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Introduction

In this paper v'e study the following problem: Given Beltrami differen-
tial equations irr an arbitrary Jordan region G of the complex plane C,

how to choose the boundary values for the real part of the solution
w : uf ri a such that bhe mapping w : G "->C is injective. This problem

was first treated by Morrey [7] in a special case' We give a simple general

condition for the boundary values of z ryhich guarantees the injectiveness
of w.

For the sake of completeness, ytre solve in part I the first boundary
value problem associated with the second-order Beltrami equation L{,u1 : g.

This is done by Perron's method without the global reduction of L(u) : Q

to the canonical fotm lu:0.

l. Elliptic boundary value problem for the Beltrami equation

this part the bound ary value prol:lem associated with the second-

Beltrami differential equation (cf. t4l p. 66)

a ro*r*, ! 2 b u*r*, *' g,'Lex2xz -F (a *, * b*r) u*, .-i- (b", + c*,) ?t*, - 0,

where a c - bz : T, is solved under general conditions on the coefficients
and boundary data. Eor this we use Perton's method (cf. [9]), well-known
in the treatment, of the classical Dirichlet problem.

1.1. Notations anil preliminaries

By R we denote the set of real numbers. Points in two dimeneional plane

R2 are denoted by *,A,... sv (rt,rz),(Ar,Uz),.... In the plane the
usual norm topology is used.

If 7 is a subset of R2, then "F is the closure and 0X llne boundary
of -F. The set B(r,R) is the open ball in R2 wit'h center al r and
radius .R. Sometimes one or both arguments in B are dropped.

The restriction of the mapping /:/+R (o" R'z) to E'cI is

denoted by f I I' . The set, Co(.E') is the set of ail continuous mappings on
1. We say that / belongs t'o C"(I) , lL : 1,2, . .. , if there exists an

In
order

(A)
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open set U such that U f -F' and the partial derivatives of order n of f
belong to Cog). All Cl"(-E) , ,tL: I,2,..., a,re vector spaces over R.

If /€Co(,r) and

;i1,lffi: ll'fll',t"r (o< P< I)
x*!

is finite, then / is said to berong to the ctass Cf(.F'), the set of all Hölder-
continuous functions with exponenb p on -X'. The set of functions for
which the nth partial derivatives are Hölder-continuous with exponent
rr is denotedby Ci@). Here lllll**trt is aseminormon ergl. If .F is
compact, e.g. A@\ , d.{l) , and Ci,tll are Banach-spaces with norms

ll"fllc,lry - sup lf@'ll,
xeF

ll/ll";r"r : Il"fllclry * Il"fllr,r"r,
2

ll/llclrrr : ll"fllctrr *) lE,ll"lr.r.

We shall need some sets of singular functions. Denote by IIF the set

/xX-{(*,9)lr:g}.
We say that Z:IlP---> R belongs to Bp(I) , p >0, if

,-,lp'ol'@ s)l lr - alP : llzll'oet

is finite. It is clear that §P(X) c ,Sc(.E') , if p ( g and .F is bounded.
Remark 1.1.1. It ZeBP@), p)t,X iscompact,and, f €Cr(I) , ihen

Z'(r,y): (f(r) - f(s)) Z(*,u)

bel,ongs to Bo-t(.F') and,

llZ' llsp-r s ( ll/ll6r1ry llZllrr<rt .

In this connection we cite the lemma [a] p. f 85:

Lemma 7.1.7. Let D be a compact, conaer set in R2 , / € Co(D) , «nd
Z eBr+"Q)), 0< ot<-l. If Z i,s a conti,nuous luncti,on on Df D anct

(r.r.r) tz(r,a) - z(",y)t <1, _-3". årÅ @ - zt-o

(C, and, C, constants) for all r, z, anil, y i,n D which satis.fg

lr-gl)2lr-zl>0,
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th,en

(1.1.2) s(r)

belon,gs to Ci@l ,

Note that the
integral.

Remark 7.7.2. (Cf. l4l p. t86.) The i,nequal,ity (r.L.l) is satisfi,ed, i,f the

deri,aat'i,ues Z(r, y)*r, i : 1,2, are contdnuous anil, belong to 
^9'+"(D) 

.

1.2. Construction of a locally homeomorphic solution for the Bers system
Our aim is to construct a locally homeomorphic solution for the pair

of equations

a*:
(r.2.1) *2

a*,

under the conditions

where B : B(2, R) . The equations are then called a Bers system. If in
addition A : l, then (1.2.1) are called Beltrami equations. The construc-
tion of a Iocally homeomorphic solution of Beltrami equations has been

carried out, e.g. Ahlfors [], Bojarski [0], and Lehto-Virtanen [5].
By eliminating a from (1.2.1) we get for u the equation

(L2.4) L(u): (au1* b u,r),r* (b u"r{ cunr)*r:0.

With the solution of (1.2.Q we understand a function u,e A2(B) which
sa,tisfies (L.2.4) in B.

To fincl a locally homeomorphic sclution for (1.2.1) we at first construct
a family of solutions of (1.2.Q. We start with the so called parametrix

r I r -

P(r,a): - n*t/ltylt slt@lc(v) \r'- ut)z

- 2 b(y) (*, - yr) (r, - yr) * a(y) (*, - ar\'l\ ,

rvhich is a continuous function on BIB If in tho following some pa,rtial
derivatives of the parametrix appear, then they are always taken with
respect to the first argument of P. They are continuous functions defined
on BlB.

