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Introduction

In this paper we study the following problem: Given Beltrami differen-
tial equations in an arbitrary Jordan region G of the complex plane C,
how to choose the boundary values for the real part of the solution
w = u -+ i v such that the mapping w : @ — C is injective. This problem
was first treated by Morrey [7] in a special case. We give a simple general
condition for the boundary values of # which guarantees the injectiveness
of w.

For the sake of completeness, we solve in part 1 the first boundary
value problem associated with the second-order Beltrami equation L(u) = 0.
This is done by Perron’s method without the global reduction of L(u) = 0
to the canonical form Adu = 0.

1. Elliptic boundary value problem for the Beltrami equation

In this part the boundary value problem associated with the second-
order Beltrami differential equation (cf. [4] p. 66)

(A) @ Uy - 2D Upr, + € Uy, - (Any + b)) Uy (bs, + €,) Uz, = 0,

where a ¢ — b = 1, is solved under geueral conditions on the coefficients
and boundary data. For this we use Perron’s method (cf. [9]), well-known
in the treatment of the classical Dirichlet problem.

1.1. Notations and preliminaries

By R we denote the set of real numbers. Points in two dimensional plane
R? are denoted by z,¥,... or (,%,), (¥, ¥s),.... In the plane the
usual norm topology is used.

If F is a subset of R2, then F is the closure and 9F the boundary
of F. The set B(x, R) is the open ball in R? with center at x and
radius R. Sometimes one or both arguments in B are dropped.

The restriction of the mapping f:F-—-R (or R? to F'CF is
denoted by f|F’. The set COF) is the set of ail continuous mappings on
F. We say that f belongs to C*(¥F), n=1,2,..., if there exists an



6 Ann. Acad. Sci. Fennicse A. I. 402

openset U suchthat U D F and the partial derivatives of order n of f
belong to C%U). All C*(F), n=1,2,..., are vector spaces over R.
If feCYF) and

|f@@) — f@)

sup
x,yEF !x - yl.u
xFy

= Ml O<pu<1)

is finite, then f is said to belong to the class C)(F), the set of all Holder-
continuous functions with exponent p on F. The set of functions for
which the nth partial derivatives are Holder-continuous with exponent
w is denoted by C7(F). Here Ilfller, (7 is & seminorm on OZ(F). If F is

compact, e.g. CUF), 02([") , and ‘C;(F) are Banach-spaces with norms
Hf”c"(F) = sup |f(z)],
x€EF

Hf”Cﬁ(F) = ”f”CO(F) + ”f”H.u(F) s
”f”c;(F) = ”f”c°(F) + Zlnfx;”cl‘:(m .

We shall need some sets of singular functions. Denote by F/F the set
FXF —{@,y)lz=y}.
We say that Z: F/F — R belongs to SP(F), p >0, if
sup |Z(@, y)| v — y[P = ||Zlsp(r)

(x,y)€F|F

is finite. It is clear that SP(F)c S(F), if p< ¢ and F is bounded.
Remark 1.1.1. If Z € SP(F), p>1,F iscompact, and f € C\(F), then

Z'(x, y) = (fle) — f(y) Z(=, y)
belongs to SP~Y(F) and
”Z/HSP_I(F) = Hf”cl(F) ”Z”SP(F) .

In this connection we cite the lemma [4] p. 185:
Lemma 1.1.1. Let D be a compact, convex set in R2, € C%D), and
Z€SD), 0<w< 1. If Z is a continuous function on D/D and

c, C,

(L11)  |Z(x,y) — Z(z y)| = R —

Ix — 5 [x . zll—a

(Cy and C, constants) for all x,z, and y in D which satisfy

lx —y| >2x —z| >0,
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then

(1.1.2) g(x) = // Zz, t) f(¢) dt, dt, = /Z(w, t) f(t) dt

belongs to CY(D), if 0<y<l—u.

Note that the integral in (1.1.2) is an absolutely convergent Riemann
integral.

Remark 1.1.2. (Cf. [4] p. 186.) The inequality (1.1.1) is satisfied, if the
derivatives Z(x,y)s,, © = 1,2, are continuous and belong to S***(D) .

1.2. Construetion of a locally homeomorphic solution for the Bers system
Our aim is to construct a locally homeomorphic solution for the pair
of equations

v,(z:auxl+bux2,

(1.2.1)
O = — (b Usy + € Uux,)
under the conditions
(1.2.2) a,b,c€C,(B),
(1.2.3) Ax) = a(x) c(x) — bx)2 >0, alx) >0, z€B,

where B = B(z, R). The equations are then called a Bers system. If in
addition 4 = 1, then (1.2.1) are called Beltrami equations. The construec-
tion of a locally homeomorphic solution of Beltrami equations has been
carried out, e.g. Ablfors [1], Bojarski [10], and Lehto— Virtanen [5].

By eliminating » from (1.2.1) we get for u the equation

(1.2.4) L(u) = (@ we, + b wsy)e; + (b ey + € Us)e, = 0.

