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1. Introduetion

Let C be the unit circle and D be the open unit disk in the complex
plane, and suppose that E is a subset of C. In 1954, Bagemihl and Seidel
[1] proved a general theorem on cluster sets which enabled them to derive
the following result [1, p. 192, Theorem 3]:

A necessary and sufficient condition that there exist a function, holomorphic
in D, that is uniformly bounded on the radii terminating in the points of E
but has no radial limit whatever, is that E be nowhere dense on C.

They were then naturally led to ask the following question:

What is a necessary and sufficient condition that there exist a function,
holomorphic in D, that is uniformly bounded on the radii terminating in the
points of E but has no radial limit at any point of E?

They made the conjecture (unpublished) at that time that such a
condition was that E be of Lebesgue measure zero on every arc of C on which
E is everywhere dense.

That this is a reasonable conjecture is apparent from the following
considerations. First of all, the necessity of the condition follows immediately
from Fatou’s theorem. The sufficiency of the condition is also readily
established for two special cases: (i) E is of measure zero, and (ii) E is
nowhere dense. In case (i), Lusin and Priwaloff have shown [9, pp. 156 —159]
that there exists a bounded holomorphic function in D having no radial
limit at any point of E. In case (ii), if E denotes the closure of E, then it
follows from [1, p. 190, Corollary 2] that there exists a function, holomorphic
in D, that is uniformly bounded on the radii terminating in the points of
E, but whose radial cluster set at every point of E is the unit circle. By an
appropriate combination of these two examples, it is possible to prove the
sufficiency of the condition for more general cases, but apparently not in
general.

The purpose of the present paper is to establish the truth of the con-
jecture in its full generality. This is accomplished by constructing a Jordan
curve J Cc CUD, with £c J, in such a way that the interior A4 of J
is star-shaped with respect to the origin (0 € 4), and under a conformal
mapping of 4 onto the unit disk, the set £ corresponds to a set of measure
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zero on the unit circle. Then essentially the aforementioned example of Lusin
and Priwaloff is transplanted to 4, and finally the desired holomorphic
function is obtained in all of D by means of an approximation that is also
of independent interest.

The Jordan curve J turns out to be useful for another purpose. For if
we take FE in particular to be a perfect nowhere dense subset of C of
positive measure, and denote by A’ the exterior of J, then if A’ is
mapped conformally onto the unit disk, it is not difficult to see that £
corresponds to a set of positive measure on the unit circle, whereas we have
already noted that if A is mapped onto the unit disk, £ corresponds to a
set of measure zero on the unit circle. Such an example has been given by
Lohwater and Seidel [8], but in their example, no point of £ is finitely (or
rectifiably) accessible from A, whereas in our example every point of J is
rectilinearly accessible from 4 as well as from 4.

In the final section of this paper, an example is given of a Jordan curve
J, with interior domain 4 and exterior domain A’, and a subset H of J,
with the property that 0 € A, A is star-shaped with respect to the origin,
and in fact every point of J is radially accessible (through A) from the
origin, and if 4 and A’ are mapped conformally onto the unit disk, the set
H corresponds to a set of measure 0 and 27, respectively, on the unit
circle.

We also give an example of a Jordan curve .J, with interior domain .1
(0 € 4), and a subset K of J of positive area (two-dimensional Lebesgue
measure), such that if 4 is mapped conformally onto the unit disk, the set
K corresponds to a set of measure zero on the unit circle. Such an example
has been given by Lohwater and Piranian [6], but in their example, no
point of K is finitely accessible from A, whereas in our example every
point of J is uniformly finitely accessible (through A) from the origin.

#3
2

o
2. Outline of proof of conjecture - |

=
4

[ Theorem 1. Let E be a subset of C. Then in order that there exist a
Sunction, holomorphic in D, that is uniformly bounded on the radii terminating
in the points of E but has no radial limit at any point of E, it is necessary and
sufficient that E be of Lebesgue measure zero on every arc on which it is
everywhere dense.

Proof. The necessity of the condition clearly follows from Fatou’s
theorem.

Suppose now that E satisfies the condition. Let {1} be an enumeration
of the (possibly only finitely many) components of ' — E. For each V,,
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let G, be an open arc of C' such that G.c V. and set G =UG@..
For an open arc y of C and a real number r (0 < r < 1), let

Sy,r)={ee”:r< ¢ < 1,¢e® €y}, p(r) = {re”:e° €y}.

