If the successive ratios &, = 21, of a Cantor set E satisfy
the condition

(*%) §n+l = O(exp (—2"/I}_, 'fp)), Le. ln+] = 0 (exp (— 1/,]7;:1 lp) )

then E is a Picard set in Lehto’s sense.
9. As a consequence of Bohr-Landau’s theorem we have

Lemma 5. Let f(z) be single-valued regular and different from 0 and 1
outside E and let d,, be defined by
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d,; = min [f(z) , o] -
€ I

Then for sufficiently large n
dop = d, = exp (— LV, (1323 1,) )
where L >0 depends only on [(z) .

Proof. Set
M= max f)]
z=x+4-1y
—12<€x<1/2,y=1
and recall that I, is the circle |z —z,,| = (/[;Z 17 )\/l — 1)1 —1,.,)/2.
Then by Bohr-Landau’s theorem, we have
) / K log M—{—2) >
2 = ex )
feoll = (H"“‘l\/l 1—1) (1 —b,,0)/2

where z, € I',,, is the point satisfying 9z, = Rz,, and Jzp > 0. S,
is conformally equivalent to the annulus 1< |p|< e‘» and hence the
composite function g(¢) = f(z(¢°)) is regular and different from 0 and 1
and further has the period 2z ¢ in the strip domain 0 < L < p,, — © <
i< + ©. Let &, be a point whose image is z,. Then any value taken
by f(z) on I, is taken by g¢({) on the vertical segment /A of length
2n with mlddle point &, so that applying Bohr-Landau’s theorem again,
we have

K log
\/1 — dik/dnk‘_ max 9(0)] <exp< og(lf(z)| + 2)) )

1 — 27/u,

Since I,— 0 and p,—> oo as m— oo from our assumption, we see that
there is an L > 0 depending only on M, consequently only on f(z), such
that

Ay = exp (— \/In

for sufficiently large n .

10. For each = and k(n=1,2, k=1, ,2M A4, s
bounded by I, I'niroy and I g l\ow we estlmate the harmomc
modulus of any ring domain in 4,, one connected component of whose
complement contains the boundary curve I, and the other contains
Iyivoe1 and I, ;. It is dominated by the harmonic modulus of the ring

domain obtained when we delete the segment I,, from the interior of
I' ., aud this domain is conformally equivalent to Grotzsch’s normal do-

main Gp, P = (2(1 —1,) (1 — L,,,) + L)/@V2,(1 — 1) (1 —1,.1)): the
complementary domain of the union of the closed unit disc and the segment
P<x<+ oo,y=0. Since
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har. mod. of Gp = log @ (P) and &(P) < 4P

and since [, — 0 as n— o0, we have

Lemma 6. The harmonic modulus of any ring domain considered above
ts dominated by log (4/\/ 1)) for sutficiently large n .

11.  Proof of Theorem 2. Contrary to our assertion, let us suppose that
there exists a single-valued meromorphic function f(z) which has at least
one essential singularity in F and omits three values ¢,1 and oo in the
intersection of 2 and a neighbourhood of some singularity ¢, € E . Since
our argument given in the below is applicable locally, it will not bring any
loss of generality 1f we give a contradiction under the stronger assamption
that f(z) omits the values 0,1 and o in Q.

We delete from E every point at which f(z) is regular and takes a
value different from 0 and 1 aund denote by E’ the resulting point set.
Of course £, belongs to E’ and is not isolated because of Picard’s theorem.
Therefore there exist infinitely many 4, , such that the interior of one of
its boundary curves I,,;,_, and I, ,, contains {, and that of the
other contains at least one point of E’.