{' l' vr: 
J J 

z(*, t) f (t) dt, dt,

,f"ra y<I -&.
integral in (1.1.2) is an

[ ,,*

absolutely convergent Riemann

a%*r*Uuxz)

-(b %\ * 6 u*2)

(L.2.2)

(1 .2.3)
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We need some estimates which control the growth of P(r, y) when

l" - Al tends to zero; for this reason we define positive constants a, B,
and Eo:

d( : max (ilollcärel , llbllc,r@t, llcll"lr6r) ,

§:^f{a(4,
anld Eo is the coustant of ellipticity, i.e. the greatest lower bound of all
y such that

c(il n| * 2 b(y) rtnz * a(y) uZ > y @?, + rZ), a, y e B .

The constant -Eu is positive on the basis of (1.2.3).

Lemma 1.2.1. (Cf. e.g. l4l p. r81.) The parametrix P hasthefol,lowing
properties:

a) P€BP(B) forany p>0,
b) P,, € B1(.8) and, llP*rllrr(ny S a (§ Ei-, , i, : 1,2 ,

c) P*{je Sz(81 and llP,y,lls,lat <n' P-'Eo' , i, j : t,Z ,

d) L@; e SL(B) ancl llZ(P)llsr1Ey { 4a2 P-rE;2(c4Eo + l) .

Proof: Assertions a), b) and c) are obvious.
'Io prove d) write

L(P) : o Prft+ 2b P"fz* c P**r+ A ,

where .4 stands for terms which contain the first partial derivatives of P.
These terms clearly belong to St(B). By direct computation it can be
shown that

a(y) P(r, y),r*, * 2 b(y) P(rc, y)*r*, * c(y) P(r, A)**, : 0

in BlB, henee

L(P(r,,y)) : (a(r) - a(y)) P(r,y)n,,,{ 2 (b(r) - b\il) P(x,y),,,,

* (c(n) - c(AD P(r, g)",", * A(x, y) .

By c) P*r*, belongs to §z(E), therefore by Remark 1.1.1 w-e obtain, after
elementary calculation, d).

Next we study mappings To and. 7 defined as

(t.2.5) (Tou)(r) : [ ,@, t) u(t) dt ,

I
(1.2.6) T a u: u I Tou.
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By Lemma 1.2.1 a) the integral in (1.2.5) is an absolutely convergent Rie-
mann integral, if u e A@). According to h) the same is true if we replace
P hy P*, |d : l, 2), and so

(t.2.7) (Tou)(r)*,: [ ,@,t).,u(t) d,t .

J

We have ploved
Lemma 1.2,2. To is a bound,eil linear map lrom Co(B) into A(B), and,

T maps cl@\xco(B1 i,nto Ct(B).
Now we introduce a special Cauchy principal value (cf. [6] p. 2a). If

Z eB21B), and

t(r, p) : { y I c(r) y? - 2 b(ru) hUz * a(r) yZ < p, /(r) }

denotes »the fundamental ellipse», then we define

*

lim [ ,@,t) dt : [ ,6,ry a, ,n*o*l*'", !
if the limit exists. The follorving lemma can be found in 16) p. 2a:

Lemma 1.23. fo maps Cl(B), 0 < y I l, ,into Cr(B), and, the follow-
i,ng formul,as are aalid,:

'i', j : L, 2, where

Att:-iZu, Azz:-2Åu,

bAtz: Azr: 
Z Å u.

The two previous lemmas imply immediately:
Corollary 1.2.1. T maps cl@)x?l(B) i,nto Cr(B) .

X'rom Lemma L.2.3 we get the generalized. Poisson equation as corollary.
Corollary 7.2.2. Il u belongs to Cl{B), then

(r.2.s) L((ro u)(r)) : -u(x) + | tep,fl) u,(t) di .

E

Note that the integral in (1.2.8) is taken in the ord.inary sense because
of Lemma I.2.1 d).

r
(To u)(r)-,x, : At1(r) + I P@, t)*,*j LL(t) d,t ,

J
E
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Corollary 7.2.3. Let I e Ci@) be giuen. If u e Co,(81, tl,,en

(1.2.e) u(u) : L(f(r)) * [ "gp,t)) 
u(t) d,t

!
i,f and, onty if L(f f u) : 0 in B.

Proof : This is a direct application of (1.2.S)to the last term in the right
sicle of

Lg f u) : L(l) | L(ro u) .

Theorem 7.2.1. Ior giuen f i,n C'zr(B),O< y< p, there enists a,uni,quely
tletermi,nerl u in CI(B) with the property

L((T f u)(r)) : 0, r € B(2, R),

iJ R is suJfici.ently smal,l,.

Proof : According to Ccrollary 1.2.3 we must solve the integral equation
(1.2.9), which is a singular equation of X'redholm's type.

Define D : C0(B) * Co(B) as (cf. Lemma 1.2.1)

(D w)(r) : L(f(r)) + [ qp<*, t)) w(t) d,t .

4

The mapping D is a contraction from the Banach-space Co(B) into itself
for -B small enough. We see this with the help of Lemma 1.2.1 as follo.rs:

llD w - D us'll6o6;1 < llw - w'llcn@t I W{rl*, il11 o,

!
fr

< llw _ w,ll6o61llr(p)ll5r,s; I 1. _ ad,

!. 4 nR llr(P)lls1(E tl]w - ,l',t"o,r,,

and

a n R lll(P)ll5,py

can be chosen smaller than I by choosing .E small enough. Hence there
exists a uniquely determined u in Co(B) with the property u : D u .