Choose a sequence {rm} suchthat 0 < rn<7,,,<1l(m =1) and limr,
= 1.

We shall construct a domain A, which will be D minus certain of the
sets S(G., rm) and which will be bounded by a Jordan curve .J, such that
under a conformal mapping ¢ of A4 onto {|w'|<< 1} (= D’), the subset
E of J will correspond to a set E' on {|w'| =1} (= C’) of measure
zero. Suppose for the moment that this has been done, and let % be a
function, bounded and holomorphic in D’, such that for each { € £’ and
for each arc o at ¢ (6 D’ and o U {{} is a Jordan arc), the diameter
of the cluster set of & on ¢ at ( is greater than 2 (the existence of such an
h can be established by means of a simple elakoration of the Lohwater-
Piranian version [7, p. 11, Theorem 4] of the Lusin-Priwaloff example [9,
pp- 156—159], or most simply and directly by referring to an elegant
version of this example given by W. Schneider [10]). Let g¢g(z) = h(¢p(z))
(2 € A). Then for each ¢ € E, the oscillation of g at { on the radius
terminating at ¢ is greater than 2. We shall construct a function f, holo-
morphic in D, such that

lfz) —glz)| < 1 if z€{re”:0=r< 1, €°€E}.

It is clear that f will then have the desired properties.

3. Construetion of 4

We repeatedly use the following lemma of Lowner-Montel (see [3, p. 36]):

Suppose that AV is the interior of a Jordan curve J9 (j =1,2) and
that 0 €AV c A®. Let ¢V be a conformal mapping of AY onto D
with ¢V(0) = 0, B be a Borel subset of JV N J®, and BY) be the subset
of C that corresponds to B under ¢¥. Then m(BY) < m(B®) (where
m denotes Lebesgue measure).

Let U be the interior (relative to C) of the closure £ of E. Then
m(ENU)=0. Thus £ N U corresponds to a set of measure zero under
a conformal mapping onto D’ of any domain which is D minus certain
of the sets S(G., r») and which is bounded by a Jordan curve. Hence we
need to require of A only that E — U correspond under ¢ to a set of
measure zero.
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The domain A will be defined as the intersection of a sequence {4}
Let m denote a fixed natural number. It is easy to see, by means of the
extended maximum principle for harmonic functions, that we can let ¢
be a positive numker such that, if y is an open arc of C with length less
than 2§, then the harmonic measure of y(r.) Uy with respect to S(y, m)
is less than 1/m at each point of y(r,.,;). Let U'=C — @G, and let
{U,} be an enumeration of the (possibly only finitely many) components of
U’. Since each open arc of C intersects G'U U’, we can determine a
ratural number 7, such that each open arc of C' with length 6/3 intersects

either G or Lj U,. Choose open arcs U, of O (n=1,...,n,) such that

n=1
U'> U, and
m(U*) < 1/m, where U* = L:l ur —0)).
n=1
Choose a finite covering of G by open arcs (of C) intersecting G, each
with length less than /3, and let n, be a natural number such that each

of these open arcs intersects one of the sets G;,...,G,. Let =, be a
natural number such that =, =n, and for each n=1,...,n, each
component of U, — U, intersects one of the sets G,,..., G, Set

An=D — U 8(G. 1),
n=1

and let ¢. be a conformal mapping of A, onto D’ with ¢@.(0) = 0.
We prove that under ¢., E — U corresponds to a set on C’ of measure
less than (27 + 1)/m. n

Let G* be the (possibly empty) union of the components of ¢ — {J G,

n=1

with length less than 26. Denote by u the harmonic measure of G* with
respect to A.. If y is a component of G*, then again by the maximum
principle, at each z € S(y, rn), %(z) is less than the value at z of the
harmonic measure of y(r») Uy with respect to S(y, r»); in particular, this
holds for z € y(r,, ), so that u(z)< 1/m if z € y(r, .,), because of the
choice of 6. Thus, by the maximum principle, %(0) < 1/m. Therefore,
under ¢, G* corresponds to a set on C’ of measure less than 2x/m.