Let 6 >0 be so small that the dises C(0; 26), C(1; 26) and C(o ; 26)
are mutually disjoint. By the condition (**) we can take n, so large that
0, = AV/(3/2)f, < 6/12 and &,,, < £,/4 ie. 6,,,< 6,/2 for any n = n,,
where 4 is the constant of Lemma 1. Since x, > log (2/3 &,), we see by
Lemma 1 that the image of the circle I',,, n = n,, is contained in a spher-
ical disc C,, with radius less than §, < §/12. First we shall show that
if the interior of I,,,n = my, contains a point of E’, then for this L
C,. is contained in one of the three discs C(0;124,),C(1;124,) and
C(0;124,), which are mutually disjoint because 1246, < §. In fact,
suppose that our assertion is false and consider the domain 4,,. Then
by Lemma 2 any one of C,;, 0, ,,_, and C,. ., caanot be disjoint
from the union of the other two, so that the image of A, is contained in
a spherical disc with radius less than 3 4,. Since this disc contains points
outside the union of C(0;129,),C(1;124,) and C(o;1294,), it must
lie completely outside the union of the dises C(0;64,),C(1;64,) and
C(0;60,). We consider the domain 4, ,,_; which with 4,, has Ly
as the common boundary. Each image of its three boundary curves is
contained in a spherical disc with radius less than 6,.,< 6,/2 and hence
the same argument shows that the image of 4,.,,_; is contained in a
spherical disc with radius less than 346,,, < 34,/2 and lying outside the
union of the dises €(0;34,),C(1;394,) and C(w;34,). The same holds
for A4, . Since for each p =1
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6n+p < 57;/21) ’

we can conclude by induction that the image of each domain 4,,,, lying
the interior of the simple closed curve I, is contained in a spherical disc
with radius less than 3 ,/2”7 and lying outside the union of the disecs
C(0;66,/2P), O(1;60,/2") and C(w;66,/27). It follows that, in the
interior of I, f(z) takes values only in a spherical disc with radius less
than

Z 30,/2P< 69,

p=0
and not containing the points w = 0,1 and oo. The set E is of linear
measure zero and hence each point of E is removable for any bounded
regular function (see Kametani [3]), so that f(z) must be regular in the
interior of I',,. Hence the interior of I',, cannot contain any peint of
E’; this is absurd.

Now we take a 4,;, n =n,, such that the interior of the boundary
curve I',, of 4,, contains {, Then the interior of one of I'y 11 and
I'yiror say Iy, also contains and as we have just seen, C,;
is contained in one of C(0;12¢,), C(1;124,) and C(o0;1246,) and
C, 11,2 is contained in one of C(0;129,,,),C(1;124,,,) and C(0;126,.,).
Hence the following two cases are possible: (1) the centers of the discs con-
taining C,, and C, ,,_; are distinct, or (2) they are identical. Let us
suppose that the first case occurs. Obviously it does not bring any loss
of generality if we assume that C,, and C, ;5 _, are contained in C(0;124,)
and C(c0;126,,;) respectively. Then we see that the disc C, ., the
spherical disc containing the image of the last boundary curve I, ., of
A, contains the point w = 1 and hence is contained in C(1;126,.,),
for otherwise, f(z) takes the value 1 in 4,,. By Lemma 2, f(z) takes
each value outside the union of C(0;124,),C(1;124,,,) and C(w0;129,,,)
once and only once in 4,,. We consider here the quadruply conuected
domain A =A4,, U7, . 15 U4, 15 ;. The images of its boundary
curves I, o 4y nad I, , ,_, are contained in the spherical discs Crizan_s
and C, ., 4_, Wwith radius less than 8,.0<< 0,.,/2 respectively. Of
course the interior of one of I, 5 g_3 and I, 5 4 s, 82y [, 5 43, contains
L, We suppose that the interior of I, .., _, contains a point of E'.
Then each of C,_ 5 4_s and C, ., 4 _, is contained in one of C(0;12 0,12)s
C(1;126,,,) and C(w0;124,,,) and one of them contains the point at
infinity, consequently is contained in C(o0 ;12 9,,,), for otherwise, f(z)
takes the value oo in 4. Hence the images of two of three boundary
curves of 4,4, a triply connected subdomain of 4, is contained in
C(0;129,,,), so that the image of the last boundary curve is also con-
tained in C(o0;129,,,) because of Lemma 2. Thus both of C, .43 and
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C,. 2,42 are contained in C(o0;1296,,,). Hence we can prove by the same
argument as in the proof of Theorem 1 that f(z) takes each value outside
the union of C(0;124,), C(1;124,,,) and C(w0;1296,,,) once and only
once in A. Therefore if d,,, >126,,, (by the condition (**) this is
satisfied for every sufficiently large n), theannulus R,d, ,>[w, ©0]>124,,,
which separates C(0;124,) and C(1;126,,,) from C(w;126,,,),
corresponds to a ring domain on A which has the same harmonic modulus
as it and separates I,,, 43 and I, ,,_, from the remaining boundary
I, Ul 5 of 4. We see from Lemma 5 that this ring domain is con-
tained in the subdomain 4, ., 5 _;, of 4, so thatitseparates I, 4+2,46—3 and
I yo,46_s from the last boundary curve I, 5 _; of 4,,,,_;. Hence by
Lemma 6 we have that the harmonic modulus of R is dominated by