With the solution of (1.2.4) we understand a function w« € C3(B) which
satisfies (1.2.4) in B.

To find a locally homeomorphic sclution for (1.2.1) we at first construct
a family of solutions of (1.2.4). We start with the so called parametrix
1 [ ®) * '
o c(y) (¥ — ¢

1
Py == v

— 20(y) (@, — y1) (03 — ) + aly) (x, — 3/2)2]} )
which is a continuous function on B/B. If in the following some partial
derivatives of the parametrix appear, then they are always taken with

respect to the first argument of P. They are continuous functions defined
on B/B.
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We need some estimates which control the growth of P(x,y) when
lx — y| tends to zero; for this reason we define positive constants x, g,
and E
o = max (lalle g, (bl leleE)
B = inf\VA®@),

and E, is the constant of ellipticity, i.e. the greatest lower bound of all
» such that

o(y) a1 £ 2b(y) 22, + aly) ey =y (2] + 23), z,y €B.

The constant E, is positive on the basis of (1.2.3).
Lemma 1.2.1. (Cf. e.g. [4] p. 181.) The parametrix P has the following
properties:
a) P €SPB) forany p >0,
b) P"i € Sl(B) and ”Pxi”SI(E) é & (ﬁ EO)_I H] 7’ = la 2 ’
¢) Pu €SAB) and |Puyllom =o* fE, i,j=1,2,
d) L(P; € 8Y(B) and |L(P)|sg = 406 7 Ey (¢/Ey + 1) .
Proof: Assertions a), b) and c¢) are obvious.
To prove d) write

L(P)zanlx1+Zbe1x2+CPx2x2+A!

where A stands for terms which contain the first partial derivatives of P.
These terms clearly belong to SY(B). By direct computation it can be
shown that

a(y) P(@, Y)uz, + 2 0(y) P, Y)apr, + c(y) P, Y)up, = 0
in B/B, hence
L(P(z, y)) = (a(x) — a(y)) P(z, Y)us + 2 (b(x) — b)) P(x, ¥)s5,
+ (e(@) — e(y)) P@, Y)sy, + A2, %) .
By ¢) P"f‘j belongs to S%B), therefore by Remark 1.1.1 we obtain, after

elementary calculation, d).
Next we study mappings 7, and 7 defined as

(1.2.5) (Ty u)(x) = / Pz, t) u(t) dt ,

(1.2.6) Tou=v+Tyu.
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By Lemma 1.2.1 a) the integral in (1.2.5) is an absolutely convergent Rie-
mann integral, if » € C°(B). According to b) the same is true if we replace
P by P, (i=1,2), and so

(1.2.7) (Ty u)(@)s, = /P(x, t)x; u(t) dt .
B

We have proved

Lemma 1.2.2. 7, is a bounded linear map from C°(B) into CY(B), and
T maps C3(B)xC%B) into CY(B).

Now we introduce a special Cauchy principal value (cf. [6] p. 24). If
Z € 8% B), and

B, o) ={y|c)yi — 2b() y1 4> + a(@) 2 = ¢ 4(2) }

denotes »the fundamental ellipse», then we define

*
~
lim Z(x, t) dt = / Z(x, t) dt ,
LHOE—E(x,g) B

if the limit exists. The following lemma can be found in [6] p. 24:
Lemma 1.2.3. T, maps CB(E), 0<y< 1, into C*B), and the follow-
ing formulas are valid:

*
(T w)(@)es, = Ai() + / Pz, thes, ult) dt
B

1,7 = 1,2, where

Ap=—g7u, dp=—57u,

24
b
Ay = Ay = o4 -
The two previous lemmas imply immediately:
Corollary 1.2.1. T maps C(B)xC)(B) into C¥B).

From Lemma 1.2.3 we get the generalized Poisson equation as corollary.
Corollary 1.2.2. If u belongs to C)(B), then

(1.2.8) L((T, u)(z)) = —u(x) + / L(P(x,t)) w(t) dt .

Note that the integral in (1.2.8) is taken in the ordinary sense because
of Lemma 1.2.1 d).
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Corollary 1.2.3. Let f € C}(B) be given. If u € CY(B), then

(1.2.9) u(@) = L(f()) + /L(P(x, t)) u(t) dt
B
if and only iof L(T fu)==0 in B.
Proof: This is a direct application of (1.2.8) to the last term in the right
side of
LT fu) = L(f) + LTy u).

Theorem 1.2.1. For given f in C}(B),0< y < u, there exists a uniquely
determined w in C;’(E) with the property

L(T fu)(x)) =0, 2 €B(z, R),

if R s sufficiently small.

Proof: According to Ccerollary 1.2.3 we must solve the integral equation
(1.2.9), which is a singular equation of Fredholm’s type.

Define D : C%B) — C%B) as (cf. Lemma 1.2.1)

(D w)(x) = L{f@)) + f L(P(x, 1)) w(t) dt .