We now prove that all points of £ — U, with the exception of at most
enumerably many, are in U* U G*. Note first that the set (£ — U) —
(G — @) is at most enumerable, since any accumulation point of £ — U
isin @ — G. Suppose that { is a point of G — G that is not an end point
of any of the arcs @, or U,. We prove that ¢ € U* U G*. Let y' be an
open arc of C with length 6 and one end point . Then, because of the
choice of 7y, the open arc y” with length /3 that is the middle third of '
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intersects either G' or Lj U.. If »" intersects @, then one of the sets
n=1

Gy,...,GQ, intersects y'. If 9" intersects UL (1 <2 =< n,), then, since

t¢ U, either ¢ € U, — U., or one component of U, — U.. is contained

in 9" in which case one of the sets Gy, ..., @, intersects y’. Thus, either

¢ € U*, or each open arc with length 6 aund one end point ( intersects

one of the sets Gy, ..., G, (recall that n, = n,), in which case { € G*,

since ( ¢ lj G.. Thus we have shown that all points of B — U, with the

n=1
exception of at most enumerably many, are in U* U G*.
Under ¢m, U* N (B — U) corresponds to a set of measure less than
1/m, and G* N (B — U) corresponds to a set of measure less than 2n/m.
Hence E — U corresponds under ¢, to a set of measure less than

(2 + 1)/m. Let A = () An. Then the boundary of 4 is a Jordan curve

m=1

J, EcJ, and under a conformal mapping ¢ of 4 onto D’ with
@(0) = 0, E — U corresponds to a set of measure zero. Since m(E N U) =
0, ENU corresponds under ¢ to a set of measure zero. Therefore E
corresponds under ¢ to a set of measure zero.

4. The approximation

We suppose, for the sake of our notation and without loss of generality,
that we can associate with each @, a natural number m, such that

A=D—USG,,7n) -
For each G,, choose an open arc y, of C suchthat G, Cy, and y,C V,,

and let ¢, be a positive number such that

<0< T

1
Tmn—— "7')‘,

Set A* =D — U S8(yn, 0.). Then the boundary of A* is a Jordan curve
J* which we orient counterclockwise. Let

H={re*:0<=r <1, " €H}.

Then H c A*. Choose a sequence {7,} such that o, < 7. < 7, ., < 1
(n=1), imz, =1 and

Tn€{om:m=12 ...} (n=1).
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Set I',={lz] =r17,}N A%, and give the finitely many components of I,
the counterclockwise orientation. Define

=N {70}, Co=J*N{r, Sk =7} (0 >1).

Let the components of C, (n = 1) have the orientation induced by J*.
For any rectifiable oriented curve I' in 4, write

! 9(%)
I(F;Z)ZQ—m'/C——de'
7

If we approximate I(C,;z) by means of a rational function having poles only
on C,, and apply Runge’s pole-pushing lemma (see [2, p. 260]), we obtain
a rational function R,(z), with poles only in the complement of D, such
that

’~€H and n=1,2, or
R.z) — I(C,;2)| < /2" if
| zeHU{ {lz]< 1,_oyand n > 2.

Let f,&) = > R(e) + I(52) (12 < 7). Then

=1
Ifa2) —9)|< 12 if z€HN{|z|< 7,}.

Note that if »’ and k are natural numbers with »’ >n, and if |z|< 7,
then

e |
W 4 41(2) — [fur(2)| = ZR + Iy ix52) — 1Ly 52) |
FETEN i
- _Z (2) — I(C; 1 2)) | < 1)2~.
Set f(z) = lim f,(z) (2 € D). Then f is holomorphic in D and If(z) —
g(2)] < 1 if z € H. This completes the proof of Theorem 1.

Remark. That this type of approximation is possible was learned by
J. E. McMillan under the direction of G. R. MacLane. Stebbins [11] mean-
while obtained, independently and by a different method, a general
approximation theorem which could be applied here to give the desired
approximation.

5. Examples in conformal mapping

If we take E to be a perfect nowhere dense subset of C of positive
measure, then it is clear from the foregoing construction of 4 and from
[8, p. 138, Lemma 2] that the following is true.
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Theorem 2. There exists a Jordan curve J, with J < C U D, containing
the origin in its interior A which is star-shaped with respect to the origin, and
having a closed set E in common with C, suchihat if A and the exterior of J
are mapped conformally onto the unit disk, then E corresponds to a set of
measure zero and a set of positive measure, respectively, on the unit circle.