To prove lhat u belongs to Ci@) we use Lemma 1.1.1. Clearly LU)
belongs to Cl(B), hence we must consider

a
I

(T'u)(r) : I qrp,fi) u(t) dt .
J

E
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The functior L(P) € B1(.8) consists of two different parts, L(P) : B + A ,

where (cf. Lemma 1.2.1)

B(*, y) : ("(*) - a(A)) P(r, y)n,n, | 2 (b(r) - b(AD P(r, y)*,*,

* (c(r) - c(y)) P(r, y),,*,,

A(r, A) : (a(r)", + b(x)"") P(r, y)", + (b(r)", * c(n).,) P(r, y),,.

According to Remark 1.1.1 we c&n use Remark 1.1.2 and it, follou.s that

(T, u)(x) : I u@, t) u(t) d.t

!
maps C0(.8) into Ci@). To prove that, ?'n does the same, estimate

(1.2.10) lA(*,t) - A(r',t)l
{ la(r)", * b(r)", - a(r')*, - b(r')",| lP(r, t),,1

* la(r'),,.1- b(x').,| lP(*,t),, - P(*',r)",1 + . . .,

where dots stand for two similar terms. The first term in the right hand
side of (1.2.10) is less than

lr - x'l'2allP"rlls,lat'pJ,

and to the second term v'e can apply Remark 1.1.2, hence (1.1.1) holds
with a - I - p. ByLemma I.1.1

T, 1.1 : (f; + f)) u, u e Co(B),

belongs to Cl(B), if y < p. Bnt

u:L(f)lT'u,
hence 'aa e Ci@), which prolres the theorem.

Theorem L.Z.L shows that there ccrresponds to every f
unique u --- H f in Ci@). It is clear that the mapping H

Remark 1.2.1. The funct'ion 'u 'in the preai,olns theorem

by successiae approfrimot'ions :

,uo 

: t'(f) 
'

%n+L@)- L(f(")) + I L(P(r,t)) u*(t) dt , n - 0, 1.

!
and fo, the norm, ,f u - lirn u* we haue the usual esti,mate

= I CrR'

in c;@) a

is linear.
can be fcund

11
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where

CL: llrLflll"t;r , Cz: a n lll(P)lles .

Next we prove the existence of a locally homeomorphic solution for a
Bers system; in fact we show that there exists a whole family of them. By
a locally homeomorphic solution we mean a mapping

w : (u, u) : B(2,.8) --+ R2 , %, a e Cz(B) ,

which satisfies (I.2.1) in B and is injective.
Theorem 1.2.2. If f belongs to Clla@, h) and,

n : f@)1,+ l@)1*> 0 ,

then there er'i,sts a locally homeomorphi,a sol,uti,on p: (u,a) of (1.2.1) for
all, suffici,entl,y smal,l aalues of R, with th,e property u: T f H f.

Proof: ByTheorem 1.2.I thefunction u:Tf HleCz(B\ isasolution
of (1.2.a). Hence the function a can be integrated from (f .2.1), because
this system is exact. Moreover, o belongs fo Cz(B) ,

For the Jacobian of the mapping yl : (u, a) the following estimate
holds at z:

lJ(w(z))l : la(z) u@)1, * 2 b(z) u(z).,u(z)*, * c(z) u(z)l,l

> Eo @@)?, + u(")1,) .

At z we have

hence

Using Lemma I.2.1 and Remark 1.2.1 we get

rc.fdt
J Vt",t)"il(Hf)(t)ld't < IIP,JIsks-r ,fu J ;7( constant,B,
E-E

therefore

k
lu(z),rf' + lu(z)"r7' > k - constant R Z r,

if .E is small enough. Henoe the Jacobian of rz is positive at z, and so
the mapping w is injective for all sufficiently small values of -8. This
proves the theorem.

u(z) - f(z) + | ,rr,, (H f)(t) dt ,

E

lu(z)*,1 > lf@).,I - t lP@, t).,1 l(H f)(t)l dt , ö- L, z .

J
E
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1.3. Solution of the bounilary value problem by Perron's methoil
By the first boundary value problem associated with the Beltrami

equation (A) we mean the following: To finrl a function u defined in the
closure of a region G c R2 such that u e Cz(G) n Co(d), z satisfies (A)
in G, and u is equal to a given function g on the boundary 0G of. G.

X'rom the coefficients in (A) it is assumed that (1.2.2), (1.2.3), and
Å : I hold, when B is replaced by some bounded region G in R2.

In the following we present a generalization of Perron's method, which
can be used to solve Dirichlet,'s problem in t'he plane. Our method is based

on the general principle that if we know the solution of the boundary
value problem in the small, we get a solution in the large (cf. [f]).

We begin with some definitions.
The mapping w : (u, o) : "E -+ f,2 , I c G, is called pseudoanalytic

in the region E, if u and o belong to Cz(I) and the pair (2, o) is a
solution of the Beltrami equations (1.2.1) in "8. The function a is called
pseudoharmonic and o is called the pseudoconjugate of z. Both u and
o are solutions of second-ord.er, self-adjoint partial differential equations,
especially is L(u) : 0 in -8.