The mapping D is a contraction from the Banach-space C(B) into itself
for R small enough. We see this with the help of Lemma 1.2.1 as follows:

1D w— D wlleg = llw— w'Hc°(§)/ \L(P(x, t))] dt

B

1
= [lw — w0z [IL(P) sz, / 7_7 dt

B
= 47 R |LP)ag v — wleop ,

and

4 7 R || L(P)|s5

can be chosen smaller than 1 by choosing R small enough. Hence there
exists a uniquely determined « in C°(B) with the property u = Du .

To prove that u belongs to C)(B) we use Lemma 1.1.1. Clearly L(f)
belongs to 02(1?), hence we must consider

(T u)(x) = / L(P(x, t)) u(t) dt .

B



Orir MarTIo, Solutions of Beltrami equations 11

The function L(P) € SY(B) consists of two different parts, L(P) = B 4 4 ,
where (cf. Lemma 1.2.1)
B(e, y) = (a(x) — a(y)) P&, Y)ss, + 2 (0(x) — 0(y)) P2, Y)uy,
+ (e(x) — c(m)) P, ¥)xy, »
A@, y) = (a(x)y, + b)) P(x, y)e, + (b(2)s, + c(2)s,) P, Y)-, -

According to Remark 1.1.1 we can use Remark 1.1.2 and it follows that

(Tg w)(x) :/ Bz, t) u(t) dt
B
maps C%B) into C)(B). To prove that 77, does the same, estimate
(1.2.10) A, §) — A, 1)]
= la(@)s, + b(x)s, — (@), — b(2)s,| |P(x, )|
+ @)y, + b(@")s,| [P@, 1)y, — P2, )| +

where dots stand for two similar terms. The first term in the right hand
side of (1.2.10) is less than
\,l. x [lt
2a ||Pelsys TR

and to the second term we can apply Remark 1.1.2, hence (1.1.1) holds
with « =1 — u. By Lemma 1.1.1

T uw= Ty +T,)u, u€C(B),
belongs to C)(B), if y < u. But
u=L(f)+T u
hence u € CS(B) , which proves the theorem.
Theorem 1.2.1 shows that there corresponds to every f in C’i(}-}) a
unique u = H f in C)(B). It is clear that the mapping H is linear.

Remark 1.2.1. The function w in the previous theorem can be found
by successive approximations:

uO"‘Lf)’

Uy yq(X) = —l—/ P, t) w,(t)dt , n=0,1....,

and for the norm of w = lim w, we have the usual estimate

0,
”'u“c"(B) lH fllco By = _——C'—zﬁ ,
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where
0= “L(f)Hc"(E) » Co=4n ”L(P)”sl(ﬁ) .

Next we prove the existence of a locally homeomorphic solution for a
Bers system; in fact we show that there exists a whole family of them. By
a locally homeomorphic solution we mean a mapping

w = (u,v): Bz, R) > R%, u,v €C¥B),

which satisfies (1.2.1) in B and is injective.

Theorem 1.2.2. If f belongs to C3(B(z, R)) and
k= f@)s + f(2)5,>0,

then there exists a locally homeomorphic solution w = (u,v) of (1.2.1) for
all sufficiently small values of R, with the property w =T f H f.

Proof: By Theorem 1.2.1 the function w = T f H f € C*B) is a solution
of (1.2.4). Hence the function » can be integrated from (1.2.1), because
this system is exact. Moreover, v belongs to C?(B).

For the Jacobian of the mapping w = (%, v) the following estimate
holds at z:

[ (w(2)| = la(z) u(2)y, + 2b(z) u(2),, u(z),, + z) u(2)s,!
= E, (u(2);, + w(2),) -

At z we have

u(z) = f(z) + /P(z, t) (H f)(t) dt,

hence

lu(2)e;] = If2)s] — /IP(Z, el (HOOdE, i=1,2.
B

Using Lemma 1.2.1 and Remark 1.2.1 we get

C dt
/ PG, 0l (O = IPlod T4 / Sy = constant R,
4 |

B

therefore
k
[u(2)s? + [w(2)s,? = k — constant B = 5

if R is small enough. Hence the Jacobian of w is positive at z, and so
the mapping w is injective for all sufficiently small values of R. This
proves the theorem.
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1.3. Solution of the boundary value problem by Perron’s method

By the first boundary value problem associated with the Beltrami
equation (A) we mean the following: To find a function u defined in the
closure of a region G c R? such that u € C%@G) N C@), u satisfies (A)
in G, and wu is equal to a given function g on the boundary 9G' of G.

From the coefficients in (A) it is assumed that (1.2.2), (1.2.3), and
A =1 hold, when B is replaced by some bounded region G in R2

In the following we present a generalization of Perron’s method, which
can be used to solve Dirichlet’s problem in the plane. Our method is based
on the general principle that if we know the solution of the boundary
value problem in the small, we get a solution in the large (cf. [1]).

We begin with some definitions.

The mapping w = (u,v): F—>R?*, Fc @, is called pseudoanalytic
in the region F, if w and v belong to C*F) and the pair (u,v) is a
solution of the Beltrami equations (1.2.1) in F. The function u is called
pseudoharmonic and v is called the pseudoconjugate of u. Both » and
v are solutions of second-order, self-adjoint partial differential equations,
especially is L(u) =0 in F.