Remark. In the construction of 4, in Section 3, the points of £ — U
that are near U require special consideration, and it is evident how to
simplify the argument considerably if £ is nowhere dense. It is easy to see,
and it will be evident from the proof of Theorem 3, that we can also require
in Theorem 2 that J N C = E and that each point of J be radially
accessible from the origia.

A condensation process leads from Theorem 2 to the following result.

Theorem 3. There exist a Jordan curve J containing the origin in its
interior A such that every point of J is radially accessible from the origin,
and an F_ subset H of J, with the property that if A and the exterior
of J are mapped conformally onto the unit disk, then H corresponds to a set
of measure zero and a set of measure 2m, respectively, on the unit circle.

Proof. Let {h,} be a sequence of positive real numbers such that 2k, << 1.
Associate with each n a positive number 6§, such that if r, —r, = h,/2
O<rn<r,<1l and 0,—0, =<9, (O,< 0,), then the harmonic
measure of

{re?: r=r,1r;0,< 0<0,}
with respect to
{re: n<r<r, 0;<0<0,}
i less than 1 /n at each point of
{re®: r=(r,+1r)2, 0,<0<0,}.

We define sequences {J,} and {F,_,} inductively as follows. Let
J;=C and let F,= @. Suppose that a Jordan curve J, has been
defined such that

n—1
Jelli—Shn<p =1,
L= J
the interior 4, of J, is star-shaped with respect to 0, and J, is a finite
union of non-radial rectilinear segments and arcs of circles with center 0;
and suppose that F,_,is a closed subset of J, which is nowhere dense on
J,. Denote by vy, a conformal mapping of the exterior of J, onto {|z’| << 1}
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such that ¢, (o) =0, and let F, be a perfect set on J, such that
F, ,cF,, F, is nowhere dense on J,, and

1
m(wn(Fn)) > 27 — 7?/ ’

where ,(F,) denotes the subset of {|z'| = 1} that corresponds to F,
under y,. Take {Gi} to be an enumeration of the components of J, — F,
and set

JE={(r —h)e” : re® €J.}, GF={(r—h)e": re® €G} (k=1).

Let k, be a natural number and U, be an open subarc of G
(k=1,...,k) such that U,c G and the following conditions (i),
(i), and (iii) are satisfied:

(i) The diameter of every component of each of the sets

(1) J¥ —U Uk
k=1
and
ko
(2) Jo— U Gk
k=1

is less than h,/4.
(ii) For each component y of the set (1), there exist &, and @, such
that 0<< @, — O, =6, and

yo{red’: 0<r<1l, 0,<0<0,}.

(iii) For each k=1,...,k, the rectilinear segments I, and 7
joining the left-hand (as viewed from the origin) end points of G and Uk
and right-hand end points of G, and Uy, respectively, intersect J, U J¥
only in their end points.

Denote by D;. the interior of the Jordan curve that is the union of
Gy, U, I, and 7. Set

kO
dyyr=4,—U Dy

k=1
(Note that since F, is a perfect set, the distance between any two distinct
domains Dj is positive.) Let J, , bethe Jordan curve that is the boundary
of 4,,,. This completes the definition of {J,} and {F,_,}.

We retain the notation used in the above definition, and take ¢,

to be a conformal mapping of 4,,, oato {|z’'| < 1} suchthat ¢, ,(0)==0.
We now prove that

®3) (@ 1(Fa)) < 27[n .
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Denote by R an arbitrary component of the intersection of 4, ,; and the
exterior of J*. The boundary of R is the union of a component p; of the
set (1), a component y, of the set (2), and two rectilinear segments. Write

rp=sup{lz|:2 €y}, ro=1Inf{|z]:2 €,}.
Then (i) implies that r, —r, = h,/2. Let @; and 6O, be such that
0< 0,— 0, <4, and
MCird®: 0<r<1l, 0,<0< 06,}.

Then RcC{re®: 0<r<1l, ;< O<06,}). At each point of the
circular arc

(4) RN {re®: r==(r, +1)2, O,< 0< 6,},

the harmonic measure u of the set (2) withrespectto 4, islessthan the
harmonic measure of
{re® : r=r,r; ;<0< 06,

with respect to

{re” : n<r<r, 0,<0<0,}.
Thus u(z) < 1/n if z is on the arc (4), and it follows that «(0)<< 1/n.
Thus, since all points of F,, with the possible exception of only finitely
many, are in the set (2), we have established (3).