In the previous section we have shown that every point z € d has a
neighbourhood B(2, R), where a pseudoanalytic mapping exists which
is also a homeomorphism for all sufficiently small values of .8. For a fixed
z we denote this mapping by W and, its inverse mapping by 'l{-t.

fn the following lemmas we prove some well-known results (cf. [5] and

[f 0]), which show that pseudoharmonic functions have analogous properties
with harmonic functions.

Lemma 1.3.1. Eaery pseud,oanalytic mapping w c&n be local,ly erpressed,

in the tbrm

w:QoW,
where @ i,s an anal,ytic functi,on on the i,mage of W. Conuersel,y i,f <D i,s

analyti,c, then (1.3.1) i,s pseurloanalytic in the ilomain ol W.

Proof : By direct computation it can be shown fhaf O :ltl o W-t is a
solution of the Cauchy-Riemann differential equations.

Corollary 1.3.7. If a 'i,s harmoni,c on the image of W, then u " W 'is

pseud,oharmon'ic, and, i,f u i,s pseuiloharmon'i,c, then u " W-r i,s harmoni,c.

Lemma 7.9.2. Il u is i,n the region X pseud,oharmon'i,c, then u obeys

the mari,mum principile on I, that is: i,f u takes its mari,mum aalue in I ,

then it is constant.
ProoJ: Let' u attain its maximum value at the point z of G and let

B(z,R) c G be so small that I4l exists on B. fhe maximum principle
for harmonic functions implies that, the function ?L o W-L, which is har-
monic by Corollary 1.3.1, is constant on the region W(B), hence z is

13
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constant. Because -[' is connected the above result can be generalized to
the whole of. E.

Since u, and -u are simultaneously pseudoharmonic, u cannot
take its minimum in -t'.

Lemma 1.3.3. (General,'ized, Ilarnack's pri,nci,pl,e.) Let ui , ,i, : L,2, . . . ,

be a monoton'ic sequence (ui { ui , ,i, I j) of pseud,oharmonic funct,ions on
the region, X. Then on euery com,pact subset K of X, either

',2"': *@ '

or the seguenca %i co?LU€rges uni,formly toward,s a pesud,oharmonic function u.

Proof : Let z € -E' and take -B so small lhat W exists on B(2, R). By
Corollary 1.3.1 the sequence uio'ff-r is a monotonic sequence of har-
monic functions, hence by the principle of Harnack for harmonic functions,
either

y"t"W-L: *oo,

or the sequence u;o'll/-t converges uniformly to a harmonic function å

onthe set W@. On,B, thelemmaisproved,because h,W ispseuclo-
harmonic there. By covering K with a finite number of circles B(zi, R1),

the above result can be extended to the whole of K.
Perron used subharmonic functions to solve the classical Dirichlet prob-

Iem. This method can be easily generalized to our situation.
Definition 7.3.1. A continuous function w d,efi,ned, on the region F is

called, subpseud,oharmoni,c, i! thefunction w - u, where u is pseudoharrnonic
,in an open set U c F, obegs the marimum pri,nci,pfle i,n U.

Remark 1,3,7. The aboae d,efi,ni,tion has a local character: If ue define the

function w to be subpseud,oharmoni,c at the po,i,nt x if * is su,bpseudo-

harmoni,c'in some olten neighbourhood, U of r, then w ,is subpseudoharmonic
i,n I if and, only if it i,s subpseud,oharmonic at each point r i,n X.

Every pseudoharmonic function is subpseudoharmonic.
Lemma 1.3.4. If xc17'tr2t . . . ,'un are subpseud,oharmoni,c functions and ). cr

gtositiue reul number, thenthe functi,ons ).ur, u, ! ur, anil max (zrr, ,u2, . . . , ,u,)

ar e oll, subp seud,oharmonic.
Proof : Obviously the functions ). u, and ur * uz are subpseudo-

harmonic.
The function u) : max (ur, uz) is subpseudoharmonic. tr'irstly it is

continuous. Secondly if the difference between a pseudoharmonic function
u and the function zo takes its maximum at the point, z, then one of the
functions, for instance nr, has the property

ltt-,tL-constant.
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But

*(*) - u(r) 1 w(z) - u(z) : ut@) - u(z) : ur@) - u(r) 5 w(r) - u(r)

in a neighbourhood of the point z, and hence by the maximum principle

'tD - u: const'ant.

By induction it follows that max (ur., ur, . . . , u,) is subpseudoharmonic.
For the boundary value problem the regularity of the boundary of the

region G plays an essential role.
Definition 1.3.2. Theboundary point z of theregion G iscall,ed,regu,lu,r.

if there euists a .subpseud,oharmonic function u, called, barui,er, su,ch that

*Lfu'(*) =' o

and, u(r) < k(r) I 0, r.ahen r €. G-B(2, e) .

Other boundary points are called irregular. Some sufficient conditions
for the regularity of a boundary point are given later.

Theorem 1.3.7. Let G be a bound,ed, region i,n R2, D the set of all regular
bound,ary points of 0G, and,let g belong to Co(1G). Und,er these assumptions

here erists a pseud,oharmon'ic functi,on u such that

"]:,2Yt"t 
: s@) '

when z e D.
Proof : Let §u(G) be the set of all subpseudoharmonic functions ru

such that
,,rI."nw(r)Sg(y), xeG, ye 0G.

The set 8(G) is not empty, because all sufficiently small constants belong

to it. We claim that,

"':":{rp"r'

is the pseudoharmonic function mentioned in the theorem.
a) At first we prove that uu is pseudoharmonic.