In the previous section we have shown that every point z € @ has a
neighbourhood B(z, R), where a pseudoanalytic mapping exists which
is also a homeomorphism for all sufficiently small values of R. For a fixed
z we denote this mapping by W and its inverse mapping by WL

In the following lemmas we prove some well-known results (cf. [5] and
[10]), which show that pseudoharmonic functions have analogous properties
with harmonic functions.

Lemma 1.3.1. Every pseudoanalytic mapping w can be locally expressed
in the form

w=®Do W,

where @ is an analytic function on the image of W. Conversely if @ 1is
analytic, then (1.3.1) is pseudoanalytic in the domain of W.

Proof: By direct computation it can be shown that @ = wo W1 is a
solution of the Cauchy—Riemann differential equations.

Corollary 1.3.1. If v is harmonic on the image of W, then vo W 1is
pseudoharmonic, and if w is pseudoharmonic, then wo W1 is harmonic.

Lemma 1.3.2. If u is in the region F pseudoharmonic, then w obeys
the maximum principle on F, that is: if w takes its maximum value in F,
then it is constant.

Proof: Let « attain its maximum value at the point z of G and let
B(z, R) c G be so small that W exists on B. The maximum principle
for harmonic functions implies that the function o W-!, which is har-
monic by Corollary 1.3.1, is constant on the region W(B), hence u is
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constant. Because F is connected the above result can be generalized to
the whole of F.

Since # and —wu are simultaneously pseudoharmonic, % cannot
take its minimum in F.

Lemma 1.3.3. (Generalized Harnack’s principle.) Let w;, ©+=1,2,...,
be a monotonic sequence (w; = u;, 1< j) of pseudoharmonic functions on

the region F. Then on every compact subset K of F, either

lim %; = o0,

i>0

or the sequence u; converges uniformly towards a pesudoharmonic function wu.

Proof: Let z € F and take R so small that W exists on B(z, R). By
Corollary 1.3.1 the sequence u; o W—! is a monotonic sequence of har-

monic functions, hence by the principle of Harnack for harmonic functions,
either

lim w;o W= 400,

>0

or the sequence wu; o W' converges uniformly to a harmonic function %

on the set W(B). On B, the lemma is proved, because ho W is pseudo-
harmonic there. By covering K with a finite number of circles B(z;, R)),
the above result can be extended to the whole of K.

Perron used subharmonic functions to solve the classical Dirichlet prob-
lem. This method can be easily generalized to our situation.

Definition 1.3.1. 4 continuous function w defined on the region F is
called subpseudoharmonic, if the function w — u, where w is pseudoharmonic
m an open set U C F, obeys the maximum principle in U.

Remark 1.3.1. The above definition has a local character: Lf we define the
function w to be subpseudoharmonic at the point z if w s subpseudo-
harmonic in some open neighbourhood U of x, then w is subpseudoharmonic
in F if and only if it is subpseudoharmonic at each point x in F.

Every pseudoharmonic function is subpseudoharmonic.

Lemma 1.3.4. If uy, u,,. .., u, are subpseudoharmonic functions and 7 «a
positive real number, then the functions Ay, u; -+ uy, and max (uy, Uy, . . . , Un)
are all subpseudoharmonic.

Proof: Obviously the functions Zwu; and wu; + u, are subpseudo-
harmoniec.

The function w = max (uy, u,) is subpseudoharmonic. Firstly it is
continuous. Secondly if the difference between a pseudoharmonic function
u and the function w takes its maximum at the point 2z, then one of the
functions, for instance wu;, has the property

%, — % = constant.
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But
w(@) — w@) = wz) — uz) = u(z) — uz) = n@) — w@) = w@) — u@)
in a neighbourhood of the point z, and hence by the maximum principle
w — % = constant.

By induction it follows that max (uy, %,, . . . , %.) is subpseudoharmonic.

For the boundary value problem the regularity of the boundary of the
region G plays an essential role.

Definition 1.8.2. The boundary point z of the region G is called regular,
if there exists a subpseudoharmonic function v, called barrier, such that

lim »(x) == 0.
sz, %€G

and v(x) < k(e) < 0, when x € G—B(z, ¢).

Other boundary points are called irregular. Some sufficient conditions
for the regularity of a boundary point are given later.

Theorem 1.3.1. Let G' be a bounded region tn R2, D the set of all regular
boundary points of 9G, and let g belong to C°(0G). Under these assumptions
here exists a pseudoharmonic function w such that

when z € D.

Proof: Let S,(G) be the set of all subpseudoharmonic functions w
such that

lim sup w(x) = ¢g(y), z€0G, y € oG .
The set S (G) is not empty, because all sufficiently small constants belong
to it. We claim that
Uy = SUP W
u-GSg(G)

is the pseudoharmonic function mentioned in the theorem.

a) At first we prove that wu, is pseudoharmonic.