log (4/\/L,_H), that is,

dy V1 — (1206, .,1206,.,V1 — &>, < 4VI, -,

n+2

while

dn-,—l eX:p - ‘/\/ln 1 p 1 p)) and 6n+2 = AV%Z ’
so that

exp (— V1, o (T2, 1))12V3 AV, < 4]V, ., .

Recall our condition (**). Then we have, for some M >0,

Virexp (UVI,,) = M.

But this is impossible for any n larger than some =, and we see that
I’y 12¢ cannot surround any point of E’ if n =mn,. Now suppose that
n = ny' and consider the quadruply connected domain A4’ =AUT, ., , ,
Ud,ioms U Lo oV (L2 u ), where (I, ., 4 ,) denotes the interior
of the Jordan curve I, , ,_,. Then f(z) doesnottake the values 0, 1 and
o in A4’ One of the boundary curves I', .54 . and I, ;4 ¢ of A’ sur-
rounds {, and only considering the annulus d, , >[w, o] >126, +3
instead of R in the above we have

Vi, pexp (V1 5) < M,

if the other surrounds a point of E’. Thus it cannot surround any point
of E’. Continuing this argument inductively, we are led to the contradiction
that {, is anisolated point of E’, and follows that the case (1) is impossible
for any n = n,.

Let us suppose that n = n,". Then the case (2) must occur and we may
assume here that C,, and C,,, ., , arecontained in C(o0;126,) and

C(c0 ;12 6,,,) respectively. If the interior of the boundary curve I, 12k
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of A,, containsa pointof E’, then O, iscontained alsoin C(o0;124,,,)
because of Lemma 2. Therefore we see recalling Lemma 5 that each point
of the annulus R,,d, >[w, ] >120,,,, is covered the same times,
say v(n)-times, by the Riemannian image of A4',,, where A4’,, denotes
the domain A4,, U I 19U (Lp12) if I, 19 does not surround any
point of E’ (the case (i)) and 4,, if it does so (the case (ii)). Consider
the inverse image o, of R,. Any of its boundary curves cannot bound a
subdomain of A4’,,, for f(z) takes the values 0 and 1 or the value oo
in the domain bounded by such a curve if exists. Hence in the case (i),
0, is a ring domain separating the two boundary curves of A’,,, while
in the case (ii), either it is a ring (the case (ii, a)) or triply connected (the
case (ii, b)) domain separating the boundary curve I3, from the remaining
I, 10 and I, 5, orit consists of two ring domains one of which separates
I, 51, consequently ,, from the remaining I, and I’ 4 and the
other separates I, ;. from I, and I, , 5 ; (the case (ii, c)). In this
case we denote by o,’ the former ring domain and by »'(n) the number of
times that its Riemannian image covers R,. Of course »'(n) < »(n). In
the case (ii, b) we take d,’,d, >d,’ >1290,.,, so near to 124,,, that
the case (ii, ¢) occurs for the annulus d,” > [w. ©] > 124, ,, and for it,
we define p,” and »'(n) in the same way as above. In other cases we put
0. = 0, and ¥'(n) =r(n).