Let y be a fixed point in G and B(y,u) C G so small that the local

homeomorphism I/ exists in B(y, e). We denote by P(f, B(y, r)) r the
Poisson integral

'i 
@, - lr- yl\ f@, -t e cos @, Uz I esin @) -

P(1, B(y, e)) r : (2 n)-t J'-, _ rT:yt ; coffi do,

15
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where fit-At: lr- yl cos g, nz-Uz: lr -yl sing, and / is a func-
tion belonging to C$PB). It is well-known that, P(f , B) r is a harmonic
function in B.

Let ö be so small that B(W(y), ö) is contained in W(B(y,e)). The
function ux is called an improvement relative io B(W(y), ö) of the sub-
pseudoharmonic function w e §r(G) in G, if
(1.3.1) w*(r) : P(w " W't, B(W(a), ö))W(r), n e W-t(B(W(y), ö)) ,

(1.3.2) w*1r) : u11a1, r eG - W-t(B(W(y), ä)).

The function eo* belongs to §*(G): Because

,*rtf,B)r:f(z), re B, ze 08,

we ohtain

Y**@) 
: P(w o W-r, B(W(il, ö))W(z) : It) o W-t. W(z) : w(z),

when r belongs to W't(B(W(y), d) and z to AW-L(B]ry(il, il); hence
w is continuous. In addition we remark that *x 114t-r(B(W(il, il) is
pseudoharmonic and so ?,0* - tr certainly obeys the maximum principle
in TT-|(B(W(y), ö)) and in G - W-r(B(W(g), ö», too. To prove that
the maximum principle for w* - ,u, is satisfied on Uryt6(W(y), ö)),
suppose that w* - a, has a maximum ab z e AW-|(B(W(A), ö)). Then also
w - u has a maximum at, z, hence w - ,u, is constant. It follows easily
from the Poisson integral representation in (1.3.I) lhat w 1w*. Therefore

w(r) - u(r) ! w*(r) - u(n) 1w*(z) - u(z) : w(r) - u(*)

in some neighbourhood of a, and so lzx - z is constant.
Let, w;, i:1,2,..., be a sequenceof subpseudoharmonicfunctions

in the set §r(G) such that

^*,(r):ue(U), 
AeG.

By Lemma 1.3.4 the sequence can be taken to be increasing, for it, can be
replaced by the sequence

max (wrr?.D2r. . ., u)i) r,i : lr2r. . . .

We replace eyer:u ai by its improvemeni w! relative lo B(W(y), d). The
functions ,u)r &t@ pseudoharmonic in W-L(B(W(g), ö)) and form an in-
creasing sequence. By the generalized Harnack's principle the limit

u* : lim wf
i+o



Or-,,r...r M.a.nrro, Solutions of Beltrami equations L7

exists on every compact subregion o, ry-t1B(W(y), ö)) and defines there
a pseudoharmonic function z*. Note that lim uf cannot be f co, for
every zof is smaller than or equal to sup g(r), which is finite. In addition
tz* is equal t'o u, at' y, for

wt@) a wf (y) S u'(U) .

Next we prove t'hat u* : 'ue it some neighbourhood of the point y.
After this the proof of the part a) is complete, because we have shown that
a, is pseudoharmonic in a neighbourhood of each point y in G, hence
z, is pseudoharmonic in G.

Take a point r so close to y lhat the set B(W(n), ),") contarrlirs W(y)
for some X > 0, and

B(W(r),1) c B(W(y), ö) .

Let wi be an increasing sequence of subpseudoharmonic functions such
that

limwi@): u(u) .

We put

/i : max (w'u wf)

and denote by /I the improvement of fi relative to B(W(r),l). By
the generalized Harnack's principle the limit

y* : lim /f
is pseudoharmonic on W-t(B(W(r), X)). By the definition of the function

l',
ux Sf*

in W-L(B(W(r), ,1)). But by the definition of z,

f*(v) < ue@) : u,*(y) ,

hence the pseudoharmonic function

(f* - u*)l W-|(B(W(r), X))

takes its minimum zero in Wa(B(W(r), ,1)). It follows that

fx-u*:0
in W-t(B(W(r), ,X)). Hence we have

u*(r) : ue(r) ,

2
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and so the above equality holds in some neighbourhood of y. The first
part of the theorem is proved.

b) The second step is to prove that for y e D

lilrr u'(r) : g(y) .
x+!, iec

At first we take such a neighbourhood B(y,.B) of the point g Lhat

ls(a) - s(r)11 e ,

when r e 0G fi B(y, R). Because y is a regular boundary point there
exists a subpseudoharmonic function a with the property

sup u(r)! k(e)< 0.
r€G-B(y, a)

Because G is a bounded region a constant ). can be found such that, the
subpseudoharmonic function

u(r) : )" u(r) | s(y) - e

satisfies

lT *"n w(r) < g(z)

for all z e 0G, hence w e Sr(G). Because

ile: SIJP %
ueSr(c)

we get

(1.3.3) lim inf ur@) zrl1*<"1 : s(a) - e .

Next we show that the corresponding inequality holds for the limes
superior.