Let y be a fixed point in ¢ and B(y, ¢) ©€ G so small that the local

homeomorphism W exists in B(y, ¢). We denote by P(f, B(y, ¢))  the
Poisson integral

2

P — a—yP 1 ("), € si @
P(f,B(y,e))x:(Qn)—1/(E le—y ) fly, + € cos O, y, + ¢ sin O)

&2 — 2 |[x—y| ecos (O—¢) + |z—y?
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where z; —y; = |x —y|cos @, ¥, —y, = |x —y|sinp, and [ is a func-
tion belonging to C°(@B). It is well-known that P(f, B) x is a harmonic
function in B.

Let 6 be so small that B(W(y) 6) is contained in W(B(y, €)). The
function w* is called an improvement relative to B(W(y), §) of the sub-
pseudoharmonic function w € S,(@¢) in @, if

(1.3.1) wH(@) = Pwo W=, B(W(y), )W), «€WXB(W(y),9)),
(1.3.2) w¥x) = w(x), x€G— WYB(W(y),?I)).
The function w* belongs to S,(G): Because

lim P(f,B)x = f(z)y x€B, 2€0B,

we obtain
lim w*(x) = P(wo W1, B(W(y), 0))W(z) = wo Wlo W(z) = w(z),

when x belongs to WY(B(W(y),d) and z to dW-YB(W(y), d)); hence
w is continuous. In addition we remark that w* | W-YB(W(y), d)) is
pseudoharmonic and so w* — u certainly obeys the maximum principle
in WYB(W(y), d)) and in G — W-YB(W(y), d)), too. To prove that
the maximum principle for w* — u is satisfied on oW-LB(W(y), 9)),
suppose that w* — % has a maximum at z € 9W-1(B(W(y), 6)). Then also
w — % bas a maximum at z, hence w — u is constant. It follows easily
from the Poisson integral representation in (1.3.1) that w < w*. Therefore

w(z) — u(x) < wHr) — u(@) = wHe) — ule) = w(x) — ()

in some neighbourhood of z, and so w* — u is constant.
Let wi, ¢ =1,2,..., be a sequence of subpseudoharmonic functions
in the set S,(G) such that

lim wi(y) = wu(y), y €G.

By Lemma 1.3.4 the sequence can be taken to be increasing, for it can be
replaced by the sequence

max (wy, Wey « .., Wi), ¢ =1,2,....

We replace every w; by its improvemeat wf relative to B(W(y), 6). The
functions w; are pseudoharmonic in W-YB(W(y), §)) and form an in-
creasing sequence. By the generalized Harnack’s principle the limit

Uy = lim wf

i—>00
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exists on every compact subregion of W-1B(W(y). 6)) and defines there
a pseudoharmonic function u,. Note that lim w} cannot be - oo, for
every wi is smaller than or equal to sup g(x), which is finite. In addition
Uy is equal to u, at y, for

wily) = wi(y) = ul(y) -

Next we prove that u, = %, in some neighbourhood of the point y.
After this the proof of the part a) is complete, because we have shown that
u, is pseudoharmonic in a neighbourhood of each point y in @, hence
4, is pseudoharmonic in G.

Take a point = so close to y that the set B(W(x), 4) contains W(y)
for some A >0, and

B(W(x), 2) € B(W(y), 9) -

Let w; be an increasing sequence of subpseudoharmonic functions such
that

lim w;(x) = u() .

i—>o©
We put
Ji = max (w), w})

and denote by f* the improvement of f; relative to B(W(x), 1). By
the generalized Harnack’s principle the limit

Jx = lim f¥

is pseudoharmonic on W-YB(W(z), A)). By the definition of the function
fi

Uy = fy
in W-YB(W(z), 4)). But by the definition of wu,
Je(¥) = wly) = ui(y)
hence the pseudoharmonic function
(fx — ux)| WH(B(W (), 4))
takes its minimum zero in W-YB(W(z), 1)). It follows that
fo— =0

in W-YB(W(x), 1)). Hence we have
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and so the above equality holds in some neighbourhood of #. The first
part of the theorem is proved.
b) The second step is to prove that for y € D

lim u,(2) = g(y) -

x>y, xEG

At first we take such a neighbourhood B(y, R) of the point y that

l9(y) — g@)| < e,

when «» € 9G¢ N B(y, R). Because y is a regular boundary point there
exists a subpseudoharmonic function v with the property

sup v(x) < k(e)< 0.
YEG—B(y <)

Because (' is a bounded region a constant 1 can be found such that the
subpseudoharmonic function

wx) = 2v() + gly) — e
satisfies

lim sup w(z) = ¢(z)

x>z

for all z € 8¢, hence w € S,(¢). Because

U, = SUp U
uESg(G)
we get
(1.3.3) lim inf u,(x) = lim w(z) = g(y) — & .
x>y x>y

Next we show that the corresponding inequality holds for the limes
superior.
From the construction of the function w it follows that for all « € S,(G)

lim sup (u(x) + Ao(@) — g(y) —e) < 0,

x>z

when 2z € 0¢' and 1 islarge enough. By Lemma 1.3.4 the function u + Av
is subpseudoharmonic, hence

ux) = —Ao@) +gy) + ¢

by the maximum principle at every point x € G. This estimate is true for
all u € 8,(¢), therefore