Define 4 = N 4,, and let J be the Jordan curve that is the boundary
of A. Then clearly every point of J is radially accessible from 0. If
H=UPF, then Hc J. Let ¢ and y map the interior and exterior,
respectively, of J conformally onto {|z'| << 1} so that ¢(0) =0 and
w(oo) = 0. By the lemma of Lowner-Montel (stated in Section 3),

m(@(F,)) = m@, 1(F.)) (n=1).
Thus by (3),
m(g(H)) = lim m(¢(F,)) = 0.
On the other hand, by first subjecting the plane to the transformation 1/z
and then applying the lemma of Lowner-Montel, we see that
m(y,(F,)) = m(y(F,)) (n=1).
Hence

1
2n — < m(yy(F,)) = m(p(F,)) = mp(H)) .

Therefore, m(yp(H)) = 27, and the proof of Theorem 3 is complete.
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Remark. The foregoing constructions in Sections 3 and 5 could have been
accomplished, less simply and directly, however, by combining geometrical
arguments with a general theorem of Lavrentieff [5, p. 822, Theorem 1].

Theorem 4. There exist a Jordan curve J containing the origin in its
interior A such that every point of J is uniformly rectifiably accessible
through A from the origin, and a subset K of J of positive area, with the
property that if A is mapped conformally onto the unit disk, then K corre-
sponds to a set of measure zero on the unit circle.

Proof. For an arbitrary (closed) isosceles right triangle 7' and a positive
number e that is less than the length of the hypotenuse H of 7', consider
the open strip S of width ¢ such that the straight lines on the boundary of
S are perpendicular to H and 7T — § is the union of two congruent iso-
sceles right triangles. Let S,(T') be the intersection of § with the union of
H and the interior of 7. We shall choose a sequence {¢,} of positive
numbers satisfying several restrictions, each of which will require that e,
be small. We first require {¢,} to be such that the following construction is
possible.

Let F,; be the (closed) isosceles right triangle that has a diameter of the
unit circle as its hypotenuse and is contained in the closed upper half-plane.
Suppose that a closed set F, has been defined so that its interior is the
union of interiors of congruent (closed) isosceles right triangles T
(G=1,...,70:0.=2"""), and set

n,j

As in Knopp’s triangle construction (see [4, p. 204]), N F, is a Jordan
arc J’, and if the numbers ¢, are sufficiently small, then J’ has positive
area. Let J denote the Jordan curve

JU{: 7 <0 <27},

and let 4 denote the interior of J. It is easy to see that each point of J’
is accessible through 4 from the origin by a rectifiable curve that is
composed of horizontal and vertical rectilinear segments and whose length
is arbitrarily close to unity, and every other point of J is radially accessible
from the origin.

Define a sequence {4,} inductively as follows:

dy={re":0<r<1, a<O<2a3US (T,

Jon 41
4,,1=4,U ( U 852n+1(T2n+1=j))'

j=1
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Then 4 = U 4,. Let J, be the Jordan curve that is the boundary of 4,,
and let ¢, and ¢ be conformal mappings of 4, and A4, respectively,
onto {|z'| < 1} with ¢,(0) =0 and ¢(0)= 0. Now fix the sequence
{e,} sothat J has positive area and foreach » and k=1,...,n, theset

Jan 41
Ji N ( .UlSé2"+1(T2n+1,j)>
i=

corresponds under ¢ to a set on {|z’| = 1} of measure less than 1/2".
Note that each component of Jx N A is the intersection of J; and one of
the sets S€2n+ 1(T2n+1,j) (n = k). Hence,under ¢, J. N 4 correspondsto

a set of measure less than 1/2°~', and J,NJ corresponds to a set of
measure greater than 2z — (1/2°~'). By the lemma of Léwner-Montel,
Jie N J corresponds under ¢ to a set of measure greater than 2z — (1/2°77).
Therefore, under ¢, the set

E:("GJ,,»\)nJ,

k=1

which has zero area, corresponds to a set of measure 27, and the set
K = J — E, which has positive area, corresponds to a set of measure zero.
This completes the proof of Theorem 4.

University of Wisconsin-Milwaukee
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