From the construction of the function eo it follorvs that for all z € Sr(G)

T11.", 
(u(r) * ).u(r) - s(y) - e) < 0,

when a € äG and l, is large enough. Bv Lemma 1.3.4 thefunction u | ),u
is subpseudoharmonic, hence

u(r) { - ). u(r) -f s@) * e

by the maximum principle at every point u € G. This estimate is true for
all ue Sr(G), therefore

(r.8.4) 
B'"n u,(r) { 

l1T 
(-, a(r) * s@) * e): s@) * e.
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The estimates (f .3.3) and (1.3.4) hold for all e ) 0 at every regular
boundary point y of 0G, hence

lillrulr):g(y), re (1 , geD,

and the theorem is proved.
We now go back to consider the propert'ies of regular boundary points.

In fact it is clear that if the boundary point of the region is regular for the
classical Dirichlet problem, it is regular for the boundary value problem
of pseudoharmonic functions. This is due to the fact that all barriers con-
structed for the first problem can be generalized with the help of the local
homeomorphism I4l to the latter problem. We also remark that the exist-
ence of the barrier is a local property of the boundar;r curve.

By means of Riemann's mapping theorem the following theorem is
easily established.

Theorem 1.3.2. If 0G is a Jord,an curae, then there ex'i,sts a barrier at
eaery po'int y e 0G .

Proof : Let B(y, R) , y e OG, be so small linat, W exists ,n n1y3.
We denote by K the connected component of B(y, R) n G which contains

A. Let J be a Jordan arc which is defined as the connected component
of AK n AG containing y.

Let O be the conformal t'ransformation rn-hich maps W(K) onto
B(0, I). It is well known that, @ is continuous up to the boundary äK,
for this is a Jordan curve. Now 'we construct the function o defined as

alK:P(f,B(0, 1)) @oIy,

where / is continuous on aB(O, l),

.f,@"wQI{-J):-t,

-1 < f <0, and / is nob zero exept at the point, 3r. Clearly a(r)<O,
rcd, fr+y, u(g):0, and o is continuouson G. Moreover o issub-
pseudoharmonic on G, for on K it is pseudoharmonic by Corollary 1.3.I
and also on G -.k, because it is constant there. Suppose now that

w(r) : a(r) - u(r) ,

n pseudoharmonic, takes its maximum -l - n(z) on AK n G at the
point z. Denote by U the neighbourhood of the point, z such that
w(r) ! w(z) in U. Then

19

(1.3.5)
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when r belongsto U1G-K).In UnK wehave

(1.3.6) -l - u(z):a(z) -u(z)2o(r) -u(r)2 -r -u(r),
for a } -l in U n K. By (1.3.5) and (r.3.6)

u(r) 2 u(z) ,

when r € U, hence by the minimum principle for pseudoharmonic func-
tions z : constant, and so ?, : constant,. The theorem is proved.

Corollary 7.3.2. On a Jorilan reg,ion G tltere erists one and, only one pseu-
d,oharmonic function u such that u e CoG) und, u i,s equal to a gi,aen func.
tion g e Co@G) on 0G.

Proof : The existence of u follows from Theorem 1.3.1 and 1.3.2. The
uniqueness is a direct consequence of the maximum principle.

Remark 7.3.2. The bound,ary aalue problern ca,ll be generalized, to certai,n
cases ,i,n whi,clt, g is not continuous on AG (cf. [9]). Also Theorem 1.2.2
remains true, if the bound,arg 0G i,s not free.

We also rernark that Corollary 1.3.2 is not true, i,f G i,s unbouniled, although
'its boundary cons,ists only of regular po,ints.

2. Homeomorphic solutions for Beltrami equations

2.1. The problem anil preliminaries
In this part we study the following problem: Given an arbitrary Jordan

region G in 83, how to choose such boundary values for u in (1.2.1)
that the mapping ry : (u, a) is a homeomorphism from G onto w(G).
This problem was treated by Morrey [7] p. laO in a special case.

For the sake of simplicity we use complex nocabion n : tr * i r,
liz : -- 1) for the points in R2. The Beltrami equations (L2.1)take the form

(2.1.1) c u)xz - (-ö + i) un,: g ,

where w:,tL*i,u.
'We denote by B(G) the set of all mappings zo : u * d o such that

ueC2(1) n Co(G) , a €CL(G), and ,ra satisfies (2.1.r) in G.
As a summary from the previous part, we have
Theorem 2.1.1. Il G is a Jord,anregion,theassumptions 11.2.2), (1.2.3),

anÅ t1 :L hold,in G, and, geco?G),thenthereerists w:,tlliu in
B(G) with the progterty ul7G : g. The mappi,ng w ,is uni,gaely d,etermined,
u1t to an imagi,nary constant.

Proof : By Corollary 1.2 3 we can find a function zr such lhal u be-
longs to Cz(G) n Co(G), ulOG : g, and L(u): 0. Then a € Cz(G) can
be integrated from (1.2.1), because this system is exact.
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2.2. The case of continuous boundary values
The first two lemmas and corollary presented in this section are well-

knoum (cf. for instance ll0l).
Lemma 2,2.1. Suppose that w'i,s a non-constant pseud,oanalyti,cfunction

i,n the regi,on G. Then the zeros of w are isolated, ,i,n G, i,.e. euery zero has
a neigltbourhoocl A which d,oes not contain, other zeros of w, and, i,n the

neighbourhood, Q of a zero y we haae

(2.2.1) w(r) : lc(y) (q - a) * Fb(y) * d) (rz - Uz)f* wo(r) ,

where m i,s anatural number anil, woeOa$)) d,oes not uanish at y.
Proof : Let us denote by W : U * iV the locally homeomorphic

solution of the Beltrami equations. According to Theorem 1.2.2 we car.
assume that

w(y)", * o .