(1.3.4)  lim sup uy(e) = lim (—20(x) + g(y) + &) = g(y) + ¢ .

x>y x>y
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The estimates (1.3.3) and (1.3.4) hold for all ¢ >0 at every regular
boundary point y of 0G, hence

lim u,(x) = g(y), 2€G, y€D,
x>y
and the theorem is proved.
We now go back to consider the properties of regular boundary points.
In fact it is clear that if the boundary point of the region is regular for the
classical Dirichlet problem, it is regular for the boundary value problem
of pseudoharmonic functions. This is due to the fact that all barriers con-
structed for the first problem can be generalized with the help of the local
homeomorphism W to the latter problem. We also remark that the exist-
ence of the barrier is a local property of the boundary curve.
By means of Riemann’s mapping theorem the following theorem is
easily established.
Theorem 1.3.2. If 9G is a Jordan curve, then there exists a barrier at
every point y € G .

Proof: Let B(y, R), y € 0G, be so small that W exists on B(y, R).
We denote by K the connected component of B(y, B) N G which contains
y. Let J be a Jordan arc which is defined as the connected component
of 9K N dG containing y.

Let @ be the conformal transformation which maps W(K) onto
B(0,1). It is well known that @ is continuous up to the boundary 0K,
for this is a Jordan curve. Now we construct the function » defined as

v| K= P(f,B(0,1)) Do W,
v | (G - K) = —1 ’
where f is continuous on @B(0, 1),
flPoWEOK —J)=—1,
—1 =f=0, and f is not zero exept at the point y. Clearly w(x)<< 0,
x€G, x #vy, vly) =0, and v is continuous on G. Moreover v is sub-

pseudoharmonic on @, for on K it is pseudoharmonic by Corollary 1.3.1
and also on G — K, because it is constant there. Suppose now that

w(x) = v(x) — u(@),

% pseudoharmonie, takes its maximum —1 — u(z) on 0K NG at the
point z. Denote by U the neighbourhood of the point z such that
w(x) =< w(z) in U. Then

(1.3.5) w) = —1—u@) = —1 — u(z),
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when x belongs to UN (G — K). In UNK we have

(1.3.6) —1 —u(z) =v(z) —uk) = v(x) — u@®) = —1 — u(x),
for v = —1 in UNK. By (1.3.5) and (1.3.6)
u() = u(z),

when z € U, hence by the minimum principle for pseudoharmonic func-
tions u = constant, and so w = constant. The theorem is proved.

Corollary 1.3.2. On a Jordan region G there exists one and only one pseu-
doharmonic function w such that w € C%Q) and w is equal to a given func-
tion g € C°%(0@F) on 0G.

Proof: The existence of u follows from Theorem 1.3.1 and 1.3.2. The
uniqueness is a direct consequence of the maximum principle.

Remark 1.3.2. The boundary value problem can be generalized to certain
cases in which g is mot continuous on 9G (cf. [9]). Also Theorem 1.3.2
remains true, if the boundary 0G is not free.

We also remark that Corollary 1.3.2 is not true, if G is unbounded although
its boundary consists only of reqular points.

2. Homeomorphic solutions for Beltrami equations

2.1. The problem and preliminaries

In this part we study the following problem: Given an arbitrary Jordan
region G in R2, how to choose such boundary values for « in (1.2.1)
that the mapping w = (v, v) is a homeomorphism from G onto ().
This problem was treated by Morrey [7] p. 140 in a special case.

For the sake of simplicity we use complex nocation z = a; + i,
(12 = —1) for the points in R% The Beltrami equations (1.2.1) take the form

(2.1.1) CWe, — (—b+ 1) wy, =0,

where w=wu +1iv.

We denote by B(G) the set of all mappings w = u -~ i » such that
u €ECHGF)NCYG), v €CG), and w satisfies (2.1.1) in G.

As a summary from the previous part we have

Theorem 2.1.1. If G is a Jordan region, the assumptions (1.2.2), (1.2.3),
and A =1 hold in G, and g € C°3G), then there exists w = u - i v in
B(G) with the property w|0G = g. The mapping w is uniquely determined
up to an imaginary constant.

Proof: By Corollary 1.2 3 we can find a function « such that « be-
longs to C2(G) N C%G), w|oG =g, and L(u) = 0. Then » € C%(@) can
be integrated from (1.2.1), because this system is exact.
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2.2. The case of continuous boundary values

The first two lemmas and corollary presented in this section are well-
known (cf. for instance [10]).