In the cases (i), (ii, b) and (ii, ¢), we consider the ring or triply connected
subdomain of A’ UL, ;5 3Ud 1 0 Placed between (', and o,
and see by the argument principle that »(n 4 1) =»'(n). Now we shall
deal with the case (ii, a). First we note that one of the boundary curves
Iypom and I oy of A4, say I,.s 4 1, surrounds a point of £’
and hence the spherical disec C,,, 4_; is contained in one of C(0;12 0pi2)s
C(1;1246,,,) and C(w0;124,,,). We say that the case (ii, a’) or (ii, a")
occurs according as it lies in C(o0; 12 8,,,) or one of the other two. In the
case (ii,a’), the interior of I,,,, does not contain any point of E’ or it
does so and C,_ ., lies also in C(o0;126, ,). Hence the inverse image
of the annulus R, ., has at least one connected component in 4, y, and
the argument principle asserts that »(n) is equal to the total number of
times that all the Riemannian images of the components in 4,.;, and
A, cover R, so that »(n+ 1)<#»(n). On the contrary, we have
»(n + 1) = »(n) + 1 in the case (ii, a"). In fact we see from Lemma 2 that
Chio,my and C, .4 arecontainedin C(0;124,,,) and C(1;129,,,) one
by one and the Riemannian image of 4., covers univalently the outside
of the union C(0;124,.,) UC(1;126,,,) U C(0;124,,,). Hence for 6
taken at the first part of the proof, the circle [w, co] = d, which separates
C(o0;126,,;) from C(0;126,,,) and C(1;124,,,), has as the inverse
image in 4, a simple closed analytic curve " separating I, from
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the remaining I, , 4_; and I, ,,. Consider the domain placed between
0,1 and I Then the argument principle gives our formula.

Suppose that the case (ii, a) cannot occur except for a finite number
of n =mny. Since , is not isolated in E’, the case (ii, b) or (ii, ¢) occurs
for infinitely many =’s, while the value of » decreases strictly at such =
and hence must become negative; this is absurd. Thus the case (ii, a) occurs
for infinitely many n’s. Now let n = n,’ + ¢ be such one. By the Hurwitz
formula, the Riemannian image of g, has no branch point, so that o, is
conformally equivalent to the annulus dY® /@0 L (1 — g2)tm

> [o, @] > (12 8,V (120, P 1+ (1 — (126,,))"@ . Conse-
quently by Lemma 6 we have

0

<n?

N1 — (126, /126, V1 — & < 41y,
that is,

exp(— L/VI, (IIZ10)/12V3 AVI, ., < (4V1)® |

Recall the condition (**). Since »(n) < »(n,) + ¢ and (4/\/ l_,,)”(") =
4/V1,)Y™+1 | we have

KHewd+0 exp (12 V1, — L)VI, (T, (v(ng) + q) < 4/V1,,,
where K isa positive constant. KV¢®9F9 1 and (I17Z11,) (n(ny) + g) — 0
as g — oo, because lP < 1/2. Hence the quantity \/ l; exp (1/\/ Z_,,) must
be dominated by a constant for infinitely many n; this is absurd and
follows that the case (2) is also impossible for some =n = #/,.

Thus for some 4,,(n =n'y) whose boundary curve I, surrounds
{o» both of the cases (1) and (2) are impossible, while these two cases are
all possible cases. This is caused by the assumpsion of the existence of f(z)
different from 0,1 and oo ia £2 and the theorem is established.
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