By Lemma 1.3.1 we have in some neighbourhood B(y, R) of the zero A
of ut

w(r) : (W(") - W(y))* Y(r) ,

mapping W has the Taylor expansion

w(r) - w(y) : w(y).,h + w(y),,* + + (wrr,h' * Zwtzh k + wrrk'),

where h:fit-At, lc:fi2-Uz, and

Wii : U(y')*fi | ,i, Y(y"),.*, , i, j : 1,2 .

The points g' and y" are situated on the line segment joining r anld y.
Because W is a solution of (2.1.1) in B, we get

(2.2.2) w(r): tch +(-ö + n)u^1ry + 
"n#;+q,f^ 

*r*r,

w' : + (wrrh, * zwtzhk + wrrk ) .

But

lw(s).,|c(v)l > o

and

W'

ch+(-b+i)k { y (lhl + lkl) , T- constant
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for the qua<Iratic form

lc h -l (-b + i) kiz

is positive definite, since its determinant' is c2 > 0. Hence the second factor
in (2-2.2) is different from zero in B(y, -E), when .B is small enough. This
proves the lemma.

The natural number m in (2.2.1) is called the orcler of the zero y.
If "f is a continuous mapping from a Jordan curve C into R2, then

we denote byz

As,*AtgJ

the winding number of / about the point r € R2 -,f(C) (cf. [11] p. 83).

Lemma 2.2.2. (?he pri,nci,pl,e of argument.) Let w - u * i a be pseud,o-

analytic on a Jord,an region G. If u and, u belong to Co(G) and wllG i,s

not zero at any point, then w has only a.finite nnmber ){ of zeros in G and,

(2.2.3) Arr,1, arg l'' ,

I
2"

I
2n

ushere all zeros are counted according to thei,r orders.
Proof : Because wPG has no zero, Lemma 2.2.L

only have a finite number of zeros in G.

Let frL, frZ, . . . , frN be the zeros of w, every zero
to its order. By Lemma 2.2.L we have

shows that w can

repeated accordirrg

w(r) - w'(r)

u,here Lo' e Co(G) has no zero, hence

Å0".0 Arg W' - 0

If we denote

then

since the mappings Ti, i : 1,2, . . . , iY, &re one-to-one, orientation pre-
serving, continuous transformations of R2 onto itself, which take the points
ri irrto origin. Thus (2.2.3) follou.s b5z the well-known properties of the
winding number (cf. llll p. 58).

I[

nj:l

I
2"

1

2"
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Corollary 2.2.1. If 1t) : '|tL I i, a i,s pseud,oanal,yt'i,c on a Jord,q,n regi,an G,

u and, a belong to Co(G), anil, wl1G 'i,s a homeomorphi,sm Jrom 0G onto

1w(G), then tp is injectiue.
Proof : Let, w(y) be a point in w(G). In view of Lemma 1.3.1 it is

clear that w(G) contarns no point of 1w(G). Therefore

I

-2n/ur,-lr)atgw:1.
By Lemraa 2.2.2 the mapping zo has in G only one point where it takes
the value w(y), }nence u is one-to-one, and the corollary is proved.

Lemma 2.2.3. Supgtose that G i,s a Jord,an region, It) : rL { i a bel,ongs

to B(G), a e C,(G), and, ullG : g e C|@G). If the functi,on g has only
one mari,mum anil one m'in'imum on 0G and, i,s otherwise strictl,y decreas'i,ng

or increasi'ng' then 
w : G --- u4G1

,i,s a homeamorphism.
Proof: In view of Corollary 2.2.1we must show that wl1G is a home-

omorphism.
According to the properties of g, w is not constant,. Therefore by Lemma

1.3.1, w(G) is a region. By the same lemma the inverse image of ?w(G)

belongs to 0G.
Next we show that the image of 0G belongs to ?u:(G). Suppose r

is a point on 0G such that

w(r) : u(r) * i, u(r) : g(r) | i, a(r)

belongs to w(G). Because the inverse image of Aut@) belongs to AG,

there exist on 0G two distinct points y ar,.d z such that

s@):s(z):s(r)
and w(y) and, w(z) belong fo 7w(G). But by the properties of g either

A : r ot z : lr, hence zu(c) belongs to Ozu(G).

Let zr (resp. zz) be the point where zo takes its minimum (resp.
maximum). By assumption 0G consists of two simple closed Jordan arcs
C, and Cr, which have only the points z1 and z2 in common. It is clear
lhat wlQ, j :1,2, is an one-to-one continuous mapping from C7 onto
w(C). Because w(G) is connected, w(Cr) l1w(Cr) consists only of the
points zo(21) and w(zz), hence wl1G is a homeomorphism onto Aw(G).

The lemma is proved.
Remark 2.2.1. Und,er certa'i,n cond,i,tions on g and G the function u

belongs to A(G). Xorinstance i,f g i,s Höld,er-continuous on OG and, there
eri,sts a twice Höld,er-continuously ilifferenti,able mappi,ng from 0B(0,l) into
R2, whi,chd,efi,nesthebound,aryol G, then a €Co(6) (cf. t3l p.26a).
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2.3. General case
In this section we suppose that g satisfies the assumpbions made in

Lemma2.2.3.Let w:u*i,u be pseudoanalyticon G and ul1G:9.
We want to show that under no conditions on a, the mapping m is in-
jective.