Lemma 2.2.1. Suppose that w 1is a non-constant pseudoanalytic function
in the region G. Then the zeros of w are isolated in @, i.e. every zero has
a neighbourhood £ which does mot contain other zeros of w, and in the
netghbourhood 2 of a zero y we have

(2.2.1)  w(x) = [e(y) (¥ — 1) + (—=b(y) + ©) (T2 — yo)]" wy (%) »

where m is a natural number and w, € C°(Q) does not vanish at y.

Proof: Let us denote by W = U + ¢V the locally homeomorphic
solution of the Beltrami equations. According to Theorem 1.2.2 we can
assume that

W), #0.

By Lemma 1.3.1 we have in some neighbourhood B(y, R) of the zero y
of w

w(@) = (W) — Wy)" V),

where ¥ is twice continuously differentiable in B and ¥(y) # 0. The
mapping W has the Taylor expansion

1
W@) — W(y) = Wy b+ W, &+ 5 (W h? 4+ 2Winh k4 Wep k%),

where h =z —y,, k=2, —y,, and
Wy = U(y,)xi"j + 1 V(y")xixj , =12,

The points y’ and y” are situated on the line segment joining « and .
Because W is a solution of (2.1.1) in B, we get

2.2.2 h b+ Q)" W) w "y
1
W' = ) (W kP 2W bk + Wy k?) .
But
[W (), /c(y)] >0
and

WI
ch-(—bLti)k

=y (|h] + |k|), y = constant ,
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for the quadratic form

leh & (—b - i) k2

i

is positive definite, since its determinant is ¢ > 0. Hence the second factor
in (2.2.2) is different from zero in B(y, B), when R is small enough. This
proves the lemma.

The natural number m in (2.2.1) is called the order of the zero y.

If f is a continuous mapping from a Jordan curve C into R2 then
we denote by

55 desargt
the winding number of f about the point x € R* — f(C) (ef. [11] p. 83).
Lemma 2.2.2. (The principle of argument.) Let w = u + i v be pseudo-

analytic on a Jordan region G. If w and v belong to C%G) and w|o@ is
not zero at any point, then w has only a finite number N of zeros in G and

(2.2.3) N = %_[ Ao arg w,
where all zeros are counted according to their orders.

Proof: Because w|0G has no zero, Lemma 2.2.1 shows that w can
only have a finite number of zeros in G.

Let at,22,...,2" be the zeros of w, every zero repeated according
to its order. By Lemma 2.2.1 we have

N
w@) = w'@) TT [e(@) (@ — a)) + (=b@’) +19) (@, — ad)].
j=1
where w’ € 0°%@) has no zero, hence

1

P Adgeoargw = 0.

If we denote

then

1
9 Aac,o arg Tj =1,
since the mappings 7', j = 1,2,..., N, are one-to-one, orientation pre-
serving, continuous transformations of R? onto itself, which take the points
2/ into origin. Thus (2.2.3) follows by the well-known properties of the
winding number (cf. [11] p. 58).
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Corollary 2.2.1. If w = w -+ 1 v is pseudoanalytic on a Jordan region @,
w and v belong to C%G), and w|0G is a homeomorphism from oG onto
ow(@), then w 1s injective.

Proof: Let w(y) be a point in w(¢). In view of Lemma 1.3.1 it is
clear that w(G) contains no point of dw(@). Therefore

1
P Aog,u(y 2T w = 1.

By Lemma 2.2.2 the mapping w has in G only one point where it takes
the value w(y), hence w is one-to-one, and the corollary is proved.

Lemma 2.2.3. Suppose that G is a Jordan region, w = u + 1 v belongs
to B(G), v €CYG), and u|0G = g € C°(0Q). If the function g has only
one maximum and one minimum on 0G and is otherwise strictly decreasing
or increasing, then

w: G — w(@)
is a homeomorphism.

Proof: In view of Corollary 2.2.1 we must show that w|0G is a home-
omorphism.

According to the properties of g, w isnot constant. Therefore by Lemma
1.3.1, w(@) is a region. By the same lemma the inverse image of ow(G)
belongs to oG .

Next we show that the image of 0G' belongs to dw((). Suppose x
is a point on 9G such that

w(z) = u(@) + i v(@) = g(x) + i o(x)

belongs to w(G). Because the inverse image of 0ow(@) belongs to oG,
there exist on 0G two distinet points y and z such that

9(y) = 9(z) = g(=)

and w(y) and w(z) belong to ow(G). But by the properties of g either
=g or z =, hence w(x) belongs to ow({).

Let 2! (resp. 2?) be the point where w takes its minimum (resp.
maximum). By assumption 0G' consists of two simple closed Jordan arcs
C; and C,, which have only the points 2! and 22 in common. It is clear
that w|C;, j = 1,2, is an one-to-one continuous mapping from C; onto
w(C;). Because w(() is connected, w(C;) N w(C,;) consists only of the
points w(z!) and w(z?), hence w|0G@ is a homeomorphism onto ow(G).
The lemma is proved.