At first we study properties of the level lines of a pseudoharmonic
function u. Let Ji, j:1,2, Jrtl Jr- AG, denote the open Jordan
arcs with the minimum point zL and the maximum point z2 of g as

endpoints.
We need the following elementary lemma (cf. [8] p. 8) concerning the

level lines of a harrnonic function å.

Lemma 2.3.1. Let h be hurmonic on a regi,om I und' not constant. Then

Jor each gtoi,nt r € I there erists a nei,ghbourhood, B(rÅ) c I and, o,

homeomorphism

W : n@ A) -+ B-(0, I)

such that V(r) - 0 and the i,mage of the set

h-t(h(r)) n A@, A)

und,er Y cons'istsof 2m, (m2I, m d,epend,ingon r) raysfromtheorigin.
Corollary 2.3.1. If u i,s pseud,oharmonic and not constant on I, then

the aboae result hold,s.

Proof : Apply Lemma 2.3.1 to the function h -. ,u, o ll;-t, which is
harmonic on the image of W.

Lemma 2.8.2. Let u e Co(G) be pseud,oharmoni.c on G and uilG : g.

Then

a) u*l(r) is empty, if , > g(22) or r { g(2,) ,

b) u-|(g(zi)):. zi, j:1,2, and,

c) u-L(r) i,s a closed, Jord,an arc in G with end, poi,ntson J, and, Jr, ,i,f

g(zr)<r<g(zz).

Proof: Assertions a) and b) are direct consequences from the maxi-
mum principle.

Leb r be a point in G. The set u-l(u(r)) is a compact set in d. We
denote by U" the connected component of u'L(u(r)) which contains the
point n.

By Corollary 2.3.lthere exists 2 m (m ) 1) distinct points nr, n2, . . ., n2*

on AV-\(B(0, ri2)) such that

u-L(u(r)) n ryz-t1B(0, ll2)) : {r7, *2, . . ., n2^} .
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Let us denote by U;, j - 1,2,...,2%1, the connected component, of

u-\(u(r)) n (e - Y-L(B(o, rl2)))

which contains the point ri. Tt is clear lhab U.i c [/" and

.[J*: K u (A u;\ ,' ti:l 
'

where
g : V-\Gl10, t14) fi u-l(u(r)) .

By Corollary 2.3.1, the set f|*i contairs points other than ui.
We shall show that U*i(\Uil" is empt5,, if j + fr. Supposethat there

exists a point y in (l,i (1 [J*. In this case at, least one component K' of

G-KUU*iUU*t

contains a region, namely the inverse image under F of the set between

rays leading from the origin to the points Y1ri1 and V(*o). But orr

OK' c u-\(u(r)) the function a is equal lo u(x), and hence by the maxi-
mum principle u is constant. This is a contradiction.

Next we show that, (J*i 11 0G, j : 1,,2, . . . ,2 m, is not empty. X'or

if it is, then there exists a region Y in G such that V c G and

u-L(u(r)) (l V : (J,i .

To find such a domain 7 is possible because other components of. u-t(u(r))
are bounded away from U; by Corollary 2.3.1' According to the maximum
principle U,i contains no closed Jordan curve, hence U"i does not se-

parate V (cf. [11] p. 33). Therefore V - U,i is connected, and so on V,

either u, {u(r) or u2u(r), with the equality at some point of l/,
for [J; contains other points than ri. But this is impossible by the maxi-
mum principle.

On äG there exist two different points U' e Jt arrd yz € "I, with the
property

u(y*): S(yo): u(r), k: r,2.

Because [J*i (1(J*e is empty, if j + k, and U.i i 0G is not, empty,
there exist exactly two sets U*r and U*2, i.e. rm : L.

The above argument also shows that u-t(tt(n)) : U".

Every point yeU*fiG has an open neighbourhood U in Un,

which is an open Jordan arc, hence eYery y separates yt and y2 in U".

Because U, is a continuum, U, is a Jordan arc joining yL and Y' (cf.

tl1] p. 27, Theorem 1a.2)). The theorem is proved, for u-L(r) - U*, r : u(n).
As a main result in this section we can now proYe
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Theorem 2.3.1. If
ping w is injectiae.

Proof : B)' [emma

such that'

n)- u{iu e BG) and, ul)G:9, thenthemap-

2.3.2 there exists a homeomorphism

O:G*U(0, 1)

@("')-- -1, @(z') =:1 ,

and if g("') < r < g("') then the set @(u-L\r)) is the part contained in

ftq tl of the straight line perpendicular to the rr-axis. Let now r and
gr belong to G and x * lt. Then there exists e > 0 such that @(z) and
tD(g) arc contained rn B(0, I-e). But on AO-t(R(0,1-e)) the func-

tion z has the same propertiesas g has on äG. Moreover ul@-L(B(0,1-e))

is continuous. Applying Lemma 2.2.3 to the mapping ?rl | @-r1B(0,1-s)1
we get w(n) + w(y), whicr,L proYes the theorem.

Remark 2.3.1. The aboue theorenl, ca,n be useil to guarentee the eristence of
qu,asiconformal maltpi,ngs wi,th prescri,bed, once uni,formly Höld,er-continuously
d,i,ff er ent i, abl e d,il, at at i, on.

University of Helsinki
Helsinki, Finland
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