Remark 2.2.1. Under certain conditions on g and G the function v
belongs to C%G). For instance if g is Hélder-continuous on 9G and there
exists a twice Holder-continuously differentiable mapping from 0B(0, 1) into
R2, which defines the boundary of @, then v € C%G) (cf. [3] p. 264).
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2.3. General case

In this section we suppose that g satisfies the assumptions made in
Lemma 2.2.3. Let w = u -+ 7v be pseudoanalytic on ¢ and u|0G = g.
We want to show that under no conditions on v, the mapping w is in-
jective.

At first we study properties of the level lines of a pseudoharmonic
function . Let J;, j=1,2, J, UJ,= 3G denote the open Jordan
arcs with the minimum point 2! and the maximum point 2? of ¢ as
endpoints.

We need the following elementary lemma (cf. [8] p. 8) concerning the
level lines of a harmonic function A.

Lemma 2.3.1. Let h be harmonic on a region F and not constant. Then

for each point x € F there exists a meighbourhood B(x, R)c F and a
homeomorphism

¥ : Bz, R) — B(0, 1)

such that Y(x) = 0 and the image of the set

h7Y(h(z)) N Bz, R)

under ¥ consists of 2m (m =1, m depending on x) rays from the origin.

Corollary 2.3.1. If wu is pseudoharmonic and not constant on F, then
the above result holds.

Proof: Apply Lemma 2.3.1 to the function A =: wo W1, which is
harmonic on the image of W.

Lemma 2.3.2. Let u € O%G) be pseudoharmonic on G and u oG = g.
Then

ul(r) is empty, if r >g(z?) or r<< g(z),
b) ug()) =2, j=1,2, and
u(

Yr) is a closed Jordan arc in G with end pointson J, and J,, if
9= < r < g(z*).

Proof: Assertions a) and b) are direct consequences from the maxi-
mum principle.

Let 2 be a point in G. The set w=l(u(x)) is a compact set in G. We
denote by U. the connected component of w—(u(x)) which contains the
point x.

By Corollary 2.3.1 there exists 2m (m = 1) distinet points a1, 22, ..., 2%
on 0¥Y-YB(0, 1/2)) such that

wu(z)) N OPYB(0, 1/2)) = {a', a2, ..., a?"}.
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Let us denote by U., j=1,2,...,2m, the connected component of
wHu(z)) N (G — P(B(0, 1/2)))

which contains the point /. It is clear that U.jc U, and

v.~ KU (U ).
where
K = ¥Y1(B(0, 1/2)) N w2 (u(x)) .

By Corollary 2.3.1, the set U, contains points other than a/.
We shall show that U.iN U. is empty, if j # k. Suppose that there
exists a point y in U,iN U.. In this case at least one component K’ of

G—KUU,UU,k

contains a region, namely the inverse image under ¥ of the set between
rays leading from the origin to the points ¥(z/) and ¥Y(z*). But on
0K’ < u(u(x)) the function u is equal to u(x), and hence by the maxi-
mum principle % is constant. This is a contradiction.

Next we show that U.,N oG, j=1,2,...,2m, is not empty. For
if it is, then there exists a region V in @ such that V< G and

wHu@) NV =U.i.

To find such a domain V is possible because other components of »=(u(x))
are bounded away from U, by Corollary 2.3.1. According to the maximum
principle U.j contains no closed Jordan curve, hence U.i does not se-
parate V (cf. [11] p. 33). Therefore V — U,j is connected, and so on V,
either u < u(x) or u = u(x), with the equality at some point of V,
for U,j contains other points than x/. But this is impossible by the maxi-
mum principle.

On 0G there exist two different points »' € J; and 2 € J, with the
property

Because U,iN Ux is empty, if j £k, and U.N9G is not empty,
there exist exactly two sets Ua and Uk, ie. m = 1.

The above argument also shows that u=(u(x)) = U..

Every point y € U.N G has an open neighbourhood U in U,,
which is an open Jordan arc, hence every y separates y' and p? in Us..
Because U, is a continuum, U, is a Jordan arc joining y' and #® (cf.
[11]p. 27, Theorem (4.2)). The theorem is proved, for u=(r) = U, r = u(x).

As a main result in this section we can now prove
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Theorem 2.3.1. If w=u+1v € B(G) and u|0G =g, then the map-
ping w s injective.
Proof: By Lemma 2.3.2 there exists a homeomorphism

& :G— B(0,1)
such that
PR = —1, () =1,

and if g(z!') < r < ¢(2?) then the set @(u~l(r)) is the part contained in
B(0, 1) of the straight line perpendicular to the x;-axis. Let now « and
y belong to @ and z = y. Then there exists ¢ >0 such that @(z) and
@(y) are contained m B(0,1—¢). But on 097(B(0,1—¢)) the func-
tion » has the same properties as ¢ has on Q. Moreover v | ®1(B(0,1—¢))
is continuous. Applying Lemma 2.2.3 to the mapping w | DHB(0, 1 —e¢))
we get w(x) # w(y), which proves the theorem.

Remark 2.3.1. The above theorem can be used to guarentee the existence of
quasiconformal mappings with prescribed once uniformly Hoélder-continuously

differentiable dilatation.
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